1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
|
/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/idl.h"
#include "flatbuffers/util.h"
#include "flatbuffers/registry.h"
#include "flatbuffers/minireflect.h"
#include "monster_test_generated.h"
#include "namespace_test/namespace_test1_generated.h"
#include "namespace_test/namespace_test2_generated.h"
#include "union_vector/union_vector_generated.h"
#ifndef FLATBUFFERS_CPP98_STL
#include <random>
#endif
#include "flatbuffers/flexbuffers.h"
using namespace MyGame::Example;
#ifdef __ANDROID__
#include <android/log.h>
#define TEST_OUTPUT_LINE(...) \
__android_log_print(ANDROID_LOG_INFO, "FlatBuffers", __VA_ARGS__)
#define FLATBUFFERS_NO_FILE_TESTS
#else
#define TEST_OUTPUT_LINE(...) \
{ printf(__VA_ARGS__); printf("\n"); }
#endif
int testing_fails = 0;
void TestFail(const char *expval, const char *val, const char *exp,
const char *file, int line) {
TEST_OUTPUT_LINE("VALUE: \"%s\"", expval);
TEST_OUTPUT_LINE("EXPECTED: \"%s\"", val);
TEST_OUTPUT_LINE("TEST FAILED: %s:%d, %s", file, line, exp);
assert(0);
testing_fails++;
}
void TestEqStr(const char *expval, const char *val, const char *exp,
const char *file, int line) {
if (strcmp(expval, val) != 0) {
TestFail(expval, val, exp, file, line);
}
}
template<typename T, typename U>
void TestEq(T expval, U val, const char *exp, const char *file, int line) {
if (U(expval) != val) {
TestFail(flatbuffers::NumToString(expval).c_str(),
flatbuffers::NumToString(val).c_str(),
exp, file, line);
}
}
#define TEST_EQ(exp, val) TestEq(exp, val, #exp, __FILE__, __LINE__)
#define TEST_NOTNULL(exp) TestEq(exp == NULL, false, #exp, __FILE__, __LINE__)
#define TEST_EQ_STR(exp, val) TestEqStr(exp, val, #exp, __FILE__, __LINE__)
// Include simple random number generator to ensure results will be the
// same cross platform.
// http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator
uint32_t lcg_seed = 48271;
uint32_t lcg_rand() {
return lcg_seed = ((uint64_t)lcg_seed * 279470273UL) % 4294967291UL;
}
void lcg_reset() { lcg_seed = 48271; }
std::string test_data_path = "tests/";
// example of how to build up a serialized buffer algorithmically:
flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) {
flatbuffers::FlatBufferBuilder builder;
auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20));
auto name = builder.CreateString("MyMonster");
unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
auto inventory = builder.CreateVector(inv_data, 10);
// Alternatively, create the vector first, and fill in data later:
// unsigned char *inv_buf = nullptr;
// auto inventory = builder.CreateUninitializedVector<unsigned char>(
// 10, &inv_buf);
// memcpy(inv_buf, inv_data, 10);
Test tests[] = { Test(10, 20), Test(30, 40) };
auto testv = builder.CreateVectorOfStructs(tests, 2);
#ifndef FLATBUFFERS_CPP98_STL
// Create a vector of structures from a lambda.
auto testv2 = builder.CreateVectorOfStructs<Test>(
2, [&](size_t i, Test* s) -> void {
*s = tests[i];
});
#else
// Create a vector of structures using a plain old C++ function.
auto testv2 = builder.CreateVectorOfStructs<Test>(
2, [](size_t i, Test* s, void *state) -> void {
*s = (reinterpret_cast<Test*>(state))[i];
}, tests);
#endif // FLATBUFFERS_CPP98_STL
// create monster with very few fields set:
// (same functionality as CreateMonster below, but sets fields manually)
flatbuffers::Offset<Monster> mlocs[3];
auto fred = builder.CreateString("Fred");
auto barney = builder.CreateString("Barney");
auto wilma = builder.CreateString("Wilma");
MonsterBuilder mb1(builder);
mb1.add_name(fred);
mlocs[0] = mb1.Finish();
MonsterBuilder mb2(builder);
mb2.add_name(barney);
mb2.add_hp(1000);
mlocs[1] = mb2.Finish();
MonsterBuilder mb3(builder);
mb3.add_name(wilma);
mlocs[2] = mb3.Finish();
// Create an array of strings. Also test string pooling, and lambdas.
auto vecofstrings =
builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>(4,
[](size_t i, flatbuffers::FlatBufferBuilder *b)
-> flatbuffers::Offset<flatbuffers::String> {
static const char *names[] = { "bob", "fred", "bob", "fred" };
return b->CreateSharedString(names[i]);
}, &builder);
// Creating vectors of strings in one convenient call.
std::vector<std::string> names2;
names2.push_back("jane");
names2.push_back("mary");
auto vecofstrings2 = builder.CreateVectorOfStrings(names2);
// Create an array of sorted tables, can be used with binary search when read:
auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3);
// Create an array of sorted structs,
// can be used with binary search when read:
std::vector<Ability> abilities;
abilities.push_back(Ability(4, 40));
abilities.push_back(Ability(3, 30));
abilities.push_back(Ability(2, 20));
abilities.push_back(Ability(1, 10));
auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities);
// Create a nested FlatBuffer.
// Nested FlatBuffers are stored in a ubyte vector, which can be convenient
// since they can be memcpy'd around much easier than other FlatBuffer
// values. They have little overhead compared to storing the table directly.
// As a test, create a mostly empty Monster buffer:
flatbuffers::FlatBufferBuilder nested_builder;
auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0,
nested_builder.CreateString("NestedMonster"));
FinishMonsterBuffer(nested_builder, nmloc);
// Now we can store the buffer in the parent. Note that by default, vectors
// are only aligned to their elements or size field, so in this case if the
// buffer contains 64-bit elements, they may not be correctly aligned. We fix
// that with:
builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t),
nested_builder.GetBufferMinAlignment());
// If for whatever reason you don't have the nested_builder available, you
// can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or
// the largest force_align value in your schema if you're using it.
auto nested_flatbuffer_vector =
builder.CreateVector(nested_builder.GetBufferPointer(),
nested_builder.GetSize());
// Test a nested FlexBuffer:
flexbuffers::Builder flexbuild;
flexbuild.Int(1234);
flexbuild.Finish();
auto flex = builder.CreateVector(flexbuild.GetBuffer());
// shortcut for creating monster with all fields set:
auto mloc = CreateMonster(builder, &vec, 150, 80, name, inventory, Color_Blue,
Any_Monster, mlocs[1].Union(), // Store a union.
testv, vecofstrings, vecoftables, 0,
nested_flatbuffer_vector, 0, false,
0, 0, 0, 0, 0, 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f,
vecofstrings2, vecofstructs, flex, testv2);
FinishMonsterBuffer(builder, mloc);
#ifdef FLATBUFFERS_TEST_VERBOSE
// print byte data for debugging:
auto p = builder.GetBufferPointer();
for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++)
printf("%d ", p[i]);
#endif
// return the buffer for the caller to use.
auto bufferpointer =
reinterpret_cast<const char *>(builder.GetBufferPointer());
buffer.assign(bufferpointer, bufferpointer + builder.GetSize());
return builder.ReleaseBufferPointer();
}
// example of accessing a buffer loaded in memory:
void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length,
bool pooled = true) {
// First, verify the buffers integrity (optional)
flatbuffers::Verifier verifier(flatbuf, length);
TEST_EQ(VerifyMonsterBuffer(verifier), true);
std::vector<uint8_t> test_buff;
test_buff.resize(length * 2);
std::memcpy(&test_buff[0], flatbuf , length);
std::memcpy(&test_buff[length], flatbuf , length);
flatbuffers::Verifier verifier1(&test_buff[0], length);
TEST_EQ(VerifyMonsterBuffer(verifier1), true);
TEST_EQ(verifier1.GetComputedSize(), length);
flatbuffers::Verifier verifier2(&test_buff[length], length);
TEST_EQ(VerifyMonsterBuffer(verifier2), true);
TEST_EQ(verifier2.GetComputedSize(), length);
TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0);
TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true);
TEST_EQ(strcmp(MonsterExtension(), "mon"), 0);
// Access the buffer from the root.
auto monster = GetMonster(flatbuf);
TEST_EQ(monster->hp(), 80);
TEST_EQ(monster->mana(), 150); // default
TEST_EQ_STR(monster->name()->c_str(), "MyMonster");
// Can't access the following field, it is deprecated in the schema,
// which means accessors are not generated:
// monster.friendly()
auto pos = monster->pos();
TEST_NOTNULL(pos);
TEST_EQ(pos->z(), 3);
TEST_EQ(pos->test3().a(), 10);
TEST_EQ(pos->test3().b(), 20);
auto inventory = monster->inventory();
TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null.
TEST_NOTNULL(inventory);
unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (auto it = inventory->begin(); it != inventory->end(); ++it)
TEST_EQ(*it, inv_data[it - inventory->begin()]);
TEST_EQ(monster->color(), Color_Blue);
// Example of accessing a union:
TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is.
auto monster2 = reinterpret_cast<const Monster *>(monster->test());
TEST_NOTNULL(monster2);
TEST_EQ_STR(monster2->name()->c_str(), "Fred");
// Example of accessing a vector of strings:
auto vecofstrings = monster->testarrayofstring();
TEST_EQ(vecofstrings->Length(), 4U);
TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob");
TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred");
if (pooled) {
// These should have pointer equality because of string pooling.
TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str());
TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str());
}
auto vecofstrings2 = monster->testarrayofstring2();
if (vecofstrings2) {
TEST_EQ(vecofstrings2->Length(), 2U);
TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane");
TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary");
}
// Example of accessing a vector of tables:
auto vecoftables = monster->testarrayoftables();
TEST_EQ(vecoftables->Length(), 3U);
for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it)
TEST_EQ(strlen(it->name()->c_str()) >= 4, true);
TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney");
TEST_EQ(vecoftables->Get(0)->hp(), 1000);
TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred");
TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma");
TEST_NOTNULL(vecoftables->LookupByKey("Barney"));
TEST_NOTNULL(vecoftables->LookupByKey("Fred"));
TEST_NOTNULL(vecoftables->LookupByKey("Wilma"));
// Test accessing a vector of sorted structs
auto vecofstructs = monster->testarrayofsortedstruct();
if (vecofstructs) { // not filled in monster_test.bfbs
for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size()-1; i++) {
auto left = vecofstructs->Get(i);
auto right = vecofstructs->Get(i+1);
TEST_EQ(true, (left->KeyCompareLessThan(right)));
}
TEST_NOTNULL(vecofstructs->LookupByKey(3));
TEST_EQ(static_cast<const Ability*>(nullptr), vecofstructs->LookupByKey(5));
}
// Test nested FlatBuffers if available:
auto nested_buffer = monster->testnestedflatbuffer();
if (nested_buffer) {
// nested_buffer is a vector of bytes you can memcpy. However, if you
// actually want to access the nested data, this is a convenient
// accessor that directly gives you the root table:
auto nested_monster = monster->testnestedflatbuffer_nested_root();
TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster");
}
// Test flexbuffer if available:
auto flex = monster->flex();
// flex is a vector of bytes you can memcpy etc.
TEST_EQ(flex->size(), 4); // Encoded FlexBuffer bytes.
// However, if you actually want to access the nested data, this is a
// convenient accessor that directly gives you the root value:
TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234);
// Since Flatbuffers uses explicit mechanisms to override the default
// compiler alignment, double check that the compiler indeed obeys them:
// (Test consists of a short and byte):
TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL);
TEST_EQ(sizeof(Test), 4UL);
const flatbuffers::Vector<const Test *>* tests_array[] = {
monster->test4(),
monster->test5(),
};
for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) {
auto tests = tests_array[i];
TEST_NOTNULL(tests);
auto test_0 = tests->Get(0);
auto test_1 = tests->Get(1);
TEST_EQ(test_0->a(), 10);
TEST_EQ(test_0->b(), 20);
TEST_EQ(test_1->a(), 30);
TEST_EQ(test_1->b(), 40);
for (auto it = tests->begin(); it != tests->end(); ++it) {
TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators.
}
}
// Checking for presence of fields:
TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true);
TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false);
// Obtaining a buffer from a root:
TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf);
}
// Change a FlatBuffer in-place, after it has been constructed.
void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) {
// Get non-const pointer to root.
auto monster = GetMutableMonster(flatbuf);
// Each of these tests mutates, then tests, then set back to the original,
// so we can test that the buffer in the end still passes our original test.
auto hp_ok = monster->mutate_hp(10);
TEST_EQ(hp_ok, true); // Field was present.
TEST_EQ(monster->hp(), 10);
// Mutate to default value
auto hp_ok_default = monster->mutate_hp(100);
TEST_EQ(hp_ok_default, true); // Field was present.
TEST_EQ(monster->hp(), 100);
// Test that mutate to default above keeps field valid for further mutations
auto hp_ok_2 = monster->mutate_hp(20);
TEST_EQ(hp_ok_2, true);
TEST_EQ(monster->hp(), 20);
monster->mutate_hp(80);
// Monster originally at 150 mana (default value)
auto mana_default_ok = monster->mutate_mana(150); // Mutate to default value.
TEST_EQ(mana_default_ok, true); // Mutation should succeed, because default value.
TEST_EQ(monster->mana(), 150);
auto mana_ok = monster->mutate_mana(10);
TEST_EQ(mana_ok, false); // Field was NOT present, because default value.
TEST_EQ(monster->mana(), 150);
// Mutate structs.
auto pos = monster->mutable_pos();
auto test3 = pos->mutable_test3(); // Struct inside a struct.
test3.mutate_a(50); // Struct fields never fail.
TEST_EQ(test3.a(), 50);
test3.mutate_a(10);
// Mutate vectors.
auto inventory = monster->mutable_inventory();
inventory->Mutate(9, 100);
TEST_EQ(inventory->Get(9), 100);
inventory->Mutate(9, 9);
auto tables = monster->mutable_testarrayoftables();
auto first = tables->GetMutableObject(0);
TEST_EQ(first->hp(), 1000);
first->mutate_hp(0);
TEST_EQ(first->hp(), 0);
first->mutate_hp(1000);
// Run the verifier and the regular test to make sure we didn't trample on
// anything.
AccessFlatBufferTest(flatbuf, length);
}
// Unpack a FlatBuffer into objects.
void ObjectFlatBuffersTest(uint8_t *flatbuf) {
// Optional: we can specify resolver and rehasher functions to turn hashed
// strings into object pointers and back, to implement remote references
// and such.
auto resolver = flatbuffers::resolver_function_t(
[](void **pointer_adr, flatbuffers::hash_value_t hash) {
(void)pointer_adr;
(void)hash;
// Don't actually do anything, leave variable null.
});
auto rehasher = flatbuffers::rehasher_function_t(
[](void *pointer) -> flatbuffers::hash_value_t {
(void)pointer;
return 0;
});
// Turn a buffer into C++ objects.
auto monster1 = UnPackMonster(flatbuf, &resolver);
// Re-serialize the data.
flatbuffers::FlatBufferBuilder fbb1;
fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher),
MonsterIdentifier());
// Unpack again, and re-serialize again.
auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver);
flatbuffers::FlatBufferBuilder fbb2;
fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher),
MonsterIdentifier());
// Now we've gone full round-trip, the two buffers should match.
auto len1 = fbb1.GetSize();
auto len2 = fbb2.GetSize();
TEST_EQ(len1, len2);
TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(),
len1), 0);
// Test it with the original buffer test to make sure all data survived.
AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false);
// Test accessing fields, similar to AccessFlatBufferTest above.
TEST_EQ(monster2->hp, 80);
TEST_EQ(monster2->mana, 150); // default
TEST_EQ_STR(monster2->name.c_str(), "MyMonster");
auto &pos = monster2->pos;
TEST_NOTNULL(pos);
TEST_EQ(pos->z(), 3);
TEST_EQ(pos->test3().a(), 10);
TEST_EQ(pos->test3().b(), 20);
auto &inventory = monster2->inventory;
TEST_EQ(inventory.size(), 10UL);
unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (auto it = inventory.begin(); it != inventory.end(); ++it)
TEST_EQ(*it, inv_data[it - inventory.begin()]);
TEST_EQ(monster2->color, Color_Blue);
auto monster3 = monster2->test.AsMonster();
TEST_NOTNULL(monster3);
TEST_EQ_STR(monster3->name.c_str(), "Fred");
auto &vecofstrings = monster2->testarrayofstring;
TEST_EQ(vecofstrings.size(), 4U);
TEST_EQ_STR(vecofstrings[0].c_str(), "bob");
TEST_EQ_STR(vecofstrings[1].c_str(), "fred");
auto &vecofstrings2 = monster2->testarrayofstring2;
TEST_EQ(vecofstrings2.size(), 2U);
TEST_EQ_STR(vecofstrings2[0].c_str(), "jane");
TEST_EQ_STR(vecofstrings2[1].c_str(), "mary");
auto &vecoftables = monster2->testarrayoftables;
TEST_EQ(vecoftables.size(), 3U);
TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney");
TEST_EQ(vecoftables[0]->hp, 1000);
TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred");
TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma");
auto &tests = monster2->test4;
TEST_EQ(tests[0].a(), 10);
TEST_EQ(tests[0].b(), 20);
TEST_EQ(tests[1].a(), 30);
TEST_EQ(tests[1].b(), 40);
}
// Prefix a FlatBuffer with a size field.
void SizePrefixedTest() {
// Create size prefixed buffer.
flatbuffers::FlatBufferBuilder fbb;
fbb.FinishSizePrefixed(CreateMonster(fbb, 0, 200, 300,
fbb.CreateString("bob")));
// Verify it.
flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
TEST_EQ(verifier.VerifySizePrefixedBuffer<Monster>(nullptr), true);
// Access it.
auto m = flatbuffers::GetSizePrefixedRoot<MyGame::Example::Monster>(
fbb.GetBufferPointer());
TEST_EQ(m->mana(), 200);
TEST_EQ(m->hp(), 300);
TEST_EQ_STR(m->name()->c_str(), "bob");
}
// example of parsing text straight into a buffer, and generating
// text back from it:
void ParseAndGenerateTextTest() {
// load FlatBuffer schema (.fbs) and JSON from disk
std::string schemafile;
std::string jsonfile;
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "monster_test.fbs").c_str(), false, &schemafile), true);
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "monsterdata_test.golden").c_str(), false, &jsonfile),
true);
// parse schema first, so we can use it to parse the data after
flatbuffers::Parser parser;
auto include_test_path =
flatbuffers::ConCatPathFileName(test_data_path, "include_test");
const char *include_directories[] = {
test_data_path.c_str(), include_test_path.c_str(), nullptr
};
TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true);
// here, parser.builder_ contains a binary buffer that is the parsed data.
// First, verify it, just in case:
flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(),
parser.builder_.GetSize());
TEST_EQ(VerifyMonsterBuffer(verifier), true);
AccessFlatBufferTest(parser.builder_.GetBufferPointer(),
parser.builder_.GetSize(), false);
// to ensure it is correct, we now generate text back from the binary,
// and compare the two:
std::string jsongen;
auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str());
// We can also do the above using the convenient Registry that knows about
// a set of file_identifiers mapped to schemas.
flatbuffers::Registry registry;
// Make sure schemas can find their includes.
registry.AddIncludeDirectory(test_data_path.c_str());
registry.AddIncludeDirectory(include_test_path.c_str());
// Call this with many schemas if possible.
registry.Register(MonsterIdentifier(),
(test_data_path + "monster_test.fbs").c_str());
// Now we got this set up, we can parse by just specifying the identifier,
// the correct schema will be loaded on the fly:
auto buf = registry.TextToFlatBuffer(jsonfile.c_str(),
MonsterIdentifier());
// If this fails, check registry.lasterror_.
TEST_NOTNULL(buf.data());
// Test the buffer, to be sure:
AccessFlatBufferTest(buf.data(), buf.size(), false);
// We can use the registry to turn this back into text, in this case it
// will get the file_identifier from the binary:
std::string text;
auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text);
// If this fails, check registry.lasterror_.
TEST_EQ(ok, true);
TEST_EQ_STR(text.c_str(), jsonfile.c_str());
}
void ReflectionTest(uint8_t *flatbuf, size_t length) {
// Load a binary schema.
std::string bfbsfile;
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "monster_test.bfbs").c_str(), true, &bfbsfile),
true);
// Verify it, just in case:
flatbuffers::Verifier verifier(
reinterpret_cast<const uint8_t *>(bfbsfile.c_str()), bfbsfile.length());
TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
// Make sure the schema is what we expect it to be.
auto &schema = *reflection::GetSchema(bfbsfile.c_str());
auto root_table = schema.root_table();
TEST_EQ_STR(root_table->name()->c_str(), "MyGame.Example.Monster");
auto fields = root_table->fields();
auto hp_field_ptr = fields->LookupByKey("hp");
TEST_NOTNULL(hp_field_ptr);
auto &hp_field = *hp_field_ptr;
TEST_EQ_STR(hp_field.name()->c_str(), "hp");
TEST_EQ(hp_field.id(), 2);
TEST_EQ(hp_field.type()->base_type(), reflection::Short);
auto friendly_field_ptr = fields->LookupByKey("friendly");
TEST_NOTNULL(friendly_field_ptr);
TEST_NOTNULL(friendly_field_ptr->attributes());
TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority"));
// Make sure the table index is what we expect it to be.
auto pos_field_ptr = fields->LookupByKey("pos");
TEST_NOTNULL(pos_field_ptr);
TEST_EQ(pos_field_ptr->type()->base_type(), reflection::Obj);
auto pos_table_ptr = schema.objects()->Get(pos_field_ptr->type()->index());
TEST_NOTNULL(pos_table_ptr);
TEST_EQ_STR(pos_table_ptr->name()->c_str(), "MyGame.Example.Vec3");
// Now use it to dynamically access a buffer.
auto &root = *flatbuffers::GetAnyRoot(flatbuf);
// Verify the buffer first using reflection based verification
TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
true);
auto hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
TEST_EQ(hp, 80);
// Rather than needing to know the type, we can also get the value of
// any field as an int64_t/double/string, regardless of what it actually is.
auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 80);
auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field);
TEST_EQ(hp_double, 80.0);
auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema);
TEST_EQ_STR(hp_string.c_str(), "80");
// Get struct field through reflection
auto pos_struct = flatbuffers::GetFieldStruct(root, *pos_field_ptr);
TEST_NOTNULL(pos_struct);
TEST_EQ(flatbuffers::GetAnyFieldF(
*pos_struct, *pos_table_ptr->fields()->LookupByKey("z")), 3.0f);
auto test3_field = pos_table_ptr->fields()->LookupByKey("test3");
auto test3_struct = flatbuffers::GetFieldStruct(*pos_struct, *test3_field);
TEST_NOTNULL(test3_struct);
auto test3_object = schema.objects()->Get(test3_field->type()->index());
TEST_EQ(flatbuffers::GetAnyFieldF(
*test3_struct, *test3_object->fields()->LookupByKey("a")), 10);
// We can also modify it.
flatbuffers::SetField<uint16_t>(&root, hp_field, 200);
hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
TEST_EQ(hp, 200);
// We can also set fields generically:
flatbuffers::SetAnyFieldI(&root, hp_field, 300);
hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 300);
flatbuffers::SetAnyFieldF(&root, hp_field, 300.5);
hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 300);
flatbuffers::SetAnyFieldS(&root, hp_field, "300");
hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 300);
// Test buffer is valid after the modifications
TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
true);
// Reset it, for further tests.
flatbuffers::SetField<uint16_t>(&root, hp_field, 80);
// More advanced functionality: changing the size of items in-line!
// First we put the FlatBuffer inside an std::vector.
std::vector<uint8_t> resizingbuf(flatbuf, flatbuf + length);
// Find the field we want to modify.
auto &name_field = *fields->LookupByKey("name");
// Get the root.
// This time we wrap the result from GetAnyRoot in a smartpointer that
// will keep rroot valid as resizingbuf resizes.
auto rroot = flatbuffers::piv(flatbuffers::GetAnyRoot(
flatbuffers::vector_data(resizingbuf)), resizingbuf);
SetString(schema, "totally new string", GetFieldS(**rroot, name_field),
&resizingbuf);
// Here resizingbuf has changed, but rroot is still valid.
TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string");
// Now lets extend a vector by 100 elements (10 -> 110).
auto &inventory_field = *fields->LookupByKey("inventory");
auto rinventory = flatbuffers::piv(
flatbuffers::GetFieldV<uint8_t>(**rroot, inventory_field),
resizingbuf);
flatbuffers::ResizeVector<uint8_t>(schema, 110, 50, *rinventory,
&resizingbuf);
// rinventory still valid, so lets read from it.
TEST_EQ(rinventory->Get(10), 50);
// For reflection uses not covered already, there is a more powerful way:
// we can simply generate whatever object we want to add/modify in a
// FlatBuffer of its own, then add that to an existing FlatBuffer:
// As an example, let's add a string to an array of strings.
// First, find our field:
auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring");
// Find the vector value:
auto rtestarrayofstring = flatbuffers::piv(
flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>(
**rroot, testarrayofstring_field),
resizingbuf);
// It's a vector of 2 strings, to which we add one more, initialized to
// offset 0.
flatbuffers::ResizeVector<flatbuffers::Offset<flatbuffers::String>>(
schema, 3, 0, *rtestarrayofstring, &resizingbuf);
// Here we just create a buffer that contans a single string, but this
// could also be any complex set of tables and other values.
flatbuffers::FlatBufferBuilder stringfbb;
stringfbb.Finish(stringfbb.CreateString("hank"));
// Add the contents of it to our existing FlatBuffer.
// We do this last, so the pointer doesn't get invalidated (since it is
// at the end of the buffer):
auto string_ptr = flatbuffers::AddFlatBuffer(resizingbuf,
stringfbb.GetBufferPointer(),
stringfbb.GetSize());
// Finally, set the new value in the vector.
rtestarrayofstring->MutateOffset(2, string_ptr);
TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob");
TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank");
// Test integrity of all resize operations above.
flatbuffers::Verifier resize_verifier(
reinterpret_cast<const uint8_t *>(
flatbuffers::vector_data(resizingbuf)),
resizingbuf.size());
TEST_EQ(VerifyMonsterBuffer(resize_verifier), true);
// Test buffer is valid using reflection as well
TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
flatbuffers::vector_data(resizingbuf),
resizingbuf.size()), true);
// As an additional test, also set it on the name field.
// Note: unlike the name change above, this just overwrites the offset,
// rather than changing the string in-place.
SetFieldT(*rroot, name_field, string_ptr);
TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank");
// Using reflection, rather than mutating binary FlatBuffers, we can also copy
// tables and other things out of other FlatBuffers into a FlatBufferBuilder,
// either part or whole.
flatbuffers::FlatBufferBuilder fbb;
auto root_offset = flatbuffers::CopyTable(fbb, schema, *root_table,
*flatbuffers::GetAnyRoot(flatbuf),
true);
fbb.Finish(root_offset, MonsterIdentifier());
// Test that it was copied correctly:
AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize());
// Test buffer is valid using reflection as well
TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
fbb.GetBufferPointer(), fbb.GetSize()), true);
}
void MiniReflectFlatBuffersTest(uint8_t *flatbuf) {
auto s = flatbuffers::FlatBufferToString(flatbuf, MonsterTypeTable());
TEST_EQ_STR(s.c_str(),
"{ "
"pos: { x: 1.0, y: 2.0, z: 3.0, test1: 0.0, test2: Red, test3: "
"{ a: 10, b: 20 } }, "
"hp: 80, "
"name: \"MyMonster\", "
"inventory: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], "
"test_type: Monster, "
"test: { name: \"Fred\" }, "
"test4: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
"testarrayofstring: [ \"bob\", \"fred\", \"bob\", \"fred\" ], "
"testarrayoftables: [ { hp: 1000, name: \"Barney\" }, { name: \"Fred\" }, "
"{ name: \"Wilma\" } ], "
// TODO(wvo): should really print this nested buffer correctly.
"testnestedflatbuffer: [ 20, 0, 0, 0, 77, 79, 78, 83, 12, 0, 12, 0, 0, 0, "
"4, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 78, "
"101, 115, 116, 101, 100, 77, 111, 110, 115, 116, 101, 114, 0, 0, 0 ], "
"testarrayofstring2: [ \"jane\", \"mary\" ], "
"testarrayofsortedstruct: [ { id: 1, distance: 10 }, "
"{ id: 2, distance: 20 }, { id: 3, distance: 30 }, "
"{ id: 4, distance: 40 } ], "
"flex: [ 210, 4, 5, 2 ], "
"test5: [ { a: 10, b: 20 }, { a: 30, b: 40 } ] "
"}");
}
// Parse a .proto schema, output as .fbs
void ParseProtoTest() {
// load the .proto and the golden file from disk
std::string protofile;
std::string goldenfile;
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "prototest/test.proto").c_str(), false, &protofile),
true);
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "prototest/test.golden").c_str(), false, &goldenfile),
true);
flatbuffers::IDLOptions opts;
opts.include_dependence_headers = false;
opts.proto_mode = true;
// Parse proto.
flatbuffers::Parser parser(opts);
auto protopath = test_data_path + "prototest/";
const char *include_directories[] = { protopath.c_str(), nullptr };
TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true);
// Generate fbs.
auto fbs = flatbuffers::GenerateFBS(parser, "test");
// Ensure generated file is parsable.
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true);
TEST_EQ_STR(fbs.c_str(), goldenfile.c_str());
}
template<typename T> void CompareTableFieldValue(flatbuffers::Table *table,
flatbuffers::voffset_t voffset,
T val) {
T read = table->GetField(voffset, static_cast<T>(0));
TEST_EQ(read, val);
}
// Low level stress/fuzz test: serialize/deserialize a variety of
// different kinds of data in different combinations
void FuzzTest1() {
// Values we're testing against: chosen to ensure no bits get chopped
// off anywhere, and also be different from eachother.
const uint8_t bool_val = true;
const int8_t char_val = -127; // 0x81
const uint8_t uchar_val = 0xFF;
const int16_t short_val = -32222; // 0x8222;
const uint16_t ushort_val = 0xFEEE;
const int32_t int_val = 0x83333333;
const uint32_t uint_val = 0xFDDDDDDD;
const int64_t long_val = 0x8444444444444444LL;
const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL;
const float float_val = 3.14159f;
const double double_val = 3.14159265359;
const int test_values_max = 11;
const flatbuffers::voffset_t fields_per_object = 4;
const int num_fuzz_objects = 10000; // The higher, the more thorough :)
flatbuffers::FlatBufferBuilder builder;
lcg_reset(); // Keep it deterministic.
flatbuffers::uoffset_t objects[num_fuzz_objects];
// Generate num_fuzz_objects random objects each consisting of
// fields_per_object fields, each of a random type.
for (int i = 0; i < num_fuzz_objects; i++) {
auto start = builder.StartTable();
for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
int choice = lcg_rand() % test_values_max;
auto off = flatbuffers::FieldIndexToOffset(f);
switch (choice) {
case 0: builder.AddElement<uint8_t >(off, bool_val, 0); break;
case 1: builder.AddElement<int8_t >(off, char_val, 0); break;
case 2: builder.AddElement<uint8_t >(off, uchar_val, 0); break;
case 3: builder.AddElement<int16_t >(off, short_val, 0); break;
case 4: builder.AddElement<uint16_t>(off, ushort_val, 0); break;
case 5: builder.AddElement<int32_t >(off, int_val, 0); break;
case 6: builder.AddElement<uint32_t>(off, uint_val, 0); break;
case 7: builder.AddElement<int64_t >(off, long_val, 0); break;
case 8: builder.AddElement<uint64_t>(off, ulong_val, 0); break;
case 9: builder.AddElement<float >(off, float_val, 0); break;
case 10: builder.AddElement<double >(off, double_val, 0); break;
}
}
objects[i] = builder.EndTable(start);
}
builder.PreAlign<flatbuffers::largest_scalar_t>(0); // Align whole buffer.
lcg_reset(); // Reset.
uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize();
// Test that all objects we generated are readable and return the
// expected values. We generate random objects in the same order
// so this is deterministic.
for (int i = 0; i < num_fuzz_objects; i++) {
auto table = reinterpret_cast<flatbuffers::Table *>(eob - objects[i]);
for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
int choice = lcg_rand() % test_values_max;
flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f);
switch (choice) {
case 0: CompareTableFieldValue(table, off, bool_val ); break;
case 1: CompareTableFieldValue(table, off, char_val ); break;
case 2: CompareTableFieldValue(table, off, uchar_val ); break;
case 3: CompareTableFieldValue(table, off, short_val ); break;
case 4: CompareTableFieldValue(table, off, ushort_val); break;
case 5: CompareTableFieldValue(table, off, int_val ); break;
case 6: CompareTableFieldValue(table, off, uint_val ); break;
case 7: CompareTableFieldValue(table, off, long_val ); break;
case 8: CompareTableFieldValue(table, off, ulong_val ); break;
case 9: CompareTableFieldValue(table, off, float_val ); break;
case 10: CompareTableFieldValue(table, off, double_val); break;
}
}
}
}
// High level stress/fuzz test: generate a big schema and
// matching json data in random combinations, then parse both,
// generate json back from the binary, and compare with the original.
void FuzzTest2() {
lcg_reset(); // Keep it deterministic.
const int num_definitions = 30;
const int num_struct_definitions = 5; // Subset of num_definitions.
const int fields_per_definition = 15;
const int instances_per_definition = 5;
const int deprecation_rate = 10; // 1 in deprecation_rate fields will
// be deprecated.
std::string schema = "namespace test;\n\n";
struct RndDef {
std::string instances[instances_per_definition];
// Since we're generating schema and corresponding data in tandem,
// this convenience function adds strings to both at once.
static void Add(RndDef (&definitions_l)[num_definitions],
std::string &schema_l,
const int instances_per_definition_l,
const char *schema_add, const char *instance_add,
int definition) {
schema_l += schema_add;
for (int i = 0; i < instances_per_definition_l; i++)
definitions_l[definition].instances[i] += instance_add;
}
};
#define AddToSchemaAndInstances(schema_add, instance_add) \
RndDef::Add(definitions, schema, instances_per_definition, \
schema_add, instance_add, definition)
#define Dummy() \
RndDef::Add(definitions, schema, instances_per_definition, \
"byte", "1", definition)
RndDef definitions[num_definitions];
// We are going to generate num_definitions, the first
// num_struct_definitions will be structs, the rest tables. For each
// generate random fields, some of which may be struct/table types
// referring to previously generated structs/tables.
// Simultanenously, we generate instances_per_definition JSON data
// definitions, which will have identical structure to the schema
// being generated. We generate multiple instances such that when creating
// hierarchy, we get some variety by picking one randomly.
for (int definition = 0; definition < num_definitions; definition++) {
std::string definition_name = "D" + flatbuffers::NumToString(definition);
bool is_struct = definition < num_struct_definitions;
AddToSchemaAndInstances(
((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(),
"{\n");
for (int field = 0; field < fields_per_definition; field++) {
const bool is_last_field = field == fields_per_definition - 1;
// Deprecate 1 in deprecation_rate fields. Only table fields can be
// deprecated.
// Don't deprecate the last field to avoid dangling commas in JSON.
const bool deprecated = !is_struct &&
!is_last_field &&
(lcg_rand() % deprecation_rate == 0);
std::string field_name = "f" + flatbuffers::NumToString(field);
AddToSchemaAndInstances((" " + field_name + ":").c_str(),
deprecated ? "" : (field_name + ": ").c_str());
// Pick random type:
auto base_type = static_cast<flatbuffers::BaseType>(
lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1));
switch (base_type) {
case flatbuffers::BASE_TYPE_STRING:
if (is_struct) {
Dummy(); // No strings in structs.
} else {
AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\"");
}
break;
case flatbuffers::BASE_TYPE_VECTOR:
if (is_struct) {
Dummy(); // No vectors in structs.
}
else {
AddToSchemaAndInstances("[ubyte]",
deprecated ? "" : "[\n0,\n1,\n255\n]");
}
break;
case flatbuffers::BASE_TYPE_NONE:
case flatbuffers::BASE_TYPE_UTYPE:
case flatbuffers::BASE_TYPE_STRUCT:
case flatbuffers::BASE_TYPE_UNION:
if (definition) {
// Pick a random previous definition and random data instance of
// that definition.
int defref = lcg_rand() % definition;
int instance = lcg_rand() % instances_per_definition;
AddToSchemaAndInstances(
("D" + flatbuffers::NumToString(defref)).c_str(),
deprecated
? ""
: definitions[defref].instances[instance].c_str());
} else {
// If this is the first definition, we have no definition we can
// refer to.
Dummy();
}
break;
case flatbuffers::BASE_TYPE_BOOL:
AddToSchemaAndInstances("bool", deprecated
? ""
: (lcg_rand() % 2 ? "true" : "false"));
break;
default:
// All the scalar types.
schema += flatbuffers::kTypeNames[base_type];
if (!deprecated) {
// We want each instance to use its own random value.
for (int inst = 0; inst < instances_per_definition; inst++)
definitions[definition].instances[inst] +=
flatbuffers::IsFloat(base_type)
? flatbuffers::NumToString<double>(lcg_rand() % 128).c_str()
: flatbuffers::NumToString<int>(lcg_rand() % 128).c_str();
}
}
AddToSchemaAndInstances(
deprecated ? "(deprecated);\n" : ";\n",
deprecated ? "" : is_last_field ? "\n" : ",\n");
}
AddToSchemaAndInstances("}\n\n", "}");
}
schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1);
schema += ";\n";
flatbuffers::Parser parser;
// Will not compare against the original if we don't write defaults
parser.builder_.ForceDefaults(true);
// Parse the schema, parse the generated data, then generate text back
// from the binary and compare against the original.
TEST_EQ(parser.Parse(schema.c_str()), true);
const std::string &json =
definitions[num_definitions - 1].instances[0] + "\n";
TEST_EQ(parser.Parse(json.c_str()), true);
std::string jsongen;
parser.opts.indent_step = 0;
auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
if (jsongen != json) {
// These strings are larger than a megabyte, so we show the bytes around
// the first bytes that are different rather than the whole string.
size_t len = std::min(json.length(), jsongen.length());
for (size_t i = 0; i < len; i++) {
if (json[i] != jsongen[i]) {
i -= std::min(static_cast<size_t>(10), i); // show some context;
size_t end = std::min(len, i + 20);
for (; i < end; i++)
TEST_OUTPUT_LINE("at %d: found \"%c\", expected \"%c\"\n",
static_cast<int>(i), jsongen[i], json[i]);
break;
}
}
TEST_NOTNULL(NULL);
}
#ifdef FLATBUFFERS_TEST_VERBOSE
TEST_OUTPUT_LINE("%dk schema tested with %dk of json\n",
static_cast<int>(schema.length() / 1024),
static_cast<int>(json.length() / 1024));
#endif
}
// Test that parser errors are actually generated.
void TestError(const char *src, const char *error_substr,
bool strict_json = false) {
flatbuffers::IDLOptions opts;
opts.strict_json = strict_json;
flatbuffers::Parser parser(opts);
TEST_EQ(parser.Parse(src), false); // Must signal error
// Must be the error we're expecting
TEST_NOTNULL(strstr(parser.error_.c_str(), error_substr));
}
// Test that parsing errors occur as we'd expect.
// Also useful for coverage, making sure these paths are run.
void ErrorTest() {
// In order they appear in idl_parser.cpp
TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
TestError(".0", "floating point");
TestError("\"\0", "illegal");
TestError("\"\\q", "escape code");
TestError("table ///", "documentation");
TestError("@", "illegal");
TestError("table 1", "expecting");
TestError("table X { Y:[[int]]; }", "nested vector");
TestError("table X { Y:1; }", "illegal type");
TestError("table X { Y:int; Y:int; }", "field already");
TestError("table Y {} table X { Y:int; }", "same as table");
TestError("struct X { Y:string; }", "only scalar");
TestError("struct X { Y:int (deprecated); }", "deprecate");
TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
"missing type field");
TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
"type id");
TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
true);
TestError("struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
"{ V:{ Y:1 } }", "wrong number");
TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
"unknown enum value");
TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
TestError("enum X:byte { Y } enum X {", "enum already");
TestError("enum X:float {}", "underlying");
TestError("enum X:byte { Y, Y }", "value already");
TestError("enum X:byte { Y=2, Z=1 }", "ascending");
TestError("union X { Y = 256 }", "must fit");
TestError("enum X:byte (bit_flags) { Y=8 }", "bit flag out");
TestError("table X { Y:int; } table X {", "datatype already");
TestError("struct X (force_align: 7) { Y:int; }", "force_align");
TestError("{}", "no root");
TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "one json");
TestError("root_type X;", "unknown root");
TestError("struct X { Y:int; } root_type X;", "a table");
TestError("union X { Y }", "referenced");
TestError("union Z { X } struct X { Y:int; }", "only tables");
TestError("table X { Y:[int]; YLength:int; }", "clash");
TestError("table X { Y:string = 1; }", "scalar");
TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
}
template<typename T> T TestValue(const char *json, const char *type_name) {
flatbuffers::Parser parser;
// Simple schema.
TEST_EQ(parser.Parse(std::string("table X { Y:" + std::string(type_name) +
"; } root_type X;").c_str()), true);
TEST_EQ(parser.Parse(json), true);
auto root = flatbuffers::GetRoot<flatbuffers::Table>(
parser.builder_.GetBufferPointer());
return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
}
bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
// Additional parser testing not covered elsewhere.
void ValueTest() {
// Test scientific notation numbers.
TEST_EQ(FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }","float"),
(float)3.14159), true);
// Test conversion functions.
TEST_EQ(FloatCompare(TestValue<float>("{ Y:cos(rad(180)) }","float"), -1),
true);
// Test negative hex constant.
TEST_EQ(TestValue<int>("{ Y:-0x80 }","int"), -128);
// Make sure we do unsigned 64bit correctly.
TEST_EQ(TestValue<uint64_t>("{ Y:12335089644688340133 }","ulong"),
12335089644688340133ULL);
}
void NestedListTest() {
flatbuffers::Parser parser1;
TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
"root_type T;"
"{ F:[ [10,20], [30,40]] }"), true);
}
void EnumStringsTest() {
flatbuffers::Parser parser1;
TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
"root_type T;"
"{ F:[ A, B, \"C\", \"A B C\" ] }"), true);
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
"root_type T;"
"{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"), true);
}
void IntegerOutOfRangeTest() {
TestError("table T { F:byte; } root_type T; { F:128 }",
"constant does not fit");
TestError("table T { F:byte; } root_type T; { F:-129 }",
"constant does not fit");
TestError("table T { F:ubyte; } root_type T; { F:256 }",
"constant does not fit");
TestError("table T { F:ubyte; } root_type T; { F:-1 }",
"constant does not fit");
TestError("table T { F:short; } root_type T; { F:32768 }",
"constant does not fit");
TestError("table T { F:short; } root_type T; { F:-32769 }",
"constant does not fit");
TestError("table T { F:ushort; } root_type T; { F:65536 }",
"constant does not fit");
TestError("table T { F:ushort; } root_type T; { F:-1 }",
"constant does not fit");
TestError("table T { F:int; } root_type T; { F:2147483648 }",
"constant does not fit");
TestError("table T { F:int; } root_type T; { F:-2147483649 }",
"constant does not fit");
TestError("table T { F:uint; } root_type T; { F:4294967296 }",
"constant does not fit");
TestError("table T { F:uint; } root_type T; { F:-1 }",
"constant does not fit");
}
void IntegerBoundaryTest() {
TEST_EQ(TestValue<int8_t>("{ Y:127 }","byte"), 127);
TEST_EQ(TestValue<int8_t>("{ Y:-128 }","byte"), -128);
TEST_EQ(TestValue<uint8_t>("{ Y:255 }","ubyte"), 255);
TEST_EQ(TestValue<uint8_t>("{ Y:0 }","ubyte"), 0);
TEST_EQ(TestValue<int16_t>("{ Y:32767 }","short"), 32767);
TEST_EQ(TestValue<int16_t>("{ Y:-32768 }","short"), -32768);
TEST_EQ(TestValue<uint16_t>("{ Y:65535 }","ushort"), 65535);
TEST_EQ(TestValue<uint16_t>("{ Y:0 }","ushort"), 0);
TEST_EQ(TestValue<int32_t>("{ Y:2147483647 }","int"), 2147483647);
TEST_EQ(TestValue<int32_t>("{ Y:-2147483648 }","int"), (-2147483647 - 1));
TEST_EQ(TestValue<uint32_t>("{ Y:4294967295 }","uint"), 4294967295);
TEST_EQ(TestValue<uint32_t>("{ Y:0 }","uint"), 0);
TEST_EQ(TestValue<int64_t>("{ Y:9223372036854775807 }","long"), 9223372036854775807);
TEST_EQ(TestValue<int64_t>("{ Y:-9223372036854775808 }","long"), (-9223372036854775807 - 1));
TEST_EQ(TestValue<uint64_t>("{ Y:18446744073709551615 }","ulong"), 18446744073709551615U);
TEST_EQ(TestValue<uint64_t>("{ Y:0 }","ulong"), 0);
}
void UnicodeTest() {
flatbuffers::Parser parser;
// Without setting allow_non_utf8 = true, we treat \x sequences as byte sequences
// which are then validated as UTF-8.
TEST_EQ(parser.Parse("table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD83D\\uDE0E\" }"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(),
"{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
}
void UnicodeTestAllowNonUTF8() {
flatbuffers::Parser parser;
parser.opts.allow_non_utf8 = true;
TEST_EQ(parser.Parse("table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(),
"{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
}
void UnicodeTestGenerateTextFailsOnNonUTF8() {
flatbuffers::Parser parser;
// Allow non-UTF-8 initially to model what happens when we load a binary flatbuffer from disk
// which contains non-UTF-8 strings.
parser.opts.allow_non_utf8 = true;
TEST_EQ(parser.Parse("table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), true);
std::string jsongen;
parser.opts.indent_step = -1;
// Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates failure.
parser.opts.allow_non_utf8 = false;
auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, false);
}
void UnicodeSurrogatesTest() {
flatbuffers::Parser parser;
TEST_EQ(
parser.Parse(
"table T { F:string (id: 0); }"
"root_type T;"
"{ F:\"\\uD83D\\uDCA9\"}"), true);
auto root = flatbuffers::GetRoot<flatbuffers::Table>(
parser.builder_.GetBufferPointer());
auto string = root->GetPointer<flatbuffers::String *>(
flatbuffers::FieldIndexToOffset(0));
TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
}
void UnicodeInvalidSurrogatesTest() {
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\"}", "unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800abcd\"}", "unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\\n\"}", "unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\\uD800\"}", "multiple high surrogates");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uDC00\"}", "unpaired low surrogate");
}
void InvalidUTF8Test() {
// "1 byte" pattern, under min length of 2 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\x80\"}", "illegal UTF-8 sequence");
// 2 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xDF\"}", "illegal UTF-8 sequence");
// 3 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xEF\xBF\"}", "illegal UTF-8 sequence");
// 4 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF7\xBF\xBF\"}", "illegal UTF-8 sequence");
// "5 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFB\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
// "6 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFD\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
// "7 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
// "5 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFB\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
// "6 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
// "7 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
// Three invalid encodings for U+000A (\n, aka NEWLINE)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xC0\x8A\"}", "illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xE0\x80\x8A\"}", "illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x80\x80\x8A\"}", "illegal UTF-8 sequence");
// Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xE0\x81\xA9\"}", "illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x80\x81\xA9\"}", "illegal UTF-8 sequence");
// Invalid encoding for U+20AC (EURO SYMBOL)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x82\x82\xAC\"}", "illegal UTF-8 sequence");
// UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in UTF-8
TestError(
"table T { F:string; }"
"root_type T;"
// U+10400 "encoded" as U+D801 U+DC00
"{ F:\"\xED\xA0\x81\xED\xB0\x80\"}", "illegal UTF-8 sequence");
}
void UnknownFieldsTest() {
flatbuffers::IDLOptions opts;
opts.skip_unexpected_fields_in_json = true;
flatbuffers::Parser parser(opts);
TEST_EQ(parser.Parse("table T { str:string; i:int;}"
"root_type T;"
"{ str:\"test\","
"unknown_string:\"test\","
"\"unknown_string\":\"test\","
"unknown_int:10,"
"unknown_float:1.0,"
"unknown_array: [ 1, 2, 3, 4],"
"unknown_object: { i: 10 },"
"\"unknown_object\": { \"i\": 10 },"
"i:10}"), true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
}
void ParseUnionTest() {
// Unions must be parseable with the type field following the object.
flatbuffers::Parser parser;
TEST_EQ(parser.Parse("table T { A:int; }"
"union U { T }"
"table V { X:U; }"
"root_type V;"
"{ X:{ A:1 }, X_type: T }"), true);
// Unions must be parsable with prefixed namespace.
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
"table B { e:U; } root_type B;"
"{ e_type: N_A, e: {} }"), true);
}
void UnionVectorTest() {
// load FlatBuffer fbs schema.
// TODO: load a JSON file with such a vector when JSON support is ready.
std::string schemafile;
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "union_vector/union_vector.fbs").c_str(), false,
&schemafile), true);
// parse schema.
flatbuffers::IDLOptions idl_opts;
idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kCpp;
flatbuffers::Parser parser(idl_opts);
TEST_EQ(parser.Parse(schemafile.c_str()), true);
flatbuffers::FlatBufferBuilder fbb;
// union types.
std::vector<uint8_t> types;
types.push_back(static_cast<uint8_t>(Character_Belle));
types.push_back(static_cast<uint8_t>(Character_MuLan));
types.push_back(static_cast<uint8_t>(Character_BookFan));
types.push_back(static_cast<uint8_t>(Character_Other));
types.push_back(static_cast<uint8_t>(Character_Unused));
// union values.
std::vector<flatbuffers::Offset<void>> characters;
characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/7)).Union());
characters.push_back(CreateAttacker(fbb, /*sword_attack_damage=*/5).Union());
characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/2)).Union());
characters.push_back(fbb.CreateString("Other").Union());
characters.push_back(fbb.CreateString("Unused").Union());
// create Movie.
const auto movie_offset =
CreateMovie(fbb,
Character_Rapunzel,
fbb.CreateStruct(Rapunzel(/*hair_length=*/6)).Union(),
fbb.CreateVector(types),
fbb.CreateVector(characters));
FinishMovieBuffer(fbb, movie_offset);
auto buf = fbb.GetBufferPointer();
flatbuffers::Verifier verifier(buf, fbb.GetSize());
TEST_EQ(VerifyMovieBuffer(verifier), true);
auto flat_movie = GetMovie(buf);
auto TestMovie = [](const Movie *movie) {
TEST_EQ(movie->main_character_type() == Character_Rapunzel, true);
auto cts = movie->characters_type();
TEST_EQ(movie->characters_type()->size(), 5);
TEST_EQ(cts->GetEnum<Character>(0) == Character_Belle, true);
TEST_EQ(cts->GetEnum<Character>(1) == Character_MuLan, true);
TEST_EQ(cts->GetEnum<Character>(2) == Character_BookFan, true);
TEST_EQ(cts->GetEnum<Character>(3) == Character_Other, true);
TEST_EQ(cts->GetEnum<Character>(4) == Character_Unused, true);
auto rapunzel = movie->main_character_as_Rapunzel();
TEST_EQ(rapunzel->hair_length(), 6);
auto cs = movie->characters();
TEST_EQ(cs->size(), 5);
auto belle = cs->GetAs<BookReader>(0);
TEST_EQ(belle->books_read(), 7);
auto mu_lan = cs->GetAs<Attacker>(1);
TEST_EQ(mu_lan->sword_attack_damage(), 5);
auto book_fan = cs->GetAs<BookReader>(2);
TEST_EQ(book_fan->books_read(), 2);
auto other = cs->GetAsString(3);
TEST_EQ_STR(other->c_str(), "Other");
auto unused = cs->GetAsString(4);
TEST_EQ_STR(unused->c_str(), "Unused");
};
TestMovie(flat_movie);
auto movie_object = flat_movie->UnPack();
TEST_EQ(movie_object->main_character.AsRapunzel()->hair_length(), 6);
TEST_EQ(movie_object->characters[0].AsBelle()->books_read(), 7);
TEST_EQ(movie_object->characters[1].AsMuLan()->sword_attack_damage, 5);
TEST_EQ(movie_object->characters[2].AsBookFan()->books_read(), 2);
TEST_EQ_STR(movie_object->characters[3].AsOther()->c_str(), "Other");
TEST_EQ_STR(movie_object->characters[4].AsUnused()->c_str(), "Unused");
fbb.Clear();
fbb.Finish(Movie::Pack(fbb, movie_object));
delete movie_object;
auto repacked_movie = GetMovie(fbb.GetBufferPointer());
TestMovie(repacked_movie);
auto s = flatbuffers::FlatBufferToString(fbb.GetBufferPointer(),
MovieTypeTable());
TEST_EQ_STR(s.c_str(),
"{ main_character_type: Rapunzel, main_character: { hair_length: 6 }, "
"characters_type: [ Belle, MuLan, BookFan, Other, Unused ], "
"characters: [ { books_read: 7 }, { sword_attack_damage: 5 }, "
"{ books_read: 2 }, \"Other\", \"Unused\" ] }");
}
void ConformTest() {
flatbuffers::Parser parser;
TEST_EQ(parser.Parse("table T { A:int; } enum E:byte { A }"), true);
auto test_conform = [](flatbuffers::Parser &parser1,
const char *test, const char *expected_err) {
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse(test), true);
auto err = parser2.ConformTo(parser1);
TEST_NOTNULL(strstr(err.c_str(), expected_err));
};
test_conform(parser, "table T { A:byte; }", "types differ for field");
test_conform(parser, "table T { B:int; A:int; }", "offsets differ for field");
test_conform(parser, "table T { A:int = 1; }", "defaults differ for field");
test_conform(parser, "table T { B:float; }",
"field renamed to different type");
test_conform(parser, "enum E:byte { B, A }", "values differ for enum");
}
void ParseProtoBufAsciiTest() {
// We can put the parser in a mode where it will accept JSON that looks more
// like Protobuf ASCII, for users that have data in that format.
// This uses no "" for field names (which we already support by default,
// omits `,`, `:` before `{` and a couple of other features.
flatbuffers::Parser parser;
parser.opts.protobuf_ascii_alike = true;
TEST_EQ(parser.Parse(
"table S { B:int; } table T { A:[int]; C:S; } root_type T;"), true);
TEST_EQ(parser.Parse("{ A [1 2] C { B:2 }}"), true);
// Similarly, in text output, it should omit these.
std::string text;
auto ok = flatbuffers::GenerateText(parser,
parser.builder_.GetBufferPointer(),
&text);
TEST_EQ(ok, true);
TEST_EQ_STR(text.c_str(),
"{\n A [\n 1\n 2\n ]\n C {\n B: 2\n }\n}\n");
}
void FlexBuffersTest() {
flexbuffers::Builder slb(512,
flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS);
// Write the equivalent of:
// { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ], foo: 100, bool: true, mymap: { foo: "Fred" } }
#ifndef FLATBUFFERS_CPP98_STL
// It's possible to do this without std::function support as well.
slb.Map([&]() {
slb.Vector("vec", [&]() {
slb += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
slb += "Fred";
slb.IndirectFloat(4.0f);
uint8_t blob[] = { 77 };
slb.Blob(blob, 1);
slb += false;
});
int ints[] = { 1, 2, 3 };
slb.Vector("bar", ints, 3);
slb.FixedTypedVector("bar3", ints, 3);
bool bools[] = {true, false, true, false};
slb.Vector("bools", bools, 4);
slb.Bool("bool", true);
slb.Double("foo", 100);
slb.Map("mymap", [&]() {
slb.String("foo", "Fred"); // Testing key and string reuse.
});
});
slb.Finish();
#else
// It's possible to do this without std::function support as well.
slb.Map([](flexbuffers::Builder& slb2) {
slb2.Vector("vec", [](flexbuffers::Builder& slb3) {
slb3 += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
slb3 += "Fred";
slb3.IndirectFloat(4.0f);
uint8_t blob[] = { 77 };
slb3.Blob(blob, 1);
slb3 += false;
}, slb2);
int ints[] = { 1, 2, 3 };
slb2.Vector("bar", ints, 3);
slb2.FixedTypedVector("bar3", ints, 3);
slb.Bool("bool", true);
slb2.Double("foo", 100);
slb2.Map("mymap", [](flexbuffers::Builder& slb3) {
slb3.String("foo", "Fred"); // Testing key and string reuse.
}, slb2);
}, slb);
slb.Finish();
#endif // FLATBUFFERS_CPP98_STL
#ifdef FLATBUFFERS_TEST_VERBOSE
for (size_t i = 0; i < slb.GetBuffer().size(); i++)
printf("%d ", flatbuffers::vector_data(slb.GetBuffer())[i]);
printf("\n");
#endif
auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap();
TEST_EQ(map.size(), 7);
auto vec = map["vec"].AsVector();
TEST_EQ(vec.size(), 5);
TEST_EQ(vec[0].AsInt64(), -100);
TEST_EQ_STR(vec[1].AsString().c_str(), "Fred");
TEST_EQ(vec[1].AsInt64(), 0); // Number parsing failed.
TEST_EQ(vec[2].AsDouble(), 4.0);
TEST_EQ(vec[2].AsString().IsTheEmptyString(), true); // Wrong Type.
TEST_EQ_STR(vec[2].AsString().c_str(), ""); // This still works though.
TEST_EQ_STR(vec[2].ToString().c_str(), "4.0"); // Or have it converted.
// Test that the blob can be accessed.
TEST_EQ(vec[3].IsBlob(), true);
auto blob = vec[3].AsBlob();
TEST_EQ(blob.size(), 1);
TEST_EQ(blob.data()[0], 77);
TEST_EQ(vec[4].IsBool(), true); // Check if type is a bool
TEST_EQ(vec[4].AsBool(), false); // Check if value is false
auto tvec = map["bar"].AsTypedVector();
TEST_EQ(tvec.size(), 3);
TEST_EQ(tvec[2].AsInt8(), 3);
auto tvec3 = map["bar3"].AsFixedTypedVector();
TEST_EQ(tvec3.size(), 3);
TEST_EQ(tvec3[2].AsInt8(), 3);
TEST_EQ(map["bool"].AsBool(), true);
auto tvecb = map["bools"].AsTypedVector();
TEST_EQ(tvecb.ElementType(), flexbuffers::TYPE_BOOL);
TEST_EQ(map["foo"].AsUInt8(), 100);
TEST_EQ(map["unknown"].IsNull(), true);
auto mymap = map["mymap"].AsMap();
// These should be equal by pointer equality, since key and value are shared.
TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey());
TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str());
// We can mutate values in the buffer.
TEST_EQ(vec[0].MutateInt(-99), true);
TEST_EQ(vec[0].AsInt64(), -99);
TEST_EQ(vec[1].MutateString("John"), true); // Size must match.
TEST_EQ_STR(vec[1].AsString().c_str(), "John");
TEST_EQ(vec[1].MutateString("Alfred"), false); // Too long.
TEST_EQ(vec[2].MutateFloat(2.0f), true);
TEST_EQ(vec[2].AsFloat(), 2.0f);
TEST_EQ(vec[2].MutateFloat(3.14159), false); // Double does not fit in float.
TEST_EQ(vec[4].AsBool(), false); // Is false before change
TEST_EQ(vec[4].MutateBool(true), true); // Can change a bool
TEST_EQ(vec[4].AsBool(), true); // Changed bool is now true
// Parse from JSON:
flatbuffers::Parser parser;
slb.Clear();
auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }";
TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb),
true);
auto jroot = flexbuffers::GetRoot(slb.GetBuffer());
auto jmap = jroot.AsMap();
auto jvec = jmap["a"].AsVector();
TEST_EQ(jvec[0].AsInt64(), 123);
TEST_EQ(jvec[1].AsDouble(), 456.0);
TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello");
TEST_EQ(jmap["c"].IsBool(), true); // Parsed correctly to a bool
TEST_EQ(jmap["c"].AsBool(), true); // Parsed correctly to true
TEST_EQ(jmap["d"].IsBool(), true); // Parsed correctly to a bool
TEST_EQ(jmap["d"].AsBool(), false); // Parsed correctly to false
// And from FlexBuffer back to JSON:
auto jsonback = jroot.ToString();
TEST_EQ_STR(jsontest, jsonback.c_str());
}
void TypeAliasesTest()
{
flatbuffers::FlatBufferBuilder builder;
builder.Finish(CreateTypeAliases(builder,
INT8_MIN, UINT8_MAX, INT16_MIN, UINT16_MAX,
INT32_MIN, UINT32_MAX, INT64_MIN, UINT64_MAX, 2.3f, 2.3));
auto p = builder.GetBufferPointer();
auto ta = flatbuffers::GetRoot<TypeAliases>(p);
TEST_EQ(ta->i8(), INT8_MIN);
TEST_EQ(ta->u8(), UINT8_MAX);
TEST_EQ(ta->i16(), INT16_MIN);
TEST_EQ(ta->u16(), UINT16_MAX);
TEST_EQ(ta->i32(), INT32_MIN);
TEST_EQ(ta->u32(), UINT32_MAX);
TEST_EQ(ta->i64(), INT64_MIN);
TEST_EQ(ta->u64(), UINT64_MAX);
TEST_EQ(ta->f32(), 2.3f);
TEST_EQ(ta->f64(), 2.3);
TEST_EQ(sizeof(ta->i8()), 1);
TEST_EQ(sizeof(ta->i16()), 2);
TEST_EQ(sizeof(ta->i32()), 4);
TEST_EQ(sizeof(ta->i64()), 8);
TEST_EQ(sizeof(ta->u8()), 1);
TEST_EQ(sizeof(ta->u16()), 2);
TEST_EQ(sizeof(ta->u32()), 4);
TEST_EQ(sizeof(ta->u64()), 8);
TEST_EQ(sizeof(ta->f32()), 4);
TEST_EQ(sizeof(ta->f64()), 8);
}
int main(int /*argc*/, const char * /*argv*/[]) {
#if defined(FLATBUFFERS_MEMORY_LEAK_TRACKING) && \
defined(_MSC_VER) && defined(_DEBUG)
_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF
// For more thorough checking:
//| _CRTDBG_CHECK_ALWAYS_DF | _CRTDBG_DELAY_FREE_MEM_DF
);
#endif
// Run our various test suites:
std::string rawbuf;
auto flatbuf1 = CreateFlatBufferTest(rawbuf);
#if !defined(FLATBUFFERS_CPP98_STL)
auto flatbuf = std::move(flatbuf1); // Test move assignment.
#else
auto &flatbuf = flatbuf1;
#endif // !defined(FLATBUFFERS_CPP98_STL)
AccessFlatBufferTest(reinterpret_cast<const uint8_t *>(rawbuf.c_str()),
rawbuf.length());
AccessFlatBufferTest(flatbuf.data(), flatbuf.size());
MutateFlatBuffersTest(flatbuf.data(), flatbuf.size());
ObjectFlatBuffersTest(flatbuf.data());
MiniReflectFlatBuffersTest(flatbuf.data());
SizePrefixedTest();
#ifndef FLATBUFFERS_NO_FILE_TESTS
#ifdef FLATBUFFERS_TEST_PATH_PREFIX
test_data_path = FLATBUFFERS_STRING(FLATBUFFERS_TEST_PATH_PREFIX) +
test_data_path;
#endif
ParseAndGenerateTextTest();
ReflectionTest(flatbuf.data(), flatbuf.size());
ParseProtoTest();
UnionVectorTest();
#endif
FuzzTest1();
FuzzTest2();
ErrorTest();
ValueTest();
EnumStringsTest();
IntegerOutOfRangeTest();
IntegerBoundaryTest();
UnicodeTest();
UnicodeTestAllowNonUTF8();
UnicodeTestGenerateTextFailsOnNonUTF8();
UnicodeSurrogatesTest();
UnicodeInvalidSurrogatesTest();
InvalidUTF8Test();
UnknownFieldsTest();
ParseUnionTest();
ConformTest();
ParseProtoBufAsciiTest();
TypeAliasesTest();
FlexBuffersTest();
if (!testing_fails) {
TEST_OUTPUT_LINE("ALL TESTS PASSED");
return 0;
} else {
TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails);
return 1;
}
}
|