/* * Copyright 2014 Google Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "flatbuffers/idl.h" #include "flatbuffers/util.h" namespace flatbuffers { // Reflects the version at the compiling time of binary(lib/dll/so). const char *FLATBUFFERS_VERSION() { // clang-format off return FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MAJOR) "." FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MINOR) "." FLATBUFFERS_STRING(FLATBUFFERS_VERSION_REVISION); // clang-format on } const double kPi = 3.14159265358979323846; // clang-format off const char *const kTypeNames[] = { #define FLATBUFFERS_TD(ENUM, IDLTYPE, ...) \ IDLTYPE, FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD) #undef FLATBUFFERS_TD nullptr }; const char kTypeSizes[] = { #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \ sizeof(CTYPE), FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD) #undef FLATBUFFERS_TD }; // clang-format on // The enums in the reflection schema should match the ones we use internally. // Compare the last element to check if these go out of sync. static_assert(BASE_TYPE_UNION == static_cast(reflection::Union), "enums don't match"); // Any parsing calls have to be wrapped in this macro, which automates // handling of recursive error checking a bit. It will check the received // CheckedError object, and return straight away on error. #define ECHECK(call) \ { \ auto ce = (call); \ if (ce.Check()) return ce; \ } // These two functions are called hundreds of times below, so define a short // form: #define NEXT() ECHECK(Next()) #define EXPECT(tok) ECHECK(Expect(tok)) static bool ValidateUTF8(const std::string &str) { const char *s = &str[0]; const char *const sEnd = s + str.length(); while (s < sEnd) { if (FromUTF8(&s) < 0) { return false; } } return true; } static bool IsLowerSnakeCase(const std::string &str) { for (size_t i = 0; i < str.length(); i++) { char c = str[i]; if (!check_ascii_range(c, 'a', 'z') && !is_digit(c) && c != '_') { return false; } } return true; } // Convert an underscore_based_identifier in to camelCase. // Also uppercases the first character if first is true. std::string MakeCamel(const std::string &in, bool first) { std::string s; for (size_t i = 0; i < in.length(); i++) { if (!i && first) s += CharToUpper(in[0]); else if (in[i] == '_' && i + 1 < in.length()) s += CharToUpper(in[++i]); else s += in[i]; } return s; } // Convert an underscore_based_identifier in to screaming snake case. std::string MakeScreamingCamel(const std::string &in) { std::string s; for (size_t i = 0; i < in.length(); i++) { if (in[i] != '_') s += CharToUpper(in[i]); else s += in[i]; } return s; } void DeserializeDoc(std::vector &doc, const Vector> *documentation) { if (documentation == nullptr) return; for (uoffset_t index = 0; index < documentation->size(); index++) doc.push_back(documentation->Get(index)->str()); } void Parser::Message(const std::string &msg) { if (!error_.empty()) error_ += "\n"; // log all warnings and errors error_ += file_being_parsed_.length() ? AbsolutePath(file_being_parsed_) : ""; // clang-format off #ifdef _WIN32 // MSVC alike error_ += "(" + NumToString(line_) + ", " + NumToString(CursorPosition()) + ")"; #else // gcc alike if (file_being_parsed_.length()) error_ += ":"; error_ += NumToString(line_) + ": " + NumToString(CursorPosition()); #endif // clang-format on error_ += ": " + msg; } void Parser::Warning(const std::string &msg) { if (!opts.no_warnings) Message("warning: " + msg); } CheckedError Parser::Error(const std::string &msg) { Message("error: " + msg); return CheckedError(true); } inline CheckedError NoError() { return CheckedError(false); } CheckedError Parser::RecurseError() { return Error("maximum parsing depth " + NumToString(parse_depth_counter_) + " reached"); } class Parser::ParseDepthGuard { public: explicit ParseDepthGuard(Parser *parser_not_null) : parser_(*parser_not_null), caller_depth_(parser_.parse_depth_counter_) { FLATBUFFERS_ASSERT(caller_depth_ <= (FLATBUFFERS_MAX_PARSING_DEPTH) && "Check() must be called to prevent stack overflow"); parser_.parse_depth_counter_ += 1; } ~ParseDepthGuard() { parser_.parse_depth_counter_ -= 1; } CheckedError Check() { return caller_depth_ >= (FLATBUFFERS_MAX_PARSING_DEPTH) ? parser_.RecurseError() : CheckedError(false); } FLATBUFFERS_DELETE_FUNC(ParseDepthGuard(const ParseDepthGuard &)); FLATBUFFERS_DELETE_FUNC(ParseDepthGuard &operator=(const ParseDepthGuard &)); private: Parser &parser_; const int caller_depth_; }; template std::string TypeToIntervalString() { return "[" + NumToString((flatbuffers::numeric_limits::lowest)()) + "; " + NumToString((flatbuffers::numeric_limits::max)()) + "]"; } // atot: template version of atoi/atof: convert a string to an instance of T. template bool atot_scalar(const char *s, T *val, bool_constant) { return StringToNumber(s, val); } template bool atot_scalar(const char *s, T *val, bool_constant) { // Normalize NaN parsed from fbs or json to unsigned NaN. if (false == StringToNumber(s, val)) return false; *val = (*val != *val) ? std::fabs(*val) : *val; return true; } template CheckedError atot(const char *s, Parser &parser, T *val) { auto done = atot_scalar(s, val, bool_constant::value>()); if (done) return NoError(); if (0 == *val) return parser.Error("invalid number: \"" + std::string(s) + "\""); else return parser.Error("invalid number: \"" + std::string(s) + "\"" + ", constant does not fit " + TypeToIntervalString()); } template<> inline CheckedError atot>(const char *s, Parser &parser, Offset *val) { (void)parser; *val = Offset(atoi(s)); return NoError(); } std::string Namespace::GetFullyQualifiedName(const std::string &name, size_t max_components) const { // Early exit if we don't have a defined namespace. if (components.empty() || !max_components) { return name; } std::string stream_str; for (size_t i = 0; i < std::min(components.size(), max_components); i++) { if (i) { stream_str += '.'; } stream_str += std::string(components[i]); } if (name.length()) { stream_str += '.'; stream_str += name; } return stream_str; } // Declare tokens we'll use. Single character tokens are represented by their // ascii character code (e.g. '{'), others above 256. // clang-format off #define FLATBUFFERS_GEN_TOKENS(TD) \ TD(Eof, 256, "end of file") \ TD(StringConstant, 257, "string constant") \ TD(IntegerConstant, 258, "integer constant") \ TD(FloatConstant, 259, "float constant") \ TD(Identifier, 260, "identifier") #ifdef __GNUC__ __extension__ // Stop GCC complaining about trailing comma with -Wpendantic. #endif enum { #define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) kToken ## NAME = VALUE, FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN) #undef FLATBUFFERS_TOKEN }; static std::string TokenToString(int t) { static const char * const tokens[] = { #define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) STRING, FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN) #undef FLATBUFFERS_TOKEN #define FLATBUFFERS_TD(ENUM, IDLTYPE, ...) \ IDLTYPE, FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD) #undef FLATBUFFERS_TD }; if (t < 256) { // A single ascii char token. std::string s; s.append(1, static_cast(t)); return s; } else { // Other tokens. return tokens[t - 256]; } } // clang-format on std::string Parser::TokenToStringId(int t) const { return t == kTokenIdentifier ? attribute_ : TokenToString(t); } // Parses exactly nibbles worth of hex digits into a number, or error. CheckedError Parser::ParseHexNum(int nibbles, uint64_t *val) { FLATBUFFERS_ASSERT(nibbles > 0); for (int i = 0; i < nibbles; i++) if (!is_xdigit(cursor_[i])) return Error("escape code must be followed by " + NumToString(nibbles) + " hex digits"); std::string target(cursor_, cursor_ + nibbles); *val = StringToUInt(target.c_str(), 16); cursor_ += nibbles; return NoError(); } CheckedError Parser::SkipByteOrderMark() { if (static_cast(*cursor_) != 0xef) return NoError(); cursor_++; if (static_cast(*cursor_) != 0xbb) return Error("invalid utf-8 byte order mark"); cursor_++; if (static_cast(*cursor_) != 0xbf) return Error("invalid utf-8 byte order mark"); cursor_++; return NoError(); } static inline bool IsIdentifierStart(char c) { return is_alpha(c) || (c == '_'); } CheckedError Parser::Next() { doc_comment_.clear(); bool seen_newline = cursor_ == source_; attribute_.clear(); attr_is_trivial_ascii_string_ = true; for (;;) { char c = *cursor_++; token_ = c; switch (c) { case '\0': cursor_--; token_ = kTokenEof; return NoError(); case ' ': case '\r': case '\t': break; case '\n': MarkNewLine(); seen_newline = true; break; case '{': case '}': case '(': case ')': case '[': case ']': case ',': case ':': case ';': case '=': return NoError(); case '\"': case '\'': { int unicode_high_surrogate = -1; while (*cursor_ != c) { if (*cursor_ < ' ' && static_cast(*cursor_) >= 0) return Error("illegal character in string constant"); if (*cursor_ == '\\') { attr_is_trivial_ascii_string_ = false; // has escape sequence cursor_++; if (unicode_high_surrogate != -1 && *cursor_ != 'u') { return Error( "illegal Unicode sequence (unpaired high surrogate)"); } switch (*cursor_) { case 'n': attribute_ += '\n'; cursor_++; break; case 't': attribute_ += '\t'; cursor_++; break; case 'r': attribute_ += '\r'; cursor_++; break; case 'b': attribute_ += '\b'; cursor_++; break; case 'f': attribute_ += '\f'; cursor_++; break; case '\"': attribute_ += '\"'; cursor_++; break; case '\'': attribute_ += '\''; cursor_++; break; case '\\': attribute_ += '\\'; cursor_++; break; case '/': attribute_ += '/'; cursor_++; break; case 'x': { // Not in the JSON standard cursor_++; uint64_t val; ECHECK(ParseHexNum(2, &val)); attribute_ += static_cast(val); break; } case 'u': { cursor_++; uint64_t val; ECHECK(ParseHexNum(4, &val)); if (val >= 0xD800 && val <= 0xDBFF) { if (unicode_high_surrogate != -1) { return Error( "illegal Unicode sequence (multiple high surrogates)"); } else { unicode_high_surrogate = static_cast(val); } } else if (val >= 0xDC00 && val <= 0xDFFF) { if (unicode_high_surrogate == -1) { return Error( "illegal Unicode sequence (unpaired low surrogate)"); } else { int code_point = 0x10000 + ((unicode_high_surrogate & 0x03FF) << 10) + (val & 0x03FF); ToUTF8(code_point, &attribute_); unicode_high_surrogate = -1; } } else { if (unicode_high_surrogate != -1) { return Error( "illegal Unicode sequence (unpaired high surrogate)"); } ToUTF8(static_cast(val), &attribute_); } break; } default: return Error("unknown escape code in string constant"); } } else { // printable chars + UTF-8 bytes if (unicode_high_surrogate != -1) { return Error( "illegal Unicode sequence (unpaired high surrogate)"); } // reset if non-printable attr_is_trivial_ascii_string_ &= check_ascii_range(*cursor_, ' ', '~'); attribute_ += *cursor_++; } } if (unicode_high_surrogate != -1) { return Error("illegal Unicode sequence (unpaired high surrogate)"); } cursor_++; if (!attr_is_trivial_ascii_string_ && !opts.allow_non_utf8 && !ValidateUTF8(attribute_)) { return Error("illegal UTF-8 sequence"); } token_ = kTokenStringConstant; return NoError(); } case '/': if (*cursor_ == '/') { const char *start = ++cursor_; while (*cursor_ && *cursor_ != '\n' && *cursor_ != '\r') cursor_++; if (*start == '/') { // documentation comment if (!seen_newline) return Error( "a documentation comment should be on a line on its own"); doc_comment_.push_back(std::string(start + 1, cursor_)); } break; } else if (*cursor_ == '*') { cursor_++; // TODO: make nested. while (*cursor_ != '*' || cursor_[1] != '/') { if (*cursor_ == '\n') MarkNewLine(); if (!*cursor_) return Error("end of file in comment"); cursor_++; } cursor_ += 2; break; } FLATBUFFERS_FALLTHROUGH(); // else fall thru default: const auto has_sign = (c == '+') || (c == '-'); // '-'/'+' and following identifier - can be a predefined constant like: // NAN, INF, PI, etc or it can be a function name like cos/sin/deg. if (IsIdentifierStart(c) || (has_sign && IsIdentifierStart(*cursor_))) { // Collect all chars of an identifier: const char *start = cursor_ - 1; while (IsIdentifierStart(*cursor_) || is_digit(*cursor_)) cursor_++; attribute_.append(start, cursor_); token_ = has_sign ? kTokenStringConstant : kTokenIdentifier; return NoError(); } auto dot_lvl = (c == '.') ? 0 : 1; // dot_lvl==0 <=> exactly one '.' seen if (!dot_lvl && !is_digit(*cursor_)) return NoError(); // enum? // Parser accepts hexadecimal-floating-literal (see C++ 5.13.4). if (is_digit(c) || has_sign || !dot_lvl) { const auto start = cursor_ - 1; auto start_digits = !is_digit(c) ? cursor_ : cursor_ - 1; if (!is_digit(c) && is_digit(*cursor_)) { start_digits = cursor_; // see digit in cursor_ position c = *cursor_++; } // hex-float can't begind with '.' auto use_hex = dot_lvl && (c == '0') && is_alpha_char(*cursor_, 'X'); if (use_hex) start_digits = ++cursor_; // '0x' is the prefix, skip it // Read an integer number or mantisa of float-point number. do { if (use_hex) { while (is_xdigit(*cursor_)) cursor_++; } else { while (is_digit(*cursor_)) cursor_++; } } while ((*cursor_ == '.') && (++cursor_) && (--dot_lvl >= 0)); // Exponent of float-point number. if ((dot_lvl >= 0) && (cursor_ > start_digits)) { // The exponent suffix of hexadecimal float number is mandatory. if (use_hex && !dot_lvl) start_digits = cursor_; if ((use_hex && is_alpha_char(*cursor_, 'P')) || is_alpha_char(*cursor_, 'E')) { dot_lvl = 0; // Emulate dot to signal about float-point number. cursor_++; if (*cursor_ == '+' || *cursor_ == '-') cursor_++; start_digits = cursor_; // the exponent-part has to have digits // Exponent is decimal integer number while (is_digit(*cursor_)) cursor_++; if (*cursor_ == '.') { cursor_++; // If see a dot treat it as part of invalid number. dot_lvl = -1; // Fall thru to Error(). } } } // Finalize. if ((dot_lvl >= 0) && (cursor_ > start_digits)) { attribute_.append(start, cursor_); token_ = dot_lvl ? kTokenIntegerConstant : kTokenFloatConstant; return NoError(); } else { return Error("invalid number: " + std::string(start, cursor_)); } } std::string ch; ch = c; if (false == check_ascii_range(c, ' ', '~')) ch = "code: " + NumToString(c); return Error("illegal character: " + ch); } } } // Check if a given token is next. bool Parser::Is(int t) const { return t == token_; } bool Parser::IsIdent(const char *id) const { return token_ == kTokenIdentifier && attribute_ == id; } // Expect a given token to be next, consume it, or error if not present. CheckedError Parser::Expect(int t) { if (t != token_) { return Error("expecting: " + TokenToString(t) + " instead got: " + TokenToStringId(token_)); } NEXT(); return NoError(); } CheckedError Parser::ParseNamespacing(std::string *id, std::string *last) { while (Is('.')) { NEXT(); *id += "."; *id += attribute_; if (last) *last = attribute_; EXPECT(kTokenIdentifier); } return NoError(); } EnumDef *Parser::LookupEnum(const std::string &id) { // Search thru parent namespaces. for (int components = static_cast(current_namespace_->components.size()); components >= 0; components--) { auto ed = enums_.Lookup( current_namespace_->GetFullyQualifiedName(id, components)); if (ed) return ed; } return nullptr; } StructDef *Parser::LookupStruct(const std::string &id) const { auto sd = structs_.Lookup(id); if (sd) sd->refcount++; return sd; } CheckedError Parser::ParseTypeIdent(Type &type) { std::string id = attribute_; EXPECT(kTokenIdentifier); ECHECK(ParseNamespacing(&id, nullptr)); auto enum_def = LookupEnum(id); if (enum_def) { type = enum_def->underlying_type; if (enum_def->is_union) type.base_type = BASE_TYPE_UNION; } else { type.base_type = BASE_TYPE_STRUCT; type.struct_def = LookupCreateStruct(id); } return NoError(); } // Parse any IDL type. CheckedError Parser::ParseType(Type &type) { if (token_ == kTokenIdentifier) { if (IsIdent("bool")) { type.base_type = BASE_TYPE_BOOL; NEXT(); } else if (IsIdent("byte") || IsIdent("int8")) { type.base_type = BASE_TYPE_CHAR; NEXT(); } else if (IsIdent("ubyte") || IsIdent("uint8")) { type.base_type = BASE_TYPE_UCHAR; NEXT(); } else if (IsIdent("short") || IsIdent("int16")) { type.base_type = BASE_TYPE_SHORT; NEXT(); } else if (IsIdent("ushort") || IsIdent("uint16")) { type.base_type = BASE_TYPE_USHORT; NEXT(); } else if (IsIdent("int") || IsIdent("int32")) { type.base_type = BASE_TYPE_INT; NEXT(); } else if (IsIdent("uint") || IsIdent("uint32")) { type.base_type = BASE_TYPE_UINT; NEXT(); } else if (IsIdent("long") || IsIdent("int64")) { type.base_type = BASE_TYPE_LONG; NEXT(); } else if (IsIdent("ulong") || IsIdent("uint64")) { type.base_type = BASE_TYPE_ULONG; NEXT(); } else if (IsIdent("float") || IsIdent("float32")) { type.base_type = BASE_TYPE_FLOAT; NEXT(); } else if (IsIdent("double") || IsIdent("float64")) { type.base_type = BASE_TYPE_DOUBLE; NEXT(); } else if (IsIdent("string")) { type.base_type = BASE_TYPE_STRING; NEXT(); } else { ECHECK(ParseTypeIdent(type)); } } else if (token_ == '[') { ParseDepthGuard depth_guard(this); ECHECK(depth_guard.Check()); NEXT(); Type subtype; ECHECK(ParseType(subtype)); if (IsSeries(subtype)) { // We could support this, but it will complicate things, and it's // easier to work around with a struct around the inner vector. return Error("nested vector types not supported (wrap in table first)"); } if (token_ == ':') { NEXT(); if (token_ != kTokenIntegerConstant) { return Error("length of fixed-length array must be an integer value"); } uint16_t fixed_length = 0; bool check = StringToNumber(attribute_.c_str(), &fixed_length); if (!check || fixed_length < 1) { return Error( "length of fixed-length array must be positive and fit to " "uint16_t type"); } type = Type(BASE_TYPE_ARRAY, subtype.struct_def, subtype.enum_def, fixed_length); NEXT(); } else { type = Type(BASE_TYPE_VECTOR, subtype.struct_def, subtype.enum_def); } type.element = subtype.base_type; EXPECT(']'); } else { return Error("illegal type syntax"); } return NoError(); } CheckedError Parser::AddField(StructDef &struct_def, const std::string &name, const Type &type, FieldDef **dest) { auto &field = *new FieldDef(); field.value.offset = FieldIndexToOffset(static_cast(struct_def.fields.vec.size())); field.name = name; field.file = struct_def.file; field.value.type = type; if (struct_def.fixed) { // statically compute the field offset auto size = InlineSize(type); auto alignment = InlineAlignment(type); // structs_ need to have a predictable format, so we need to align to // the largest scalar struct_def.minalign = std::max(struct_def.minalign, alignment); struct_def.PadLastField(alignment); field.value.offset = static_cast(struct_def.bytesize); struct_def.bytesize += size; } if (struct_def.fields.Add(name, &field)) return Error("field already exists: " + name); *dest = &field; return NoError(); } CheckedError Parser::ParseField(StructDef &struct_def) { std::string name = attribute_; if (LookupCreateStruct(name, false, false)) return Error("field name can not be the same as table/struct name"); if (!IsLowerSnakeCase(name)) { Warning("field names should be lowercase snake_case, got: " + name); } std::vector dc = doc_comment_; EXPECT(kTokenIdentifier); EXPECT(':'); Type type; ECHECK(ParseType(type)); if (struct_def.fixed) { auto valid = IsScalar(type.base_type) || IsStruct(type); if (!valid && IsArray(type)) { const auto &elem_type = type.VectorType(); valid |= IsScalar(elem_type.base_type) || IsStruct(elem_type); } if (!valid) return Error("structs may contain only scalar or struct fields"); } if (!struct_def.fixed && IsArray(type)) return Error("fixed-length array in table must be wrapped in struct"); if (IsArray(type) && !SupportsAdvancedArrayFeatures()) { return Error( "Arrays are not yet supported in all " "the specified programming languages."); } FieldDef *typefield = nullptr; if (type.base_type == BASE_TYPE_UNION) { // For union fields, add a second auto-generated field to hold the type, // with a special suffix. ECHECK(AddField(struct_def, name + UnionTypeFieldSuffix(), type.enum_def->underlying_type, &typefield)); } else if (IsVector(type) && type.element == BASE_TYPE_UNION) { // Only cpp, js and ts supports the union vector feature so far. if (!SupportsAdvancedUnionFeatures()) { return Error( "Vectors of unions are not yet supported in at least one of " "the specified programming languages."); } // For vector of union fields, add a second auto-generated vector field to // hold the types, with a special suffix. Type union_vector(BASE_TYPE_VECTOR, nullptr, type.enum_def); union_vector.element = BASE_TYPE_UTYPE; ECHECK(AddField(struct_def, name + UnionTypeFieldSuffix(), union_vector, &typefield)); } FieldDef *field; ECHECK(AddField(struct_def, name, type, &field)); if (token_ == '=') { NEXT(); ECHECK(ParseSingleValue(&field->name, field->value, true)); if (!IsScalar(type.base_type) || (struct_def.fixed && field->value.constant != "0")) return Error( "default values currently only supported for scalars in tables"); } // Mark the optional scalars. Note that a side effect of ParseSingleValue is // fixing field->value.constant to null. if (IsScalar(type.base_type)) { field->optional = (field->value.constant == "null"); if (field->optional) { if (type.enum_def && type.enum_def->Lookup("null")) { FLATBUFFERS_ASSERT(IsInteger(type.base_type)); return Error( "the default 'null' is reserved for declaring optional scalar " "fields, it conflicts with declaration of enum '" + type.enum_def->name + "'."); } if (field->attributes.Lookup("key")) { return Error( "only a non-optional scalar field can be used as a 'key' field"); } if (!SupportsOptionalScalars()) { return Error( "Optional scalars are not yet supported in at least one the of " "the specified programming languages."); } } } else { // For nonscalars, only required fields are non-optional. // At least until https://github.com/google/flatbuffers/issues/6053 field->optional = !field->required; } // Append .0 if the value has not it (skip hex and scientific floats). // This suffix needed for generated C++ code. if (IsFloat(type.base_type)) { auto &text = field->value.constant; FLATBUFFERS_ASSERT(false == text.empty()); auto s = text.c_str(); while (*s == ' ') s++; if (*s == '-' || *s == '+') s++; // 1) A float constants (nan, inf, pi, etc) is a kind of identifier. // 2) A float number needn't ".0" at the end if it has exponent. if ((false == IsIdentifierStart(*s)) && (std::string::npos == field->value.constant.find_first_of(".eEpP"))) { field->value.constant += ".0"; } } if (type.enum_def) { // The type.base_type can only be scalar, union, array or vector. // Table, struct or string can't have enum_def. // Default value of union and vector in NONE, NULL translated to "0". FLATBUFFERS_ASSERT(IsInteger(type.base_type) || (type.base_type == BASE_TYPE_UNION) || IsVector(type) || IsArray(type)); if (IsVector(type)) { // Vector can't use initialization list. FLATBUFFERS_ASSERT(field->value.constant == "0"); } else { // All unions should have the NONE ("0") enum value. auto in_enum = type.enum_def->attributes.Lookup("bit_flags") || field->IsScalarOptional() || type.enum_def->FindByValue(field->value.constant); if (false == in_enum) return Error("default value of " + field->value.constant + " for field " + name + " is not part of enum " + type.enum_def->name); } } field->doc_comment = dc; ECHECK(ParseMetaData(&field->attributes)); field->deprecated = field->attributes.Lookup("deprecated") != nullptr; auto hash_name = field->attributes.Lookup("hash"); if (hash_name) { switch ((IsVector(type)) ? type.element : type.base_type) { case BASE_TYPE_SHORT: case BASE_TYPE_USHORT: { if (FindHashFunction16(hash_name->constant.c_str()) == nullptr) return Error("Unknown hashing algorithm for 16 bit types: " + hash_name->constant); break; } case BASE_TYPE_INT: case BASE_TYPE_UINT: { if (FindHashFunction32(hash_name->constant.c_str()) == nullptr) return Error("Unknown hashing algorithm for 32 bit types: " + hash_name->constant); break; } case BASE_TYPE_LONG: case BASE_TYPE_ULONG: { if (FindHashFunction64(hash_name->constant.c_str()) == nullptr) return Error("Unknown hashing algorithm for 64 bit types: " + hash_name->constant); break; } default: return Error( "only short, ushort, int, uint, long and ulong data types support " "hashing."); } } auto cpp_type = field->attributes.Lookup("cpp_type"); if (cpp_type) { if (!hash_name) return Error("cpp_type can only be used with a hashed field"); /// forcing cpp_ptr_type to 'naked' if unset auto cpp_ptr_type = field->attributes.Lookup("cpp_ptr_type"); if (!cpp_ptr_type) { auto val = new Value(); val->type = cpp_type->type; val->constant = "naked"; field->attributes.Add("cpp_ptr_type", val); } } if (field->deprecated && struct_def.fixed) return Error("can't deprecate fields in a struct"); field->required = field->attributes.Lookup("required") != nullptr; if (field->required && (struct_def.fixed || IsScalar(type.base_type))) return Error("only non-scalar fields in tables may be 'required'"); if (!IsScalar(type.base_type)) { // For nonscalars, only required fields are non-optional. // At least until https://github.com/google/flatbuffers/issues/6053 field->optional = !field->required; } field->key = field->attributes.Lookup("key") != nullptr; if (field->key) { if (struct_def.has_key) return Error("only one field may be set as 'key'"); struct_def.has_key = true; if (!IsScalar(type.base_type)) { field->required = true; if (type.base_type != BASE_TYPE_STRING) return Error("'key' field must be string or scalar type"); } } field->shared = field->attributes.Lookup("shared") != nullptr; if (field->shared && field->value.type.base_type != BASE_TYPE_STRING) return Error("shared can only be defined on strings"); auto field_native_custom_alloc = field->attributes.Lookup("native_custom_alloc"); if (field_native_custom_alloc) return Error( "native_custom_alloc can only be used with a table or struct " "definition"); field->native_inline = field->attributes.Lookup("native_inline") != nullptr; if (field->native_inline && !IsStruct(field->value.type)) return Error("native_inline can only be defined on structs"); auto nested = field->attributes.Lookup("nested_flatbuffer"); if (nested) { if (nested->type.base_type != BASE_TYPE_STRING) return Error( "nested_flatbuffer attribute must be a string (the root type)"); if (type.base_type != BASE_TYPE_VECTOR || type.element != BASE_TYPE_UCHAR) return Error( "nested_flatbuffer attribute may only apply to a vector of ubyte"); // This will cause an error if the root type of the nested flatbuffer // wasn't defined elsewhere. field->nested_flatbuffer = LookupCreateStruct(nested->constant); } if (field->attributes.Lookup("flexbuffer")) { field->flexbuffer = true; uses_flexbuffers_ = true; if (type.base_type != BASE_TYPE_VECTOR || type.element != BASE_TYPE_UCHAR) return Error("flexbuffer attribute may only apply to a vector of ubyte"); } if (typefield) { if (!IsScalar(typefield->value.type.base_type)) { // this is a union vector field typefield->required = field->required; } // If this field is a union, and it has a manually assigned id, // the automatically added type field should have an id as well (of N - 1). auto attr = field->attributes.Lookup("id"); if (attr) { const auto &id_str = attr->constant; voffset_t id = 0; const auto done = !atot(id_str.c_str(), *this, &id).Check(); if (done && id > 0) { auto val = new Value(); val->type = attr->type; val->constant = NumToString(id - 1); typefield->attributes.Add("id", val); } else { return Error( "a union type effectively adds two fields with non-negative ids, " "its id must be that of the second field (the first field is " "the type field and not explicitly declared in the schema);\n" "field: " + field->name + ", id: " + id_str); } } // if this field is a union that is deprecated, // the automatically added type field should be deprecated as well if (field->deprecated) { typefield->deprecated = true; } } EXPECT(';'); return NoError(); } CheckedError Parser::ParseString(Value &val, bool use_string_pooling) { auto s = attribute_; EXPECT(kTokenStringConstant); if (use_string_pooling) { val.constant = NumToString(builder_.CreateSharedString(s).o); } else { val.constant = NumToString(builder_.CreateString(s).o); } return NoError(); } CheckedError Parser::ParseComma() { if (!opts.protobuf_ascii_alike) EXPECT(','); return NoError(); } CheckedError Parser::ParseAnyValue(Value &val, FieldDef *field, size_t parent_fieldn, const StructDef *parent_struct_def, uoffset_t count, bool inside_vector) { switch (val.type.base_type) { case BASE_TYPE_UNION: { FLATBUFFERS_ASSERT(field); std::string constant; Vector *vector_of_union_types = nullptr; // Find corresponding type field we may have already parsed. for (auto elem = field_stack_.rbegin() + count; elem != field_stack_.rbegin() + parent_fieldn + count; ++elem) { auto &type = elem->second->value.type; if (type.enum_def == val.type.enum_def) { if (inside_vector) { if (IsVector(type) && type.element == BASE_TYPE_UTYPE) { // Vector of union type field. uoffset_t offset; ECHECK(atot(elem->first.constant.c_str(), *this, &offset)); vector_of_union_types = reinterpret_cast *>( builder_.GetCurrentBufferPointer() + builder_.GetSize() - offset); break; } } else { if (type.base_type == BASE_TYPE_UTYPE) { // Union type field. constant = elem->first.constant; break; } } } } if (constant.empty() && !inside_vector) { // We haven't seen the type field yet. Sadly a lot of JSON writers // output these in alphabetical order, meaning it comes after this // value. So we scan past the value to find it, then come back here. // We currently don't do this for vectors of unions because the // scanning/serialization logic would get very complicated. auto type_name = field->name + UnionTypeFieldSuffix(); FLATBUFFERS_ASSERT(parent_struct_def); auto type_field = parent_struct_def->fields.Lookup(type_name); FLATBUFFERS_ASSERT(type_field); // Guaranteed by ParseField(). // Remember where we are in the source file, so we can come back here. auto backup = *static_cast(this); ECHECK(SkipAnyJsonValue()); // The table. ECHECK(ParseComma()); auto next_name = attribute_; if (Is(kTokenStringConstant)) { NEXT(); } else { EXPECT(kTokenIdentifier); } if (next_name == type_name) { EXPECT(':'); ParseDepthGuard depth_guard(this); ECHECK(depth_guard.Check()); Value type_val = type_field->value; ECHECK(ParseAnyValue(type_val, type_field, 0, nullptr, 0)); constant = type_val.constant; // Got the information we needed, now rewind: *static_cast(this) = backup; } } if (constant.empty() && !vector_of_union_types) { return Error("missing type field for this union value: " + field->name); } uint8_t enum_idx; if (vector_of_union_types) { enum_idx = vector_of_union_types->Get(count); } else { ECHECK(atot(constant.c_str(), *this, &enum_idx)); } auto enum_val = val.type.enum_def->ReverseLookup(enum_idx, true); if (!enum_val) return Error("illegal type id for: " + field->name); if (enum_val->union_type.base_type == BASE_TYPE_STRUCT) { ECHECK(ParseTable(*enum_val->union_type.struct_def, &val.constant, nullptr)); if (enum_val->union_type.struct_def->fixed) { // All BASE_TYPE_UNION values are offsets, so turn this into one. SerializeStruct(*enum_val->union_type.struct_def, val); builder_.ClearOffsets(); val.constant = NumToString(builder_.GetSize()); } } else if (IsString(enum_val->union_type)) { ECHECK(ParseString(val, field->shared)); } else { FLATBUFFERS_ASSERT(false); } break; } case BASE_TYPE_STRUCT: ECHECK(ParseTable(*val.type.struct_def, &val.constant, nullptr)); break; case BASE_TYPE_STRING: { ECHECK(ParseString(val, field->shared)); break; } case BASE_TYPE_VECTOR: { uoffset_t off; ECHECK(ParseVector(val.type.VectorType(), &off, field, parent_fieldn)); val.constant = NumToString(off); break; } case BASE_TYPE_ARRAY: { ECHECK(ParseArray(val)); break; } case BASE_TYPE_INT: case BASE_TYPE_UINT: case BASE_TYPE_LONG: case BASE_TYPE_ULONG: { if (field && field->attributes.Lookup("hash") && (token_ == kTokenIdentifier || token_ == kTokenStringConstant)) { ECHECK(ParseHash(val, field)); } else { ECHECK(ParseSingleValue(field ? &field->name : nullptr, val, false)); } break; } default: ECHECK(ParseSingleValue(field ? &field->name : nullptr, val, false)); break; } return NoError(); } void Parser::SerializeStruct(const StructDef &struct_def, const Value &val) { SerializeStruct(builder_, struct_def, val); } void Parser::SerializeStruct(FlatBufferBuilder &builder, const StructDef &struct_def, const Value &val) { FLATBUFFERS_ASSERT(val.constant.length() == struct_def.bytesize); builder.Align(struct_def.minalign); builder.PushBytes(reinterpret_cast(val.constant.c_str()), struct_def.bytesize); builder.AddStructOffset(val.offset, builder.GetSize()); } template CheckedError Parser::ParseTableDelimiters(size_t &fieldn, const StructDef *struct_def, F body) { // We allow tables both as JSON object{ .. } with field names // or vector[..] with all fields in order char terminator = '}'; bool is_nested_vector = struct_def && Is('['); if (is_nested_vector) { NEXT(); terminator = ']'; } else { EXPECT('{'); } for (;;) { if ((!opts.strict_json || !fieldn) && Is(terminator)) break; std::string name; if (is_nested_vector) { if (fieldn >= struct_def->fields.vec.size()) { return Error("too many unnamed fields in nested array"); } name = struct_def->fields.vec[fieldn]->name; } else { name = attribute_; if (Is(kTokenStringConstant)) { NEXT(); } else { EXPECT(opts.strict_json ? kTokenStringConstant : kTokenIdentifier); } if (!opts.protobuf_ascii_alike || !(Is('{') || Is('['))) EXPECT(':'); } ECHECK(body(name, fieldn, struct_def)); if (Is(terminator)) break; ECHECK(ParseComma()); } NEXT(); if (is_nested_vector && fieldn != struct_def->fields.vec.size()) { return Error("wrong number of unnamed fields in table vector"); } return NoError(); } CheckedError Parser::ParseTable(const StructDef &struct_def, std::string *value, uoffset_t *ovalue) { ParseDepthGuard depth_guard(this); ECHECK(depth_guard.Check()); size_t fieldn_outer = 0; auto err = ParseTableDelimiters( fieldn_outer, &struct_def, [&](const std::string &name, size_t &fieldn, const StructDef *struct_def_inner) -> CheckedError { if (name == "$schema") { ECHECK(Expect(kTokenStringConstant)); return NoError(); } auto field = struct_def_inner->fields.Lookup(name); if (!field) { if (!opts.skip_unexpected_fields_in_json) { return Error("unknown field: " + name); } else { ECHECK(SkipAnyJsonValue()); } } else { if (IsIdent("null") && !IsScalar(field->value.type.base_type)) { ECHECK(Next()); // Ignore this field. } else { Value val = field->value; if (field->flexbuffer) { flexbuffers::Builder builder(1024, flexbuffers::BUILDER_FLAG_SHARE_ALL); ECHECK(ParseFlexBufferValue(&builder)); builder.Finish(); // Force alignment for nested flexbuffer builder_.ForceVectorAlignment(builder.GetSize(), sizeof(uint8_t), sizeof(largest_scalar_t)); auto off = builder_.CreateVector(builder.GetBuffer()); val.constant = NumToString(off.o); } else if (field->nested_flatbuffer) { ECHECK( ParseNestedFlatbuffer(val, field, fieldn, struct_def_inner)); } else { ECHECK(ParseAnyValue(val, field, fieldn, struct_def_inner, 0)); } // Hardcoded insertion-sort with error-check. // If fields are specified in order, then this loop exits // immediately. auto elem = field_stack_.rbegin(); for (; elem != field_stack_.rbegin() + fieldn; ++elem) { auto existing_field = elem->second; if (existing_field == field) return Error("field set more than once: " + field->name); if (existing_field->value.offset < field->value.offset) break; } // Note: elem points to before the insertion point, thus .base() // points to the correct spot. field_stack_.insert(elem.base(), std::make_pair(val, field)); fieldn++; } } return NoError(); }); ECHECK(err); // Check if all required fields are parsed. for (auto field_it = struct_def.fields.vec.begin(); field_it != struct_def.fields.vec.end(); ++field_it) { auto required_field = *field_it; if (!required_field->required) { continue; } bool found = false; for (auto pf_it = field_stack_.end() - fieldn_outer; pf_it != field_stack_.end(); ++pf_it) { auto parsed_field = pf_it->second; if (parsed_field == required_field) { found = true; break; } } if (!found) { return Error("required field is missing: " + required_field->name + " in " + struct_def.name); } } if (struct_def.fixed && fieldn_outer != struct_def.fields.vec.size()) return Error("struct: wrong number of initializers: " + struct_def.name); auto start = struct_def.fixed ? builder_.StartStruct(struct_def.minalign) : builder_.StartTable(); for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1; size; size /= 2) { // Go through elements in reverse, since we're building the data backwards. for (auto it = field_stack_.rbegin(); it != field_stack_.rbegin() + fieldn_outer; ++it) { auto &field_value = it->first; auto field = it->second; if (!struct_def.sortbysize || size == SizeOf(field_value.type.base_type)) { switch (field_value.type.base_type) { // clang-format off #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \ case BASE_TYPE_ ## ENUM: \ builder_.Pad(field->padding); \ if (struct_def.fixed) { \ CTYPE val; \ ECHECK(atot(field_value.constant.c_str(), *this, &val)); \ builder_.PushElement(val); \ } else { \ CTYPE val, valdef; \ ECHECK(atot(field_value.constant.c_str(), *this, &val)); \ ECHECK(atot(field->value.constant.c_str(), *this, &valdef)); \ builder_.AddElement(field_value.offset, val, valdef); \ } \ break; FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD) #undef FLATBUFFERS_TD #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \ case BASE_TYPE_ ## ENUM: \ builder_.Pad(field->padding); \ if (IsStruct(field->value.type)) { \ SerializeStruct(*field->value.type.struct_def, field_value); \ } else { \ CTYPE val; \ ECHECK(atot(field_value.constant.c_str(), *this, &val)); \ builder_.AddOffset(field_value.offset, val); \ } \ break; FLATBUFFERS_GEN_TYPES_POINTER(FLATBUFFERS_TD) #undef FLATBUFFERS_TD case BASE_TYPE_ARRAY: builder_.Pad(field->padding); builder_.PushBytes( reinterpret_cast(field_value.constant.c_str()), InlineSize(field_value.type)); break; // clang-format on } } } } for (size_t i = 0; i < fieldn_outer; i++) field_stack_.pop_back(); if (struct_def.fixed) { builder_.ClearOffsets(); builder_.EndStruct(); FLATBUFFERS_ASSERT(value); // Temporarily store this struct in the value string, since it is to // be serialized in-place elsewhere. value->assign( reinterpret_cast(builder_.GetCurrentBufferPointer()), struct_def.bytesize); builder_.PopBytes(struct_def.bytesize); FLATBUFFERS_ASSERT(!ovalue); } else { auto val = builder_.EndTable(start); if (ovalue) *ovalue = val; if (value) *value = NumToString(val); } return NoError(); } template CheckedError Parser::ParseVectorDelimiters(uoffset_t &count, F body) { EXPECT('['); for (;;) { if ((!opts.strict_json || !count) && Is(']')) break; ECHECK(body(count)); count++; if (Is(']')) break; ECHECK(ParseComma()); } NEXT(); return NoError(); } static bool CompareSerializedScalars(const uint8_t *a, const uint8_t *b, const FieldDef &key) { switch (key.value.type.base_type) { #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \ case BASE_TYPE_##ENUM: { \ CTYPE def = static_cast(0); \ if (!a || !b) { StringToNumber(key.value.constant.c_str(), &def); } \ const auto av = a ? ReadScalar(a) : def; \ const auto bv = b ? ReadScalar(b) : def; \ return av < bv; \ } FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD) #undef FLATBUFFERS_TD default: { FLATBUFFERS_ASSERT(false && "scalar type expected"); return false; } } } static bool CompareTablesByScalarKey(const Offset *_a, const Offset
*_b, const FieldDef &key) { const voffset_t offset = key.value.offset; // Indirect offset pointer to table pointer. auto a = reinterpret_cast(_a) + ReadScalar(_a); auto b = reinterpret_cast(_b) + ReadScalar(_b); // Fetch field address from table. a = reinterpret_cast(a)->GetAddressOf(offset); b = reinterpret_cast(b)->GetAddressOf(offset); return CompareSerializedScalars(a, b, key); } static bool CompareTablesByStringKey(const Offset
*_a, const Offset
*_b, const FieldDef &key) { const voffset_t offset = key.value.offset; // Indirect offset pointer to table pointer. auto a = reinterpret_cast(_a) + ReadScalar(_a); auto b = reinterpret_cast(_b) + ReadScalar(_b); // Fetch field address from table. a = reinterpret_cast(a)->GetAddressOf(offset); b = reinterpret_cast(b)->GetAddressOf(offset); if (a && b) { // Indirect offset pointer to string pointer. a += ReadScalar(a); b += ReadScalar(b); return *reinterpret_cast(a) < *reinterpret_cast(b); } else { return a ? true : false; } } static void SwapSerializedTables(Offset
*a, Offset
*b) { // These are serialized offsets, so are relative where they are // stored in memory, so compute the distance between these pointers: ptrdiff_t diff = (b - a) * sizeof(Offset
); FLATBUFFERS_ASSERT(diff >= 0); // Guaranteed by SimpleQsort. auto udiff = static_cast(diff); a->o = EndianScalar(ReadScalar(a) - udiff); b->o = EndianScalar(ReadScalar(b) + udiff); std::swap(*a, *b); } // See below for why we need our own sort :( template void SimpleQsort(T *begin, T *end, size_t width, F comparator, S swapper) { if (end - begin <= static_cast(width)) return; auto l = begin + width; auto r = end; while (l < r) { if (comparator(begin, l)) { r -= width; swapper(l, r); } else { l += width; } } l -= width; swapper(begin, l); SimpleQsort(begin, l, width, comparator, swapper); SimpleQsort(r, end, width, comparator, swapper); } CheckedError Parser::ParseVector(const Type &type, uoffset_t *ovalue, FieldDef *field, size_t fieldn) { uoffset_t count = 0; auto err = ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError { Value val; val.type = type; ECHECK(ParseAnyValue(val, field, fieldn, nullptr, count, true)); field_stack_.push_back(std::make_pair(val, nullptr)); return NoError(); }); ECHECK(err); const auto *force_align = field->attributes.Lookup("force_align"); const size_t align = force_align ? static_cast(atoi(force_align->constant.c_str())) : 1; const size_t len = count * InlineSize(type) / InlineAlignment(type); const size_t elemsize = InlineAlignment(type); if (align > 1) { builder_.ForceVectorAlignment(len, elemsize, align); } builder_.StartVector(len, elemsize); for (uoffset_t i = 0; i < count; i++) { // start at the back, since we're building the data backwards. auto &val = field_stack_.back().first; switch (val.type.base_type) { // clang-format off #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE,...) \ case BASE_TYPE_ ## ENUM: \ if (IsStruct(val.type)) SerializeStruct(*val.type.struct_def, val); \ else { \ CTYPE elem; \ ECHECK(atot(val.constant.c_str(), *this, &elem)); \ builder_.PushElement(elem); \ } \ break; FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD) #undef FLATBUFFERS_TD // clang-format on } field_stack_.pop_back(); } builder_.ClearOffsets(); *ovalue = builder_.EndVector(count); if (type.base_type == BASE_TYPE_STRUCT && type.struct_def->has_key) { // We should sort this vector. Find the key first. const FieldDef *key = nullptr; for (auto it = type.struct_def->fields.vec.begin(); it != type.struct_def->fields.vec.end(); ++it) { if ((*it)->key) { key = (*it); break; } } FLATBUFFERS_ASSERT(key); // Now sort it. // We can't use std::sort because for structs the size is not known at // compile time, and for tables our iterators dereference offsets, so can't // be used to swap elements. // And we can't use C qsort either, since that would force use to use // globals, making parsing thread-unsafe. // So for now, we use SimpleQsort above. // TODO: replace with something better, preferably not recursive. if (type.struct_def->fixed) { const voffset_t offset = key->value.offset; const size_t struct_size = type.struct_def->bytesize; auto v = reinterpret_cast(builder_.GetCurrentBufferPointer()); SimpleQsort( v->Data(), v->Data() + v->size() * type.struct_def->bytesize, type.struct_def->bytesize, [offset, key](const uint8_t *a, const uint8_t *b) -> bool { return CompareSerializedScalars(a + offset, b + offset, *key); }, [struct_size](uint8_t *a, uint8_t *b) { // FIXME: faster? for (size_t i = 0; i < struct_size; i++) { std::swap(a[i], b[i]); } }); } else { auto v = reinterpret_cast> *>( builder_.GetCurrentBufferPointer()); // Here also can't use std::sort. We do have an iterator type for it, // but it is non-standard as it will dereference the offsets, and thus // can't be used to swap elements. if (key->value.type.base_type == BASE_TYPE_STRING) { SimpleQsort>( v->data(), v->data() + v->size(), 1, [key](const Offset
*_a, const Offset
*_b) -> bool { return CompareTablesByStringKey(_a, _b, *key); }, SwapSerializedTables); } else { SimpleQsort>( v->data(), v->data() + v->size(), 1, [key](const Offset
*_a, const Offset
*_b) -> bool { return CompareTablesByScalarKey(_a, _b, *key); }, SwapSerializedTables); } } } return NoError(); } CheckedError Parser::ParseArray(Value &array) { std::vector stack; FlatBufferBuilder builder; const auto &type = array.type.VectorType(); auto length = array.type.fixed_length; uoffset_t count = 0; auto err = ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError { vector_emplace_back(&stack, Value()); auto &val = stack.back(); val.type = type; if (IsStruct(type)) { ECHECK(ParseTable(*val.type.struct_def, &val.constant, nullptr)); } else { ECHECK(ParseSingleValue(nullptr, val, false)); } return NoError(); }); ECHECK(err); if (length != count) return Error("Fixed-length array size is incorrect."); for (auto it = stack.rbegin(); it != stack.rend(); ++it) { auto &val = *it; // clang-format off switch (val.type.base_type) { #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \ case BASE_TYPE_ ## ENUM: \ if (IsStruct(val.type)) { \ SerializeStruct(builder, *val.type.struct_def, val); \ } else { \ CTYPE elem; \ ECHECK(atot(val.constant.c_str(), *this, &elem)); \ builder.PushElement(elem); \ } \ break; FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD) #undef FLATBUFFERS_TD default: FLATBUFFERS_ASSERT(0); } // clang-format on } array.constant.assign( reinterpret_cast(builder.GetCurrentBufferPointer()), InlineSize(array.type)); return NoError(); } CheckedError Parser::ParseNestedFlatbuffer(Value &val, FieldDef *field, size_t fieldn, const StructDef *parent_struct_def) { if (token_ == '[') { // backwards compat for 'legacy' ubyte buffers ECHECK(ParseAnyValue(val, field, fieldn, parent_struct_def, 0)); } else { auto cursor_at_value_begin = cursor_; ECHECK(SkipAnyJsonValue()); std::string substring(cursor_at_value_begin - 1, cursor_ - 1); // Create and initialize new parser Parser nested_parser; FLATBUFFERS_ASSERT(field->nested_flatbuffer); nested_parser.root_struct_def_ = field->nested_flatbuffer; nested_parser.enums_ = enums_; nested_parser.opts = opts; nested_parser.uses_flexbuffers_ = uses_flexbuffers_; nested_parser.parse_depth_counter_ = parse_depth_counter_; // Parse JSON substring into new flatbuffer builder using nested_parser bool ok = nested_parser.Parse(substring.c_str(), nullptr, nullptr); // Clean nested_parser to avoid deleting the elements in // the SymbolTables on destruction nested_parser.enums_.dict.clear(); nested_parser.enums_.vec.clear(); if (!ok) { ECHECK(Error(nested_parser.error_)); } // Force alignment for nested flatbuffer builder_.ForceVectorAlignment( nested_parser.builder_.GetSize(), sizeof(uint8_t), nested_parser.builder_.GetBufferMinAlignment()); auto off = builder_.CreateVector(nested_parser.builder_.GetBufferPointer(), nested_parser.builder_.GetSize()); val.constant = NumToString(off.o); } return NoError(); } CheckedError Parser::ParseMetaData(SymbolTable *attributes) { if (Is('(')) { NEXT(); for (;;) { auto name = attribute_; if (false == (Is(kTokenIdentifier) || Is(kTokenStringConstant))) return Error("attribute name must be either identifier or string: " + name); if (known_attributes_.find(name) == known_attributes_.end()) return Error("user define attributes must be declared before use: " + name); NEXT(); auto e = new Value(); if (attributes->Add(name, e)) Warning("attribute already found: " + name); if (Is(':')) { NEXT(); ECHECK(ParseSingleValue(&name, *e, true)); } if (Is(')')) { NEXT(); break; } EXPECT(','); } } return NoError(); } CheckedError Parser::ParseEnumFromString(const Type &type, std::string *result) { const auto base_type = type.enum_def ? type.enum_def->underlying_type.base_type : type.base_type; if (!IsInteger(base_type)) return Error("not a valid value for this field"); uint64_t u64 = 0; for (size_t pos = 0; pos != std::string::npos;) { const auto delim = attribute_.find_first_of(' ', pos); const auto last = (std::string::npos == delim); auto word = attribute_.substr(pos, !last ? delim - pos : std::string::npos); pos = !last ? delim + 1 : std::string::npos; const EnumVal *ev = nullptr; if (type.enum_def) { ev = type.enum_def->Lookup(word); } else { auto dot = word.find_first_of('.'); if (std::string::npos == dot) return Error("enum values need to be qualified by an enum type"); auto enum_def_str = word.substr(0, dot); const auto enum_def = LookupEnum(enum_def_str); if (!enum_def) return Error("unknown enum: " + enum_def_str); auto enum_val_str = word.substr(dot + 1); ev = enum_def->Lookup(enum_val_str); } if (!ev) return Error("unknown enum value: " + word); u64 |= ev->GetAsUInt64(); } *result = IsUnsigned(base_type) ? NumToString(u64) : NumToString(static_cast(u64)); return NoError(); } CheckedError Parser::ParseHash(Value &e, FieldDef *field) { FLATBUFFERS_ASSERT(field); Value *hash_name = field->attributes.Lookup("hash"); switch (e.type.base_type) { case BASE_TYPE_SHORT: { auto hash = FindHashFunction16(hash_name->constant.c_str()); int16_t hashed_value = static_cast(hash(attribute_.c_str())); e.constant = NumToString(hashed_value); break; } case BASE_TYPE_USHORT: { auto hash = FindHashFunction16(hash_name->constant.c_str()); uint16_t hashed_value = hash(attribute_.c_str()); e.constant = NumToString(hashed_value); break; } case BASE_TYPE_INT: { auto hash = FindHashFunction32(hash_name->constant.c_str()); int32_t hashed_value = static_cast(hash(attribute_.c_str())); e.constant = NumToString(hashed_value); break; } case BASE_TYPE_UINT: { auto hash = FindHashFunction32(hash_name->constant.c_str()); uint32_t hashed_value = hash(attribute_.c_str()); e.constant = NumToString(hashed_value); break; } case BASE_TYPE_LONG: { auto hash = FindHashFunction64(hash_name->constant.c_str()); int64_t hashed_value = static_cast(hash(attribute_.c_str())); e.constant = NumToString(hashed_value); break; } case BASE_TYPE_ULONG: { auto hash = FindHashFunction64(hash_name->constant.c_str()); uint64_t hashed_value = hash(attribute_.c_str()); e.constant = NumToString(hashed_value); break; } default: FLATBUFFERS_ASSERT(0); } NEXT(); return NoError(); } CheckedError Parser::TokenError() { return Error("cannot parse value starting with: " + TokenToStringId(token_)); } // Re-pack helper (ParseSingleValue) to normalize defaults of scalars. template inline void SingleValueRepack(Value &e, T val) { // Remove leading zeros. if (IsInteger(e.type.base_type)) { e.constant = NumToString(val); } } #if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0) // Normalize defaults NaN to unsigned quiet-NaN(0) if value was parsed from // hex-float literal. static inline void SingleValueRepack(Value &e, float val) { if (val != val) e.constant = "nan"; } static inline void SingleValueRepack(Value &e, double val) { if (val != val) e.constant = "nan"; } #endif CheckedError Parser::ParseFunction(const std::string *name, Value &e) { ParseDepthGuard depth_guard(this); ECHECK(depth_guard.Check()); // Copy name, attribute will be changed on NEXT(). const auto functionname = attribute_; if (!IsFloat(e.type.base_type)) { return Error(functionname + ": type of argument mismatch, expecting: " + kTypeNames[BASE_TYPE_DOUBLE] + ", found: " + kTypeNames[e.type.base_type] + ", name: " + (name ? *name : "") + ", value: " + e.constant); } NEXT(); EXPECT('('); ECHECK(ParseSingleValue(name, e, false)); EXPECT(')'); // calculate with double precision double x, y = 0.0; ECHECK(atot(e.constant.c_str(), *this, &x)); // clang-format off auto func_match = false; #define FLATBUFFERS_FN_DOUBLE(name, op) \ if (!func_match && functionname == name) { y = op; func_match = true; } FLATBUFFERS_FN_DOUBLE("deg", x / kPi * 180); FLATBUFFERS_FN_DOUBLE("rad", x * kPi / 180); FLATBUFFERS_FN_DOUBLE("sin", sin(x)); FLATBUFFERS_FN_DOUBLE("cos", cos(x)); FLATBUFFERS_FN_DOUBLE("tan", tan(x)); FLATBUFFERS_FN_DOUBLE("asin", asin(x)); FLATBUFFERS_FN_DOUBLE("acos", acos(x)); FLATBUFFERS_FN_DOUBLE("atan", atan(x)); // TODO(wvo): add more useful conversion functions here. #undef FLATBUFFERS_FN_DOUBLE // clang-format on if (true != func_match) { return Error(std::string("Unknown conversion function: ") + functionname + ", field name: " + (name ? *name : "") + ", value: " + e.constant); } e.constant = NumToString(y); return NoError(); } CheckedError Parser::TryTypedValue(const std::string *name, int dtoken, bool check, Value &e, BaseType req, bool *destmatch) { bool match = dtoken == token_; if (match) { FLATBUFFERS_ASSERT(*destmatch == false); *destmatch = true; e.constant = attribute_; // Check token match if (!check) { if (e.type.base_type == BASE_TYPE_NONE) { e.type.base_type = req; } else { return Error( std::string("type mismatch: expecting: ") + kTypeNames[e.type.base_type] + ", found: " + kTypeNames[req] + ", name: " + (name ? *name : "") + ", value: " + e.constant); } } // The exponent suffix of hexadecimal float-point number is mandatory. // A hex-integer constant is forbidden as an initializer of float number. if ((kTokenFloatConstant != dtoken) && IsFloat(e.type.base_type)) { const auto &s = e.constant; const auto k = s.find_first_of("0123456789."); if ((std::string::npos != k) && (s.length() > (k + 1)) && (s[k] == '0' && is_alpha_char(s[k + 1], 'X')) && (std::string::npos == s.find_first_of("pP", k + 2))) { return Error( "invalid number, the exponent suffix of hexadecimal " "floating-point literals is mandatory: \"" + s + "\""); } } NEXT(); } return NoError(); } CheckedError Parser::ParseSingleValue(const std::string *name, Value &e, bool check_now) { const auto in_type = e.type.base_type; const auto is_tok_ident = (token_ == kTokenIdentifier); const auto is_tok_string = (token_ == kTokenStringConstant); // First see if this could be a conversion function: if (is_tok_ident && *cursor_ == '(') { return ParseFunction(name, e); } // clang-format off auto match = false; #define IF_ECHECK_(force, dtoken, check, req) \ if (!match && ((check) || IsConstTrue(force))) \ ECHECK(TryTypedValue(name, dtoken, check, e, req, &match)) #define TRY_ECHECK(dtoken, check, req) IF_ECHECK_(false, dtoken, check, req) #define FORCE_ECHECK(dtoken, check, req) IF_ECHECK_(true, dtoken, check, req) // clang-format on if (is_tok_ident || is_tok_string) { const auto kTokenStringOrIdent = token_; // The string type is a most probable type, check it first. TRY_ECHECK(kTokenStringConstant, in_type == BASE_TYPE_STRING, BASE_TYPE_STRING); // avoid escaped and non-ascii in the string if (!match && is_tok_string && IsScalar(in_type) && !attr_is_trivial_ascii_string_) { return Error( std::string("type mismatch or invalid value, an initializer of " "non-string field must be trivial ASCII string: type: ") + kTypeNames[in_type] + ", name: " + (name ? *name : "") + ", value: " + attribute_); } // A boolean as true/false. Boolean as Integer check below. if (!match && IsBool(in_type)) { auto is_true = attribute_ == "true"; if (is_true || attribute_ == "false") { attribute_ = is_true ? "1" : "0"; // accepts both kTokenStringConstant and kTokenIdentifier TRY_ECHECK(kTokenStringOrIdent, IsBool(in_type), BASE_TYPE_BOOL); } } // Check for optional scalars. if (!match && IsScalar(in_type) && attribute_ == "null") { e.constant = "null"; NEXT(); match = true; } // Check if this could be a string/identifier enum value. // Enum can have only true integer base type. if (!match && IsInteger(in_type) && !IsBool(in_type) && IsIdentifierStart(*attribute_.c_str())) { ECHECK(ParseEnumFromString(e.type, &e.constant)); NEXT(); match = true; } // Parse a float/integer number from the string. // A "scalar-in-string" value needs extra checks. if (!match && is_tok_string && IsScalar(in_type)) { // Strip trailing whitespaces from attribute_. auto last_non_ws = attribute_.find_last_not_of(' '); if (std::string::npos != last_non_ws) attribute_.resize(last_non_ws + 1); if (IsFloat(e.type.base_type)) { // The functions strtod() and strtof() accept both 'nan' and // 'nan(number)' literals. While 'nan(number)' is rejected by the parser // as an unsupported function if is_tok_ident is true. if (attribute_.find_last_of(')') != std::string::npos) { return Error("invalid number: " + attribute_); } } } // Float numbers or nan, inf, pi, etc. TRY_ECHECK(kTokenStringOrIdent, IsFloat(in_type), BASE_TYPE_FLOAT); // An integer constant in string. TRY_ECHECK(kTokenStringOrIdent, IsInteger(in_type), BASE_TYPE_INT); // Unknown tokens will be interpreted as string type. // An attribute value may be a scalar or string constant. FORCE_ECHECK(kTokenStringConstant, in_type == BASE_TYPE_STRING, BASE_TYPE_STRING); } else { // Try a float number. TRY_ECHECK(kTokenFloatConstant, IsFloat(in_type), BASE_TYPE_FLOAT); // Integer token can init any scalar (integer of float). FORCE_ECHECK(kTokenIntegerConstant, IsScalar(in_type), BASE_TYPE_INT); } #undef FORCE_ECHECK #undef TRY_ECHECK #undef IF_ECHECK_ if (!match) { std::string msg; msg += "Cannot assign token starting with '" + TokenToStringId(token_) + "' to value of <" + std::string(kTypeNames[in_type]) + "> type."; return Error(msg); } const auto match_type = e.type.base_type; // may differ from in_type // The check_now flag must be true when parse a fbs-schema. // This flag forces to check default scalar values or metadata of field. // For JSON parser the flag should be false. // If it is set for JSON each value will be checked twice (see ParseTable). // Special case 'null' since atot can't handle that. if (check_now && IsScalar(match_type) && e.constant != "null") { // clang-format off switch (match_type) { #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \ case BASE_TYPE_ ## ENUM: {\ CTYPE val; \ ECHECK(atot(e.constant.c_str(), *this, &val)); \ SingleValueRepack(e, val); \ break; } FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD) #undef FLATBUFFERS_TD default: break; } // clang-format on } return NoError(); } StructDef *Parser::LookupCreateStruct(const std::string &name, bool create_if_new, bool definition) { std::string qualified_name = current_namespace_->GetFullyQualifiedName(name); // See if it exists pre-declared by an unqualified use. auto struct_def = LookupStruct(name); if (struct_def && struct_def->predecl) { if (definition) { // Make sure it has the current namespace, and is registered under its // qualified name. struct_def->defined_namespace = current_namespace_; structs_.Move(name, qualified_name); } return struct_def; } // See if it exists pre-declared by an qualified use. struct_def = LookupStruct(qualified_name); if (struct_def && struct_def->predecl) { if (definition) { // Make sure it has the current namespace. struct_def->defined_namespace = current_namespace_; } return struct_def; } if (!definition) { // Search thru parent namespaces. for (size_t components = current_namespace_->components.size(); components && !struct_def; components--) { struct_def = LookupStruct( current_namespace_->GetFullyQualifiedName(name, components - 1)); } } if (!struct_def && create_if_new) { struct_def = new StructDef(); if (definition) { structs_.Add(qualified_name, struct_def); struct_def->name = name; struct_def->defined_namespace = current_namespace_; } else { // Not a definition. // Rather than failing, we create a "pre declared" StructDef, due to // circular references, and check for errors at the end of parsing. // It is defined in the current namespace, as the best guess what the // final namespace will be. structs_.Add(name, struct_def); struct_def->name = name; struct_def->defined_namespace = current_namespace_; struct_def->original_location.reset( new std::string(file_being_parsed_ + ":" + NumToString(line_))); } } return struct_def; } const EnumVal *EnumDef::MinValue() const { return vals.vec.empty() ? nullptr : vals.vec.front(); } const EnumVal *EnumDef::MaxValue() const { return vals.vec.empty() ? nullptr : vals.vec.back(); } template static uint64_t EnumDistanceImpl(T e1, T e2) { if (e1 < e2) { std::swap(e1, e2); } // use std for scalars // Signed overflow may occur, use unsigned calculation. // The unsigned overflow is well-defined by C++ standard (modulo 2^n). return static_cast(e1) - static_cast(e2); } uint64_t EnumDef::Distance(const EnumVal *v1, const EnumVal *v2) const { return IsUInt64() ? EnumDistanceImpl(v1->GetAsUInt64(), v2->GetAsUInt64()) : EnumDistanceImpl(v1->GetAsInt64(), v2->GetAsInt64()); } std::string EnumDef::AllFlags() const { FLATBUFFERS_ASSERT(attributes.Lookup("bit_flags")); uint64_t u64 = 0; for (auto it = Vals().begin(); it != Vals().end(); ++it) { u64 |= (*it)->GetAsUInt64(); } return IsUInt64() ? NumToString(u64) : NumToString(static_cast(u64)); } EnumVal *EnumDef::ReverseLookup(int64_t enum_idx, bool skip_union_default) const { auto skip_first = static_cast(is_union && skip_union_default); for (auto it = Vals().begin() + skip_first; it != Vals().end(); ++it) { if ((*it)->GetAsInt64() == enum_idx) { return *it; } } return nullptr; } EnumVal *EnumDef::FindByValue(const std::string &constant) const { int64_t i64; auto done = false; if (IsUInt64()) { uint64_t u64; // avoid reinterpret_cast of pointers done = StringToNumber(constant.c_str(), &u64); i64 = static_cast(u64); } else { done = StringToNumber(constant.c_str(), &i64); } FLATBUFFERS_ASSERT(done); if (!done) return nullptr; return ReverseLookup(i64, false); } void EnumDef::SortByValue() { auto &v = vals.vec; if (IsUInt64()) std::sort(v.begin(), v.end(), [](const EnumVal *e1, const EnumVal *e2) { return e1->GetAsUInt64() < e2->GetAsUInt64(); }); else std::sort(v.begin(), v.end(), [](const EnumVal *e1, const EnumVal *e2) { return e1->GetAsInt64() < e2->GetAsInt64(); }); } void EnumDef::RemoveDuplicates() { // This method depends form SymbolTable implementation! // 1) vals.vec - owner (raw pointer) // 2) vals.dict - access map auto first = vals.vec.begin(); auto last = vals.vec.end(); if (first == last) return; auto result = first; while (++first != last) { if ((*result)->value != (*first)->value) { *(++result) = *first; } else { auto ev = *first; for (auto it = vals.dict.begin(); it != vals.dict.end(); ++it) { if (it->second == ev) it->second = *result; // reassign } delete ev; // delete enum value *first = nullptr; } } vals.vec.erase(++result, last); } template void EnumDef::ChangeEnumValue(EnumVal *ev, T new_value) { ev->value = static_cast(new_value); } namespace EnumHelper { template struct EnumValType { typedef int64_t type; }; template<> struct EnumValType { typedef uint64_t type; }; } // namespace EnumHelper struct EnumValBuilder { EnumVal *CreateEnumerator(const std::string &ev_name) { FLATBUFFERS_ASSERT(!temp); auto first = enum_def.vals.vec.empty(); user_value = first; temp = new EnumVal(ev_name, first ? 0 : enum_def.vals.vec.back()->value); return temp; } EnumVal *CreateEnumerator(const std::string &ev_name, int64_t val) { FLATBUFFERS_ASSERT(!temp); user_value = true; temp = new EnumVal(ev_name, val); return temp; } FLATBUFFERS_CHECKED_ERROR AcceptEnumerator(const std::string &name) { FLATBUFFERS_ASSERT(temp); ECHECK(ValidateValue(&temp->value, false == user_value)); FLATBUFFERS_ASSERT((temp->union_type.enum_def == nullptr) || (temp->union_type.enum_def == &enum_def)); auto not_unique = enum_def.vals.Add(name, temp); temp = nullptr; if (not_unique) return parser.Error("enum value already exists: " + name); return NoError(); } FLATBUFFERS_CHECKED_ERROR AcceptEnumerator() { return AcceptEnumerator(temp->name); } FLATBUFFERS_CHECKED_ERROR AssignEnumeratorValue(const std::string &value) { user_value = true; auto fit = false; if (enum_def.IsUInt64()) { uint64_t u64; fit = StringToNumber(value.c_str(), &u64); temp->value = static_cast(u64); // well-defined since C++20. } else { int64_t i64; fit = StringToNumber(value.c_str(), &i64); temp->value = i64; } if (!fit) return parser.Error("enum value does not fit, \"" + value + "\""); return NoError(); } template inline FLATBUFFERS_CHECKED_ERROR ValidateImpl(int64_t *ev, int m) { typedef typename EnumHelper::EnumValType::type T; // int64_t or uint64_t static_assert(sizeof(T) == sizeof(int64_t), "invalid EnumValType"); const auto v = static_cast(*ev); auto up = static_cast((flatbuffers::numeric_limits::max)()); auto dn = static_cast((flatbuffers::numeric_limits::lowest)()); if (v < dn || v > (up - m)) { return parser.Error("enum value does not fit, \"" + NumToString(v) + (m ? " + 1\"" : "\"") + " out of " + TypeToIntervalString()); } *ev = static_cast(v + m); // well-defined since C++20. return NoError(); } FLATBUFFERS_CHECKED_ERROR ValidateValue(int64_t *ev, bool next) { // clang-format off switch (enum_def.underlying_type.base_type) { #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \ case BASE_TYPE_##ENUM: { \ if (!IsInteger(BASE_TYPE_##ENUM)) break; \ return ValidateImpl(ev, next ? 1 : 0); \ } FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD) #undef FLATBUFFERS_TD default: break; } // clang-format on return parser.Error("fatal: invalid enum underlying type"); } EnumValBuilder(Parser &_parser, EnumDef &_enum_def) : parser(_parser), enum_def(_enum_def), temp(nullptr), user_value(false) {} ~EnumValBuilder() { delete temp; } Parser &parser; EnumDef &enum_def; EnumVal *temp; bool user_value; }; CheckedError Parser::ParseEnum(const bool is_union, EnumDef **dest) { std::vector enum_comment = doc_comment_; NEXT(); std::string enum_name = attribute_; EXPECT(kTokenIdentifier); EnumDef *enum_def; ECHECK(StartEnum(enum_name, is_union, &enum_def)); enum_def->doc_comment = enum_comment; if (!is_union && !opts.proto_mode) { // Give specialized error message, since this type spec used to // be optional in the first FlatBuffers release. if (!Is(':')) { return Error( "must specify the underlying integer type for this" " enum (e.g. \': short\', which was the default)."); } else { NEXT(); } // Specify the integer type underlying this enum. ECHECK(ParseType(enum_def->underlying_type)); if (!IsInteger(enum_def->underlying_type.base_type) || IsBool(enum_def->underlying_type.base_type)) return Error("underlying enum type must be integral"); // Make this type refer back to the enum it was derived from. enum_def->underlying_type.enum_def = enum_def; } ECHECK(ParseMetaData(&enum_def->attributes)); const auto underlying_type = enum_def->underlying_type.base_type; if (enum_def->attributes.Lookup("bit_flags") && !IsUnsigned(underlying_type)) { // todo: Convert to the Error in the future? Warning("underlying type of bit_flags enum must be unsigned"); } EnumValBuilder evb(*this, *enum_def); EXPECT('{'); // A lot of code generatos expect that an enum is not-empty. if ((is_union || Is('}')) && !opts.proto_mode) { evb.CreateEnumerator("NONE"); ECHECK(evb.AcceptEnumerator()); } std::set> union_types; while (!Is('}')) { if (opts.proto_mode && attribute_ == "option") { ECHECK(ParseProtoOption()); } else { auto &ev = *evb.CreateEnumerator(attribute_); auto full_name = ev.name; ev.doc_comment = doc_comment_; EXPECT(kTokenIdentifier); if (is_union) { ECHECK(ParseNamespacing(&full_name, &ev.name)); if (opts.union_value_namespacing) { // Since we can't namespace the actual enum identifiers, turn // namespace parts into part of the identifier. ev.name = full_name; std::replace(ev.name.begin(), ev.name.end(), '.', '_'); } if (Is(':')) { NEXT(); ECHECK(ParseType(ev.union_type)); if (ev.union_type.base_type != BASE_TYPE_STRUCT && ev.union_type.base_type != BASE_TYPE_STRING) return Error("union value type may only be table/struct/string"); } else { ev.union_type = Type(BASE_TYPE_STRUCT, LookupCreateStruct(full_name)); } if (!enum_def->uses_multiple_type_instances) { auto ins = union_types.insert(std::make_pair( ev.union_type.base_type, ev.union_type.struct_def)); enum_def->uses_multiple_type_instances = (false == ins.second); } } if (Is('=')) { NEXT(); ECHECK(evb.AssignEnumeratorValue(attribute_)); EXPECT(kTokenIntegerConstant); } ECHECK(evb.AcceptEnumerator()); if (opts.proto_mode && Is('[')) { NEXT(); // ignore attributes on enums. while (token_ != ']') NEXT(); NEXT(); } } if (!Is(opts.proto_mode ? ';' : ',')) break; NEXT(); } EXPECT('}'); // At this point, the enum can be empty if input is invalid proto-file. if (!enum_def->size()) return Error("incomplete enum declaration, values not found"); if (enum_def->attributes.Lookup("bit_flags")) { const auto base_width = static_cast(8 * SizeOf(underlying_type)); for (auto it = enum_def->Vals().begin(); it != enum_def->Vals().end(); ++it) { auto ev = *it; const auto u = ev->GetAsUInt64(); // Stop manipulations with the sign. if (!IsUnsigned(underlying_type) && u == (base_width - 1)) return Error("underlying type of bit_flags enum must be unsigned"); if (u >= base_width) return Error("bit flag out of range of underlying integral type"); enum_def->ChangeEnumValue(ev, 1ULL << u); } } enum_def->SortByValue(); // Must be sorted to use MinValue/MaxValue. // Ensure enum value uniqueness. auto prev_it = enum_def->Vals().begin(); for (auto it = prev_it + 1; it != enum_def->Vals().end(); ++it) { auto prev_ev = *prev_it; auto ev = *it; if (prev_ev->GetAsUInt64() == ev->GetAsUInt64()) return Error("all enum values must be unique: " + prev_ev->name + " and " + ev->name + " are both " + NumToString(ev->GetAsInt64())); } if (dest) *dest = enum_def; types_.Add(current_namespace_->GetFullyQualifiedName(enum_def->name), new Type(BASE_TYPE_UNION, nullptr, enum_def)); return NoError(); } CheckedError Parser::StartStruct(const std::string &name, StructDef **dest) { auto &struct_def = *LookupCreateStruct(name, true, true); if (!struct_def.predecl) return Error("datatype already exists: " + name); struct_def.predecl = false; struct_def.name = name; struct_def.file = file_being_parsed_; // Move this struct to the back of the vector just in case it was predeclared, // to preserve declaration order. *std::remove(structs_.vec.begin(), structs_.vec.end(), &struct_def) = &struct_def; *dest = &struct_def; return NoError(); } CheckedError Parser::CheckClash(std::vector &fields, StructDef *struct_def, const char *suffix, BaseType basetype) { auto len = strlen(suffix); for (auto it = fields.begin(); it != fields.end(); ++it) { auto &fname = (*it)->name; if (fname.length() > len && fname.compare(fname.length() - len, len, suffix) == 0 && (*it)->value.type.base_type != BASE_TYPE_UTYPE) { auto field = struct_def->fields.Lookup(fname.substr(0, fname.length() - len)); if (field && field->value.type.base_type == basetype) return Error("Field " + fname + " would clash with generated functions for field " + field->name); } } return NoError(); } bool Parser::SupportsOptionalScalars(const flatbuffers::IDLOptions &opts) { static FLATBUFFERS_CONSTEXPR unsigned long supported_langs = IDLOptions::kRust | IDLOptions::kSwift | IDLOptions::kLobster | IDLOptions::kKotlin | IDLOptions::kCpp | IDLOptions::kJava | IDLOptions::kCSharp | IDLOptions::kTs | IDLOptions::kJs | IDLOptions::kBinary; unsigned long langs = opts.lang_to_generate; return (langs > 0 && langs < IDLOptions::kMAX) && !(langs & ~supported_langs); } bool Parser::SupportsOptionalScalars() const { // Check in general if a language isn't specified. return opts.lang_to_generate == 0 || SupportsOptionalScalars(opts); } bool Parser::SupportsAdvancedUnionFeatures() const { return opts.lang_to_generate != 0 && (opts.lang_to_generate & ~(IDLOptions::kCpp | IDLOptions::kJs | IDLOptions::kTs | IDLOptions::kPhp | IDLOptions::kJava | IDLOptions::kCSharp | IDLOptions::kKotlin | IDLOptions::kBinary | IDLOptions::kSwift)) == 0; } bool Parser::SupportsAdvancedArrayFeatures() const { return (opts.lang_to_generate & ~(IDLOptions::kCpp | IDLOptions::kPython | IDLOptions::kJava | IDLOptions::kCSharp | IDLOptions::kJsonSchema | IDLOptions::kJson | IDLOptions::kBinary)) == 0; } Namespace *Parser::UniqueNamespace(Namespace *ns) { for (auto it = namespaces_.begin(); it != namespaces_.end(); ++it) { if (ns->components == (*it)->components) { delete ns; return *it; } } namespaces_.push_back(ns); return ns; } std::string Parser::UnqualifiedName(const std::string &full_qualified_name) { Namespace *ns = new Namespace(); std::size_t current, previous = 0; current = full_qualified_name.find('.'); while (current != std::string::npos) { ns->components.push_back( full_qualified_name.substr(previous, current - previous)); previous = current + 1; current = full_qualified_name.find('.', previous); } current_namespace_ = UniqueNamespace(ns); return full_qualified_name.substr(previous, current - previous); } static bool compareFieldDefs(const FieldDef *a, const FieldDef *b) { auto a_id = atoi(a->attributes.Lookup("id")->constant.c_str()); auto b_id = atoi(b->attributes.Lookup("id")->constant.c_str()); return a_id < b_id; } CheckedError Parser::ParseDecl() { std::vector dc = doc_comment_; bool fixed = IsIdent("struct"); if (!fixed && !IsIdent("table")) return Error("declaration expected"); NEXT(); std::string name = attribute_; EXPECT(kTokenIdentifier); StructDef *struct_def; ECHECK(StartStruct(name, &struct_def)); struct_def->doc_comment = dc; struct_def->fixed = fixed; ECHECK(ParseMetaData(&struct_def->attributes)); struct_def->sortbysize = struct_def->attributes.Lookup("original_order") == nullptr && !fixed; EXPECT('{'); while (token_ != '}') ECHECK(ParseField(*struct_def)); auto force_align = struct_def->attributes.Lookup("force_align"); if (fixed) { if (force_align) { auto align = static_cast(atoi(force_align->constant.c_str())); if (force_align->type.base_type != BASE_TYPE_INT || align < struct_def->minalign || align > FLATBUFFERS_MAX_ALIGNMENT || align & (align - 1)) return Error( "force_align must be a power of two integer ranging from the" "struct\'s natural alignment to " + NumToString(FLATBUFFERS_MAX_ALIGNMENT)); struct_def->minalign = align; } if (!struct_def->bytesize) return Error("size 0 structs not allowed"); } struct_def->PadLastField(struct_def->minalign); // Check if this is a table that has manual id assignments auto &fields = struct_def->fields.vec; if (!fixed && fields.size()) { size_t num_id_fields = 0; for (auto it = fields.begin(); it != fields.end(); ++it) { if ((*it)->attributes.Lookup("id")) num_id_fields++; } // If any fields have ids.. if (num_id_fields || opts.require_explicit_ids) { // Then all fields must have them. if (num_id_fields != fields.size()) { if (opts.require_explicit_ids) { return Error( "all fields must have an 'id' attribute when " "--require-explicit-ids is used"); } else { return Error( "either all fields or no fields must have an 'id' attribute"); } } // Simply sort by id, then the fields are the same as if no ids had // been specified. std::sort(fields.begin(), fields.end(), compareFieldDefs); // Verify we have a contiguous set, and reassign vtable offsets. FLATBUFFERS_ASSERT(fields.size() <= flatbuffers::numeric_limits::max()); for (voffset_t i = 0; i < static_cast(fields.size()); i++) { auto &field = *fields[i]; const auto &id_str = field.attributes.Lookup("id")->constant; // Metadata values have a dynamic type, they can be `float`, 'int', or // 'string`. // The FieldIndexToOffset(i) expects the voffset_t so `id` is limited by // this type. voffset_t id = 0; const auto done = !atot(id_str.c_str(), *this, &id).Check(); if (!done) return Error("field id\'s must be non-negative number, field: " + field.name + ", id: " + id_str); if (i != id) return Error("field id\'s must be consecutive from 0, id " + NumToString(i) + " missing or set twice, field: " + field.name + ", id: " + id_str); field.value.offset = FieldIndexToOffset(i); } } } ECHECK( CheckClash(fields, struct_def, UnionTypeFieldSuffix(), BASE_TYPE_UNION)); ECHECK(CheckClash(fields, struct_def, "Type", BASE_TYPE_UNION)); ECHECK(CheckClash(fields, struct_def, "_length", BASE_TYPE_VECTOR)); ECHECK(CheckClash(fields, struct_def, "Length", BASE_TYPE_VECTOR)); ECHECK(CheckClash(fields, struct_def, "_byte_vector", BASE_TYPE_STRING)); ECHECK(CheckClash(fields, struct_def, "ByteVector", BASE_TYPE_STRING)); EXPECT('}'); types_.Add(current_namespace_->GetFullyQualifiedName(struct_def->name), new Type(BASE_TYPE_STRUCT, struct_def, nullptr)); return NoError(); } CheckedError Parser::ParseService() { std::vector service_comment = doc_comment_; NEXT(); auto service_name = attribute_; EXPECT(kTokenIdentifier); auto &service_def = *new ServiceDef(); service_def.name = service_name; service_def.file = file_being_parsed_; service_def.doc_comment = service_comment; service_def.defined_namespace = current_namespace_; if (services_.Add(current_namespace_->GetFullyQualifiedName(service_name), &service_def)) return Error("service already exists: " + service_name); ECHECK(ParseMetaData(&service_def.attributes)); EXPECT('{'); do { std::vector doc_comment = doc_comment_; auto rpc_name = attribute_; EXPECT(kTokenIdentifier); EXPECT('('); Type reqtype, resptype; ECHECK(ParseTypeIdent(reqtype)); EXPECT(')'); EXPECT(':'); ECHECK(ParseTypeIdent(resptype)); if (reqtype.base_type != BASE_TYPE_STRUCT || reqtype.struct_def->fixed || resptype.base_type != BASE_TYPE_STRUCT || resptype.struct_def->fixed) return Error("rpc request and response types must be tables"); auto &rpc = *new RPCCall(); rpc.name = rpc_name; rpc.request = reqtype.struct_def; rpc.response = resptype.struct_def; rpc.doc_comment = doc_comment; if (service_def.calls.Add(rpc_name, &rpc)) return Error("rpc already exists: " + rpc_name); ECHECK(ParseMetaData(&rpc.attributes)); EXPECT(';'); } while (token_ != '}'); NEXT(); return NoError(); } bool Parser::SetRootType(const char *name) { root_struct_def_ = LookupStruct(name); if (!root_struct_def_) root_struct_def_ = LookupStruct(current_namespace_->GetFullyQualifiedName(name)); return root_struct_def_ != nullptr; } void Parser::MarkGenerated() { // This function marks all existing definitions as having already // been generated, which signals no code for included files should be // generated. for (auto it = enums_.vec.begin(); it != enums_.vec.end(); ++it) { (*it)->generated = true; } for (auto it = structs_.vec.begin(); it != structs_.vec.end(); ++it) { if (!(*it)->predecl) { (*it)->generated = true; } } for (auto it = services_.vec.begin(); it != services_.vec.end(); ++it) { (*it)->generated = true; } } CheckedError Parser::ParseNamespace() { NEXT(); auto ns = new Namespace(); namespaces_.push_back(ns); // Store it here to not leak upon error. if (token_ != ';') { for (;;) { ns->components.push_back(attribute_); EXPECT(kTokenIdentifier); if (Is('.')) NEXT() else break; } } namespaces_.pop_back(); current_namespace_ = UniqueNamespace(ns); EXPECT(';'); return NoError(); } // Best effort parsing of .proto declarations, with the aim to turn them // in the closest corresponding FlatBuffer equivalent. // We parse everything as identifiers instead of keywords, since we don't // want protobuf keywords to become invalid identifiers in FlatBuffers. CheckedError Parser::ParseProtoDecl() { bool isextend = IsIdent("extend"); if (IsIdent("package")) { // These are identical in syntax to FlatBuffer's namespace decl. ECHECK(ParseNamespace()); } else if (IsIdent("message") || isextend) { std::vector struct_comment = doc_comment_; NEXT(); StructDef *struct_def = nullptr; Namespace *parent_namespace = nullptr; if (isextend) { if (Is('.')) NEXT(); // qualified names may start with a . ? auto id = attribute_; EXPECT(kTokenIdentifier); ECHECK(ParseNamespacing(&id, nullptr)); struct_def = LookupCreateStruct(id, false); if (!struct_def) return Error("cannot extend unknown message type: " + id); } else { std::string name = attribute_; EXPECT(kTokenIdentifier); ECHECK(StartStruct(name, &struct_def)); // Since message definitions can be nested, we create a new namespace. auto ns = new Namespace(); // Copy of current namespace. *ns = *current_namespace_; // But with current message name. ns->components.push_back(name); ns->from_table++; parent_namespace = current_namespace_; current_namespace_ = UniqueNamespace(ns); } struct_def->doc_comment = struct_comment; ECHECK(ParseProtoFields(struct_def, isextend, false)); if (!isextend) { current_namespace_ = parent_namespace; } if (Is(';')) NEXT(); } else if (IsIdent("enum")) { // These are almost the same, just with different terminator: EnumDef *enum_def; ECHECK(ParseEnum(false, &enum_def)); if (Is(';')) NEXT(); // Temp: remove any duplicates, as .fbs files can't handle them. enum_def->RemoveDuplicates(); } else if (IsIdent("syntax")) { // Skip these. NEXT(); EXPECT('='); EXPECT(kTokenStringConstant); EXPECT(';'); } else if (IsIdent("option")) { // Skip these. ECHECK(ParseProtoOption()); EXPECT(';'); } else if (IsIdent("service")) { // Skip these. NEXT(); EXPECT(kTokenIdentifier); ECHECK(ParseProtoCurliesOrIdent()); } else { return Error("don\'t know how to parse .proto declaration starting with " + TokenToStringId(token_)); } return NoError(); } CheckedError Parser::StartEnum(const std::string &enum_name, bool is_union, EnumDef **dest) { auto &enum_def = *new EnumDef(); enum_def.name = enum_name; enum_def.file = file_being_parsed_; enum_def.doc_comment = doc_comment_; enum_def.is_union = is_union; enum_def.defined_namespace = current_namespace_; if (enums_.Add(current_namespace_->GetFullyQualifiedName(enum_name), &enum_def)) return Error("enum already exists: " + enum_name); enum_def.underlying_type.base_type = is_union ? BASE_TYPE_UTYPE : BASE_TYPE_INT; enum_def.underlying_type.enum_def = &enum_def; if (dest) *dest = &enum_def; return NoError(); } CheckedError Parser::ParseProtoFields(StructDef *struct_def, bool isextend, bool inside_oneof) { EXPECT('{'); while (token_ != '}') { if (IsIdent("message") || IsIdent("extend") || IsIdent("enum")) { // Nested declarations. ECHECK(ParseProtoDecl()); } else if (IsIdent("extensions")) { // Skip these. NEXT(); EXPECT(kTokenIntegerConstant); if (Is(kTokenIdentifier)) { NEXT(); // to NEXT(); // num } EXPECT(';'); } else if (IsIdent("option")) { // Skip these. ECHECK(ParseProtoOption()); EXPECT(';'); } else if (IsIdent("reserved")) { // Skip these. NEXT(); while (!Is(';')) { NEXT(); } // A variety of formats, just skip. NEXT(); } else { std::vector field_comment = doc_comment_; // Parse the qualifier. bool required = false; bool repeated = false; bool oneof = false; if (!inside_oneof) { if (IsIdent("optional")) { // This is the default. NEXT(); } else if (IsIdent("required")) { required = true; NEXT(); } else if (IsIdent("repeated")) { repeated = true; NEXT(); } else if (IsIdent("oneof")) { oneof = true; NEXT(); } else { // can't error, proto3 allows decls without any of the above. } } StructDef *anonymous_struct = nullptr; EnumDef *oneof_union = nullptr; Type type; if (IsIdent("group") || oneof) { if (!oneof) NEXT(); if (oneof && opts.proto_oneof_union) { auto name = MakeCamel(attribute_, true) + "Union"; ECHECK(StartEnum(name, true, &oneof_union)); type = Type(BASE_TYPE_UNION, nullptr, oneof_union); } else { auto name = "Anonymous" + NumToString(anonymous_counter_++); ECHECK(StartStruct(name, &anonymous_struct)); type = Type(BASE_TYPE_STRUCT, anonymous_struct); } } else { ECHECK(ParseTypeFromProtoType(&type)); } // Repeated elements get mapped to a vector. if (repeated) { type.element = type.base_type; type.base_type = BASE_TYPE_VECTOR; if (type.element == BASE_TYPE_VECTOR) { // We have a vector or vectors, which FlatBuffers doesn't support. // For now make it a vector of string (since the source is likely // "repeated bytes"). // TODO(wvo): A better solution would be to wrap this in a table. type.element = BASE_TYPE_STRING; } } std::string name = attribute_; EXPECT(kTokenIdentifier); if (!oneof) { // Parse the field id. Since we're just translating schemas, not // any kind of binary compatibility, we can safely ignore these, and // assign our own. EXPECT('='); EXPECT(kTokenIntegerConstant); } FieldDef *field = nullptr; if (isextend) { // We allow a field to be re-defined when extending. // TODO: are there situations where that is problematic? field = struct_def->fields.Lookup(name); } if (!field) ECHECK(AddField(*struct_def, name, type, &field)); field->doc_comment = field_comment; if (!IsScalar(type.base_type)) field->required = required; // See if there's a default specified. if (Is('[')) { NEXT(); for (;;) { auto key = attribute_; ECHECK(ParseProtoKey()); EXPECT('='); auto val = attribute_; ECHECK(ParseProtoCurliesOrIdent()); if (key == "default") { // Temp: skip non-numeric and non-boolean defaults (enums). auto numeric = strpbrk(val.c_str(), "0123456789-+."); if (IsScalar(type.base_type) && numeric == val.c_str()) { field->value.constant = val; } else if (val == "true") { field->value.constant = val; } // "false" is default, no need to handle explicitly. } else if (key == "deprecated") { field->deprecated = val == "true"; } if (!Is(',')) break; NEXT(); } EXPECT(']'); } if (anonymous_struct) { ECHECK(ParseProtoFields(anonymous_struct, false, oneof)); if (Is(';')) NEXT(); } else if (oneof_union) { // Parse into a temporary StructDef, then transfer fields into an // EnumDef describing the oneof as a union. StructDef oneof_struct; ECHECK(ParseProtoFields(&oneof_struct, false, oneof)); if (Is(';')) NEXT(); for (auto field_it = oneof_struct.fields.vec.begin(); field_it != oneof_struct.fields.vec.end(); ++field_it) { const auto &oneof_field = **field_it; const auto &oneof_type = oneof_field.value.type; if (oneof_type.base_type != BASE_TYPE_STRUCT || !oneof_type.struct_def || oneof_type.struct_def->fixed) return Error("oneof '" + name + "' cannot be mapped to a union because member '" + oneof_field.name + "' is not a table type."); EnumValBuilder evb(*this, *oneof_union); auto ev = evb.CreateEnumerator(oneof_type.struct_def->name); ev->union_type = oneof_type; ev->doc_comment = oneof_field.doc_comment; ECHECK(evb.AcceptEnumerator(oneof_field.name)); } } else { EXPECT(';'); } } } NEXT(); return NoError(); } CheckedError Parser::ParseProtoKey() { if (token_ == '(') { NEXT(); // Skip "(a.b)" style custom attributes. while (token_ == '.' || token_ == kTokenIdentifier) NEXT(); EXPECT(')'); while (Is('.')) { NEXT(); EXPECT(kTokenIdentifier); } } else { EXPECT(kTokenIdentifier); } return NoError(); } CheckedError Parser::ParseProtoCurliesOrIdent() { if (Is('{')) { NEXT(); for (int nesting = 1; nesting;) { if (token_ == '{') nesting++; else if (token_ == '}') nesting--; NEXT(); } } else { NEXT(); // Any single token. } return NoError(); } CheckedError Parser::ParseProtoOption() { NEXT(); ECHECK(ParseProtoKey()); EXPECT('='); ECHECK(ParseProtoCurliesOrIdent()); return NoError(); } // Parse a protobuf type, and map it to the corresponding FlatBuffer one. CheckedError Parser::ParseTypeFromProtoType(Type *type) { struct type_lookup { const char *proto_type; BaseType fb_type, element; }; static type_lookup lookup[] = { { "float", BASE_TYPE_FLOAT, BASE_TYPE_NONE }, { "double", BASE_TYPE_DOUBLE, BASE_TYPE_NONE }, { "int32", BASE_TYPE_INT, BASE_TYPE_NONE }, { "int64", BASE_TYPE_LONG, BASE_TYPE_NONE }, { "uint32", BASE_TYPE_UINT, BASE_TYPE_NONE }, { "uint64", BASE_TYPE_ULONG, BASE_TYPE_NONE }, { "sint32", BASE_TYPE_INT, BASE_TYPE_NONE }, { "sint64", BASE_TYPE_LONG, BASE_TYPE_NONE }, { "fixed32", BASE_TYPE_UINT, BASE_TYPE_NONE }, { "fixed64", BASE_TYPE_ULONG, BASE_TYPE_NONE }, { "sfixed32", BASE_TYPE_INT, BASE_TYPE_NONE }, { "sfixed64", BASE_TYPE_LONG, BASE_TYPE_NONE }, { "bool", BASE_TYPE_BOOL, BASE_TYPE_NONE }, { "string", BASE_TYPE_STRING, BASE_TYPE_NONE }, { "bytes", BASE_TYPE_VECTOR, BASE_TYPE_UCHAR }, { nullptr, BASE_TYPE_NONE, BASE_TYPE_NONE } }; for (auto tl = lookup; tl->proto_type; tl++) { if (attribute_ == tl->proto_type) { type->base_type = tl->fb_type; type->element = tl->element; NEXT(); return NoError(); } } if (Is('.')) NEXT(); // qualified names may start with a . ? ECHECK(ParseTypeIdent(*type)); return NoError(); } CheckedError Parser::SkipAnyJsonValue() { ParseDepthGuard depth_guard(this); ECHECK(depth_guard.Check()); switch (token_) { case '{': { size_t fieldn_outer = 0; return ParseTableDelimiters(fieldn_outer, nullptr, [&](const std::string &, size_t &fieldn, const StructDef *) -> CheckedError { ECHECK(SkipAnyJsonValue()); fieldn++; return NoError(); }); } case '[': { uoffset_t count = 0; return ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError { return SkipAnyJsonValue(); }); } case kTokenStringConstant: case kTokenIntegerConstant: case kTokenFloatConstant: NEXT(); break; default: if (IsIdent("true") || IsIdent("false") || IsIdent("null")) { NEXT(); } else return TokenError(); } return NoError(); } CheckedError Parser::ParseFlexBufferValue(flexbuffers::Builder *builder) { ParseDepthGuard depth_guard(this); ECHECK(depth_guard.Check()); switch (token_) { case '{': { auto start = builder->StartMap(); size_t fieldn_outer = 0; auto err = ParseTableDelimiters(fieldn_outer, nullptr, [&](const std::string &name, size_t &fieldn, const StructDef *) -> CheckedError { builder->Key(name); ECHECK(ParseFlexBufferValue(builder)); fieldn++; return NoError(); }); ECHECK(err); builder->EndMap(start); if (builder->HasDuplicateKeys()) return Error("FlexBuffers map has duplicate keys"); break; } case '[': { auto start = builder->StartVector(); uoffset_t count = 0; ECHECK(ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError { return ParseFlexBufferValue(builder); })); builder->EndVector(start, false, false); break; } case kTokenStringConstant: builder->String(attribute_); EXPECT(kTokenStringConstant); break; case kTokenIntegerConstant: builder->Int(StringToInt(attribute_.c_str())); EXPECT(kTokenIntegerConstant); break; case kTokenFloatConstant: { double d; StringToNumber(attribute_.c_str(), &d); builder->Double(d); EXPECT(kTokenFloatConstant); break; } default: if (IsIdent("true")) { builder->Bool(true); NEXT(); } else if (IsIdent("false")) { builder->Bool(false); NEXT(); } else if (IsIdent("null")) { builder->Null(); NEXT(); } else return TokenError(); } return NoError(); } bool Parser::ParseFlexBuffer(const char *source, const char *source_filename, flexbuffers::Builder *builder) { const auto initial_depth = parse_depth_counter_; (void)initial_depth; auto ok = !StartParseFile(source, source_filename).Check() && !ParseFlexBufferValue(builder).Check(); if (ok) builder->Finish(); FLATBUFFERS_ASSERT(initial_depth == parse_depth_counter_); return ok; } bool Parser::Parse(const char *source, const char **include_paths, const char *source_filename) { const auto initial_depth = parse_depth_counter_; (void)initial_depth; bool r; if (opts.use_flexbuffers) { r = ParseFlexBuffer(source, source_filename, &flex_builder_); } else { r = !ParseRoot(source, include_paths, source_filename).Check(); } FLATBUFFERS_ASSERT(initial_depth == parse_depth_counter_); return r; } bool Parser::ParseJson(const char *json, const char *json_filename) { const auto initial_depth = parse_depth_counter_; (void)initial_depth; builder_.Clear(); const auto done = !StartParseFile(json, json_filename).Check() && !DoParseJson().Check(); FLATBUFFERS_ASSERT(initial_depth == parse_depth_counter_); return done; } CheckedError Parser::StartParseFile(const char *source, const char *source_filename) { file_being_parsed_ = source_filename ? source_filename : ""; source_ = source; ResetState(source_); error_.clear(); ECHECK(SkipByteOrderMark()); NEXT(); if (Is(kTokenEof)) return Error("input file is empty"); return NoError(); } CheckedError Parser::ParseRoot(const char *source, const char **include_paths, const char *source_filename) { ECHECK(DoParse(source, include_paths, source_filename, nullptr)); // Check that all types were defined. for (auto it = structs_.vec.begin(); it != structs_.vec.end();) { auto &struct_def = **it; if (struct_def.predecl) { if (opts.proto_mode) { // Protos allow enums to be used before declaration, so check if that // is the case here. EnumDef *enum_def = nullptr; for (size_t components = struct_def.defined_namespace->components.size() + 1; components && !enum_def; components--) { auto qualified_name = struct_def.defined_namespace->GetFullyQualifiedName( struct_def.name, components - 1); enum_def = LookupEnum(qualified_name); } if (enum_def) { // This is pretty slow, but a simple solution for now. auto initial_count = struct_def.refcount; for (auto struct_it = structs_.vec.begin(); struct_it != structs_.vec.end(); ++struct_it) { auto &sd = **struct_it; for (auto field_it = sd.fields.vec.begin(); field_it != sd.fields.vec.end(); ++field_it) { auto &field = **field_it; if (field.value.type.struct_def == &struct_def) { field.value.type.struct_def = nullptr; field.value.type.enum_def = enum_def; auto &bt = IsVector(field.value.type) ? field.value.type.element : field.value.type.base_type; FLATBUFFERS_ASSERT(bt == BASE_TYPE_STRUCT); bt = enum_def->underlying_type.base_type; struct_def.refcount--; enum_def->refcount++; } } } if (struct_def.refcount) return Error("internal: " + NumToString(struct_def.refcount) + "/" + NumToString(initial_count) + " use(s) of pre-declaration enum not accounted for: " + enum_def->name); structs_.dict.erase(structs_.dict.find(struct_def.name)); it = structs_.vec.erase(it); delete &struct_def; continue; // Skip error. } } auto err = "type referenced but not defined (check namespace): " + struct_def.name; if (struct_def.original_location) err += ", originally at: " + *struct_def.original_location; return Error(err); } ++it; } // This check has to happen here and not earlier, because only now do we // know for sure what the type of these are. for (auto it = enums_.vec.begin(); it != enums_.vec.end(); ++it) { auto &enum_def = **it; if (enum_def.is_union) { for (auto val_it = enum_def.Vals().begin(); val_it != enum_def.Vals().end(); ++val_it) { auto &val = **val_it; if (!SupportsAdvancedUnionFeatures() && (IsStruct(val.union_type) || IsString(val.union_type))) return Error( "only tables can be union elements in the generated language: " + val.name); } } } return NoError(); } CheckedError Parser::DoParse(const char *source, const char **include_paths, const char *source_filename, const char *include_filename) { if (source_filename) { if (included_files_.find(source_filename) == included_files_.end()) { included_files_[source_filename] = include_filename ? include_filename : ""; files_included_per_file_[source_filename] = std::set(); } else { return NoError(); } } if (!include_paths) { static const char *current_directory[] = { "", nullptr }; include_paths = current_directory; } field_stack_.clear(); builder_.Clear(); // Start with a blank namespace just in case this file doesn't have one. current_namespace_ = empty_namespace_; ECHECK(StartParseFile(source, source_filename)); // Includes must come before type declarations: for (;;) { // Parse pre-include proto statements if any: if (opts.proto_mode && (attribute_ == "option" || attribute_ == "syntax" || attribute_ == "package")) { ECHECK(ParseProtoDecl()); } else if (IsIdent("native_include")) { NEXT(); vector_emplace_back(&native_included_files_, attribute_); EXPECT(kTokenStringConstant); EXPECT(';'); } else if (IsIdent("include") || (opts.proto_mode && IsIdent("import"))) { NEXT(); if (opts.proto_mode && attribute_ == "public") NEXT(); auto name = flatbuffers::PosixPath(attribute_.c_str()); EXPECT(kTokenStringConstant); // Look for the file in include_paths. std::string filepath; for (auto paths = include_paths; paths && *paths; paths++) { filepath = flatbuffers::ConCatPathFileName(*paths, name); if (FileExists(filepath.c_str())) break; } if (filepath.empty()) return Error("unable to locate include file: " + name); if (source_filename) files_included_per_file_[source_filename].insert(filepath); if (included_files_.find(filepath) == included_files_.end()) { // We found an include file that we have not parsed yet. // Load it and parse it. std::string contents; if (!LoadFile(filepath.c_str(), true, &contents)) return Error("unable to load include file: " + name); ECHECK(DoParse(contents.c_str(), include_paths, filepath.c_str(), name.c_str())); // We generally do not want to output code for any included files: if (!opts.generate_all) MarkGenerated(); // Reset these just in case the included file had them, and the // parent doesn't. root_struct_def_ = nullptr; file_identifier_.clear(); file_extension_.clear(); // This is the easiest way to continue this file after an include: // instead of saving and restoring all the state, we simply start the // file anew. This will cause it to encounter the same include // statement again, but this time it will skip it, because it was // entered into included_files_. // This is recursive, but only go as deep as the number of include // statements. if (source_filename) { included_files_.erase(source_filename); } return DoParse(source, include_paths, source_filename, include_filename); } EXPECT(';'); } else { break; } } // Now parse all other kinds of declarations: while (token_ != kTokenEof) { if (opts.proto_mode) { ECHECK(ParseProtoDecl()); } else if (IsIdent("namespace")) { ECHECK(ParseNamespace()); } else if (token_ == '{') { ECHECK(DoParseJson()); } else if (IsIdent("enum")) { ECHECK(ParseEnum(false, nullptr)); } else if (IsIdent("union")) { ECHECK(ParseEnum(true, nullptr)); } else if (IsIdent("root_type")) { NEXT(); auto root_type = attribute_; EXPECT(kTokenIdentifier); ECHECK(ParseNamespacing(&root_type, nullptr)); if (opts.root_type.empty()) { if (!SetRootType(root_type.c_str())) return Error("unknown root type: " + root_type); if (root_struct_def_->fixed) return Error("root type must be a table"); } EXPECT(';'); } else if (IsIdent("file_identifier")) { NEXT(); file_identifier_ = attribute_; EXPECT(kTokenStringConstant); if (file_identifier_.length() != FlatBufferBuilder::kFileIdentifierLength) return Error("file_identifier must be exactly " + NumToString(FlatBufferBuilder::kFileIdentifierLength) + " characters"); EXPECT(';'); } else if (IsIdent("file_extension")) { NEXT(); file_extension_ = attribute_; EXPECT(kTokenStringConstant); EXPECT(';'); } else if (IsIdent("include")) { return Error("includes must come before declarations"); } else if (IsIdent("attribute")) { NEXT(); auto name = attribute_; if (Is(kTokenIdentifier)) { NEXT(); } else { EXPECT(kTokenStringConstant); } EXPECT(';'); known_attributes_[name] = false; } else if (IsIdent("rpc_service")) { ECHECK(ParseService()); } else { ECHECK(ParseDecl()); } } return NoError(); } CheckedError Parser::DoParseJson() { if (token_ != '{') { EXPECT('{'); } else { if (!root_struct_def_) return Error("no root type set to parse json with"); if (builder_.GetSize()) { return Error("cannot have more than one json object in a file"); } uoffset_t toff; ECHECK(ParseTable(*root_struct_def_, nullptr, &toff)); if (opts.size_prefixed) { builder_.FinishSizePrefixed( Offset
(toff), file_identifier_.length() ? file_identifier_.c_str() : nullptr); } else { builder_.Finish(Offset
(toff), file_identifier_.length() ? file_identifier_.c_str() : nullptr); } } // Check that JSON file doesn't contain more objects or IDL directives. // Comments after JSON are allowed. EXPECT(kTokenEof); return NoError(); } std::set Parser::GetIncludedFilesRecursive( const std::string &file_name) const { std::set included_files; std::list to_process; if (file_name.empty()) return included_files; to_process.push_back(file_name); while (!to_process.empty()) { std::string current = to_process.front(); to_process.pop_front(); included_files.insert(current); // Workaround the lack of const accessor in C++98 maps. auto &new_files = (*const_cast> *>( &files_included_per_file_))[current]; for (auto it = new_files.begin(); it != new_files.end(); ++it) { if (included_files.find(*it) == included_files.end()) to_process.push_back(*it); } } return included_files; } // Schema serialization functionality: template bool compareName(const T *a, const T *b) { return a->defined_namespace->GetFullyQualifiedName(a->name) < b->defined_namespace->GetFullyQualifiedName(b->name); } template void AssignIndices(const std::vector &defvec) { // Pre-sort these vectors, such that we can set the correct indices for them. auto vec = defvec; std::sort(vec.begin(), vec.end(), compareName); for (int i = 0; i < static_cast(vec.size()); i++) vec[i]->index = i; } void Parser::Serialize() { builder_.Clear(); AssignIndices(structs_.vec); AssignIndices(enums_.vec); std::vector> object_offsets; for (auto it = structs_.vec.begin(); it != structs_.vec.end(); ++it) { auto offset = (*it)->Serialize(&builder_, *this); object_offsets.push_back(offset); (*it)->serialized_location = offset.o; } std::vector> enum_offsets; for (auto it = enums_.vec.begin(); it != enums_.vec.end(); ++it) { auto offset = (*it)->Serialize(&builder_, *this); enum_offsets.push_back(offset); (*it)->serialized_location = offset.o; } std::vector> service_offsets; for (auto it = services_.vec.begin(); it != services_.vec.end(); ++it) { auto offset = (*it)->Serialize(&builder_, *this); service_offsets.push_back(offset); (*it)->serialized_location = offset.o; } auto objs__ = builder_.CreateVectorOfSortedTables(&object_offsets); auto enum__ = builder_.CreateVectorOfSortedTables(&enum_offsets); auto fiid__ = builder_.CreateString(file_identifier_); auto fext__ = builder_.CreateString(file_extension_); auto serv__ = builder_.CreateVectorOfSortedTables(&service_offsets); auto schema_offset = reflection::CreateSchema( builder_, objs__, enum__, fiid__, fext__, (root_struct_def_ ? root_struct_def_->serialized_location : 0), serv__); if (opts.size_prefixed) { builder_.FinishSizePrefixed(schema_offset, reflection::SchemaIdentifier()); } else { builder_.Finish(schema_offset, reflection::SchemaIdentifier()); } } static Namespace *GetNamespace( const std::string &qualified_name, std::vector &namespaces, std::map &namespaces_index) { size_t dot = qualified_name.find_last_of('.'); std::string namespace_name = (dot != std::string::npos) ? std::string(qualified_name.c_str(), dot) : ""; Namespace *&ns = namespaces_index[namespace_name]; if (!ns) { ns = new Namespace(); namespaces.push_back(ns); size_t pos = 0; for (;;) { dot = qualified_name.find('.', pos); if (dot == std::string::npos) { break; } ns->components.push_back(qualified_name.substr(pos, dot - pos)); pos = dot + 1; } } return ns; } Offset StructDef::Serialize(FlatBufferBuilder *builder, const Parser &parser) const { std::vector> field_offsets; for (auto it = fields.vec.begin(); it != fields.vec.end(); ++it) { field_offsets.push_back((*it)->Serialize( builder, static_cast(it - fields.vec.begin()), parser)); } auto qualified_name = defined_namespace->GetFullyQualifiedName(name); auto name__ = builder->CreateString(qualified_name); auto flds__ = builder->CreateVectorOfSortedTables(&field_offsets); auto attr__ = SerializeAttributes(builder, parser); auto docs__ = parser.opts.binary_schema_comments ? builder->CreateVectorOfStrings(doc_comment) : 0; return reflection::CreateObject(*builder, name__, flds__, fixed, static_cast(minalign), static_cast(bytesize), attr__, docs__); } bool StructDef::Deserialize(Parser &parser, const reflection::Object *object) { if (!DeserializeAttributes(parser, object->attributes())) return false; DeserializeDoc(doc_comment, object->documentation()); name = parser.UnqualifiedName(object->name()->str()); predecl = false; sortbysize = attributes.Lookup("original_order") == nullptr && !fixed; const auto &of = *(object->fields()); auto indexes = std::vector(of.size()); for (uoffset_t i = 0; i < of.size(); i++) indexes[of.Get(i)->id()] = i; size_t tmp_struct_size = 0; for (size_t i = 0; i < indexes.size(); i++) { auto field = of.Get(indexes[i]); auto field_def = new FieldDef(); if (!field_def->Deserialize(parser, field) || fields.Add(field_def->name, field_def)) { delete field_def; return false; } if (fixed) { // Recompute padding since that's currently not serialized. auto size = InlineSize(field_def->value.type); auto next_field = i + 1 < indexes.size() ? of.Get(indexes[i + 1]) : nullptr; tmp_struct_size += size; field_def->padding = next_field ? (next_field->offset() - field_def->value.offset) - size : PaddingBytes(tmp_struct_size, minalign); tmp_struct_size += field_def->padding; } } FLATBUFFERS_ASSERT(static_cast(tmp_struct_size) == object->bytesize()); return true; } Offset FieldDef::Serialize(FlatBufferBuilder *builder, uint16_t id, const Parser &parser) const { auto name__ = builder->CreateString(name); auto type__ = value.type.Serialize(builder); auto attr__ = SerializeAttributes(builder, parser); auto docs__ = parser.opts.binary_schema_comments ? builder->CreateVectorOfStrings(doc_comment) : 0; double d; StringToNumber(value.constant.c_str(), &d); return reflection::CreateField( *builder, name__, type__, id, value.offset, // Is uint64>max(int64) tested? IsInteger(value.type.base_type) ? StringToInt(value.constant.c_str()) : 0, // result may be platform-dependent if underlying is float (not double) IsFloat(value.type.base_type) ? d : 0.0, deprecated, required, key, attr__, docs__, optional); // TODO: value.constant is almost always "0", we could save quite a bit of // space by sharing it. Same for common values of value.type. } bool FieldDef::Deserialize(Parser &parser, const reflection::Field *field) { name = field->name()->str(); defined_namespace = parser.current_namespace_; if (!value.type.Deserialize(parser, field->type())) return false; value.offset = field->offset(); if (IsInteger(value.type.base_type)) { value.constant = NumToString(field->default_integer()); } else if (IsFloat(value.type.base_type)) { value.constant = FloatToString(field->default_real(), 16); } deprecated = field->deprecated(); required = field->required(); key = field->key(); if (!DeserializeAttributes(parser, field->attributes())) return false; // TODO: this should probably be handled by a separate attribute if (attributes.Lookup("flexbuffer")) { flexbuffer = true; parser.uses_flexbuffers_ = true; if (value.type.base_type != BASE_TYPE_VECTOR || value.type.element != BASE_TYPE_UCHAR) return false; } if (auto nested = attributes.Lookup("nested_flatbuffer")) { auto nested_qualified_name = parser.current_namespace_->GetFullyQualifiedName(nested->constant); nested_flatbuffer = parser.LookupStruct(nested_qualified_name); if (!nested_flatbuffer) return false; } shared = attributes.Lookup("shared") != nullptr; DeserializeDoc(doc_comment, field->documentation()); return true; } Offset RPCCall::Serialize(FlatBufferBuilder *builder, const Parser &parser) const { auto name__ = builder->CreateString(name); auto attr__ = SerializeAttributes(builder, parser); auto docs__ = parser.opts.binary_schema_comments ? builder->CreateVectorOfStrings(doc_comment) : 0; return reflection::CreateRPCCall( *builder, name__, request->serialized_location, response->serialized_location, attr__, docs__); } bool RPCCall::Deserialize(Parser &parser, const reflection::RPCCall *call) { name = call->name()->str(); if (!DeserializeAttributes(parser, call->attributes())) return false; DeserializeDoc(doc_comment, call->documentation()); request = parser.structs_.Lookup(call->request()->name()->str()); response = parser.structs_.Lookup(call->response()->name()->str()); if (!request || !response) { return false; } return true; } Offset ServiceDef::Serialize(FlatBufferBuilder *builder, const Parser &parser) const { std::vector> servicecall_offsets; for (auto it = calls.vec.begin(); it != calls.vec.end(); ++it) { servicecall_offsets.push_back((*it)->Serialize(builder, parser)); } auto qualified_name = defined_namespace->GetFullyQualifiedName(name); auto name__ = builder->CreateString(qualified_name); auto call__ = builder->CreateVector(servicecall_offsets); auto attr__ = SerializeAttributes(builder, parser); auto docs__ = parser.opts.binary_schema_comments ? builder->CreateVectorOfStrings(doc_comment) : 0; return reflection::CreateService(*builder, name__, call__, attr__, docs__); } bool ServiceDef::Deserialize(Parser &parser, const reflection::Service *service) { name = parser.UnqualifiedName(service->name()->str()); if (service->calls()) { for (uoffset_t i = 0; i < service->calls()->size(); ++i) { auto call = new RPCCall(); if (!call->Deserialize(parser, service->calls()->Get(i)) || calls.Add(call->name, call)) { delete call; return false; } } } if (!DeserializeAttributes(parser, service->attributes())) return false; DeserializeDoc(doc_comment, service->documentation()); return true; } Offset EnumDef::Serialize(FlatBufferBuilder *builder, const Parser &parser) const { std::vector> enumval_offsets; for (auto it = vals.vec.begin(); it != vals.vec.end(); ++it) { enumval_offsets.push_back((*it)->Serialize(builder, parser)); } auto qualified_name = defined_namespace->GetFullyQualifiedName(name); auto name__ = builder->CreateString(qualified_name); auto vals__ = builder->CreateVector(enumval_offsets); auto type__ = underlying_type.Serialize(builder); auto attr__ = SerializeAttributes(builder, parser); auto docs__ = parser.opts.binary_schema_comments ? builder->CreateVectorOfStrings(doc_comment) : 0; return reflection::CreateEnum(*builder, name__, vals__, is_union, type__, attr__, docs__); } bool EnumDef::Deserialize(Parser &parser, const reflection::Enum *_enum) { name = parser.UnqualifiedName(_enum->name()->str()); for (uoffset_t i = 0; i < _enum->values()->size(); ++i) { auto val = new EnumVal(); if (!val->Deserialize(parser, _enum->values()->Get(i)) || vals.Add(val->name, val)) { delete val; return false; } } is_union = _enum->is_union(); if (!underlying_type.Deserialize(parser, _enum->underlying_type())) { return false; } if (!DeserializeAttributes(parser, _enum->attributes())) return false; DeserializeDoc(doc_comment, _enum->documentation()); return true; } Offset EnumVal::Serialize(FlatBufferBuilder *builder, const Parser &parser) const { auto name__ = builder->CreateString(name); auto type__ = union_type.Serialize(builder); auto docs__ = parser.opts.binary_schema_comments ? builder->CreateVectorOfStrings(doc_comment) : 0; return reflection::CreateEnumVal( *builder, name__, value, union_type.struct_def ? union_type.struct_def->serialized_location : 0, type__, docs__); } bool EnumVal::Deserialize(const Parser &parser, const reflection::EnumVal *val) { name = val->name()->str(); value = val->value(); if (!union_type.Deserialize(parser, val->union_type())) return false; DeserializeDoc(doc_comment, val->documentation()); return true; } Offset Type::Serialize(FlatBufferBuilder *builder) const { return reflection::CreateType( *builder, static_cast(base_type), static_cast(element), struct_def ? struct_def->index : (enum_def ? enum_def->index : -1), fixed_length); } bool Type::Deserialize(const Parser &parser, const reflection::Type *type) { if (type == nullptr) return true; base_type = static_cast(type->base_type()); element = static_cast(type->element()); fixed_length = type->fixed_length(); if (type->index() >= 0) { bool is_series = type->base_type() == reflection::Vector || type->base_type() == reflection::Array; if (type->base_type() == reflection::Obj || (is_series && type->element() == reflection::Obj)) { if (static_cast(type->index()) < parser.structs_.vec.size()) { struct_def = parser.structs_.vec[type->index()]; struct_def->refcount++; } else { return false; } } else { if (static_cast(type->index()) < parser.enums_.vec.size()) { enum_def = parser.enums_.vec[type->index()]; } else { return false; } } } return true; } flatbuffers::Offset< flatbuffers::Vector>> Definition::SerializeAttributes(FlatBufferBuilder *builder, const Parser &parser) const { std::vector> attrs; for (auto kv = attributes.dict.begin(); kv != attributes.dict.end(); ++kv) { auto it = parser.known_attributes_.find(kv->first); FLATBUFFERS_ASSERT(it != parser.known_attributes_.end()); if (parser.opts.binary_schema_builtins || !it->second) { auto key = builder->CreateString(kv->first); auto val = builder->CreateString(kv->second->constant); attrs.push_back(reflection::CreateKeyValue(*builder, key, val)); } } if (attrs.size()) { return builder->CreateVectorOfSortedTables(&attrs); } else { return 0; } } bool Definition::DeserializeAttributes( Parser &parser, const Vector> *attrs) { if (attrs == nullptr) return true; for (uoffset_t i = 0; i < attrs->size(); ++i) { auto kv = attrs->Get(i); auto value = new Value(); if (kv->value()) { value->constant = kv->value()->str(); } if (attributes.Add(kv->key()->str(), value)) { delete value; return false; } parser.known_attributes_[kv->key()->str()]; } return true; } /************************************************************************/ /* DESERIALIZATION */ /************************************************************************/ bool Parser::Deserialize(const uint8_t *buf, const size_t size) { flatbuffers::Verifier verifier(reinterpret_cast(buf), size); bool size_prefixed = false; if (!reflection::SchemaBufferHasIdentifier(buf)) { if (!flatbuffers::BufferHasIdentifier(buf, reflection::SchemaIdentifier(), true)) return false; else size_prefixed = true; } auto verify_fn = size_prefixed ? &reflection::VerifySizePrefixedSchemaBuffer : &reflection::VerifySchemaBuffer; if (!verify_fn(verifier)) { return false; } auto schema = size_prefixed ? reflection::GetSizePrefixedSchema(buf) : reflection::GetSchema(buf); return Deserialize(schema); } bool Parser::Deserialize(const reflection::Schema *schema) { file_identifier_ = schema->file_ident() ? schema->file_ident()->str() : ""; file_extension_ = schema->file_ext() ? schema->file_ext()->str() : ""; std::map namespaces_index; // Create defs without deserializing so references from fields to structs and // enums can be resolved. for (auto it = schema->objects()->begin(); it != schema->objects()->end(); ++it) { auto struct_def = new StructDef(); struct_def->bytesize = it->bytesize(); struct_def->fixed = it->is_struct(); struct_def->minalign = it->minalign(); if (structs_.Add(it->name()->str(), struct_def)) { delete struct_def; return false; } auto type = new Type(BASE_TYPE_STRUCT, struct_def, nullptr); if (types_.Add(it->name()->str(), type)) { delete type; return false; } } for (auto it = schema->enums()->begin(); it != schema->enums()->end(); ++it) { auto enum_def = new EnumDef(); if (enums_.Add(it->name()->str(), enum_def)) { delete enum_def; return false; } auto type = new Type(BASE_TYPE_UNION, nullptr, enum_def); if (types_.Add(it->name()->str(), type)) { delete type; return false; } } // Now fields can refer to structs and enums by index. for (auto it = schema->objects()->begin(); it != schema->objects()->end(); ++it) { std::string qualified_name = it->name()->str(); auto struct_def = structs_.Lookup(qualified_name); struct_def->defined_namespace = GetNamespace(qualified_name, namespaces_, namespaces_index); if (!struct_def->Deserialize(*this, *it)) { return false; } if (schema->root_table() == *it) { root_struct_def_ = struct_def; } } for (auto it = schema->enums()->begin(); it != schema->enums()->end(); ++it) { std::string qualified_name = it->name()->str(); auto enum_def = enums_.Lookup(qualified_name); enum_def->defined_namespace = GetNamespace(qualified_name, namespaces_, namespaces_index); if (!enum_def->Deserialize(*this, *it)) { return false; } } if (schema->services()) { for (auto it = schema->services()->begin(); it != schema->services()->end(); ++it) { std::string qualified_name = it->name()->str(); auto service_def = new ServiceDef(); service_def->defined_namespace = GetNamespace(qualified_name, namespaces_, namespaces_index); if (!service_def->Deserialize(*this, *it) || services_.Add(qualified_name, service_def)) { delete service_def; return false; } } } return true; } std::string Parser::ConformTo(const Parser &base) { for (auto sit = structs_.vec.begin(); sit != structs_.vec.end(); ++sit) { auto &struct_def = **sit; auto qualified_name = struct_def.defined_namespace->GetFullyQualifiedName(struct_def.name); auto struct_def_base = base.LookupStruct(qualified_name); if (!struct_def_base) continue; for (auto fit = struct_def.fields.vec.begin(); fit != struct_def.fields.vec.end(); ++fit) { auto &field = **fit; auto field_base = struct_def_base->fields.Lookup(field.name); if (field_base) { if (field.value.offset != field_base->value.offset) return "offsets differ for field: " + field.name; if (field.value.constant != field_base->value.constant) return "defaults differ for field: " + field.name; if (!EqualByName(field.value.type, field_base->value.type)) return "types differ for field: " + field.name; } else { // Doesn't have to exist, deleting fields is fine. // But we should check if there is a field that has the same offset // but is incompatible (in the case of field renaming). for (auto fbit = struct_def_base->fields.vec.begin(); fbit != struct_def_base->fields.vec.end(); ++fbit) { field_base = *fbit; if (field.value.offset == field_base->value.offset) { if (!EqualByName(field.value.type, field_base->value.type)) return "field renamed to different type: " + field.name; break; } } } } } for (auto eit = enums_.vec.begin(); eit != enums_.vec.end(); ++eit) { auto &enum_def = **eit; auto qualified_name = enum_def.defined_namespace->GetFullyQualifiedName(enum_def.name); auto enum_def_base = base.enums_.Lookup(qualified_name); if (!enum_def_base) continue; for (auto evit = enum_def.Vals().begin(); evit != enum_def.Vals().end(); ++evit) { auto &enum_val = **evit; auto enum_val_base = enum_def_base->Lookup(enum_val.name); if (enum_val_base) { if (enum_val != *enum_val_base) return "values differ for enum: " + enum_val.name; } } } return ""; } } // namespace flatbuffers