import { ByteBuffer } from "./byte-buffer" import { SIZEOF_SHORT, SIZE_PREFIX_LENGTH, SIZEOF_INT, FILE_IDENTIFIER_LENGTH } from "./constants" import { Offset, IGeneratedObject } from "./types" import { Long } from "./long" export class Builder { private bb: ByteBuffer /** Remaining space in the ByteBuffer. */ private space: number /** Minimum alignment encountered so far. */ private minalign = 1 /** The vtable for the current table. */ private vtable: number[] | null = null /** The amount of fields we're actually using. */ private vtable_in_use = 0 /** Whether we are currently serializing a table. */ private isNested = false; /** Starting offset of the current struct/table. */ private object_start = 0 /** List of offsets of all vtables. */ private vtables: number[] = [] /** For the current vector being built. */ private vector_num_elems = 0 /** False omits default values from the serialized data */ private force_defaults = false; private string_maps: Map | null = null; /** * Create a FlatBufferBuilder. */ constructor(opt_initial_size?: number) { let initial_size: number; if (!opt_initial_size) { initial_size = 1024; } else { initial_size = opt_initial_size; } /** * @type {ByteBuffer} * @private */ this.bb = ByteBuffer.allocate(initial_size); this.space = initial_size; } clear(): void { this.bb.clear(); this.space = this.bb.capacity(); this.minalign = 1; this.vtable = null; this.vtable_in_use = 0; this.isNested = false; this.object_start = 0; this.vtables = []; this.vector_num_elems = 0; this.force_defaults = false; this.string_maps = null; } /** * In order to save space, fields that are set to their default value * don't get serialized into the buffer. Forcing defaults provides a * way to manually disable this optimization. * * @param forceDefaults true always serializes default values */ forceDefaults(forceDefaults: boolean): void { this.force_defaults = forceDefaults; } /** * Get the ByteBuffer representing the FlatBuffer. Only call this after you've * called finish(). The actual data starts at the ByteBuffer's current position, * not necessarily at 0. */ dataBuffer(): ByteBuffer { return this.bb; } /** * Get the bytes representing the FlatBuffer. Only call this after you've * called finish(). */ asUint8Array(): Uint8Array { return this.bb.bytes().subarray(this.bb.position(), this.bb.position() + this.offset()); } /** * Prepare to write an element of `size` after `additional_bytes` have been * written, e.g. if you write a string, you need to align such the int length * field is aligned to 4 bytes, and the string data follows it directly. If all * you need to do is alignment, `additional_bytes` will be 0. * * @param size This is the of the new element to write * @param additional_bytes The padding size */ prep(size: number, additional_bytes: number): void { // Track the biggest thing we've ever aligned to. if (size > this.minalign) { this.minalign = size; } // Find the amount of alignment needed such that `size` is properly // aligned after `additional_bytes` const align_size = ((~(this.bb.capacity() - this.space + additional_bytes)) + 1) & (size - 1); // Reallocate the buffer if needed. while (this.space < align_size + size + additional_bytes) { const old_buf_size = this.bb.capacity(); this.bb = Builder.growByteBuffer(this.bb); this.space += this.bb.capacity() - old_buf_size; } this.pad(align_size); } pad(byte_size: number): void { for (let i = 0; i < byte_size; i++) { this.bb.writeInt8(--this.space, 0); } } writeInt8(value: number): void { this.bb.writeInt8(this.space -= 1, value); } writeInt16(value: number): void { this.bb.writeInt16(this.space -= 2, value); } writeInt32(value: number): void { this.bb.writeInt32(this.space -= 4, value); } writeInt64(value: Long): void { this.bb.writeInt64(this.space -= 8, value); } writeFloat32(value: number): void { this.bb.writeFloat32(this.space -= 4, value); } writeFloat64(value: number): void { this.bb.writeFloat64(this.space -= 8, value); } /** * Add an `int8` to the buffer, properly aligned, and grows the buffer (if necessary). * @param value The `int8` to add the the buffer. */ addInt8(value: number): void { this.prep(1, 0); this.writeInt8(value); } /** * Add an `int16` to the buffer, properly aligned, and grows the buffer (if necessary). * @param value The `int16` to add the the buffer. */ addInt16(value: number): void { this.prep(2, 0); this.writeInt16(value); } /** * Add an `int32` to the buffer, properly aligned, and grows the buffer (if necessary). * @param value The `int32` to add the the buffer. */ addInt32(value: number): void { this.prep(4, 0); this.writeInt32(value); } /** * Add an `int64` to the buffer, properly aligned, and grows the buffer (if necessary). * @param value The `int64` to add the the buffer. */ addInt64(value: Long): void { this.prep(8, 0); this.writeInt64(value); } /** * Add a `float32` to the buffer, properly aligned, and grows the buffer (if necessary). * @param value The `float32` to add the the buffer. */ addFloat32(value: number): void { this.prep(4, 0); this.writeFloat32(value); } /** * Add a `float64` to the buffer, properly aligned, and grows the buffer (if necessary). * @param value The `float64` to add the the buffer. */ addFloat64(value: number): void { this.prep(8, 0); this.writeFloat64(value); } addFieldInt8(voffset: number, value: number, defaultValue: number): void { if (this.force_defaults || value != defaultValue) { this.addInt8(value); this.slot(voffset); } } addFieldInt16(voffset: number, value: number, defaultValue: number): void { if (this.force_defaults || value != defaultValue) { this.addInt16(value); this.slot(voffset); } } addFieldInt32(voffset: number, value: number, defaultValue: number): void { if (this.force_defaults || value != defaultValue) { this.addInt32(value); this.slot(voffset); } } addFieldInt64(voffset: number, value: Long, defaultValue: Long): void { if (this.force_defaults || !value.equals(defaultValue)) { this.addInt64(value); this.slot(voffset); } } addFieldFloat32(voffset: number, value: number, defaultValue: number): void { if (this.force_defaults || value != defaultValue) { this.addFloat32(value); this.slot(voffset); } } addFieldFloat64(voffset: number, value: number, defaultValue: number): void { if (this.force_defaults || value != defaultValue) { this.addFloat64(value); this.slot(voffset); } } addFieldOffset(voffset: number, value: Offset, defaultValue: Offset): void { if (this.force_defaults || value != defaultValue) { this.addOffset(value); this.slot(voffset); } } /** * Structs are stored inline, so nothing additional is being added. `d` is always 0. */ addFieldStruct(voffset: number, value: Offset, defaultValue: Offset): void { if (value != defaultValue) { this.nested(value); this.slot(voffset); } } /** * Structures are always stored inline, they need to be created right * where they're used. You'll get this assertion failure if you * created it elsewhere. */ nested(obj: Offset): void { if (obj != this.offset()) { throw new Error('FlatBuffers: struct must be serialized inline.'); } } /** * Should not be creating any other object, string or vector * while an object is being constructed */ notNested(): void { if (this.isNested) { throw new Error('FlatBuffers: object serialization must not be nested.'); } } /** * Set the current vtable at `voffset` to the current location in the buffer. */ slot(voffset: number): void { if (this.vtable !== null) this.vtable[voffset] = this.offset(); } /** * @returns Offset relative to the end of the buffer. */ offset(): Offset { return this.bb.capacity() - this.space; } /** * Doubles the size of the backing ByteBuffer and copies the old data towards * the end of the new buffer (since we build the buffer backwards). * * @param bb The current buffer with the existing data * @returns A new byte buffer with the old data copied * to it. The data is located at the end of the buffer. * * uint8Array.set() formally takes {Array|ArrayBufferView}, so to pass * it a uint8Array we need to suppress the type check: * @suppress {checkTypes} */ static growByteBuffer(bb: ByteBuffer): ByteBuffer { const old_buf_size = bb.capacity(); // Ensure we don't grow beyond what fits in an int. if (old_buf_size & 0xC0000000) { throw new Error('FlatBuffers: cannot grow buffer beyond 2 gigabytes.'); } const new_buf_size = old_buf_size << 1; const nbb = ByteBuffer.allocate(new_buf_size); nbb.setPosition(new_buf_size - old_buf_size); nbb.bytes().set(bb.bytes(), new_buf_size - old_buf_size); return nbb; } /** * Adds on offset, relative to where it will be written. * * @param offset The offset to add. */ addOffset(offset: Offset): void { this.prep(SIZEOF_INT, 0); // Ensure alignment is already done. this.writeInt32(this.offset() - offset + SIZEOF_INT); } /** * Start encoding a new object in the buffer. Users will not usually need to * call this directly. The FlatBuffers compiler will generate helper methods * that call this method internally. */ startObject(numfields: number): void { this.notNested(); if (this.vtable == null) { this.vtable = []; } this.vtable_in_use = numfields; for (let i = 0; i < numfields; i++) { this.vtable[i] = 0; // This will push additional elements as needed } this.isNested = true; this.object_start = this.offset(); } /** * Finish off writing the object that is under construction. * * @returns The offset to the object inside `dataBuffer` */ endObject(): Offset { if (this.vtable == null || !this.isNested) { throw new Error('FlatBuffers: endObject called without startObject'); } this.addInt32(0); const vtableloc = this.offset(); // Trim trailing zeroes. let i = this.vtable_in_use - 1; // eslint-disable-next-line no-empty for (; i >= 0 && this.vtable[i] == 0; i--) {} const trimmed_size = i + 1; // Write out the current vtable. for (; i >= 0; i--) { // Offset relative to the start of the table. this.addInt16(this.vtable[i] != 0 ? vtableloc - this.vtable[i] : 0); } const standard_fields = 2; // The fields below: this.addInt16(vtableloc - this.object_start); const len = (trimmed_size + standard_fields) * SIZEOF_SHORT; this.addInt16(len); // Search for an existing vtable that matches the current one. let existing_vtable = 0; const vt1 = this.space; outer_loop: for (i = 0; i < this.vtables.length; i++) { const vt2 = this.bb.capacity() - this.vtables[i]; if (len == this.bb.readInt16(vt2)) { for (let j = SIZEOF_SHORT; j < len; j += SIZEOF_SHORT) { if (this.bb.readInt16(vt1 + j) != this.bb.readInt16(vt2 + j)) { continue outer_loop; } } existing_vtable = this.vtables[i]; break; } } if (existing_vtable) { // Found a match: // Remove the current vtable. this.space = this.bb.capacity() - vtableloc; // Point table to existing vtable. this.bb.writeInt32(this.space, existing_vtable - vtableloc); } else { // No match: // Add the location of the current vtable to the list of vtables. this.vtables.push(this.offset()); // Point table to current vtable. this.bb.writeInt32(this.bb.capacity() - vtableloc, this.offset() - vtableloc); } this.isNested = false; return vtableloc as Offset; } /** * Finalize a buffer, poiting to the given `root_table`. */ finish(root_table: Offset, opt_file_identifier?: string, opt_size_prefix?: boolean): void { const size_prefix = opt_size_prefix ? SIZE_PREFIX_LENGTH : 0; if (opt_file_identifier) { const file_identifier = opt_file_identifier; this.prep(this.minalign, SIZEOF_INT + FILE_IDENTIFIER_LENGTH + size_prefix); if (file_identifier.length != FILE_IDENTIFIER_LENGTH) { throw new Error('FlatBuffers: file identifier must be length ' + FILE_IDENTIFIER_LENGTH); } for (let i = FILE_IDENTIFIER_LENGTH - 1; i >= 0; i--) { this.writeInt8(file_identifier.charCodeAt(i)); } } this.prep(this.minalign, SIZEOF_INT + size_prefix); this.addOffset(root_table); if (size_prefix) { this.addInt32(this.bb.capacity() - this.space); } this.bb.setPosition(this.space); } /** * Finalize a size prefixed buffer, pointing to the given `root_table`. */ finishSizePrefixed(this: Builder, root_table: Offset, opt_file_identifier?: string): void { this.finish(root_table, opt_file_identifier, true); } /** * This checks a required field has been set in a given table that has * just been constructed. */ requiredField(table: Offset, field: number): void { const table_start = this.bb.capacity() - table; const vtable_start = table_start - this.bb.readInt32(table_start); const ok = this.bb.readInt16(vtable_start + field) != 0; // If this fails, the caller will show what field needs to be set. if (!ok) { throw new Error('FlatBuffers: field ' + field + ' must be set'); } } /** * Start a new array/vector of objects. Users usually will not call * this directly. The FlatBuffers compiler will create a start/end * method for vector types in generated code. * * @param elem_size The size of each element in the array * @param num_elems The number of elements in the array * @param alignment The alignment of the array */ startVector(elem_size: number, num_elems: number, alignment: number): void { this.notNested(); this.vector_num_elems = num_elems; this.prep(SIZEOF_INT, elem_size * num_elems); this.prep(alignment, elem_size * num_elems); // Just in case alignment > int. } /** * Finish off the creation of an array and all its elements. The array must be * created with `startVector`. * * @returns The offset at which the newly created array * starts. */ endVector(): Offset { this.writeInt32(this.vector_num_elems); return this.offset(); } /** * Encode the string `s` in the buffer using UTF-8. If the string passed has * already been seen, we return the offset of the already written string * * @param s The string to encode * @return The offset in the buffer where the encoded string starts */ createSharedString(s: string | Uint8Array): Offset { if (!s) { return 0 } if (!this.string_maps) { this.string_maps = new Map(); } if (this.string_maps.has(s)) { return this.string_maps.get(s) as Offset } const offset = this.createString(s) this.string_maps.set(s, offset) return offset } /** * Encode the string `s` in the buffer using UTF-8. If a Uint8Array is passed * instead of a string, it is assumed to contain valid UTF-8 encoded data. * * @param s The string to encode * @return The offset in the buffer where the encoded string starts */ createString(s: string | Uint8Array): Offset { if (!s) { return 0 } let utf8: string | Uint8Array | number[]; if (s instanceof Uint8Array) { utf8 = s; } else { utf8 = []; let i = 0; while (i < s.length) { let codePoint; // Decode UTF-16 const a = s.charCodeAt(i++); if (a < 0xD800 || a >= 0xDC00) { codePoint = a; } else { const b = s.charCodeAt(i++); codePoint = (a << 10) + b + (0x10000 - (0xD800 << 10) - 0xDC00); } // Encode UTF-8 if (codePoint < 0x80) { utf8.push(codePoint); } else { if (codePoint < 0x800) { utf8.push(((codePoint >> 6) & 0x1F) | 0xC0); } else { if (codePoint < 0x10000) { utf8.push(((codePoint >> 12) & 0x0F) | 0xE0); } else { utf8.push( ((codePoint >> 18) & 0x07) | 0xF0, ((codePoint >> 12) & 0x3F) | 0x80); } utf8.push(((codePoint >> 6) & 0x3F) | 0x80); } utf8.push((codePoint & 0x3F) | 0x80); } } } this.addInt8(0); this.startVector(1, utf8.length, 1); this.bb.setPosition(this.space -= utf8.length); for (let i = 0, offset = this.space, bytes = this.bb.bytes(); i < utf8.length; i++) { bytes[offset++] = utf8[i]; } return this.endVector(); } /** * A helper function to avoid generated code depending on this file directly. */ createLong(low: number, high: number): Long { return Long.create(low, high); } /** * A helper function to pack an object * * @returns offset of obj */ createObjectOffset(obj: string | any): Offset { if(obj === null) { return 0 } if(typeof obj === 'string') { return this.createString(obj); } else { return obj.pack(this); } } /** * A helper function to pack a list of object * * @returns list of offsets of each non null object */ createObjectOffsetList(list: string[] | any[]): Offset[] { const ret: number[] = []; for(let i = 0; i < list.length; ++i) { const val = list[i]; if(val !== null) { ret.push(this.createObjectOffset(val)); } else { throw new Error( 'FlatBuffers: Argument for createObjectOffsetList cannot contain null.'); } } return ret; } createStructOffsetList(list: string[] | any[], startFunc: (builder: Builder, length: number) => void): Offset { startFunc(this, list.length); this.createObjectOffsetList(list); return this.endVector(); } }