/* * Copyright 2014 Google Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // independent from idl_parser, since this code is not needed for most clients #include "flatbuffers/code_generators.h" #include "flatbuffers/flatbuffers.h" #include "flatbuffers/idl.h" #include "flatbuffers/util.h" #if defined(FLATBUFFERS_CPP98_STL) # include #endif // defined(FLATBUFFERS_CPP98_STL) namespace flatbuffers { namespace java { static TypedFloatConstantGenerator JavaFloatGen("Double.", "Float.", "NaN", "POSITIVE_INFINITY", "NEGATIVE_INFINITY"); static CommentConfig comment_config = { "/**", " *", " */", }; class JavaGenerator : public BaseGenerator { public: JavaGenerator(const Parser &parser, const std::string &path, const std::string &file_name) : BaseGenerator(parser, path, file_name, "", ".", "java"), cur_name_space_(nullptr) {} JavaGenerator &operator=(const JavaGenerator &); bool generate() { std::string one_file_code; cur_name_space_ = parser_.current_namespace_; for (auto it = parser_.enums_.vec.begin(); it != parser_.enums_.vec.end(); ++it) { std::string enumcode; auto &enum_def = **it; if (!parser_.opts.one_file) cur_name_space_ = enum_def.defined_namespace; GenEnum(enum_def, &enumcode); if (parser_.opts.one_file) { one_file_code += enumcode; } else { if (!SaveType(enum_def.name, *enum_def.defined_namespace, enumcode, /* needs_includes= */ false)) return false; } } for (auto it = parser_.structs_.vec.begin(); it != parser_.structs_.vec.end(); ++it) { std::string declcode; auto &struct_def = **it; if (!parser_.opts.one_file) cur_name_space_ = struct_def.defined_namespace; GenStruct(struct_def, &declcode); if (parser_.opts.one_file) { one_file_code += declcode; } else { if (!SaveType(struct_def.name, *struct_def.defined_namespace, declcode, /* needs_includes= */ true)) return false; } } if (parser_.opts.one_file) { return SaveType(file_name_, *parser_.current_namespace_, one_file_code, /* needs_includes= */ true); } return true; } // Save out the generated code for a single class while adding // declaration boilerplate. bool SaveType(const std::string &defname, const Namespace &ns, const std::string &classcode, bool needs_includes) const { if (!classcode.length()) return true; std::string code; code = "// " + std::string(FlatBuffersGeneratedWarning()) + "\n\n"; std::string namespace_name = FullNamespace(".", ns); if (!namespace_name.empty()) { code += "package " + namespace_name + ";"; code += "\n\n"; } if (needs_includes) { code += "import java.nio.*;\nimport java.lang.*;\nimport " "java.util.*;\nimport com.google.flatbuffers.*;\n"; if (parser_.opts.gen_nullable) { code += "\nimport javax.annotation.Nullable;\n"; } if (parser_.opts.java_checkerframework) { code += "\nimport org.checkerframework.dataflow.qual.Pure;\n"; } code += "\n"; } code += classcode; if (!namespace_name.empty()) code += ""; auto filename = NamespaceDir(ns) + defname + ".java"; return SaveFile(filename.c_str(), code, false); } const Namespace *CurrentNameSpace() const { return cur_name_space_; } std::string GenNullableAnnotation(const Type &t) const { return parser_.opts.gen_nullable && !IsScalar(DestinationType(t, true).base_type) && t.base_type != BASE_TYPE_VECTOR ? " @Nullable " : ""; } std::string GenPureAnnotation(const Type &t) const { return parser_.opts.java_checkerframework && !IsScalar(DestinationType(t, true).base_type) ? " @Pure " : ""; } std::string GenTypeBasic(const Type &type) const { // clang-format off static const char * const java_typename[] = { #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, ...) \ #JTYPE, FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD) #undef FLATBUFFERS_TD }; // clang-format on return java_typename[type.base_type]; } std::string GenTypePointer(const Type &type) const { switch (type.base_type) { case BASE_TYPE_STRING: return "String"; case BASE_TYPE_VECTOR: return GenTypeGet(type.VectorType()); case BASE_TYPE_STRUCT: return WrapInNameSpace(*type.struct_def); case BASE_TYPE_UNION: FLATBUFFERS_FALLTHROUGH(); // else fall thru default: return "Table"; } } std::string GenTypeGet(const Type &type) const { return IsScalar(type.base_type) ? GenTypeBasic(type) : (IsArray(type) ? GenTypeGet(type.VectorType()) : GenTypePointer(type)); } // Find the destination type the user wants to receive the value in (e.g. // one size higher signed types for unsigned serialized values in Java). Type DestinationType(const Type &type, bool vectorelem) const { switch (type.base_type) { // We use int for both uchar/ushort, since that generally means less // casting than using short for uchar. case BASE_TYPE_UCHAR: return Type(BASE_TYPE_INT); case BASE_TYPE_USHORT: return Type(BASE_TYPE_INT); case BASE_TYPE_UINT: return Type(BASE_TYPE_LONG); case BASE_TYPE_ARRAY: case BASE_TYPE_VECTOR: if (vectorelem) return DestinationType(type.VectorType(), vectorelem); FLATBUFFERS_FALLTHROUGH(); // else fall thru default: return type; } } std::string GenOffsetType() const { return "int"; } std::string GenOffsetConstruct(const std::string &variable_name) const { return variable_name; } std::string GenVectorOffsetType() const { return "int"; } // Generate destination type name std::string GenTypeNameDest(const Type &type) const { return GenTypeGet(DestinationType(type, true)); } // Mask to turn serialized value into destination type value. std::string DestinationMask(const Type &type, bool vectorelem) const { switch (type.base_type) { case BASE_TYPE_UCHAR: return " & 0xFF"; case BASE_TYPE_USHORT: return " & 0xFFFF"; case BASE_TYPE_UINT: return " & 0xFFFFFFFFL"; case BASE_TYPE_VECTOR: if (vectorelem) return DestinationMask(type.VectorType(), vectorelem); FLATBUFFERS_FALLTHROUGH(); // else fall thru default: return ""; } } // Casts necessary to correctly read serialized data std::string DestinationCast(const Type &type) const { if (IsSeries(type)) { return DestinationCast(type.VectorType()); } else { // Cast necessary to correctly read serialized unsigned values. if (type.base_type == BASE_TYPE_UINT) return "(long)"; } return ""; } // Cast statements for mutator method parameters. // In Java, parameters representing unsigned numbers need to be cast down to // their respective type. For example, a long holding an unsigned int value // would be cast down to int before being put onto the buffer. std::string SourceCast(const Type &type, bool castFromDest) const { if (IsSeries(type)) { return SourceCast(type.VectorType(), castFromDest); } else { if (castFromDest) { if (type.base_type == BASE_TYPE_UINT) return "(int)"; else if (type.base_type == BASE_TYPE_USHORT) return "(short)"; else if (type.base_type == BASE_TYPE_UCHAR) return "(byte)"; } } return ""; } std::string SourceCast(const Type &type) const { return SourceCast(type, true); } std::string SourceCastBasic(const Type &type, bool castFromDest) const { return IsScalar(type.base_type) ? SourceCast(type, castFromDest) : ""; } std::string SourceCastBasic(const Type &type) const { return SourceCastBasic(type, true); } std::string GenEnumDefaultValue(const FieldDef &field) const { auto &value = field.value; FLATBUFFERS_ASSERT(value.type.enum_def); auto &enum_def = *value.type.enum_def; auto enum_val = enum_def.FindByValue(value.constant); return enum_val ? (WrapInNameSpace(enum_def) + "." + enum_val->name) : value.constant; } std::string GenDefaultValue(const FieldDef &field) const { auto &value = field.value; auto constant = field.IsScalarOptional() ? "0" : value.constant; auto longSuffix = "L"; switch (value.type.base_type) { case BASE_TYPE_BOOL: return constant == "0" ? "false" : "true"; case BASE_TYPE_ULONG: { // Converts the ulong into its bits signed equivalent uint64_t defaultValue = StringToUInt(constant.c_str()); return NumToString(static_cast(defaultValue)) + longSuffix; } case BASE_TYPE_UINT: case BASE_TYPE_LONG: return constant + longSuffix; default: if (IsFloat(value.type.base_type)) { if (field.IsScalarOptional()) { return value.type.base_type == BASE_TYPE_DOUBLE ? "0.0" : "0f"; } return JavaFloatGen.GenFloatConstant(field); } else { return constant; } } } std::string GenDefaultValueBasic(const FieldDef &field) const { auto &value = field.value; if (!IsScalar(value.type.base_type)) { return "0"; } return GenDefaultValue(field); } void GenEnum(EnumDef &enum_def, std::string *code_ptr) const { std::string &code = *code_ptr; if (enum_def.generated) return; // Generate enum definitions of the form: // public static (final) int name = value; // In Java, we use ints rather than the Enum feature, because we want them // to map directly to how they're used in C/C++ and file formats. // That, and Java Enums are expensive, and not universally liked. GenComment(enum_def.doc_comment, code_ptr, &comment_config); if (enum_def.attributes.Lookup("private")) { // For Java, we leave the enum unmarked to indicate package-private } else { code += "public "; } code += "final class " + enum_def.name; code += " {\n"; code += " private " + enum_def.name + "() { }\n"; for (auto it = enum_def.Vals().begin(); it != enum_def.Vals().end(); ++it) { auto &ev = **it; GenComment(ev.doc_comment, code_ptr, &comment_config, " "); code += " public static final "; code += GenTypeBasic(enum_def.underlying_type); code += " "; code += ev.name + " = "; code += enum_def.ToString(ev); code += ";\n"; } // Generate a generate string table for enum values. // Problem is, if values are very sparse that could generate really big // tables. Ideally in that case we generate a map lookup instead, but for // the moment we simply don't output a table at all. auto range = enum_def.Distance(); // Average distance between values above which we consider a table // "too sparse". Change at will. static const uint64_t kMaxSparseness = 5; if (range / static_cast(enum_def.size()) < kMaxSparseness) { code += "\n public static final String"; code += "[] names = { "; auto val = enum_def.Vals().front(); for (auto it = enum_def.Vals().begin(); it != enum_def.Vals().end(); ++it) { auto ev = *it; for (auto k = enum_def.Distance(val, ev); k > 1; --k) code += "\"\", "; val = ev; code += "\"" + (*it)->name + "\", "; } code += "};\n\n"; code += " public static "; code += "String"; code += " " + MakeCamel("name", false); code += "(int e) { return names[e"; if (enum_def.MinValue()->IsNonZero()) code += " - " + enum_def.MinValue()->name; code += "]; }\n"; } // Close the class code += "}\n\n"; } // Returns the function name that is able to read a value of the given type. std::string GenGetter(const Type &type) const { switch (type.base_type) { case BASE_TYPE_STRING: return "__string"; case BASE_TYPE_STRUCT: return "__struct"; case BASE_TYPE_UNION: return "__union"; case BASE_TYPE_VECTOR: return GenGetter(type.VectorType()); case BASE_TYPE_ARRAY: return GenGetter(type.VectorType()); default: { std::string getter = "bb.get"; if (type.base_type == BASE_TYPE_BOOL) { getter = "0!=" + getter; } else if (GenTypeBasic(type) != "byte") { getter += MakeCamel(GenTypeBasic(type)); } return getter; } } } // Returns the function name that is able to read a value of the given type. std::string GenGetterForLookupByKey(flatbuffers::FieldDef *key_field, const std::string &data_buffer, const char *num = nullptr) const { auto type = key_field->value.type; auto dest_mask = DestinationMask(type, true); auto dest_cast = DestinationCast(type); auto getter = data_buffer + ".get"; if (GenTypeBasic(type) != "byte") { getter += MakeCamel(GenTypeBasic(type)); } getter = dest_cast + getter + "(" + GenOffsetGetter(key_field, num) + ")" + dest_mask; return getter; } // Direct mutation is only allowed for scalar fields. // Hence a setter method will only be generated for such fields. std::string GenSetter(const Type &type) const { if (IsScalar(type.base_type)) { std::string setter = "bb.put"; if (GenTypeBasic(type) != "byte" && type.base_type != BASE_TYPE_BOOL) { setter += MakeCamel(GenTypeBasic(type)); } return setter; } else { return ""; } } // Returns the method name for use with add/put calls. std::string GenMethod(const Type &type) const { return IsScalar(type.base_type) ? MakeCamel(GenTypeBasic(type)) : (IsStruct(type) ? "Struct" : "Offset"); } // Recursively generate arguments for a constructor, to deal with nested // structs. void GenStructArgs(const StructDef &struct_def, std::string *code_ptr, const char *nameprefix, size_t array_count = 0) const { std::string &code = *code_ptr; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; const auto &field_type = field.value.type; const auto array_field = IsArray(field_type); const auto &type = array_field ? field_type.VectorType() : DestinationType(field_type, false); const auto array_cnt = array_field ? (array_count + 1) : array_count; if (IsStruct(type)) { // Generate arguments for a struct inside a struct. To ensure names // don't clash, and to make it obvious these arguments are constructing // a nested struct, prefix the name with the field name. GenStructArgs(*field_type.struct_def, code_ptr, (nameprefix + (field.name + "_")).c_str(), array_cnt); } else { code += ", "; code += GenTypeBasic(type); for (size_t i = 0; i < array_cnt; i++) code += "[]"; code += " "; code += nameprefix; code += MakeCamel(field.name, false); } } } // Recusively generate struct construction statements of the form: // builder.putType(name); // and insert manual padding. void GenStructBody(const StructDef &struct_def, std::string *code_ptr, const char *nameprefix, size_t index = 0, bool in_array = false) const { std::string &code = *code_ptr; std::string indent((index + 1) * 2, ' '); code += indent + " builder.prep("; code += NumToString(struct_def.minalign) + ", "; code += NumToString(struct_def.bytesize) + ");\n"; for (auto it = struct_def.fields.vec.rbegin(); it != struct_def.fields.vec.rend(); ++it) { auto &field = **it; const auto &field_type = field.value.type; if (field.padding) { code += indent + " builder.pad("; code += NumToString(field.padding) + ");\n"; } if (IsStruct(field_type)) { GenStructBody(*field_type.struct_def, code_ptr, (nameprefix + (field.name + "_")).c_str(), index, in_array); } else { const auto &type = IsArray(field_type) ? field_type.VectorType() : field_type; const auto index_var = "_idx" + NumToString(index); if (IsArray(field_type)) { code += indent + " for (int " + index_var + " = "; code += NumToString(field_type.fixed_length); code += "; " + index_var + " > 0; " + index_var + "--) {\n"; in_array = true; } if (IsStruct(type)) { GenStructBody(*field_type.struct_def, code_ptr, (nameprefix + (field.name + "_")).c_str(), index + 1, in_array); } else { code += IsArray(field_type) ? " " : ""; code += indent + " builder.put"; code += GenMethod(type) + "("; code += SourceCast(type); auto argname = nameprefix + MakeCamel(field.name, false); code += argname; size_t array_cnt = index + (IsArray(field_type) ? 1 : 0); for (size_t i = 0; in_array && i < array_cnt; i++) { code += "[_idx" + NumToString(i) + "-1]"; } code += ");\n"; } if (IsArray(field_type)) { code += indent + " }\n"; } } } } std::string GenByteBufferLength(const char *bb_name) const { std::string bb_len = bb_name; bb_len += ".capacity()"; return bb_len; } std::string GenOffsetGetter(flatbuffers::FieldDef *key_field, const char *num = nullptr) const { std::string key_offset = ""; key_offset += "__offset(" + NumToString(key_field->value.offset) + ", "; if (num) { key_offset += num; key_offset += ", _bb)"; } else { key_offset += GenByteBufferLength("bb"); key_offset += " - tableOffset, bb)"; } return key_offset; } std::string GenLookupKeyGetter(flatbuffers::FieldDef *key_field) const { std::string key_getter = " "; key_getter += "int tableOffset = "; key_getter += "__indirect(vectorLocation + 4 * (start + middle)"; key_getter += ", bb);\n "; if (IsString(key_field->value.type)) { key_getter += "int comp = "; key_getter += "compareStrings("; key_getter += GenOffsetGetter(key_field); key_getter += ", byteKey, bb);\n"; } else { auto get_val = GenGetterForLookupByKey(key_field, "bb"); key_getter += GenTypeNameDest(key_field->value.type) + " val = "; key_getter += get_val + ";\n"; key_getter += " int comp = val > key ? 1 : val < key ? -1 : 0;\n"; } return key_getter; } std::string GenKeyGetter(flatbuffers::FieldDef *key_field) const { std::string key_getter = ""; auto data_buffer = "_bb"; if (IsString(key_field->value.type)) { key_getter += " return "; key_getter += ""; key_getter += "compareStrings("; key_getter += GenOffsetGetter(key_field, "o1") + ", "; key_getter += GenOffsetGetter(key_field, "o2") + ", " + data_buffer + ")"; key_getter += ";"; } else { auto field_getter = GenGetterForLookupByKey(key_field, data_buffer, "o1"); key_getter += "\n " + GenTypeNameDest(key_field->value.type) + " val_1 = "; key_getter += field_getter + ";\n " + GenTypeNameDest(key_field->value.type); key_getter += " val_2 = "; field_getter = GenGetterForLookupByKey(key_field, data_buffer, "o2"); key_getter += field_getter + ";\n"; key_getter += " return val_1 > val_2 ? 1 : val_1 < val_2 ? -1 : 0;\n "; } return key_getter; } void GenStruct(StructDef &struct_def, std::string *code_ptr) const { if (struct_def.generated) return; std::string &code = *code_ptr; // Generate a struct accessor class, with methods of the form: // public type name() { return bb.getType(i + offset); } // or for tables of the form: // public type name() { // int o = __offset(offset); return o != 0 ? bb.getType(o + i) : default; // } GenComment(struct_def.doc_comment, code_ptr, &comment_config); if (parser_.opts.gen_generated) { code += "@javax.annotation.Generated(value=\"flatc\")\n"; } code += "@SuppressWarnings(\"unused\")\n"; if (struct_def.attributes.Lookup("private")) { // For Java, we leave the struct unmarked to indicate package-private } else { code += "public "; } code += "final class " + struct_def.name; code += " extends "; code += struct_def.fixed ? "Struct" : "Table"; code += " {\n"; if (!struct_def.fixed) { // Generate verson check method. // Force compile time error if not using the same version runtime. code += " public static void ValidateVersion() {"; code += " Constants."; code += "FLATBUFFERS_1_12_0(); "; code += "}\n"; // Generate a special accessor for the table that when used as the root // of a FlatBuffer std::string method_name = "getRootAs" + struct_def.name; std::string method_signature = " public static " + struct_def.name + " " + method_name; // create convenience method that doesn't require an existing object code += method_signature + "(ByteBuffer _bb) "; code += "{ return " + method_name + "(_bb, new " + struct_def.name + "()); }\n"; // create method that allows object reuse code += method_signature + "(ByteBuffer _bb, " + struct_def.name + " obj) { "; code += "_bb.order(ByteOrder.LITTLE_ENDIAN); "; code += "return (obj.__assign(_bb.getInt(_bb."; code += "position()"; code += ") + _bb."; code += "position()"; code += ", _bb)); }\n"; if (parser_.root_struct_def_ == &struct_def) { if (parser_.file_identifier_.length()) { // Check if a buffer has the identifier. code += " public static "; code += "boolean " + struct_def.name; code += "BufferHasIdentifier(ByteBuffer _bb) { return "; code += "__has_identifier(_bb, \""; code += parser_.file_identifier_; code += "\"); }\n"; } } } // Generate the __init method that sets the field in a pre-existing // accessor object. This is to allow object reuse. code += " public void __init(int _i, ByteBuffer _bb) "; code += "{ "; code += "__reset(_i, _bb); "; code += "}\n"; code += " public " + struct_def.name + " __assign(int _i, ByteBuffer _bb) "; code += "{ __init(_i, _bb); return this; }\n\n"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (field.deprecated) continue; GenComment(field.doc_comment, code_ptr, &comment_config, " "); std::string type_name = GenTypeGet(field.value.type); std::string type_name_dest = GenTypeNameDest(field.value.type); std::string conditional_cast = ""; std::string optional = ""; std::string dest_mask = DestinationMask(field.value.type, true); std::string dest_cast = DestinationCast(field.value.type); std::string src_cast = SourceCast(field.value.type); std::string method_start = " public " + (field.required ? "" : GenNullableAnnotation(field.value.type)) + GenPureAnnotation(field.value.type) + type_name_dest + optional + " " + MakeCamel(field.name, false); std::string obj = "obj"; // Most field accessors need to retrieve and test the field offset first, // this is the prefix code for that: auto offset_prefix = IsArray(field.value.type) ? " { return " : (" { int o = __offset(" + NumToString(field.value.offset) + "); return o != 0 ? "); // Generate the accessors that don't do object reuse. if (field.value.type.base_type == BASE_TYPE_STRUCT) { // Calls the accessor that takes an accessor object with a new object. code += method_start + "() { return "; code += MakeCamel(field.name, false); code += "(new "; code += type_name + "()); }\n"; } else if (IsVector(field.value.type) && field.value.type.element == BASE_TYPE_STRUCT) { // Accessors for vectors of structs also take accessor objects, this // generates a variant without that argument. code += method_start + "(int j) { return "; code += MakeCamel(field.name, false); code += "(new " + type_name + "(), j); }\n"; } if (field.IsScalarOptional()) { code += GenOptionalScalarCheck(field); } std::string getter = dest_cast + GenGetter(field.value.type); code += method_start; std::string default_cast = ""; std::string member_suffix = "; "; if (IsScalar(field.value.type.base_type)) { code += "()"; member_suffix += ""; if (struct_def.fixed) { code += " { return " + getter; code += "(bb_pos + "; code += NumToString(field.value.offset) + ")"; code += dest_mask; } else { code += offset_prefix + getter; code += "(o + bb_pos)" + dest_mask; code += " : " + default_cast; code += GenDefaultValue(field); } } else { switch (field.value.type.base_type) { case BASE_TYPE_STRUCT: code += "(" + type_name + " obj)"; if (struct_def.fixed) { code += " { return " + obj + ".__assign("; code += "bb_pos + " + NumToString(field.value.offset) + ", "; code += "bb)"; } else { code += offset_prefix + conditional_cast; code += obj + ".__assign("; code += field.value.type.struct_def->fixed ? "o + bb_pos" : "__indirect(o + bb_pos)"; code += ", bb) : null"; } break; case BASE_TYPE_STRING: code += "()"; member_suffix += ""; code += offset_prefix + getter + "(o + "; code += "bb_pos) : null"; break; case BASE_TYPE_ARRAY: FLATBUFFERS_FALLTHROUGH(); // fall thru case BASE_TYPE_VECTOR: { auto vectortype = field.value.type.VectorType(); code += "("; if (vectortype.base_type == BASE_TYPE_STRUCT) { code += type_name + " obj, "; getter = obj + ".__assign"; } else if (vectortype.base_type == BASE_TYPE_UNION) { code += type_name + " obj, "; } code += "int j)"; const auto body = offset_prefix + conditional_cast + getter + "("; if (vectortype.base_type == BASE_TYPE_UNION) { code += body + "obj, "; } else { code += body; } std::string index; if (IsArray(field.value.type)) { index += "bb_pos + " + NumToString(field.value.offset) + " + "; } else { index += "__vector(o) + "; } index += "j * " + NumToString(InlineSize(vectortype)); if (vectortype.base_type == BASE_TYPE_STRUCT) { code += vectortype.struct_def->fixed ? index : "__indirect(" + index + ")"; code += ", bb"; } else { code += index; } code += ")" + dest_mask; if (!IsArray(field.value.type)) { code += " : "; code += field.value.type.element == BASE_TYPE_BOOL ? "false" : (IsScalar(field.value.type.element) ? default_cast + "0" : "null"); } break; } case BASE_TYPE_UNION: code += "(" + type_name + " obj)" + offset_prefix + getter; code += "(obj, o + bb_pos) : null"; break; default: FLATBUFFERS_ASSERT(0); } } code += member_suffix; code += "}\n"; if (IsVector(field.value.type)) { code += " public int " + MakeCamel(field.name, false); code += "Length"; code += "()"; code += offset_prefix; code += "__vector_len(o) : 0; "; code += ""; code += "}\n"; // See if we should generate a by-key accessor. if (field.value.type.element == BASE_TYPE_STRUCT && !field.value.type.struct_def->fixed) { auto &sd = *field.value.type.struct_def; auto &fields = sd.fields.vec; for (auto kit = fields.begin(); kit != fields.end(); ++kit) { auto &key_field = **kit; if (key_field.key) { auto qualified_name = WrapInNameSpace(sd); code += " public " + qualified_name + " "; code += MakeCamel(field.name, false) + "ByKey("; code += GenTypeNameDest(key_field.value.type) + " key)"; code += offset_prefix; code += qualified_name + ".__lookup_by_key("; code += "null, "; code += "__vector(o), key, "; code += "bb) : null; "; code += "}\n"; code += " public " + qualified_name + " "; code += MakeCamel(field.name, false) + "ByKey("; code += qualified_name + " obj, "; code += GenTypeNameDest(key_field.value.type) + " key)"; code += offset_prefix; code += qualified_name + ".__lookup_by_key(obj, "; code += "__vector(o), key, "; code += "bb) : null; "; code += "}\n"; break; } } } } // Generate the accessors for vector of structs with vector access object if (IsVector(field.value.type)) { std::string vector_type_name; const auto &element_base_type = field.value.type.VectorType().base_type; if (IsScalar(element_base_type)) { vector_type_name = MakeCamel(type_name, true) + "Vector"; } else if (element_base_type == BASE_TYPE_STRING) { vector_type_name = "StringVector"; } else if (element_base_type == BASE_TYPE_UNION) { vector_type_name = "UnionVector"; } else { vector_type_name = type_name + ".Vector"; } auto vector_method_start = GenNullableAnnotation(field.value.type) + " public " + vector_type_name + optional + " " + MakeCamel(field.name, false) + "Vector"; code += vector_method_start + "() { return "; code += MakeCamel(field.name, false) + "Vector"; code += "(new " + vector_type_name + "()); }\n"; code += vector_method_start + "(" + vector_type_name + " obj)"; code += offset_prefix + conditional_cast + obj + ".__assign("; code += "__vector(o), "; if (!IsScalar(element_base_type)) { auto vectortype = field.value.type.VectorType(); code += NumToString(InlineSize(vectortype)) + ", "; } code += "bb) : null" + member_suffix + "}\n"; } // Generate a ByteBuffer accessor for strings & vectors of scalars. if ((IsVector(field.value.type) && IsScalar(field.value.type.VectorType().base_type)) || IsString(field.value.type)) { code += " public ByteBuffer "; code += MakeCamel(field.name, false); code += "AsByteBuffer() { return "; code += "__vector_as_bytebuffer("; code += NumToString(field.value.offset) + ", "; code += NumToString(IsString(field.value.type) ? 1 : InlineSize(field.value.type.VectorType())); code += "); }\n"; code += " public ByteBuffer "; code += MakeCamel(field.name, false); code += "InByteBuffer(ByteBuffer _bb) { return "; code += "__vector_in_bytebuffer(_bb, "; code += NumToString(field.value.offset) + ", "; code += NumToString(IsString(field.value.type) ? 1 : InlineSize(field.value.type.VectorType())); code += "); }\n"; } // generate object accessors if is nested_flatbuffer if (field.nested_flatbuffer) { auto nested_type_name = WrapInNameSpace(*field.nested_flatbuffer); auto nested_method_name = MakeCamel(field.name, false) + "As" + field.nested_flatbuffer->name; auto get_nested_method_name = nested_method_name; code += " public " + nested_type_name + " "; code += nested_method_name + "() { return "; code += get_nested_method_name + "(new " + nested_type_name + "()); }\n"; code += " public " + nested_type_name + " "; code += get_nested_method_name + "("; code += nested_type_name + " obj"; code += ") { int o = __offset("; code += NumToString(field.value.offset) + "); "; code += "return o != 0 ? " + conditional_cast + obj + ".__assign("; code += ""; code += "__indirect(__vector(o)), "; code += "bb) : null; }\n"; } // Generate mutators for scalar fields or vectors of scalars. if (parser_.opts.mutable_buffer) { auto is_series = (IsSeries(field.value.type)); const auto &underlying_type = is_series ? field.value.type.VectorType() : field.value.type; // Boolean parameters have to be explicitly converted to byte // representation. auto setter_parameter = underlying_type.base_type == BASE_TYPE_BOOL ? "(byte)(" + field.name + " ? 1 : 0)" : field.name; auto mutator_prefix = MakeCamel("mutate", false); // A vector mutator also needs the index of the vector element it should // mutate. auto mutator_params = (is_series ? "(int j, " : "(") + GenTypeNameDest(underlying_type) + " " + field.name + ") { "; auto setter_index = is_series ? (IsArray(field.value.type) ? "bb_pos + " + NumToString(field.value.offset) : "__vector(o)") + +" + j * " + NumToString(InlineSize(underlying_type)) : (struct_def.fixed ? "bb_pos + " + NumToString(field.value.offset) : "o + bb_pos"); if (IsScalar(underlying_type.base_type) && !IsUnion(field.value.type)) { code += " public "; code += struct_def.fixed ? "void " : "boolean "; code += mutator_prefix + MakeCamel(field.name, true); code += mutator_params; if (struct_def.fixed) { code += GenSetter(underlying_type) + "(" + setter_index + ", "; code += src_cast + setter_parameter + "); }\n"; } else { code += "int o = __offset("; code += NumToString(field.value.offset) + ");"; code += " if (o != 0) { " + GenSetter(underlying_type); code += "(" + setter_index + ", " + src_cast + setter_parameter + "); return true; } else { return false; } }\n"; } } } if (parser_.opts.java_primitive_has_method && IsScalar(field.value.type.base_type) && !struct_def.fixed) { auto vt_offset_constant = " public static final int VT_" + MakeScreamingCamel(field.name) + " = " + NumToString(field.value.offset) + ";"; code += vt_offset_constant; code += "\n"; } } code += "\n"; flatbuffers::FieldDef *key_field = nullptr; if (struct_def.fixed) { // create a struct constructor function code += " public static " + GenOffsetType() + " "; code += "create"; code += struct_def.name + "(FlatBufferBuilder builder"; GenStructArgs(struct_def, code_ptr, ""); code += ") {\n"; GenStructBody(struct_def, code_ptr, ""); code += " return "; code += GenOffsetConstruct("builder." + std::string("offset()")); code += ";\n }\n"; } else { // Generate a method that creates a table in one go. This is only possible // when the table has no struct fields, since those have to be created // inline, and there's no way to do so in Java. bool has_no_struct_fields = true; int num_fields = 0; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (field.deprecated) continue; if (IsStruct(field.value.type)) { has_no_struct_fields = false; } else { num_fields++; } } // JVM specifications restrict default constructor params to be < 255. // Longs and doubles take up 2 units, so we set the limit to be < 127. if (has_no_struct_fields && num_fields && num_fields < 127) { // Generate a table constructor of the form: // public static int createName(FlatBufferBuilder builder, args...) code += " public static " + GenOffsetType() + " "; code += "create" + struct_def.name; code += "(FlatBufferBuilder builder"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (field.deprecated) continue; code += ",\n "; code += GenTypeBasic(DestinationType(field.value.type, false)); code += " "; code += field.name; if (!IsScalar(field.value.type.base_type)) code += "Offset"; } code += ") {\n builder."; code += "startTable("; code += NumToString(struct_def.fields.vec.size()) + ");\n"; for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1; size; size /= 2) { for (auto it = struct_def.fields.vec.rbegin(); it != struct_def.fields.vec.rend(); ++it) { auto &field = **it; if (!field.deprecated && (!struct_def.sortbysize || size == SizeOf(field.value.type.base_type))) { code += " " + struct_def.name + "."; code += "add"; code += MakeCamel(field.name) + "(builder, " + field.name; if (!IsScalar(field.value.type.base_type)) code += "Offset"; code += ");\n"; } } } code += " return " + struct_def.name + "."; code += "end" + struct_def.name; code += "(builder);\n }\n\n"; } // Generate a set of static methods that allow table construction, // of the form: // public static void addName(FlatBufferBuilder builder, short name) // { builder.addShort(id, name, default); } // Unlike the Create function, these always work. code += " public static void start"; code += struct_def.name; code += "(FlatBufferBuilder builder) { builder."; code += "startTable("; code += NumToString(struct_def.fields.vec.size()) + "); }\n"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (field.deprecated) continue; if (field.key) key_field = &field; code += " public static void add"; code += MakeCamel(field.name); code += "(FlatBufferBuilder builder, "; code += GenTypeBasic(DestinationType(field.value.type, false)); auto argname = MakeCamel(field.name, false); if (!IsScalar(field.value.type.base_type)) argname += "Offset"; code += " " + argname + ") { builder.add"; code += GenMethod(field.value.type) + "("; code += NumToString(it - struct_def.fields.vec.begin()) + ", "; code += SourceCastBasic(field.value.type); code += argname; code += ", "; code += SourceCastBasic(field.value.type); code += GenDefaultValue(field); code += "); }\n"; if (IsVector(field.value.type)) { auto vector_type = field.value.type.VectorType(); auto alignment = InlineAlignment(vector_type); auto elem_size = InlineSize(vector_type); if (!IsStruct(vector_type)) { // generate a method to create a vector from a java array. if ((vector_type.base_type == BASE_TYPE_CHAR || vector_type.base_type == BASE_TYPE_UCHAR)) { // Handle byte[] and ByteBuffers separately for Java code += " public static " + GenVectorOffsetType() + " "; code += "create"; code += MakeCamel(field.name); code += "Vector(FlatBufferBuilder builder, byte[] data) "; code += "{ return builder.createByteVector(data); }\n"; code += " public static " + GenVectorOffsetType() + " "; code += "create"; code += MakeCamel(field.name); code += "Vector(FlatBufferBuilder builder, ByteBuffer data) "; code += "{ return builder.createByteVector(data); }\n"; } else { code += " public static " + GenVectorOffsetType() + " "; code += "create"; code += MakeCamel(field.name); code += "Vector(FlatBufferBuilder builder, "; code += GenTypeBasic(vector_type) + "[] data) "; code += "{ builder.startVector("; code += NumToString(elem_size); code += ", data.length, "; code += NumToString(alignment); code += "); for (int i = data."; code += "length - 1; i >= 0; i--) builder."; code += "add"; code += GenMethod(vector_type); code += "("; code += SourceCastBasic(vector_type, false); code += "data[i]"; code += "); return "; code += "builder.endVector(); }\n"; } } // Generate a method to start a vector, data to be added manually // after. code += " public static void start"; code += MakeCamel(field.name); code += "Vector(FlatBufferBuilder builder, int numElems) "; code += "{ builder.startVector("; code += NumToString(elem_size); code += ", numElems, " + NumToString(alignment); code += "); }\n"; } } code += " public static " + GenOffsetType() + " "; code += "end" + struct_def.name; code += "(FlatBufferBuilder builder) {\n int o = builder."; code += "endTable();\n"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated && field.required) { code += " builder.required(o, "; code += NumToString(field.value.offset); code += "); // " + field.name + "\n"; } } code += " return " + GenOffsetConstruct("o") + ";\n }\n"; if (parser_.root_struct_def_ == &struct_def) { std::string size_prefix[] = { "", "SizePrefixed" }; for (int i = 0; i < 2; ++i) { code += " public static void "; code += "finish" + size_prefix[i] + struct_def.name; code += "Buffer(FlatBufferBuilder builder, " + GenOffsetType(); code += " offset) {"; code += " builder.finish" + size_prefix[i] + "(offset"; if (parser_.file_identifier_.length()) code += ", \"" + parser_.file_identifier_ + "\""; code += "); }\n"; } } } // Only generate key compare function for table, // because `key_field` is not set for struct if (struct_def.has_key && !struct_def.fixed) { FLATBUFFERS_ASSERT(key_field); code += "\n @Override\n protected int keysCompare("; code += "Integer o1, Integer o2, ByteBuffer _bb) {"; code += GenKeyGetter(key_field); code += " }\n"; code += "\n public static " + struct_def.name; code += " __lookup_by_key("; code += struct_def.name + " obj, "; code += "int vectorLocation, "; code += GenTypeNameDest(key_field->value.type); code += " key, ByteBuffer bb) {\n"; if (IsString(key_field->value.type)) { code += " byte[] byteKey = "; code += "key.getBytes(java.nio.charset.StandardCharsets.UTF_8);\n"; } code += " int span = "; code += "bb.getInt(vectorLocation - 4);\n"; code += " int start = 0;\n"; code += " while (span != 0) {\n"; code += " int middle = span / 2;\n"; code += GenLookupKeyGetter(key_field); code += " if (comp > 0) {\n"; code += " span = middle;\n"; code += " } else if (comp < 0) {\n"; code += " middle++;\n"; code += " start += middle;\n"; code += " span -= middle;\n"; code += " } else {\n"; code += " return "; code += "(obj == null ? new " + struct_def.name + "() : obj)"; code += ".__assign(tableOffset, bb);\n"; code += " }\n }\n"; code += " return null;\n"; code += " }\n"; } GenVectorAccessObject(struct_def, code_ptr); code += "}"; code += "\n\n"; } std::string GenOptionalScalarCheck(FieldDef &field) const { if (!field.IsScalarOptional()) return ""; return " public boolean has" + MakeCamel(field.name, true) + "() { return 0 != __offset(" + NumToString(field.value.offset) + "); }\n"; } void GenVectorAccessObject(StructDef &struct_def, std::string *code_ptr) const { auto &code = *code_ptr; // Generate a vector of structs accessor class. code += "\n"; code += " "; if (!struct_def.attributes.Lookup("private")) code += "public "; code += "static "; code += "final "; code += "class Vector extends "; code += "BaseVector {\n"; // Generate the __assign method that sets the field in a pre-existing // accessor object. This is to allow object reuse. std::string method_indent = " "; code += method_indent + "public Vector "; code += "__assign(int _vector, int _element_size, ByteBuffer _bb) { "; code += "__reset(_vector, _element_size, _bb); return this; }\n\n"; auto type_name = struct_def.name; auto method_start = method_indent + "public " + type_name + " get"; // Generate the accessors that don't do object reuse. code += method_start + "(int j) { return get"; code += "(new " + type_name + "(), j); }\n"; code += method_start + "(" + type_name + " obj, int j) { "; code += " return obj.__assign("; std::string index = "__element(j)"; code += struct_def.fixed ? index : "__indirect(" + index + ", bb)"; code += ", bb); }\n"; // See if we should generate a by-key accessor. if (!struct_def.fixed) { auto &fields = struct_def.fields.vec; for (auto kit = fields.begin(); kit != fields.end(); ++kit) { auto &key_field = **kit; if (key_field.key) { auto nullable_annotation = parser_.opts.gen_nullable ? "@Nullable " : ""; code += method_indent + nullable_annotation; code += "public " + type_name + " "; code += "getByKey("; code += GenTypeNameDest(key_field.value.type) + " key) { "; code += " return __lookup_by_key(null, "; code += "__vector(), key, "; code += "bb); "; code += "}\n"; code += method_indent + nullable_annotation; code += "public " + type_name + " "; code += "getByKey("; code += type_name + " obj, "; code += GenTypeNameDest(key_field.value.type) + " key) { "; code += " return __lookup_by_key(obj, "; code += "__vector(), key, "; code += "bb); "; code += "}\n"; break; } } } code += " }\n"; } // This tracks the current namespace used to determine if a type need to be // prefixed by its namespace const Namespace *cur_name_space_; }; } // namespace java bool GenerateJava(const Parser &parser, const std::string &path, const std::string &file_name) { java::JavaGenerator generator(parser, path, file_name); return generator.generate(); } } // namespace flatbuffers