/* * Copyright 2014 Google Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // independent from idl_parser, since this code is not needed for most clients #include "idl_gen_cpp.h" #include #include #include #include #include #include "flatbuffers/base.h" #include "flatbuffers/code_generators.h" #include "flatbuffers/flatbuffers.h" #include "flatbuffers/flatc.h" #include "flatbuffers/idl.h" #include "flatbuffers/util.h" namespace flatbuffers { // Make numerical literal with type-suffix. // This function is only needed for C++! Other languages do not need it. static inline std::string NumToStringCpp(std::string val, BaseType type) { // Avoid issues with -2147483648, -9223372036854775808. switch (type) { case BASE_TYPE_INT: return (val != "-2147483648") ? val : ("(-2147483647 - 1)"); case BASE_TYPE_ULONG: return (val == "0") ? val : (val + "ULL"); case BASE_TYPE_LONG: if (val == "-9223372036854775808") return "(-9223372036854775807LL - 1LL)"; else return (val == "0") ? val : (val + "LL"); default: return val; } } static std::string GenIncludeGuard(const std::string &file_name, const Namespace &name_space, const std::string &postfix = "") { // Generate include guard. std::string guard = file_name; // Remove any non-alpha-numeric characters that may appear in a filename. struct IsAlnum { bool operator()(char c) const { return !is_alnum(c); } }; guard.erase(std::remove_if(guard.begin(), guard.end(), IsAlnum()), guard.end()); guard = "FLATBUFFERS_GENERATED_" + guard; guard += "_"; // For further uniqueness, also add the namespace. for (const std::string &component : name_space.components) { guard += component + "_"; } // Anything extra to add to the guard? if (!postfix.empty()) { guard += postfix + "_"; } guard += "H_"; std::transform(guard.begin(), guard.end(), guard.begin(), CharToUpper); return guard; } static bool IsVectorOfPointers(const FieldDef &field) { const auto &type = field.value.type; const auto &vector_type = type.VectorType(); return IsVector(type) && vector_type.base_type == BASE_TYPE_STRUCT && !vector_type.struct_def->fixed && !field.native_inline; } static bool IsPointer(const FieldDef &field) { return field.value.type.base_type == BASE_TYPE_STRUCT && !IsStruct(field.value.type); } namespace cpp { enum CppStandard { CPP_STD_X0 = 0, CPP_STD_11, CPP_STD_17 }; // Define a style of 'struct' constructor if it has 'Array' fields. enum GenArrayArgMode { kArrayArgModeNone, // don't generate initialization args kArrayArgModeSpanStatic, // generate ::flatbuffers::span }; // Extension of IDLOptions for cpp-generator. struct IDLOptionsCpp : public IDLOptions { // All fields start with 'g_' prefix to distinguish from the base IDLOptions. CppStandard g_cpp_std; // Base version of C++ standard. bool g_only_fixed_enums; // Generate underlaying type for all enums. IDLOptionsCpp(const IDLOptions &opts) : IDLOptions(opts), g_cpp_std(CPP_STD_11), g_only_fixed_enums(true) {} }; // Iterates over all the fields of the object first by Offset type (Offset64 // before Offset32) and then by definition order. static void ForAllFieldsOrderedByOffset( const StructDef &object, std::function func) { // Loop over all the fields and call the func on all offset64 fields. for (const FieldDef *field_def : object.fields.vec) { if (field_def->offset64) { func(field_def); } } // Loop over all the fields a second time and call the func on all offset // fields. for (const FieldDef *field_def : object.fields.vec) { if (!field_def->offset64) { func(field_def); } } } class CppGenerator : public BaseGenerator { public: CppGenerator(const Parser &parser, const std::string &path, const std::string &file_name, IDLOptionsCpp opts) : BaseGenerator(parser, path, file_name, "", "::", "h"), cur_name_space_(nullptr), opts_(opts), float_const_gen_("std::numeric_limits::", "std::numeric_limits::", "quiet_NaN()", "infinity()") { static const char *const keywords[] = { "alignas", "alignof", "and", "and_eq", "asm", "atomic_cancel", "atomic_commit", "atomic_noexcept", "auto", "bitand", "bitor", "bool", "break", "case", "catch", "char", "char16_t", "char32_t", "class", "compl", "concept", "const", "constexpr", "const_cast", "continue", "co_await", "co_return", "co_yield", "decltype", "default", "delete", "do", "double", "dynamic_cast", "else", "enum", "explicit", "export", "extern", "false", "float", "for", "friend", "goto", "if", "import", "inline", "int", "long", "module", "mutable", "namespace", "new", "noexcept", "not", "not_eq", "nullptr", "operator", "or", "or_eq", "private", "protected", "public", "register", "reinterpret_cast", "requires", "return", "short", "signed", "sizeof", "static", "static_assert", "static_cast", "struct", "switch", "synchronized", "template", "this", "thread_local", "throw", "true", "try", "typedef", "typeid", "typename", "union", "unsigned", "using", "virtual", "void", "volatile", "wchar_t", "while", "xor", "xor_eq", nullptr, }; for (auto kw = keywords; *kw; kw++) keywords_.insert(*kw); } // Adds code to check that the included flatbuffers.h is of the same version // as the generated code. This check currently looks for exact version match, // as we would guarantee that they are compatible, but in theory a newer // version of flatbuffers.h should work with a old code gen if we do proper // backwards support. void GenFlatbuffersVersionCheck() { code_ += "// Ensure the included flatbuffers.h is the same version as when this " "file was"; code_ += "// generated, otherwise it may not be compatible."; code_ += "static_assert(FLATBUFFERS_VERSION_MAJOR == " + std::to_string(FLATBUFFERS_VERSION_MAJOR) + " &&"; code_ += " FLATBUFFERS_VERSION_MINOR == " + std::to_string(FLATBUFFERS_VERSION_MINOR) + " &&"; code_ += " FLATBUFFERS_VERSION_REVISION == " + std::to_string(FLATBUFFERS_VERSION_REVISION) + ","; code_ += " \"Non-compatible flatbuffers version included\");"; } void GenIncludeDependencies() { if (opts_.generate_object_based_api) { for (const std::string &native_included_file : parser_.native_included_files_) { code_ += "#include \"" + native_included_file + "\""; } } // Get the directly included file of the file being parsed. std::vector included_files(parser_.GetIncludedFiles()); // We are safe to sort them alphabetically, since there shouldn't be any // interdependence between them. std::stable_sort(included_files.begin(), included_files.end()); for (const IncludedFile &included_file : included_files) { // Get the name of the included file as defined by the schema, and strip // the .fbs extension. const std::string name_without_ext = StripExtension(included_file.schema_name); // If we are told to keep the prefix of the included schema, leave it // unchanged, otherwise strip the leading path off so just the "basename" // of the include is retained. const std::string basename = opts_.keep_prefix ? name_without_ext : StripPath(name_without_ext); code_ += "#include \"" + GeneratedFileName(opts_.include_prefix, basename, opts_) + "\""; } if (!parser_.native_included_files_.empty() || !included_files.empty()) { code_ += ""; } } void MarkIf64BitBuilderIsNeeded() { if (needs_64_bit_builder_) { return; } for (auto t : parser_.structs_.vec) { if (t == nullptr) continue; for (auto f : t->fields.vec) { if (f == nullptr) continue; if (f->offset64) { needs_64_bit_builder_ = true; break; } } } } std::string GetBuilder() { return std::string("::flatbuffers::FlatBufferBuilder") + (needs_64_bit_builder_ ? "64" : ""); } void GenExtraIncludes() { for (const std::string &cpp_include : opts_.cpp_includes) { code_ += "#include \"" + cpp_include + "\""; } if (!opts_.cpp_includes.empty()) { code_ += ""; } } void GenEmbeddedIncludes() { if (parser_.opts.binary_schema_gen_embed && parser_.root_struct_def_) { const std::string file_path = GeneratedFileName(opts_.include_prefix, file_name_ + "_bfbs", opts_); code_ += "// For access to the binary schema that produced this file."; code_ += "#include \"" + file_path + "\""; code_ += ""; } } std::string EscapeKeyword(const std::string &name) const { return keywords_.find(name) == keywords_.end() ? name : name + "_"; } std::string Name(const FieldDef &field) const { // the union type field suffix is immutable. static size_t union_suffix_len = strlen(UnionTypeFieldSuffix()); const bool is_union_type = field.value.type.base_type == BASE_TYPE_UTYPE; // early return if no case transformation required if (opts_.cpp_object_api_field_case_style == IDLOptions::CaseStyle_Unchanged) return EscapeKeyword(field.name); std::string name = field.name; // do not change the case style of the union type field suffix if (is_union_type) { FLATBUFFERS_ASSERT(name.length() > union_suffix_len); name.erase(name.length() - union_suffix_len, union_suffix_len); } if (opts_.cpp_object_api_field_case_style == IDLOptions::CaseStyle_Upper) name = ConvertCase(name, Case::kUpperCamel); else if (opts_.cpp_object_api_field_case_style == IDLOptions::CaseStyle_Lower) name = ConvertCase(name, Case::kLowerCamel); // restore the union field type suffix if (is_union_type) name.append(UnionTypeFieldSuffix(), union_suffix_len); return EscapeKeyword(name); } std::string Name(const Definition &def) const { return EscapeKeyword(def.name); } std::string Name(const EnumVal &ev) const { return EscapeKeyword(ev.name); } bool generate_bfbs_embed() { code_.Clear(); code_ += "// " + std::string(FlatBuffersGeneratedWarning()) + "\n\n"; // If we don't have a root struct definition, if (!parser_.root_struct_def_) { // put a comment in the output why there is no code generated. code_ += "// Binary schema not generated, no root struct found"; } else { auto &struct_def = *parser_.root_struct_def_; const auto include_guard = GenIncludeGuard(file_name_, *struct_def.defined_namespace, "bfbs"); code_ += "#ifndef " + include_guard; code_ += "#define " + include_guard; code_ += ""; if (parser_.opts.gen_nullable) { code_ += "#pragma clang system_header\n\n"; } code_ += "#include \"flatbuffers/flatbuffers.h\""; code_ += ""; GenFlatbuffersVersionCheck(); code_ += ""; SetNameSpace(struct_def.defined_namespace); auto name = Name(struct_def); code_.SetValue("STRUCT_NAME", name); // Create code to return the binary schema data. auto binary_schema_hex_text = BufferToHexText(parser_.builder_.GetBufferPointer(), parser_.builder_.GetSize(), 105, " ", ""); code_ += "struct {{STRUCT_NAME}}BinarySchema {"; code_ += " static const uint8_t *data() {"; code_ += " // Buffer containing the binary schema."; code_ += " static const uint8_t bfbsData[" + NumToString(parser_.builder_.GetSize()) + "] = {"; code_ += binary_schema_hex_text; code_ += " };"; code_ += " return bfbsData;"; code_ += " }"; code_ += " static size_t size() {"; code_ += " return " + NumToString(parser_.builder_.GetSize()) + ";"; code_ += " }"; code_ += " const uint8_t *begin() {"; code_ += " return data();"; code_ += " }"; code_ += " const uint8_t *end() {"; code_ += " return data() + size();"; code_ += " }"; code_ += "};"; code_ += ""; if (cur_name_space_) SetNameSpace(nullptr); // Close the include guard. code_ += "#endif // " + include_guard; } // We are just adding "_bfbs" to the generated filename. const auto file_path = GeneratedFileName(path_, file_name_ + "_bfbs", opts_); const auto final_code = code_.ToString(); return SaveFile(file_path.c_str(), final_code, false); } // Iterate through all definitions we haven't generate code for (enums, // structs, and tables) and output them to a single file. bool generate() { // Check if we require a 64-bit flatbuffer builder. MarkIf64BitBuilderIsNeeded(); code_.Clear(); code_ += "// " + std::string(FlatBuffersGeneratedWarning()) + "\n\n"; const auto include_guard = GenIncludeGuard(file_name_, *parser_.current_namespace_); code_ += "#ifndef " + include_guard; code_ += "#define " + include_guard; code_ += ""; if (opts_.gen_nullable) { code_ += "#pragma clang system_header\n\n"; } code_ += "#include \"flatbuffers/flatbuffers.h\""; if (parser_.uses_flexbuffers_) { code_ += "#include \"flatbuffers/flexbuffers.h\""; code_ += "#include \"flatbuffers/flex_flat_util.h\""; } code_ += ""; GenFlatbuffersVersionCheck(); code_ += ""; if (opts_.include_dependence_headers) { GenIncludeDependencies(); } GenExtraIncludes(); GenEmbeddedIncludes(); FLATBUFFERS_ASSERT(!cur_name_space_); // Generate forward declarations for all structs/tables, since they may // have circular references. for (const auto &struct_def : parser_.structs_.vec) { if (!struct_def->generated) { SetNameSpace(struct_def->defined_namespace); code_ += "struct " + Name(*struct_def) + ";"; if (!struct_def->fixed) { code_ += "struct " + Name(*struct_def) + "Builder;"; } if (opts_.generate_object_based_api) { auto nativeName = NativeName(Name(*struct_def), struct_def, opts_); if (!struct_def->fixed) { code_ += "struct " + nativeName + ";"; } } code_ += ""; } } // Generate forward declarations for all equal operators if (opts_.generate_object_based_api && opts_.gen_compare) { for (const auto &struct_def : parser_.structs_.vec) { if (!struct_def->generated) { SetNameSpace(struct_def->defined_namespace); auto nativeName = NativeName(Name(*struct_def), struct_def, opts_); code_ += "bool operator==(const " + nativeName + " &lhs, const " + nativeName + " &rhs);"; code_ += "bool operator!=(const " + nativeName + " &lhs, const " + nativeName + " &rhs);"; } } code_ += ""; } // Generate preablmle code for mini reflection. if (opts_.mini_reflect != IDLOptions::kNone) { // To break cyclic dependencies, first pre-declare all tables/structs. for (const auto &struct_def : parser_.structs_.vec) { if (!struct_def->generated) { SetNameSpace(struct_def->defined_namespace); GenMiniReflectPre(struct_def); } } } // Generate code for all the enum declarations. for (const auto &enum_def : parser_.enums_.vec) { if (!enum_def->generated) { SetNameSpace(enum_def->defined_namespace); GenEnum(*enum_def); } } // Generate code for all structs, then all tables. for (const auto &struct_def : parser_.structs_.vec) { if (struct_def->fixed && !struct_def->generated) { SetNameSpace(struct_def->defined_namespace); GenStruct(*struct_def); } } for (const auto &struct_def : parser_.structs_.vec) { if (!struct_def->fixed && !struct_def->generated) { SetNameSpace(struct_def->defined_namespace); GenTable(*struct_def); } } for (const auto &struct_def : parser_.structs_.vec) { if (!struct_def->fixed && !struct_def->generated) { SetNameSpace(struct_def->defined_namespace); GenTablePost(*struct_def); } } // Generate code for union verifiers. for (const auto &enum_def : parser_.enums_.vec) { if (enum_def->is_union && !enum_def->generated) { SetNameSpace(enum_def->defined_namespace); GenUnionPost(*enum_def); } } // Generate code for mini reflection. if (opts_.mini_reflect != IDLOptions::kNone) { // Then the unions/enums that may refer to them. for (const auto &enum_def : parser_.enums_.vec) { if (!enum_def->generated) { SetNameSpace(enum_def->defined_namespace); GenMiniReflect(nullptr, enum_def); } } // Then the full tables/structs. for (const auto &struct_def : parser_.structs_.vec) { if (!struct_def->generated) { SetNameSpace(struct_def->defined_namespace); GenMiniReflect(struct_def, nullptr); } } } // Generate convenient global helper functions: if (parser_.root_struct_def_) { auto &struct_def = *parser_.root_struct_def_; SetNameSpace(struct_def.defined_namespace); auto name = Name(struct_def); auto qualified_name = cur_name_space_->GetFullyQualifiedName(name); auto cpp_name = TranslateNameSpace(qualified_name); code_.SetValue("STRUCT_NAME", name); code_.SetValue("CPP_NAME", cpp_name); code_.SetValue("NULLABLE_EXT", NullableExtension()); code_.SetValue( "SIZE_T", needs_64_bit_builder_ ? ",::flatbuffers::uoffset64_t" : ""); // The root datatype accessor: code_ += "inline \\"; code_ += "const {{CPP_NAME}} *{{NULLABLE_EXT}}Get{{STRUCT_NAME}}(const void " "*buf) {"; code_ += " return ::flatbuffers::GetRoot<{{CPP_NAME}}>(buf);"; code_ += "}"; code_ += ""; code_ += "inline \\"; code_ += "const {{CPP_NAME}} " "*{{NULLABLE_EXT}}GetSizePrefixed{{STRUCT_NAME}}(const void " "*buf) {"; code_ += " return " "::flatbuffers::GetSizePrefixedRoot<{{CPP_NAME}}{{SIZE_T}}>(buf);"; code_ += "}"; code_ += ""; if (opts_.mutable_buffer) { code_ += "inline \\"; code_ += "{{STRUCT_NAME}} *GetMutable{{STRUCT_NAME}}(void *buf) {"; code_ += " return ::flatbuffers::GetMutableRoot<{{STRUCT_NAME}}>(buf);"; code_ += "}"; code_ += ""; code_ += "inline \\"; code_ += "{{CPP_NAME}} " "*{{NULLABLE_EXT}}GetMutableSizePrefixed{{STRUCT_NAME}}(void " "*buf) {"; code_ += " return " "::flatbuffers::GetMutableSizePrefixedRoot<{{CPP_NAME}}{{SIZE_T}}>(" "buf);"; code_ += "}"; code_ += ""; } if (parser_.file_identifier_.length()) { // Return the identifier code_ += "inline const char *{{STRUCT_NAME}}Identifier() {"; code_ += " return \"" + parser_.file_identifier_ + "\";"; code_ += "}"; code_ += ""; // Check if a buffer has the identifier. code_ += "inline \\"; code_ += "bool {{STRUCT_NAME}}BufferHasIdentifier(const void *buf) {"; code_ += " return ::flatbuffers::BufferHasIdentifier("; code_ += " buf, {{STRUCT_NAME}}Identifier());"; code_ += "}"; code_ += ""; // Check if a size-prefixed buffer has the identifier. code_ += "inline \\"; code_ += "bool SizePrefixed{{STRUCT_NAME}}BufferHasIdentifier(const void " "*buf) {"; code_ += " return ::flatbuffers::BufferHasIdentifier("; code_ += " buf, {{STRUCT_NAME}}Identifier(), true);"; code_ += "}"; code_ += ""; } // The root verifier. if (parser_.file_identifier_.length()) { code_.SetValue("ID", name + "Identifier()"); } else { code_.SetValue("ID", "nullptr"); } code_ += "inline bool Verify{{STRUCT_NAME}}Buffer("; code_ += " ::flatbuffers::Verifier &verifier) {"; code_ += " return verifier.VerifyBuffer<{{CPP_NAME}}>({{ID}});"; code_ += "}"; code_ += ""; code_ += "inline bool VerifySizePrefixed{{STRUCT_NAME}}Buffer("; code_ += " ::flatbuffers::Verifier &verifier) {"; code_ += " return " "verifier.VerifySizePrefixedBuffer<{{CPP_NAME}}{{SIZE_T}}>({{ID}});"; code_ += "}"; code_ += ""; if (parser_.file_extension_.length()) { // Return the extension code_ += "inline const char *{{STRUCT_NAME}}Extension() {"; code_ += " return \"" + parser_.file_extension_ + "\";"; code_ += "}"; code_ += ""; } // Finish a buffer with a given root object: code_ += "inline void Finish{{STRUCT_NAME}}Buffer("; code_ += " " + GetBuilder() + " &fbb,"; code_ += " ::flatbuffers::Offset<{{CPP_NAME}}> root) {"; if (parser_.file_identifier_.length()) code_ += " fbb.Finish(root, {{STRUCT_NAME}}Identifier());"; else code_ += " fbb.Finish(root);"; code_ += "}"; code_ += ""; code_ += "inline void FinishSizePrefixed{{STRUCT_NAME}}Buffer("; code_ += " " + GetBuilder() + " &fbb,"; code_ += " ::flatbuffers::Offset<{{CPP_NAME}}> root) {"; if (parser_.file_identifier_.length()) code_ += " fbb.FinishSizePrefixed(root, {{STRUCT_NAME}}Identifier());"; else code_ += " fbb.FinishSizePrefixed(root);"; code_ += "}"; code_ += ""; if (opts_.generate_object_based_api) { // A convenient root unpack function. auto native_name = WrapNativeNameInNameSpace(struct_def, opts_); code_.SetValue("UNPACK_RETURN", GenTypeNativePtr(native_name, nullptr, false)); code_.SetValue("UNPACK_TYPE", GenTypeNativePtr(native_name, nullptr, true)); code_ += "inline {{UNPACK_RETURN}} UnPack{{STRUCT_NAME}}("; code_ += " const void *buf,"; code_ += " const ::flatbuffers::resolver_function_t *res = nullptr) {"; code_ += " return {{UNPACK_TYPE}}\\"; code_ += "(Get{{STRUCT_NAME}}(buf)->UnPack(res));"; code_ += "}"; code_ += ""; code_ += "inline {{UNPACK_RETURN}} UnPackSizePrefixed{{STRUCT_NAME}}("; code_ += " const void *buf,"; code_ += " const ::flatbuffers::resolver_function_t *res = nullptr) {"; code_ += " return {{UNPACK_TYPE}}\\"; code_ += "(GetSizePrefixed{{STRUCT_NAME}}(buf)->UnPack(res));"; code_ += "}"; code_ += ""; } } if (cur_name_space_) SetNameSpace(nullptr); // Close the include guard. code_ += "#endif // " + include_guard; const auto file_path = GeneratedFileName(path_, file_name_, opts_); const auto final_code = code_.ToString(); // Save the file and optionally generate the binary schema code. return SaveFile(file_path.c_str(), final_code, false) && (!parser_.opts.binary_schema_gen_embed || generate_bfbs_embed()); } private: CodeWriter code_; std::unordered_set keywords_; // This tracks the current namespace so we can insert namespace declarations. const Namespace *cur_name_space_; const IDLOptionsCpp opts_; const TypedFloatConstantGenerator float_const_gen_; bool needs_64_bit_builder_ = false; const Namespace *CurrentNameSpace() const { return cur_name_space_; } // Translates a qualified name in flatbuffer text format to the same name in // the equivalent C++ namespace. static std::string TranslateNameSpace(const std::string &qualified_name) { std::string cpp_qualified_name = qualified_name; size_t start_pos = 0; while ((start_pos = cpp_qualified_name.find('.', start_pos)) != std::string::npos) { cpp_qualified_name.replace(start_pos, 1, "::"); } return cpp_qualified_name; } bool TypeHasKey(const Type &type) { if (type.base_type != BASE_TYPE_STRUCT) { return false; } for (auto &field : type.struct_def->fields.vec) { if (field->key) { return true; } } return false; } bool VectorElementUserFacing(const Type &type) const { return (opts_.scoped_enums && IsEnum(type)) || (opts_.g_cpp_std >= cpp::CPP_STD_17 && opts_.g_only_fixed_enums && IsEnum(type)); } void GenComment(const std::vector &dc, const char *prefix = "") { std::string text; ::flatbuffers::GenComment(dc, &text, nullptr, prefix); code_ += text + "\\"; } // Return a C++ type from the table in idl.h std::string GenTypeBasic(const Type &type, bool user_facing_type) const { if (user_facing_type) { if (type.enum_def) return WrapInNameSpace(*type.enum_def); if (type.base_type == BASE_TYPE_BOOL) return "bool"; } return StringOf(type.base_type); } // Return a C++ pointer type, specialized to the actual struct/table types, // and vector element types. std::string GenTypePointer(const Type &type) const { switch (type.base_type) { case BASE_TYPE_STRING: { return "::flatbuffers::String"; } case BASE_TYPE_VECTOR64: case BASE_TYPE_VECTOR: { const auto type_name = GenTypeWire( type.VectorType(), "", VectorElementUserFacing(type.VectorType())); return "::flatbuffers::Vector" + std::string((type.base_type == BASE_TYPE_VECTOR64) ? "64<" : "<") + type_name + ">"; } case BASE_TYPE_STRUCT: { return WrapInNameSpace(*type.struct_def); } case BASE_TYPE_UNION: // fall through default: { return "void"; } } } // Return a C++ type for any type (scalar/pointer) specifically for // building a flatbuffer. std::string GenTypeWire(const Type &type, const char *postfix, bool user_facing_type, bool _64_bit_offset = false) const { if (IsScalar(type.base_type)) { return GenTypeBasic(type, user_facing_type) + postfix; } else if (IsStruct(type)) { return "const " + GenTypePointer(type) + " *"; } else { return "::flatbuffers::Offset" + std::string(_64_bit_offset ? "64" : "") + "<" + GenTypePointer(type) + ">" + postfix; } } // Return a C++ type for any type (scalar/pointer) that reflects its // serialized size. std::string GenTypeSize(const Type &type) const { if (IsScalar(type.base_type)) { return GenTypeBasic(type, false); } else if (IsStruct(type)) { return GenTypePointer(type); } else { return "::flatbuffers::uoffset_t"; } } std::string NullableExtension() { return opts_.gen_nullable ? " _Nullable " : ""; } static std::string NativeName(const std::string &name, const StructDef *sd, const IDLOptions &opts) { return sd && !sd->fixed ? opts.object_prefix + name + opts.object_suffix : name; } std::string WrapNativeNameInNameSpace(const StructDef &struct_def, const IDLOptions &opts) { return WrapInNameSpace(struct_def.defined_namespace, NativeName(Name(struct_def), &struct_def, opts)); } const std::string &PtrType(const FieldDef *field) { auto attr = field ? field->attributes.Lookup("cpp_ptr_type") : nullptr; return attr ? attr->constant : opts_.cpp_object_api_pointer_type; } const std::string NativeString(const FieldDef *field) { auto attr = field ? field->attributes.Lookup("cpp_str_type") : nullptr; auto &ret = attr ? attr->constant : opts_.cpp_object_api_string_type; if (ret.empty()) { return "std::string"; } return ret; } bool FlexibleStringConstructor(const FieldDef *field) { auto attr = field != nullptr && (field->attributes.Lookup("cpp_str_flex_ctor") != nullptr); auto ret = attr ? attr : opts_.cpp_object_api_string_flexible_constructor; return ret && NativeString(field) != "std::string"; // Only for custom string types. } std::string GenTypeNativePtr(const std::string &type, const FieldDef *field, bool is_constructor) { auto &ptr_type = PtrType(field); if (ptr_type != "naked") { return (ptr_type != "default_ptr_type" ? ptr_type : opts_.cpp_object_api_pointer_type) + "<" + type + ">"; } else if (is_constructor) { return ""; } else { return type + " *"; } } std::string GenPtrGet(const FieldDef &field) { auto cpp_ptr_type_get = field.attributes.Lookup("cpp_ptr_type_get"); if (cpp_ptr_type_get) return cpp_ptr_type_get->constant; auto &ptr_type = PtrType(&field); return ptr_type == "naked" ? "" : ".get()"; } std::string GenOptionalNull() { return "::flatbuffers::nullopt"; } std::string GenOptionalDecl(const Type &type) { return "::flatbuffers::Optional<" + GenTypeBasic(type, true) + ">"; } std::string GenTypeNative(const Type &type, bool invector, const FieldDef &field, bool forcopy = false) { switch (type.base_type) { case BASE_TYPE_STRING: { return NativeString(&field); } case BASE_TYPE_VECTOR64: case BASE_TYPE_VECTOR: { const auto type_name = GenTypeNative(type.VectorType(), true, field); if (type.struct_def && type.struct_def->attributes.Lookup("native_custom_alloc")) { auto native_custom_alloc = type.struct_def->attributes.Lookup("native_custom_alloc"); return "std::vector<" + type_name + "," + native_custom_alloc->constant + "<" + type_name + ">>"; } else { return "std::vector<" + type_name + ">"; } } case BASE_TYPE_STRUCT: { auto type_name = WrapInNameSpace(*type.struct_def); if (IsStruct(type)) { auto native_type = type.struct_def->attributes.Lookup("native_type"); if (native_type) { type_name = native_type->constant; } if (invector || field.native_inline || forcopy) { return type_name; } else { return GenTypeNativePtr(type_name, &field, false); } } else { const auto nn = WrapNativeNameInNameSpace(*type.struct_def, opts_); return (forcopy || field.native_inline) ? nn : GenTypeNativePtr(nn, &field, false); } } case BASE_TYPE_UNION: { auto type_name = WrapInNameSpace(*type.enum_def); return type_name + "Union"; } default: { return field.IsScalarOptional() ? GenOptionalDecl(type) : GenTypeBasic(type, true); } } } // Return a C++ type for any type (scalar/pointer) specifically for // using a flatbuffer. std::string GenTypeGet(const Type &type, const char *afterbasic, const char *beforeptr, const char *afterptr, bool user_facing_type) { if (IsScalar(type.base_type)) { return GenTypeBasic(type, user_facing_type) + afterbasic; } else if (IsArray(type)) { auto element_type = type.VectorType(); // Check if enum arrays are used in C++ without specifying --scoped-enums if (IsEnum(element_type) && !opts_.g_only_fixed_enums) { LogCompilerError( "--scoped-enums must be enabled to use enum arrays in C++"); FLATBUFFERS_ASSERT(true); } return beforeptr + (IsScalar(element_type.base_type) ? GenTypeBasic(element_type, user_facing_type) : GenTypePointer(element_type)) + afterptr; } else { return beforeptr + GenTypePointer(type) + afterptr; } } std::string GenTypeSpan(const Type &type, bool immutable, size_t extent) { // Generate "::flatbuffers::span". FLATBUFFERS_ASSERT(IsSeries(type) && "unexpected type"); auto element_type = type.VectorType(); std::string text = "::flatbuffers::span<"; text += immutable ? "const " : ""; if (IsScalar(element_type.base_type)) { text += GenTypeBasic(element_type, IsEnum(element_type)); } else { switch (element_type.base_type) { case BASE_TYPE_STRING: { text += "char"; break; } case BASE_TYPE_STRUCT: { FLATBUFFERS_ASSERT(type.struct_def); text += WrapInNameSpace(*type.struct_def); break; } default: FLATBUFFERS_ASSERT(false && "unexpected element's type"); break; } } if (extent != dynamic_extent) { text += ", "; text += NumToString(extent); } text += "> "; return text; } std::string GenEnumValDecl(const EnumDef &enum_def, const std::string &enum_val) const { return opts_.prefixed_enums ? Name(enum_def) + "_" + enum_val : enum_val; } std::string GetEnumValUse(const EnumDef &enum_def, const EnumVal &enum_val) const { if (opts_.scoped_enums) { return Name(enum_def) + "::" + Name(enum_val); } else if (opts_.prefixed_enums) { return Name(enum_def) + "_" + Name(enum_val); } else { return Name(enum_val); } } std::string StripUnionType(const std::string &name) { return name.substr(0, name.size() - strlen(UnionTypeFieldSuffix())); } std::string GetUnionElement(const EnumVal &ev, bool native_type, const IDLOptions &opts) { if (ev.union_type.base_type == BASE_TYPE_STRUCT) { std::string name = ev.union_type.struct_def->name; if (native_type) { name = NativeName(std::move(name), ev.union_type.struct_def, opts); } return WrapInNameSpace(ev.union_type.struct_def->defined_namespace, name); } else if (IsString(ev.union_type)) { return native_type ? "std::string" : "::flatbuffers::String"; } else { FLATBUFFERS_ASSERT(false); return Name(ev); } } std::string UnionVerifySignature(const EnumDef &enum_def) { return "bool Verify" + Name(enum_def) + "(::flatbuffers::Verifier &verifier, const void *obj, " + Name(enum_def) + " type)"; } std::string UnionVectorVerifySignature(const EnumDef &enum_def) { const std::string name = Name(enum_def); const std::string &type = opts_.scoped_enums ? name : "uint8_t"; return "bool Verify" + name + "Vector" + "(::flatbuffers::Verifier &verifier, " + "const ::flatbuffers::Vector<::flatbuffers::Offset> " "*values, " + "const ::flatbuffers::Vector<" + type + "> *types)"; } std::string UnionUnPackSignature(const EnumDef &enum_def, bool inclass) { return (inclass ? "static " : "") + std::string("void *") + (inclass ? "" : Name(enum_def) + "Union::") + "UnPack(const void *obj, " + Name(enum_def) + " type, const ::flatbuffers::resolver_function_t *resolver)"; } std::string UnionPackSignature(const EnumDef &enum_def, bool inclass) { return "::flatbuffers::Offset " + (inclass ? "" : Name(enum_def) + "Union::") + "Pack(" + GetBuilder() + " &_fbb, " + "const ::flatbuffers::rehasher_function_t *_rehasher" + (inclass ? " = nullptr" : "") + ") const"; } std::string TableCreateSignature(const StructDef &struct_def, bool predecl, const IDLOptions &opts) { return "::flatbuffers::Offset<" + Name(struct_def) + "> Create" + Name(struct_def) + "(" + GetBuilder() + " &_fbb, const " + NativeName(Name(struct_def), &struct_def, opts) + " *_o, const ::flatbuffers::rehasher_function_t *_rehasher" + (predecl ? " = nullptr" : "") + ")"; } std::string TablePackSignature(const StructDef &struct_def, bool inclass, const IDLOptions &opts) { return std::string(inclass ? "static " : "") + "::flatbuffers::Offset<" + Name(struct_def) + "> " + (inclass ? "" : Name(struct_def) + "::") + "Pack(" + GetBuilder() + " &_fbb, " + "const " + NativeName(Name(struct_def), &struct_def, opts) + "* _o, " + "const ::flatbuffers::rehasher_function_t *_rehasher" + (inclass ? " = nullptr" : "") + ")"; } std::string TableUnPackSignature(const StructDef &struct_def, bool inclass, const IDLOptions &opts) { return NativeName(Name(struct_def), &struct_def, opts) + " *" + (inclass ? "" : Name(struct_def) + "::") + "UnPack(const ::flatbuffers::resolver_function_t *_resolver" + (inclass ? " = nullptr" : "") + ") const"; } std::string TableUnPackToSignature(const StructDef &struct_def, bool inclass, const IDLOptions &opts) { return "void " + (inclass ? "" : Name(struct_def) + "::") + "UnPackTo(" + NativeName(Name(struct_def), &struct_def, opts) + " *" + "_o, const ::flatbuffers::resolver_function_t *_resolver" + (inclass ? " = nullptr" : "") + ") const"; } void GenMiniReflectPre(const StructDef *struct_def) { code_.SetValue("NAME", struct_def->name); code_ += "inline const ::flatbuffers::TypeTable *{{NAME}}TypeTable();"; code_ += ""; } void GenMiniReflect(const StructDef *struct_def, const EnumDef *enum_def) { code_.SetValue("NAME", struct_def ? struct_def->name : enum_def->name); code_.SetValue("SEQ_TYPE", struct_def ? (struct_def->fixed ? "ST_STRUCT" : "ST_TABLE") : (enum_def->is_union ? "ST_UNION" : "ST_ENUM")); auto num_fields = struct_def ? struct_def->fields.vec.size() : enum_def->size(); code_.SetValue("NUM_FIELDS", NumToString(num_fields)); std::vector names; std::vector types; if (struct_def) { for (const auto &field : struct_def->fields.vec) { names.push_back(Name(*field)); types.push_back(field->value.type); } } else { for (auto it = enum_def->Vals().begin(); it != enum_def->Vals().end(); ++it) { const auto &ev = **it; names.push_back(Name(ev)); types.push_back(enum_def->is_union ? ev.union_type : Type(enum_def->underlying_type)); } } std::string ts; std::vector type_refs; std::vector array_sizes; for (auto &type : types) { if (!ts.empty()) ts += ",\n "; auto is_vector = IsVector(type); auto is_array = IsArray(type); auto bt = is_vector || is_array ? type.element : type.base_type; auto et = IsScalar(bt) || bt == BASE_TYPE_STRING ? bt - BASE_TYPE_UTYPE + ET_UTYPE : ET_SEQUENCE; int ref_idx = -1; std::string ref_name = type.struct_def ? WrapInNameSpace(*type.struct_def) : type.enum_def ? WrapInNameSpace(*type.enum_def) : ""; if (!ref_name.empty()) { auto rit = type_refs.begin(); for (; rit != type_refs.end(); ++rit) { if (*rit == ref_name) { ref_idx = static_cast(rit - type_refs.begin()); break; } } if (rit == type_refs.end()) { ref_idx = static_cast(type_refs.size()); type_refs.push_back(ref_name); } } if (is_array) { array_sizes.push_back(type.fixed_length); } ts += "{ ::flatbuffers::" + std::string(ElementaryTypeNames()[et]) + ", " + NumToString(is_vector || is_array) + ", " + NumToString(ref_idx) + " }"; } std::string rs; for (auto &type_ref : type_refs) { if (!rs.empty()) rs += ",\n "; rs += type_ref + "TypeTable"; } std::string as; for (auto &array_size : array_sizes) { as += NumToString(array_size); as += ", "; } std::string ns; for (auto &name : names) { if (!ns.empty()) ns += ",\n "; ns += "\"" + name + "\""; } std::string vs; const auto consecutive_enum_from_zero = enum_def && enum_def->MinValue()->IsZero() && ((enum_def->size() - 1) == enum_def->Distance()); if (enum_def && !consecutive_enum_from_zero) { for (auto it = enum_def->Vals().begin(); it != enum_def->Vals().end(); ++it) { const auto &ev = **it; if (!vs.empty()) vs += ", "; vs += NumToStringCpp(enum_def->ToString(ev), enum_def->underlying_type.base_type); } } else if (struct_def && struct_def->fixed) { for (const auto field : struct_def->fields.vec) { vs += NumToString(field->value.offset); vs += ", "; } vs += NumToString(struct_def->bytesize); } code_.SetValue("TYPES", ts); code_.SetValue("REFS", rs); code_.SetValue("ARRAYSIZES", as); code_.SetValue("NAMES", ns); code_.SetValue("VALUES", vs); code_ += "inline const ::flatbuffers::TypeTable *{{NAME}}TypeTable() {"; if (num_fields) { code_ += " static const ::flatbuffers::TypeCode type_codes[] = {"; code_ += " {{TYPES}}"; code_ += " };"; } if (!type_refs.empty()) { code_ += " static const ::flatbuffers::TypeFunction type_refs[] = {"; code_ += " {{REFS}}"; code_ += " };"; } if (!as.empty()) { code_ += " static const int16_t array_sizes[] = { {{ARRAYSIZES}} };"; } if (!vs.empty()) { // Problem with uint64_t values greater than 9223372036854775807ULL. code_ += " static const int64_t values[] = { {{VALUES}} };"; } auto has_names = num_fields && opts_.mini_reflect == IDLOptions::kTypesAndNames; if (has_names) { code_ += " static const char * const names[] = {"; code_ += " {{NAMES}}"; code_ += " };"; } code_ += " static const ::flatbuffers::TypeTable tt = {"; code_ += std::string(" ::flatbuffers::{{SEQ_TYPE}}, {{NUM_FIELDS}}, ") + (num_fields ? "type_codes, " : "nullptr, ") + (!type_refs.empty() ? "type_refs, " : "nullptr, ") + (!as.empty() ? "array_sizes, " : "nullptr, ") + (!vs.empty() ? "values, " : "nullptr, ") + (has_names ? "names" : "nullptr"); code_ += " };"; code_ += " return &tt;"; code_ += "}"; code_ += ""; } // Generate an enum declaration, // an enum string lookup table, // and an enum array of values void GenEnum(const EnumDef &enum_def) { code_.SetValue("ENUM_NAME", Name(enum_def)); code_.SetValue("BASE_TYPE", GenTypeBasic(enum_def.underlying_type, false)); GenComment(enum_def.doc_comment); code_ += (opts_.scoped_enums ? "enum class " : "enum ") + Name(enum_def) + "\\"; if (opts_.g_only_fixed_enums) { code_ += " : {{BASE_TYPE}}\\"; } code_ += " {"; code_.SetValue("SEP", ","); auto add_sep = false; for (const auto ev : enum_def.Vals()) { if (add_sep) code_ += "{{SEP}}"; GenComment(ev->doc_comment, " "); code_.SetValue("KEY", GenEnumValDecl(enum_def, Name(*ev))); code_.SetValue("VALUE", NumToStringCpp(enum_def.ToString(*ev), enum_def.underlying_type.base_type)); code_ += " {{KEY}} = {{VALUE}}\\"; add_sep = true; } if (opts_.cpp_minify_enums) { code_ += ""; code_ += "};"; return; } const EnumVal *minv = enum_def.MinValue(); const EnumVal *maxv = enum_def.MaxValue(); if (opts_.scoped_enums || opts_.prefixed_enums) { FLATBUFFERS_ASSERT(minv && maxv); code_.SetValue("SEP", ",\n"); // MIN & MAX are useless for bit_flags if (enum_def.attributes.Lookup("bit_flags")) { code_.SetValue("KEY", GenEnumValDecl(enum_def, "NONE")); code_.SetValue("VALUE", "0"); code_ += "{{SEP}} {{KEY}} = {{VALUE}}\\"; code_.SetValue("KEY", GenEnumValDecl(enum_def, "ANY")); code_.SetValue("VALUE", NumToStringCpp(enum_def.AllFlags(), enum_def.underlying_type.base_type)); code_ += "{{SEP}} {{KEY}} = {{VALUE}}\\"; } else if (opts_.emit_min_max_enum_values) { code_.SetValue("KEY", GenEnumValDecl(enum_def, "MIN")); code_.SetValue("VALUE", GenEnumValDecl(enum_def, Name(*minv))); code_ += "{{SEP}} {{KEY}} = {{VALUE}}\\"; code_.SetValue("KEY", GenEnumValDecl(enum_def, "MAX")); code_.SetValue("VALUE", GenEnumValDecl(enum_def, Name(*maxv))); code_ += "{{SEP}} {{KEY}} = {{VALUE}}\\"; } } code_ += ""; code_ += "};"; if (opts_.scoped_enums && enum_def.attributes.Lookup("bit_flags")) { code_ += "FLATBUFFERS_DEFINE_BITMASK_OPERATORS({{ENUM_NAME}}, {{BASE_TYPE}})"; } code_ += ""; GenEnumArray(enum_def); GenEnumStringTable(enum_def); // Generate type traits for unions to map from a type to union enum value. if (enum_def.is_union && !enum_def.uses_multiple_type_instances) { for (auto it = enum_def.Vals().begin(); it != enum_def.Vals().end(); ++it) { const auto &ev = **it; if (it == enum_def.Vals().begin()) { code_ += "template struct {{ENUM_NAME}}Traits {"; } else { auto name = GetUnionElement(ev, false, opts_); code_ += "template<> struct {{ENUM_NAME}}Traits<" + name + "> {"; } auto value = GetEnumValUse(enum_def, ev); code_ += " static const {{ENUM_NAME}} enum_value = " + value + ";"; code_ += "};"; code_ += ""; } } GenEnumObjectBasedAPI(enum_def); if (enum_def.is_union) { code_ += UnionVerifySignature(enum_def) + ";"; code_ += UnionVectorVerifySignature(enum_def) + ";"; code_ += ""; } } // Generate a union type and a trait type for it. void GenEnumObjectBasedAPI(const EnumDef &enum_def) { if (!(opts_.generate_object_based_api && enum_def.is_union)) { return; } code_.SetValue("NAME", Name(enum_def)); FLATBUFFERS_ASSERT(enum_def.Lookup("NONE")); code_.SetValue("NONE", GetEnumValUse(enum_def, *enum_def.Lookup("NONE"))); if (!enum_def.uses_multiple_type_instances) { for (auto it = enum_def.Vals().begin(); it != enum_def.Vals().end(); ++it) { const auto &ev = **it; if (it == enum_def.Vals().begin()) { code_ += "template struct {{NAME}}UnionTraits {"; } else { auto name = GetUnionElement(ev, true, opts_); code_ += "template<> struct {{NAME}}UnionTraits<" + name + "> {"; } auto value = GetEnumValUse(enum_def, ev); code_ += " static const {{ENUM_NAME}} enum_value = " + value + ";"; code_ += "};"; code_ += ""; } } code_ += "struct {{NAME}}Union {"; code_ += " {{NAME}} type;"; code_ += " void *value;"; code_ += ""; code_ += " {{NAME}}Union() : type({{NONE}}), value(nullptr) {}"; code_ += " {{NAME}}Union({{NAME}}Union&& u) FLATBUFFERS_NOEXCEPT :"; code_ += " type({{NONE}}), value(nullptr)"; code_ += " { std::swap(type, u.type); std::swap(value, u.value); }"; code_ += " {{NAME}}Union(const {{NAME}}Union &);"; code_ += " {{NAME}}Union &operator=(const {{NAME}}Union &u)"; code_ += " { {{NAME}}Union t(u); std::swap(type, t.type); std::swap(value, " "t.value); return *this; }"; code_ += " {{NAME}}Union &operator=({{NAME}}Union &&u) FLATBUFFERS_NOEXCEPT"; code_ += " { std::swap(type, u.type); std::swap(value, u.value); return " "*this; }"; code_ += " ~{{NAME}}Union() { Reset(); }"; code_ += ""; code_ += " void Reset();"; code_ += ""; if (!enum_def.uses_multiple_type_instances) { code_ += " template "; code_ += " void Set(T&& val) {"; code_ += " typedef typename std::remove_reference::type RT;"; code_ += " Reset();"; code_ += " type = {{NAME}}UnionTraits::enum_value;"; code_ += " if (type != {{NONE}}) {"; code_ += " value = new RT(std::forward(val));"; code_ += " }"; code_ += " }"; code_ += ""; } code_ += " " + UnionUnPackSignature(enum_def, true) + ";"; code_ += " " + UnionPackSignature(enum_def, true) + ";"; code_ += ""; for (const auto ev : enum_def.Vals()) { if (ev->IsZero()) { continue; } const auto native_type = GetUnionElement(*ev, true, opts_); code_.SetValue("NATIVE_TYPE", native_type); code_.SetValue("NATIVE_NAME", Name(*ev)); code_.SetValue("NATIVE_ID", GetEnumValUse(enum_def, *ev)); code_ += " {{NATIVE_TYPE}} *As{{NATIVE_NAME}}() {"; code_ += " return type == {{NATIVE_ID}} ?"; code_ += " reinterpret_cast<{{NATIVE_TYPE}} *>(value) : nullptr;"; code_ += " }"; code_ += " const {{NATIVE_TYPE}} *As{{NATIVE_NAME}}() const {"; code_ += " return type == {{NATIVE_ID}} ?"; code_ += " reinterpret_cast(value) : nullptr;"; code_ += " }"; } code_ += "};"; code_ += ""; GenEnumEquals(enum_def); } void GenEnumEquals(const EnumDef &enum_def) { if (opts_.gen_compare) { code_ += ""; code_ += "inline bool operator==(const {{NAME}}Union &lhs, const " "{{NAME}}Union &rhs) {"; code_ += " if (lhs.type != rhs.type) return false;"; code_ += " switch (lhs.type) {"; for (const auto &ev : enum_def.Vals()) { code_.SetValue("NATIVE_ID", GetEnumValUse(enum_def, *ev)); if (ev->IsNonZero()) { const auto native_type = GetUnionElement(*ev, true, opts_); code_.SetValue("NATIVE_TYPE", native_type); code_ += " case {{NATIVE_ID}}: {"; code_ += " return *(reinterpret_cast(lhs.value)) =="; code_ += " *(reinterpret_cast(rhs.value));"; code_ += " }"; } else { code_ += " case {{NATIVE_ID}}: {"; code_ += " return true;"; // "NONE" enum value. code_ += " }"; } } code_ += " default: {"; code_ += " return false;"; code_ += " }"; code_ += " }"; code_ += "}"; code_ += ""; code_ += "inline bool operator!=(const {{NAME}}Union &lhs, const " "{{NAME}}Union &rhs) {"; code_ += " return !(lhs == rhs);"; code_ += "}"; code_ += ""; } } // Generate an array of all enumeration values void GenEnumArray(const EnumDef &enum_def) { auto num_fields = NumToString(enum_def.size()); code_ += "inline const {{ENUM_NAME}} (&EnumValues{{ENUM_NAME}}())[" + num_fields + "] {"; code_ += " static const {{ENUM_NAME}} values[] = {"; for (auto it = enum_def.Vals().begin(); it != enum_def.Vals().end(); ++it) { const auto &ev = **it; auto value = GetEnumValUse(enum_def, ev); auto suffix = *it != enum_def.Vals().back() ? "," : ""; code_ += " " + value + suffix; } code_ += " };"; code_ += " return values;"; code_ += "}"; code_ += ""; } // Generate a string table for enum values. // Problem is, if values are very sparse that could generate huge tables. // Ideally in that case we generate a map lookup instead, but for the moment // we simply don't output a table at all. void GenEnumStringTable(const EnumDef &enum_def) { auto range = enum_def.Distance(); // Average distance between values above which we consider a table // "too sparse". Change at will. static const uint64_t kMaxSparseness = 5; if (range / static_cast(enum_def.size()) < kMaxSparseness) { code_ += "inline const char * const *EnumNames{{ENUM_NAME}}() {"; code_ += " static const char * const names[" + NumToString(range + 1 + 1) + "] = {"; auto val = enum_def.Vals().front(); for (const auto &enum_value : enum_def.Vals()) { for (auto k = enum_def.Distance(val, enum_value); k > 1; --k) { code_ += " \"\","; } val = enum_value; code_ += " \"" + Name(*enum_value) + "\","; } code_ += " nullptr"; code_ += " };"; code_ += " return names;"; code_ += "}"; code_ += ""; code_ += "inline const char *EnumName{{ENUM_NAME}}({{ENUM_NAME}} e) {"; code_ += " if (::flatbuffers::IsOutRange(e, " + GetEnumValUse(enum_def, *enum_def.MinValue()) + ", " + GetEnumValUse(enum_def, *enum_def.MaxValue()) + ")) return \"\";"; code_ += " const size_t index = static_cast(e)\\"; if (enum_def.MinValue()->IsNonZero()) { auto vals = GetEnumValUse(enum_def, *enum_def.MinValue()); code_ += " - static_cast(" + vals + ")\\"; } code_ += ";"; code_ += " return EnumNames{{ENUM_NAME}}()[index];"; code_ += "}"; code_ += ""; } else { code_ += "inline const char *EnumName{{ENUM_NAME}}({{ENUM_NAME}} e) {"; code_ += " switch (e) {"; for (const auto &ev : enum_def.Vals()) { code_ += " case " + GetEnumValUse(enum_def, *ev) + ": return \"" + Name(*ev) + "\";"; } code_ += " default: return \"\";"; code_ += " }"; code_ += "}"; code_ += ""; } } void GenUnionPost(const EnumDef &enum_def) { // Generate a verifier function for this union that can be called by the // table verifier functions. It uses a switch case to select a specific // verifier function to call, this should be safe even if the union type // has been corrupted, since the verifiers will simply fail when called // on the wrong type. code_.SetValue("ENUM_NAME", Name(enum_def)); code_ += "inline " + UnionVerifySignature(enum_def) + " {"; code_ += " switch (type) {"; for (auto it = enum_def.Vals().begin(); it != enum_def.Vals().end(); ++it) { const auto &ev = **it; code_.SetValue("LABEL", GetEnumValUse(enum_def, ev)); if (ev.IsNonZero()) { code_.SetValue("TYPE", GetUnionElement(ev, false, opts_)); code_ += " case {{LABEL}}: {"; auto getptr = " auto ptr = reinterpret_cast(obj);"; if (ev.union_type.base_type == BASE_TYPE_STRUCT) { if (ev.union_type.struct_def->fixed) { code_.SetValue("ALIGN", NumToString(ev.union_type.struct_def->minalign)); code_ += " return verifier.VerifyField<{{TYPE}}>(" "static_cast(obj), 0, {{ALIGN}});"; } else { code_ += getptr; code_ += " return verifier.VerifyTable(ptr);"; } } else if (IsString(ev.union_type)) { code_ += getptr; code_ += " return verifier.VerifyString(ptr);"; } else { FLATBUFFERS_ASSERT(false); } code_ += " }"; } else { code_ += " case {{LABEL}}: {"; code_ += " return true;"; // "NONE" enum value. code_ += " }"; } } code_ += " default: return true;"; // unknown values are OK. code_ += " }"; code_ += "}"; code_ += ""; code_ += "inline " + UnionVectorVerifySignature(enum_def) + " {"; code_ += " if (!values || !types) return !values && !types;"; code_ += " if (values->size() != types->size()) return false;"; code_ += " for (::flatbuffers::uoffset_t i = 0; i < values->size(); ++i) {"; code_ += " if (!Verify" + Name(enum_def) + "("; code_ += " verifier, values->Get(i), types->GetEnum<" + Name(enum_def) + ">(i))) {"; code_ += " return false;"; code_ += " }"; code_ += " }"; code_ += " return true;"; code_ += "}"; code_ += ""; if (opts_.generate_object_based_api) { // Generate union Unpack() and Pack() functions. code_ += "inline " + UnionUnPackSignature(enum_def, false) + " {"; code_ += " (void)resolver;"; code_ += " switch (type) {"; for (auto it = enum_def.Vals().begin(); it != enum_def.Vals().end(); ++it) { const auto &ev = **it; if (ev.IsZero()) { continue; } code_.SetValue("LABEL", GetEnumValUse(enum_def, ev)); code_.SetValue("TYPE", GetUnionElement(ev, false, opts_)); code_ += " case {{LABEL}}: {"; code_ += " auto ptr = reinterpret_cast(obj);"; if (ev.union_type.base_type == BASE_TYPE_STRUCT) { if (ev.union_type.struct_def->fixed) { code_ += " return new " + WrapInNameSpace(*ev.union_type.struct_def) + "(*ptr);"; } else { code_ += " return ptr->UnPack(resolver);"; } } else if (IsString(ev.union_type)) { code_ += " return new std::string(ptr->c_str(), ptr->size());"; } else { FLATBUFFERS_ASSERT(false); } code_ += " }"; } code_ += " default: return nullptr;"; code_ += " }"; code_ += "}"; code_ += ""; code_ += "inline " + UnionPackSignature(enum_def, false) + " {"; code_ += " (void)_rehasher;"; code_ += " switch (type) {"; for (auto it = enum_def.Vals().begin(); it != enum_def.Vals().end(); ++it) { auto &ev = **it; if (ev.IsZero()) { continue; } code_.SetValue("LABEL", GetEnumValUse(enum_def, ev)); code_.SetValue("TYPE", GetUnionElement(ev, true, opts_)); code_ += " case {{LABEL}}: {"; code_ += " auto ptr = reinterpret_cast(value);"; if (ev.union_type.base_type == BASE_TYPE_STRUCT) { if (ev.union_type.struct_def->fixed) { code_ += " return _fbb.CreateStruct(*ptr).Union();"; } else { code_.SetValue("NAME", ev.union_type.struct_def->name); code_ += " return Create{{NAME}}(_fbb, ptr, _rehasher).Union();"; } } else if (IsString(ev.union_type)) { code_ += " return _fbb.CreateString(*ptr).Union();"; } else { FLATBUFFERS_ASSERT(false); } code_ += " }"; } code_ += " default: return 0;"; code_ += " }"; code_ += "}"; code_ += ""; // Union copy constructor code_ += "inline {{ENUM_NAME}}Union::{{ENUM_NAME}}Union(const " "{{ENUM_NAME}}Union &u) : type(u.type), value(nullptr) {"; code_ += " switch (type) {"; for (const auto &ev : enum_def.Vals()) { if (ev->IsZero()) { continue; } code_.SetValue("LABEL", GetEnumValUse(enum_def, *ev)); code_.SetValue("TYPE", GetUnionElement(*ev, true, opts_)); code_ += " case {{LABEL}}: {"; bool copyable = true; if (opts_.g_cpp_std < cpp::CPP_STD_11 && ev->union_type.base_type == BASE_TYPE_STRUCT && !ev->union_type.struct_def->fixed) { // Don't generate code to copy if table is not copyable. // TODO(wvo): make tables copyable instead. for (const auto &field : ev->union_type.struct_def->fields.vec) { if (!field->deprecated && field->value.type.struct_def && !field->native_inline) { copyable = false; break; } } } if (copyable) { code_ += " value = new {{TYPE}}(*reinterpret_cast<{{TYPE}} *>" "(u.value));"; } else { code_ += " FLATBUFFERS_ASSERT(false); // {{TYPE}} not copyable."; } code_ += " break;"; code_ += " }"; } code_ += " default:"; code_ += " break;"; code_ += " }"; code_ += "}"; code_ += ""; // Union Reset() function. FLATBUFFERS_ASSERT(enum_def.Lookup("NONE")); code_.SetValue("NONE", GetEnumValUse(enum_def, *enum_def.Lookup("NONE"))); code_ += "inline void {{ENUM_NAME}}Union::Reset() {"; code_ += " switch (type) {"; for (auto it = enum_def.Vals().begin(); it != enum_def.Vals().end(); ++it) { const auto &ev = **it; if (ev.IsZero()) { continue; } code_.SetValue("LABEL", GetEnumValUse(enum_def, ev)); code_.SetValue("TYPE", GetUnionElement(ev, true, opts_)); code_ += " case {{LABEL}}: {"; code_ += " auto ptr = reinterpret_cast<{{TYPE}} *>(value);"; code_ += " delete ptr;"; code_ += " break;"; code_ += " }"; } code_ += " default: break;"; code_ += " }"; code_ += " value = nullptr;"; code_ += " type = {{NONE}};"; code_ += "}"; code_ += ""; } } // Generates a value with optionally a cast applied if the field has a // different underlying type from its interface type (currently only the // case for enums. "from" specify the direction, true meaning from the // underlying type to the interface type. std::string GenUnderlyingCast(const FieldDef &field, bool from, const std::string &val) { if (from && field.value.type.base_type == BASE_TYPE_BOOL) { return val + " != 0"; } else if ((field.value.type.enum_def && IsScalar(field.value.type.base_type)) || field.value.type.base_type == BASE_TYPE_BOOL) { return "static_cast<" + GenTypeBasic(field.value.type, from) + ">(" + val + ")"; } else { return val; } } std::string GenFieldOffsetName(const FieldDef &field) { std::string uname = Name(field); std::transform(uname.begin(), uname.end(), uname.begin(), CharToUpper); return "VT_" + uname; } void GenFullyQualifiedNameGetter(const StructDef &struct_def, const std::string &name) { if (!opts_.generate_name_strings) { return; } auto fullname = struct_def.defined_namespace->GetFullyQualifiedName(name); code_.SetValue("NAME", fullname); code_.SetValue("CONSTEXPR", "FLATBUFFERS_CONSTEXPR_CPP11"); code_ += " static {{CONSTEXPR}} const char *GetFullyQualifiedName() {"; code_ += " return \"{{NAME}}\";"; code_ += " }"; } std::string GenDefaultConstant(const FieldDef &field) { if (IsFloat(field.value.type.base_type)) return float_const_gen_.GenFloatConstant(field); else return NumToStringCpp(field.value.constant, field.value.type.base_type); } std::string GetDefaultScalarValue(const FieldDef &field, bool is_ctor) { const auto &type = field.value.type; if (field.IsScalarOptional()) { return GenOptionalNull(); } else if (type.enum_def && IsScalar(type.base_type)) { auto ev = type.enum_def->FindByValue(field.value.constant); if (ev) { return WrapInNameSpace(type.enum_def->defined_namespace, GetEnumValUse(*type.enum_def, *ev)); } else { return GenUnderlyingCast( field, true, NumToStringCpp(field.value.constant, type.base_type)); } } else if (type.base_type == BASE_TYPE_BOOL) { return field.value.constant == "0" ? "false" : "true"; } else if (field.attributes.Lookup("cpp_type")) { if (is_ctor) { if (PtrType(&field) == "naked") { return "nullptr"; } else { return ""; } } else { return "0"; } } else if (IsStruct(type) && (field.value.constant == "0")) { return "nullptr"; } else { return GenDefaultConstant(field); } } void GenParam(const FieldDef &field, bool direct, const char *prefix) { code_.SetValue("PRE", prefix); code_.SetValue("PARAM_NAME", Name(field)); if (direct && IsString(field.value.type)) { code_.SetValue("PARAM_TYPE", "const char *"); code_.SetValue("PARAM_VALUE", "nullptr"); } else if (direct && IsVector(field.value.type)) { const auto vtype = field.value.type.VectorType(); std::string type; if (IsStruct(vtype)) { type = WrapInNameSpace(*vtype.struct_def); } else { type = GenTypeWire(vtype, "", VectorElementUserFacing(vtype), field.offset64); } if (TypeHasKey(vtype)) { code_.SetValue("PARAM_TYPE", "std::vector<" + type + "> *"); } else { code_.SetValue("PARAM_TYPE", "const std::vector<" + type + "> *"); } code_.SetValue("PARAM_VALUE", "nullptr"); } else { const auto &type = field.value.type; code_.SetValue("PARAM_VALUE", GetDefaultScalarValue(field, false)); if (field.IsScalarOptional()) code_.SetValue("PARAM_TYPE", GenOptionalDecl(type) + " "); else code_.SetValue("PARAM_TYPE", GenTypeWire(type, " ", true, field.offset64)); } code_ += "{{PRE}}{{PARAM_TYPE}}{{PARAM_NAME}} = {{PARAM_VALUE}}\\"; } // Generate a member, including a default value for scalars and raw pointers. void GenMember(const FieldDef &field) { if (!field.deprecated && // Deprecated fields won't be accessible. field.value.type.base_type != BASE_TYPE_UTYPE && (!IsVector(field.value.type) || field.value.type.element != BASE_TYPE_UTYPE)) { auto type = GenTypeNative(field.value.type, false, field); auto cpp_type = field.attributes.Lookup("cpp_type"); const std::string &full_type = (cpp_type ? (IsVector(field.value.type) ? "std::vector<" + GenTypeNativePtr(cpp_type->constant, &field, false) + "> " : GenTypeNativePtr(cpp_type->constant, &field, false)) : type + " "); // Generate default member initializers for >= C++11. std::string field_di; if (opts_.g_cpp_std >= cpp::CPP_STD_11) { field_di = "{}"; auto native_default = field.attributes.Lookup("native_default"); // Scalar types get parsed defaults, raw pointers get nullptrs. if (IsScalar(field.value.type.base_type)) { field_di = " = " + (native_default ? std::string(native_default->constant) : GetDefaultScalarValue(field, true)); } else if (field.value.type.base_type == BASE_TYPE_STRUCT) { if (IsStruct(field.value.type) && native_default) { field_di = " = " + native_default->constant; } } } code_.SetValue("FIELD_TYPE", full_type); code_.SetValue("FIELD_NAME", Name(field)); code_.SetValue("FIELD_DI", field_di); code_ += " {{FIELD_TYPE}}{{FIELD_NAME}}{{FIELD_DI}};"; } } // Returns true if `struct_def` needs a copy constructor and assignment // operator because it has one or more table members, struct members with a // custom cpp_type and non-naked pointer type, or vector members of those. bool NeedsCopyCtorAssignOp(const StructDef &struct_def) { for (const auto &field : struct_def.fields.vec) { const auto &type = field->value.type; if (field->deprecated) continue; if (type.base_type == BASE_TYPE_STRUCT) { const auto cpp_type = field->attributes.Lookup("cpp_type"); const auto cpp_ptr_type = field->attributes.Lookup("cpp_ptr_type"); const bool is_ptr = !(IsStruct(type) && field->native_inline) || (cpp_type && cpp_ptr_type->constant != "naked"); if (is_ptr) { return true; } } else if (IsVector(type)) { const auto vec_type = type.VectorType(); if (vec_type.base_type == BASE_TYPE_UTYPE) continue; const auto cpp_type = field->attributes.Lookup("cpp_type"); const auto cpp_ptr_type = field->attributes.Lookup("cpp_ptr_type"); const bool is_ptr = IsVectorOfPointers(*field) || (cpp_type && cpp_ptr_type->constant != "naked"); if (is_ptr) { return true; } } } return false; } // Generate the default constructor for this struct. Properly initialize all // scalar members with default values. void GenDefaultConstructor(const StructDef &struct_def) { code_.SetValue("NATIVE_NAME", NativeName(Name(struct_def), &struct_def, opts_)); // In >= C++11, default member initializers are generated. To allow for // aggregate initialization, do not emit a default constructor at all, with // the exception of types that need a copy/move ctors and assignment // operators. if (opts_.g_cpp_std >= cpp::CPP_STD_11) { if (NeedsCopyCtorAssignOp(struct_def)) { code_ += " {{NATIVE_NAME}}() = default;"; } return; } std::string initializer_list; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (!field.deprecated && // Deprecated fields won't be accessible. field.value.type.base_type != BASE_TYPE_UTYPE) { auto cpp_type = field.attributes.Lookup("cpp_type"); auto native_default = field.attributes.Lookup("native_default"); // Scalar types get parsed defaults, raw pointers get nullptrs. if (IsScalar(field.value.type.base_type)) { if (!initializer_list.empty()) { initializer_list += ",\n "; } initializer_list += Name(field); initializer_list += "(" + (native_default ? std::string(native_default->constant) : GetDefaultScalarValue(field, true)) + ")"; } else if (field.value.type.base_type == BASE_TYPE_STRUCT) { if (IsStruct(field.value.type)) { if (native_default) { if (!initializer_list.empty()) { initializer_list += ",\n "; } initializer_list += Name(field) + "(" + native_default->constant + ")"; } } } else if (cpp_type && !IsVector(field.value.type)) { if (!initializer_list.empty()) { initializer_list += ",\n "; } initializer_list += Name(field) + "(0)"; } } } if (!initializer_list.empty()) { initializer_list = "\n : " + initializer_list; } code_.SetValue("INIT_LIST", initializer_list); code_ += " {{NATIVE_NAME}}(){{INIT_LIST}} {"; code_ += " }"; } // Generate the >= C++11 copy/move constructor and assignment operator // declarations if required. Tables that are default-copyable do not get // user-provided copy/move constructors and assignment operators so they // remain aggregates. void GenCopyMoveCtorAndAssigOpDecls(const StructDef &struct_def) { if (opts_.g_cpp_std < cpp::CPP_STD_11) return; if (!NeedsCopyCtorAssignOp(struct_def)) return; code_.SetValue("NATIVE_NAME", NativeName(Name(struct_def), &struct_def, opts_)); code_ += " {{NATIVE_NAME}}(const {{NATIVE_NAME}} &o);"; code_ += " {{NATIVE_NAME}}({{NATIVE_NAME}}&&) FLATBUFFERS_NOEXCEPT = " "default;"; code_ += " {{NATIVE_NAME}} &operator=({{NATIVE_NAME}} o) FLATBUFFERS_NOEXCEPT;"; } // Generate the >= C++11 copy constructor and assignment operator definitions. void GenCopyCtorAssignOpDefs(const StructDef &struct_def) { if (opts_.g_cpp_std < cpp::CPP_STD_11) return; if (!NeedsCopyCtorAssignOp(struct_def)) return; std::string initializer_list; std::string vector_copies; std::string swaps; for (const auto &field : struct_def.fields.vec) { const auto &type = field->value.type; if (field->deprecated || type.base_type == BASE_TYPE_UTYPE) continue; if (type.base_type == BASE_TYPE_STRUCT) { if (!initializer_list.empty()) { initializer_list += ",\n "; } const auto cpp_type = field->attributes.Lookup("cpp_type"); const auto cpp_ptr_type = field->attributes.Lookup("cpp_ptr_type"); const std::string &type_name = (cpp_type) ? cpp_type->constant : GenTypeNative(type, /*invector*/ false, *field, /*forcopy*/ true); const bool is_ptr = !(IsStruct(type) && field->native_inline) || (cpp_type && cpp_ptr_type->constant != "naked"); CodeWriter cw; cw.SetValue("FIELD", Name(*field)); cw.SetValue("TYPE", type_name); if (is_ptr) { cw += "{{FIELD}}((o.{{FIELD}}) ? new {{TYPE}}(*o.{{FIELD}}) : " "nullptr)\\"; initializer_list += cw.ToString(); } else { cw += "{{FIELD}}(o.{{FIELD}})\\"; initializer_list += cw.ToString(); } } else if (IsVector(type)) { const auto vec_type = type.VectorType(); if (vec_type.base_type == BASE_TYPE_UTYPE) continue; const auto cpp_type = field->attributes.Lookup("cpp_type"); const auto cpp_ptr_type = field->attributes.Lookup("cpp_ptr_type"); const std::string &type_name = (cpp_type) ? cpp_type->constant : GenTypeNative(vec_type, /*invector*/ true, *field, /*forcopy*/ true); const bool is_ptr = IsVectorOfPointers(*field) || (cpp_type && cpp_ptr_type->constant != "naked"); CodeWriter cw(" "); cw.SetValue("FIELD", Name(*field)); cw.SetValue("TYPE", type_name); if (is_ptr) { // Use emplace_back to construct the potentially-smart pointer element // from a raw pointer to a new-allocated copy. cw.IncrementIdentLevel(); cw += "{{FIELD}}.reserve(o.{{FIELD}}.size());"; cw += "for (const auto &{{FIELD}}_ : o.{{FIELD}}) { " "{{FIELD}}.emplace_back(({{FIELD}}_) ? new {{TYPE}}(*{{FIELD}}_) " ": nullptr); }"; vector_copies += cw.ToString(); } else { // For non-pointer elements, use std::vector's copy constructor in the // initializer list. This will yield better performance than an insert // range loop for trivially-copyable element types. if (!initializer_list.empty()) { initializer_list += ",\n "; } cw += "{{FIELD}}(o.{{FIELD}})\\"; initializer_list += cw.ToString(); } } else { if (!initializer_list.empty()) { initializer_list += ",\n "; } CodeWriter cw; cw.SetValue("FIELD", Name(*field)); cw += "{{FIELD}}(o.{{FIELD}})\\"; initializer_list += cw.ToString(); } { if (!swaps.empty()) { swaps += "\n "; } CodeWriter cw; cw.SetValue("FIELD", Name(*field)); cw += "std::swap({{FIELD}}, o.{{FIELD}});\\"; swaps += cw.ToString(); } } if (!initializer_list.empty()) { initializer_list = "\n : " + initializer_list; } if (!swaps.empty()) { swaps = " " + swaps; } code_.SetValue("NATIVE_NAME", NativeName(Name(struct_def), &struct_def, opts_)); code_.SetValue("INIT_LIST", initializer_list); code_.SetValue("VEC_COPY", vector_copies); code_.SetValue("SWAPS", swaps); code_ += "inline {{NATIVE_NAME}}::{{NATIVE_NAME}}(const {{NATIVE_NAME}} &o)" "{{INIT_LIST}} {"; code_ += "{{VEC_COPY}}}\n"; code_ += "inline {{NATIVE_NAME}} &{{NATIVE_NAME}}::operator=" "({{NATIVE_NAME}} o) FLATBUFFERS_NOEXCEPT {"; code_ += "{{SWAPS}}"; code_ += " return *this;\n}\n"; } void GenCompareOperator(const StructDef &struct_def, const std::string &accessSuffix = "") { std::string compare_op; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; const auto accessor = Name(field) + accessSuffix; const auto lhs_accessor = "lhs." + accessor; const auto rhs_accessor = "rhs." + accessor; if (!field.deprecated && // Deprecated fields won't be accessible. field.value.type.base_type != BASE_TYPE_UTYPE && (!IsVector(field.value.type) || field.value.type.element != BASE_TYPE_UTYPE)) { if (!compare_op.empty()) { compare_op += " &&\n "; } if (struct_def.fixed || field.native_inline || field.value.type.base_type != BASE_TYPE_STRUCT) { // If the field is a vector of tables, the table need to be compared // by value, instead of by the default unique_ptr == operator which // compares by address. if (IsVectorOfPointers(field)) { const auto type = GenTypeNative(field.value.type.VectorType(), true, field); const auto equal_length = lhs_accessor + ".size() == " + rhs_accessor + ".size()"; const auto elements_equal = "std::equal(" + lhs_accessor + ".cbegin(), " + lhs_accessor + ".cend(), " + rhs_accessor + ".cbegin(), [](" + type + " const &a, " + type + " const &b) { return (a == b) || (a && b && *a == *b); })"; compare_op += "(" + equal_length + " && " + elements_equal + ")"; } else if (field.value.type.base_type == BASE_TYPE_ARRAY) { compare_op += "(*" + lhs_accessor + " == *" + rhs_accessor + ")"; } else { compare_op += "(" + lhs_accessor + " == " + rhs_accessor + ")"; } } else { // Deep compare of std::unique_ptr. Null is not equal to empty. std::string both_null = "(" + lhs_accessor + " == " + rhs_accessor + ")"; std::string not_null_and_equal = "(lhs." + accessor + " && rhs." + accessor + " && *lhs." + accessor + " == *rhs." + accessor + ")"; compare_op += "(" + both_null + " || " + not_null_and_equal + ")"; } } } std::string cmp_lhs; std::string cmp_rhs; if (compare_op.empty()) { cmp_lhs = ""; cmp_rhs = ""; compare_op = " return true;"; } else { cmp_lhs = "lhs"; cmp_rhs = "rhs"; compare_op = " return\n " + compare_op + ";"; } code_.SetValue("CMP_OP", compare_op); code_.SetValue("CMP_LHS", cmp_lhs); code_.SetValue("CMP_RHS", cmp_rhs); code_ += ""; code_ += "inline bool operator==(const {{NATIVE_NAME}} &{{CMP_LHS}}, const " "{{NATIVE_NAME}} &{{CMP_RHS}}) {"; code_ += "{{CMP_OP}}"; code_ += "}"; code_ += ""; code_ += "inline bool operator!=(const {{NATIVE_NAME}} &lhs, const " "{{NATIVE_NAME}} &rhs) {"; code_ += " return !(lhs == rhs);"; code_ += "}"; code_ += ""; } void GenOperatorNewDelete(const StructDef &struct_def) { if (auto native_custom_alloc = struct_def.attributes.Lookup("native_custom_alloc")) { code_ += " inline void *operator new (std::size_t count) {"; code_ += " return " + native_custom_alloc->constant + "<{{NATIVE_NAME}}>().allocate(count / sizeof({{NATIVE_NAME}}));"; code_ += " }"; code_ += " inline void operator delete (void *ptr) {"; code_ += " return " + native_custom_alloc->constant + "<{{NATIVE_NAME}}>().deallocate(static_cast<{{NATIVE_NAME}}*>(" "ptr),1);"; code_ += " }"; } } void GenNativeTable(const StructDef &struct_def) { const auto native_name = NativeName(Name(struct_def), &struct_def, opts_); code_.SetValue("STRUCT_NAME", Name(struct_def)); code_.SetValue("NATIVE_NAME", native_name); // Generate a C++ object that can hold an unpacked version of this table. code_ += "struct {{NATIVE_NAME}} : public ::flatbuffers::NativeTable {"; code_ += " typedef {{STRUCT_NAME}} TableType;"; GenFullyQualifiedNameGetter(struct_def, native_name); for (const auto field : struct_def.fields.vec) { GenMember(*field); } GenOperatorNewDelete(struct_def); GenDefaultConstructor(struct_def); GenCopyMoveCtorAndAssigOpDecls(struct_def); code_ += "};"; code_ += ""; } // Adds a typedef to the binary schema type so one could get the bfbs based // on the type at runtime. void GenBinarySchemaTypeDef(const StructDef *struct_def) { if (struct_def && opts_.binary_schema_gen_embed) { code_ += " typedef " + WrapInNameSpace(*struct_def) + "BinarySchema BinarySchema;"; } } void GenNativeTablePost(const StructDef &struct_def) { if (opts_.gen_compare) { const auto native_name = NativeName(Name(struct_def), &struct_def, opts_); code_.SetValue("STRUCT_NAME", Name(struct_def)); code_.SetValue("NATIVE_NAME", native_name); GenCompareOperator(struct_def); code_ += ""; } } // Generate the code to call the appropriate Verify function(s) for a field. void GenVerifyCall(const FieldDef &field, const char *prefix) { code_.SetValue("PRE", prefix); code_.SetValue("NAME", Name(field)); code_.SetValue("REQUIRED", field.IsRequired() ? "Required" : ""); code_.SetValue("SIZE", GenTypeSize(field.value.type)); code_.SetValue("OFFSET", GenFieldOffsetName(field)); if (IsScalar(field.value.type.base_type) || IsStruct(field.value.type)) { code_.SetValue("ALIGN", NumToString(InlineAlignment(field.value.type))); code_ += "{{PRE}}VerifyField{{REQUIRED}}<{{SIZE}}>(verifier, " "{{OFFSET}}, {{ALIGN}})\\"; } else { code_.SetValue("OFFSET_SIZE", field.offset64 ? "64" : ""); code_ += "{{PRE}}VerifyOffset{{OFFSET_SIZE}}{{REQUIRED}}(verifier, " "{{OFFSET}})\\"; } switch (field.value.type.base_type) { case BASE_TYPE_UNION: { code_.SetValue("ENUM_NAME", field.value.type.enum_def->name); code_.SetValue("SUFFIX", UnionTypeFieldSuffix()); code_ += "{{PRE}}Verify{{ENUM_NAME}}(verifier, {{NAME}}(), " "{{NAME}}{{SUFFIX}}())\\"; break; } case BASE_TYPE_STRUCT: { if (!field.value.type.struct_def->fixed) { code_ += "{{PRE}}verifier.VerifyTable({{NAME}}())\\"; } break; } case BASE_TYPE_STRING: { code_ += "{{PRE}}verifier.VerifyString({{NAME}}())\\"; break; } case BASE_TYPE_VECTOR64: case BASE_TYPE_VECTOR: { code_ += "{{PRE}}verifier.VerifyVector({{NAME}}())\\"; switch (field.value.type.element) { case BASE_TYPE_STRING: { code_ += "{{PRE}}verifier.VerifyVectorOfStrings({{NAME}}())\\"; break; } case BASE_TYPE_STRUCT: { if (!field.value.type.struct_def->fixed) { code_ += "{{PRE}}verifier.VerifyVectorOfTables({{NAME}}())\\"; } break; } case BASE_TYPE_UNION: { code_.SetValue("ENUM_NAME", field.value.type.enum_def->name); code_ += "{{PRE}}Verify{{ENUM_NAME}}Vector(verifier, {{NAME}}(), " "{{NAME}}_type())\\"; break; } default: break; } auto nfn = GetNestedFlatBufferName(field); if (!nfn.empty()) { code_.SetValue("CPP_NAME", nfn); // FIXME: file_identifier. code_ += "{{PRE}}verifier.VerifyNestedFlatBuffer<{{CPP_NAME}}>" "({{NAME}}(), nullptr)\\"; } else if (field.flexbuffer) { code_ += "{{PRE}}flexbuffers::VerifyNestedFlexBuffer" "({{NAME}}(), verifier)\\"; } break; } default: { break; } } } void GenComparatorForStruct(const StructDef &struct_def, size_t space_size, const std::string lhs_struct_literal, const std::string rhs_struct_literal) { code_.SetValue("LHS_PREFIX", lhs_struct_literal); code_.SetValue("RHS_PREFIX", rhs_struct_literal); std::string space(space_size, ' '); for (const auto &curr_field : struct_def.fields.vec) { const auto curr_field_name = Name(*curr_field); code_.SetValue("CURR_FIELD_NAME", curr_field_name); code_.SetValue("LHS", lhs_struct_literal + "_" + curr_field_name); code_.SetValue("RHS", rhs_struct_literal + "_" + curr_field_name); const bool is_scalar = IsScalar(curr_field->value.type.base_type); const bool is_array = IsArray(curr_field->value.type); const bool is_struct = IsStruct(curr_field->value.type); // If encouter a key field, call KeyCompareWithValue to compare this // field. if (curr_field->key) { code_ += space + "const auto {{RHS}} = {{RHS_PREFIX}}.{{CURR_FIELD_NAME}}();"; code_ += space + "const auto {{CURR_FIELD_NAME}}_compare_result = " "{{LHS_PREFIX}}.KeyCompareWithValue({{RHS}});"; code_ += space + "if ({{CURR_FIELD_NAME}}_compare_result != 0)"; code_ += space + " return {{CURR_FIELD_NAME}}_compare_result;"; continue; } code_ += space + "const auto {{LHS}} = {{LHS_PREFIX}}.{{CURR_FIELD_NAME}}();"; code_ += space + "const auto {{RHS}} = {{RHS_PREFIX}}.{{CURR_FIELD_NAME}}();"; if (is_scalar) { code_ += space + "if ({{LHS}} != {{RHS}})"; code_ += space + " return static_cast({{LHS}} > {{RHS}}) - " "static_cast({{LHS}} < {{RHS}});"; } else if (is_array) { const auto &elem_type = curr_field->value.type.VectorType(); code_ += space + "for (::flatbuffers::uoffset_t i = 0; i < {{LHS}}->size(); i++) {"; code_ += space + " const auto {{LHS}}_elem = {{LHS}}->Get(i);"; code_ += space + " const auto {{RHS}}_elem = {{RHS}}->Get(i);"; if (IsScalar(elem_type.base_type)) { code_ += space + " if ({{LHS}}_elem != {{RHS}}_elem)"; code_ += space + " return static_cast({{LHS}}_elem > {{RHS}}_elem) - " "static_cast({{LHS}}_elem < {{RHS}}_elem);"; code_ += space + "}"; } else if (IsStruct(elem_type)) { if (curr_field->key) { code_ += space + "const auto {{CURR_FIELD_NAME}}_compare_result = " "{{LHS_PREFIX}}.KeyCompareWithValue({{RHS}});"; code_ += space + "if ({{CURR_FIELD_NAME}}_compare_result != 0)"; code_ += space + " return {{CURR_FIELD_NAME}}_compare_result;"; continue; } GenComparatorForStruct( *curr_field->value.type.struct_def, space_size + 2, code_.GetValue("LHS") + "_elem", code_.GetValue("RHS") + "_elem"); code_ += space + "}"; } } else if (is_struct) { GenComparatorForStruct(*curr_field->value.type.struct_def, space_size, code_.GetValue("LHS"), code_.GetValue("RHS")); } } } // Generate CompareWithValue method for a key field. void GenKeyFieldMethods(const FieldDef &field) { FLATBUFFERS_ASSERT(field.key); const bool is_string = IsString(field.value.type); const bool is_array = IsArray(field.value.type); const bool is_struct = IsStruct(field.value.type); // Generate KeyCompareLessThan function code_ += " bool KeyCompareLessThan(const {{STRUCT_NAME}} * const o) const {"; if (is_string) { // use operator< of ::flatbuffers::String code_ += " return *{{FIELD_NAME}}() < *o->{{FIELD_NAME}}();"; } else if (is_array || is_struct) { code_ += " return KeyCompareWithValue(o->{{FIELD_NAME}}()) < 0;"; } else { code_ += " return {{FIELD_NAME}}() < o->{{FIELD_NAME}}();"; } code_ += " }"; // Generate KeyCompareWithValue function if (is_string) { code_ += " int KeyCompareWithValue(const char *_{{FIELD_NAME}}) const {"; code_ += " return strcmp({{FIELD_NAME}}()->c_str(), _{{FIELD_NAME}});"; } else if (is_array) { const auto &elem_type = field.value.type.VectorType(); std::string input_type = "::flatbuffers::Array<" + GenTypeGet(elem_type, "", "", "", false) + ", " + NumToString(elem_type.fixed_length) + ">"; code_.SetValue("INPUT_TYPE", input_type); code_ += " int KeyCompareWithValue(const {{INPUT_TYPE}} *_{{FIELD_NAME}}" ") const {"; code_ += " const {{INPUT_TYPE}} *curr_{{FIELD_NAME}} = {{FIELD_NAME}}();"; code_ += " for (::flatbuffers::uoffset_t i = 0; i < " "curr_{{FIELD_NAME}}->size(); i++) {"; if (IsScalar(elem_type.base_type)) { code_ += " const auto lhs = curr_{{FIELD_NAME}}->Get(i);"; code_ += " const auto rhs = _{{FIELD_NAME}}->Get(i);"; code_ += " if (lhs != rhs)"; code_ += " return static_cast(lhs > rhs)" " - static_cast(lhs < rhs);"; } else if (IsStruct(elem_type)) { code_ += " const auto &lhs_{{FIELD_NAME}} = " "*(curr_{{FIELD_NAME}}->Get(i));"; code_ += " const auto &rhs_{{FIELD_NAME}} = " "*(_{{FIELD_NAME}}->Get(i));"; GenComparatorForStruct(*elem_type.struct_def, 6, "lhs_" + code_.GetValue("FIELD_NAME"), "rhs_" + code_.GetValue("FIELD_NAME")); } code_ += " }"; code_ += " return 0;"; } else if (is_struct) { const auto *struct_def = field.value.type.struct_def; code_.SetValue("INPUT_TYPE", GenTypeGet(field.value.type, "", "", "", false)); code_ += " int KeyCompareWithValue(const {{INPUT_TYPE}} &_{{FIELD_NAME}}) " "const {"; code_ += " const auto &lhs_{{FIELD_NAME}} = {{FIELD_NAME}}();"; code_ += " const auto &rhs_{{FIELD_NAME}} = _{{FIELD_NAME}};"; GenComparatorForStruct(*struct_def, 4, "lhs_" + code_.GetValue("FIELD_NAME"), "rhs_" + code_.GetValue("FIELD_NAME")); code_ += " return 0;"; } else { FLATBUFFERS_ASSERT(IsScalar(field.value.type.base_type)); auto type = GenTypeBasic(field.value.type, false); if (opts_.scoped_enums && field.value.type.enum_def && IsScalar(field.value.type.base_type)) { type = GenTypeGet(field.value.type, " ", "const ", " *", true); } // Returns {fieldval: +1}. code_.SetValue("KEY_TYPE", type); code_ += " int KeyCompareWithValue({{KEY_TYPE}} _{{FIELD_NAME}}) const {"; code_ += " return static_cast({{FIELD_NAME}}() > _{{FIELD_NAME}}) - " "static_cast({{FIELD_NAME}}() < _{{FIELD_NAME}});"; } code_ += " }"; } void GenTableUnionAsGetters(const FieldDef &field) { const auto &type = field.value.type; auto u = type.enum_def; if (!type.enum_def->uses_multiple_type_instances) code_ += " template " "const T *{{NULLABLE_EXT}}{{FIELD_NAME}}_as() const;"; for (auto u_it = u->Vals().begin(); u_it != u->Vals().end(); ++u_it) { auto &ev = **u_it; if (ev.union_type.base_type == BASE_TYPE_NONE) { continue; } auto full_struct_name = GetUnionElement(ev, false, opts_); // @TODO: Mby make this decisions more universal? How? code_.SetValue("U_GET_TYPE", EscapeKeyword(Name(field) + UnionTypeFieldSuffix())); code_.SetValue("U_ELEMENT_TYPE", WrapInNameSpace(u->defined_namespace, GetEnumValUse(*u, ev))); code_.SetValue("U_FIELD_TYPE", "const " + full_struct_name + " *"); code_.SetValue("U_FIELD_NAME", Name(field) + "_as_" + Name(ev)); code_.SetValue("U_NULLABLE", NullableExtension()); // `const Type *union_name_asType() const` accessor. code_ += " {{U_FIELD_TYPE}}{{U_NULLABLE}}{{U_FIELD_NAME}}() const {"; code_ += " return {{U_GET_TYPE}}() == {{U_ELEMENT_TYPE}} ? " "static_cast<{{U_FIELD_TYPE}}>({{FIELD_NAME}}()) " ": nullptr;"; code_ += " }"; } } void GenTableFieldGetter(const FieldDef &field) { const auto &type = field.value.type; const auto offset_str = GenFieldOffsetName(field); GenComment(field.doc_comment, " "); // Call a different accessor for pointers, that indirects. if (!field.IsScalarOptional()) { const bool is_scalar = IsScalar(type.base_type); std::string accessor; std::string offset_size = ""; if (is_scalar) { accessor = "GetField<"; } else if (IsStruct(type)) { accessor = "GetStruct<"; } else { if (field.offset64) { accessor = "GetPointer64<"; } else { accessor = "GetPointer<"; } } auto offset_type = GenTypeGet(type, "", "const ", " *", false); auto call = accessor + offset_type + ">(" + offset_str; // Default value as second arg for non-pointer types. if (is_scalar) { call += ", " + GenDefaultConstant(field); } call += ")"; std::string afterptr = " *" + NullableExtension(); code_.SetValue("FIELD_TYPE", GenTypeGet(type, " ", "const ", afterptr.c_str(), true)); code_.SetValue("FIELD_VALUE", GenUnderlyingCast(field, true, call)); code_.SetValue("NULLABLE_EXT", NullableExtension()); code_ += " {{FIELD_TYPE}}{{FIELD_NAME}}() const {"; code_ += " return {{FIELD_VALUE}};"; code_ += " }"; } else { auto wire_type = GenTypeBasic(type, false); auto face_type = GenTypeBasic(type, true); auto opt_value = "GetOptional<" + wire_type + ", " + face_type + ">(" + offset_str + ")"; code_.SetValue("FIELD_TYPE", GenOptionalDecl(type)); code_ += " {{FIELD_TYPE}} {{FIELD_NAME}}() const {"; code_ += " return " + opt_value + ";"; code_ += " }"; } if (type.base_type == BASE_TYPE_UNION) { GenTableUnionAsGetters(field); } } void GenTableFieldType(const FieldDef &field) { const auto &type = field.value.type; const auto offset_str = GenFieldOffsetName(field); if (!field.IsScalarOptional()) { std::string afterptr = " *" + NullableExtension(); code_.SetValue("FIELD_TYPE", GenTypeGet(type, "", "const ", afterptr.c_str(), true)); code_ += " {{FIELD_TYPE}}\\"; } else { code_.SetValue("FIELD_TYPE", GenOptionalDecl(type)); code_ += " {{FIELD_TYPE}}\\"; } } void GenStructFieldType(const FieldDef &field) { const auto is_array = IsArray(field.value.type); std::string field_type = GenTypeGet(field.value.type, "", is_array ? "" : "const ", is_array ? "" : " &", true); code_.SetValue("FIELD_TYPE", field_type); code_ += " {{FIELD_TYPE}}\\"; } void GenFieldTypeHelper(const StructDef &struct_def) { if (struct_def.fields.vec.empty()) { return; } code_ += " template"; code_ += " using FieldType = \\"; code_ += "decltype(std::declval().get_field());"; } void GenIndexBasedFieldGetter(const StructDef &struct_def) { if (struct_def.fields.vec.empty()) { return; } code_ += " template"; code_ += " auto get_field() const {"; size_t index = 0; bool need_else = false; // Generate one index-based getter for each field. for (const auto &field : struct_def.fields.vec) { if (field->deprecated) { // Deprecated fields won't be accessible. continue; } code_.SetValue("FIELD_NAME", Name(*field)); code_.SetValue("FIELD_INDEX", std::to_string(static_cast(index++))); if (need_else) { code_ += " else \\"; } else { code_ += " \\"; } need_else = true; code_ += "if constexpr (Index == {{FIELD_INDEX}}) \\"; code_ += "return {{FIELD_NAME}}();"; } code_ += " else static_assert(Index != Index, \"Invalid Field Index\");"; code_ += " }"; } // Sample for Vec3: // // static constexpr std::array field_names = { // "x", // "y", // "z" // }; // void GenFieldNames(const StructDef &struct_def) { code_ += " static constexpr std::array<\\"; code_ += "const char *, fields_number> field_names = {\\"; if (struct_def.fields.vec.empty()) { code_ += "};"; return; } code_ += ""; // Generate the field_names elements. for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (field.deprecated) { // Deprecated fields won't be accessible. continue; } code_.SetValue("FIELD_NAME", Name(field)); code_ += R"( "{{FIELD_NAME}}"\)"; if (it + 1 != struct_def.fields.vec.end()) { code_ += ","; } } code_ += "\n };"; } void GenFieldsNumber(const StructDef &struct_def) { const auto non_deprecated_field_count = std::count_if( struct_def.fields.vec.begin(), struct_def.fields.vec.end(), [](const FieldDef *field) { return !field->deprecated; }); code_.SetValue( "FIELD_COUNT", std::to_string(static_cast(non_deprecated_field_count))); code_ += " static constexpr size_t fields_number = {{FIELD_COUNT}};"; } void GenTraitsStruct(const StructDef &struct_def) { code_.SetValue( "FULLY_QUALIFIED_NAME", struct_def.defined_namespace->GetFullyQualifiedName(Name(struct_def))); code_ += "struct {{STRUCT_NAME}}::Traits {"; code_ += " using type = {{STRUCT_NAME}};"; if (!struct_def.fixed) { // We have a table and not a struct. code_ += " static auto constexpr Create = Create{{STRUCT_NAME}};"; } if (opts_.cpp_static_reflection) { code_ += " static constexpr auto name = \"{{STRUCT_NAME}}\";"; code_ += " static constexpr auto fully_qualified_name = " "\"{{FULLY_QUALIFIED_NAME}}\";"; GenFieldsNumber(struct_def); GenFieldNames(struct_def); GenFieldTypeHelper(struct_def); } code_ += "};"; code_ += ""; } void GenTableFieldSetter(const FieldDef &field) { const auto &type = field.value.type; const bool is_scalar = IsScalar(type.base_type); if (is_scalar && IsUnion(type)) return; // changing of a union's type is forbidden auto offset_str = GenFieldOffsetName(field); if (is_scalar) { const auto wire_type = GenTypeWire(type, "", false, field.offset64); code_.SetValue("SET_FN", "SetField<" + wire_type + ">"); code_.SetValue("OFFSET_NAME", offset_str); code_.SetValue("FIELD_TYPE", GenTypeBasic(type, true)); code_.SetValue("FIELD_VALUE", GenUnderlyingCast(field, false, "_" + Name(field))); code_ += " bool mutate_{{FIELD_NAME}}({{FIELD_TYPE}} _{{FIELD_NAME}}\\"; if (!field.IsScalarOptional()) { code_.SetValue("DEFAULT_VALUE", GenDefaultConstant(field)); code_.SetValue( "INTERFACE_DEFAULT_VALUE", GenUnderlyingCast(field, true, GenDefaultConstant(field))); // GenUnderlyingCast for a bool field generates 0 != 0 // So the type has to be checked and the appropriate default chosen if (IsBool(field.value.type.base_type)) { code_ += " = {{DEFAULT_VALUE}}) {"; } else { code_ += " = {{INTERFACE_DEFAULT_VALUE}}) {"; } code_ += " return {{SET_FN}}({{OFFSET_NAME}}, {{FIELD_VALUE}}, " "{{DEFAULT_VALUE}});"; } else { code_ += ") {"; code_ += " return {{SET_FN}}({{OFFSET_NAME}}, {{FIELD_VALUE}});"; } code_ += " }"; } else { auto postptr = " *" + NullableExtension(); auto wire_type = GenTypeGet(type, " ", "", postptr.c_str(), true); const std::string accessor = [&]() { if (IsStruct(type)) { return "GetStruct<"; } if (field.offset64) { return "GetPointer64<"; } return "GetPointer<"; }(); auto underlying = accessor + wire_type + ">(" + offset_str + ")"; code_.SetValue("FIELD_TYPE", wire_type); code_.SetValue("FIELD_VALUE", GenUnderlyingCast(field, true, underlying)); code_ += " {{FIELD_TYPE}}mutable_{{FIELD_NAME}}() {"; code_ += " return {{FIELD_VALUE}};"; code_ += " }"; } } std::string GetNestedFlatBufferName(const FieldDef &field) { auto nested = field.attributes.Lookup("nested_flatbuffer"); if (!nested) return ""; std::string qualified_name = nested->constant; auto nested_root = parser_.LookupStruct(nested->constant); if (nested_root == nullptr) { qualified_name = parser_.current_namespace_->GetFullyQualifiedName(nested->constant); nested_root = parser_.LookupStruct(qualified_name); } FLATBUFFERS_ASSERT(nested_root); // Guaranteed to exist by parser. (void)nested_root; return TranslateNameSpace(qualified_name); } // Generate an accessor struct, builder structs & function for a table. void GenTable(const StructDef &struct_def) { if (opts_.generate_object_based_api) { GenNativeTable(struct_def); } // Generate an accessor struct, with methods of the form: // type name() const { return GetField(offset, defaultval); } GenComment(struct_def.doc_comment); code_.SetValue("STRUCT_NAME", Name(struct_def)); code_ += "struct {{STRUCT_NAME}} FLATBUFFERS_FINAL_CLASS" " : private ::flatbuffers::Table {"; if (opts_.generate_object_based_api) { code_ += " typedef {{NATIVE_NAME}} NativeTableType;"; } code_ += " typedef {{STRUCT_NAME}}Builder Builder;"; GenBinarySchemaTypeDef(parser_.root_struct_def_); if (opts_.g_cpp_std >= cpp::CPP_STD_17) { code_ += " struct Traits;"; } if (opts_.mini_reflect != IDLOptions::kNone) { code_ += " static const ::flatbuffers::TypeTable *MiniReflectTypeTable() {"; code_ += " return {{STRUCT_NAME}}TypeTable();"; code_ += " }"; } GenFullyQualifiedNameGetter(struct_def, Name(struct_def)); // Generate field id constants. if (!struct_def.fields.vec.empty()) { // We need to add a trailing comma to all elements except the last one as // older versions of gcc complain about this. code_.SetValue("SEP", ""); code_ += " enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {"; for (const auto &field : struct_def.fields.vec) { if (field->deprecated) { // Deprecated fields won't be accessible. continue; } code_.SetValue("OFFSET_NAME", GenFieldOffsetName(*field)); code_.SetValue("OFFSET_VALUE", NumToString(field->value.offset)); code_ += "{{SEP}} {{OFFSET_NAME}} = {{OFFSET_VALUE}}\\"; code_.SetValue("SEP", ",\n"); } code_ += ""; code_ += " };"; } // Generate the accessors. for (const auto &field : struct_def.fields.vec) { if (field->deprecated) { // Deprecated fields won't be accessible. continue; } code_.SetValue("FIELD_NAME", Name(*field)); GenTableFieldGetter(*field); if (opts_.mutable_buffer) { GenTableFieldSetter(*field); } auto nfn = GetNestedFlatBufferName(*field); if (!nfn.empty()) { code_.SetValue("CPP_NAME", nfn); code_ += " const {{CPP_NAME}} *{{FIELD_NAME}}_nested_root() const {"; code_ += " const auto _f = {{FIELD_NAME}}();"; code_ += " return _f ? ::flatbuffers::GetRoot<{{CPP_NAME}}>(_f->Data())"; code_ += " : nullptr;"; code_ += " }"; } if (field->flexbuffer) { code_ += " flexbuffers::Reference {{FIELD_NAME}}_flexbuffer_root()" " const {"; // Both Data() and size() are const-methods, therefore call order // doesn't matter. code_ += " const auto _f = {{FIELD_NAME}}();"; code_ += " return _f ? flexbuffers::GetRoot(_f->Data(), _f->size())"; code_ += " : flexbuffers::Reference();"; code_ += " }"; } // Generate a comparison function for this field if it is a key. if (field->key) { GenKeyFieldMethods(*field); } } if (opts_.cpp_static_reflection) { GenIndexBasedFieldGetter(struct_def); } // Generate a verifier function that can check a buffer from an untrusted // source will never cause reads outside the buffer. code_ += " bool Verify(::flatbuffers::Verifier &verifier) const {"; code_ += " return VerifyTableStart(verifier)\\"; for (const auto &field : struct_def.fields.vec) { if (field->deprecated) { continue; } GenVerifyCall(*field, " &&\n "); } code_ += " &&\n verifier.EndTable();"; code_ += " }"; if (opts_.generate_object_based_api) { // Generate the UnPack() pre declaration. code_ += " " + TableUnPackSignature(struct_def, true, opts_) + ";"; code_ += " " + TableUnPackToSignature(struct_def, true, opts_) + ";"; code_ += " " + TablePackSignature(struct_def, true, opts_) + ";"; } code_ += "};"; // End of table. code_ += ""; // Explicit specializations for union accessors for (const auto &field : struct_def.fields.vec) { if (field->deprecated || field->value.type.base_type != BASE_TYPE_UNION) { continue; } auto u = field->value.type.enum_def; if (u->uses_multiple_type_instances) continue; code_.SetValue("FIELD_NAME", Name(*field)); for (auto u_it = u->Vals().begin(); u_it != u->Vals().end(); ++u_it) { auto &ev = **u_it; if (ev.union_type.base_type == BASE_TYPE_NONE) { continue; } auto full_struct_name = GetUnionElement(ev, false, opts_); code_.SetValue( "U_ELEMENT_TYPE", WrapInNameSpace(u->defined_namespace, GetEnumValUse(*u, ev))); code_.SetValue("U_FIELD_TYPE", "const " + full_struct_name + " *"); code_.SetValue("U_ELEMENT_NAME", full_struct_name); code_.SetValue("U_FIELD_NAME", Name(*field) + "_as_" + Name(ev)); // `template<> const T *union_name_as() const` accessor. code_ += "template<> " "inline {{U_FIELD_TYPE}}{{STRUCT_NAME}}::{{FIELD_NAME}}_as" "<{{U_ELEMENT_NAME}}>() const {"; code_ += " return {{U_FIELD_NAME}}();"; code_ += "}"; code_ += ""; } } GenBuilders(struct_def); if (opts_.generate_object_based_api) { // Generate a pre-declaration for a CreateX method that works with an // unpacked C++ object. code_ += TableCreateSignature(struct_def, true, opts_) + ";"; code_ += ""; } } // Generate code to force vector alignment. Return empty string for vector // that doesn't need alignment code. std::string GenVectorForceAlign(const FieldDef &field, const std::string &field_size) { FLATBUFFERS_ASSERT(IsVector(field.value.type)); // Get the value of the force_align attribute. const auto *force_align = field.attributes.Lookup("force_align"); const int align = force_align ? atoi(force_align->constant.c_str()) : 1; // Generate code to do force_align for the vector. if (align > 1) { const auto vtype = field.value.type.VectorType(); const std::string &type = IsStruct(vtype) ? WrapInNameSpace(*vtype.struct_def) : GenTypeWire(vtype, "", false, field.offset64); return "_fbb.ForceVectorAlignment(" + field_size + ", sizeof(" + type + "), " + std::to_string(static_cast(align)) + ");"; } return ""; } void GenBuilders(const StructDef &struct_def) { code_.SetValue("STRUCT_NAME", Name(struct_def)); // Generate a builder struct: code_ += "struct {{STRUCT_NAME}}Builder {"; code_ += " typedef {{STRUCT_NAME}} Table;"; code_ += " " + GetBuilder() + " &fbb_;"; code_ += " ::flatbuffers::uoffset_t start_;"; bool has_string_or_vector_fields = false; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (field.deprecated) continue; const bool is_scalar = IsScalar(field.value.type.base_type); const bool is_default_scalar = is_scalar && !field.IsScalarOptional(); const bool is_string = IsString(field.value.type); const bool is_vector = IsVector(field.value.type); if (is_string || is_vector) { has_string_or_vector_fields = true; } std::string offset = GenFieldOffsetName(field); std::string name = GenUnderlyingCast(field, false, Name(field)); std::string value = is_default_scalar ? GenDefaultConstant(field) : ""; // Generate accessor functions of the form: // void add_name(type name) { // fbb_.AddElement(offset, name, default); // } code_.SetValue("FIELD_NAME", Name(field)); code_.SetValue("FIELD_TYPE", GenTypeWire(field.value.type, " ", true, field.offset64)); code_.SetValue("ADD_OFFSET", Name(struct_def) + "::" + offset); code_.SetValue("ADD_NAME", name); code_.SetValue("ADD_VALUE", value); if (is_scalar) { const auto type = GenTypeWire(field.value.type, "", false, field.offset64); code_.SetValue("ADD_FN", "AddElement<" + type + ">"); } else if (IsStruct(field.value.type)) { code_.SetValue("ADD_FN", "AddStruct"); } else { code_.SetValue("ADD_FN", "AddOffset"); } code_ += " void add_{{FIELD_NAME}}({{FIELD_TYPE}}{{FIELD_NAME}}) {"; code_ += " fbb_.{{ADD_FN}}(\\"; if (is_default_scalar) { code_ += "{{ADD_OFFSET}}, {{ADD_NAME}}, {{ADD_VALUE}});"; } else { code_ += "{{ADD_OFFSET}}, {{ADD_NAME}});"; } code_ += " }"; } // Builder constructor code_ += " explicit {{STRUCT_NAME}}Builder(" + GetBuilder() + " " "&_fbb)"; code_ += " : fbb_(_fbb) {"; code_ += " start_ = fbb_.StartTable();"; code_ += " }"; // Finish() function. code_ += " ::flatbuffers::Offset<{{STRUCT_NAME}}> Finish() {"; code_ += " const auto end = fbb_.EndTable(start_);"; code_ += " auto o = ::flatbuffers::Offset<{{STRUCT_NAME}}>(end);"; for (const auto &field : struct_def.fields.vec) { if (!field->deprecated && field->IsRequired()) { code_.SetValue("FIELD_NAME", Name(*field)); code_.SetValue("OFFSET_NAME", GenFieldOffsetName(*field)); code_ += " fbb_.Required(o, {{STRUCT_NAME}}::{{OFFSET_NAME}});"; } } code_ += " return o;"; code_ += " }"; code_ += "};"; code_ += ""; // Generate a convenient CreateX function that uses the above builder // to create a table in one go. code_ += "inline ::flatbuffers::Offset<{{STRUCT_NAME}}> " "Create{{STRUCT_NAME}}("; code_ += " " + GetBuilder() + " &_fbb\\"; for (const auto &field : struct_def.fields.vec) { if (!field->deprecated) { GenParam(*field, false, ",\n "); } } code_ += ") {"; code_ += " {{STRUCT_NAME}}Builder builder_(_fbb);"; for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1; size; size /= 2) { for (auto it = struct_def.fields.vec.rbegin(); it != struct_def.fields.vec.rend(); ++it) { const auto &field = **it; if (!field.deprecated && (!struct_def.sortbysize || size == SizeOf(field.value.type.base_type))) { code_.SetValue("FIELD_NAME", Name(field)); if (field.IsScalarOptional()) { code_ += " if({{FIELD_NAME}}) { " "builder_.add_{{FIELD_NAME}}(*{{FIELD_NAME}}); }"; } else { code_ += " builder_.add_{{FIELD_NAME}}({{FIELD_NAME}});"; } } } } code_ += " return builder_.Finish();"; code_ += "}"; code_ += ""; // Definition for type traits for this table type. This allows querying var- // ious compile-time traits of the table. if (opts_.g_cpp_std >= cpp::CPP_STD_17) { GenTraitsStruct(struct_def); } // Generate a CreateXDirect function with vector types as parameters if (opts_.cpp_direct_copy && has_string_or_vector_fields) { code_ += "inline ::flatbuffers::Offset<{{STRUCT_NAME}}> " "Create{{STRUCT_NAME}}Direct("; code_ += " " + GetBuilder() + " &_fbb\\"; for (const auto &field : struct_def.fields.vec) { if (!field->deprecated) { GenParam(*field, true, ",\n "); } } // Need to call "Create" with the struct namespace. const auto qualified_create_name = struct_def.defined_namespace->GetFullyQualifiedName("Create"); code_.SetValue("CREATE_NAME", TranslateNameSpace(qualified_create_name)); code_ += ") {"; // Offset64 bit fields need to be added to the buffer first, so here we // loop over the fields in order of their offset size, followed by their // definition order. Otherwise the emitted code might add a Offset // followed by an Offset64 which would trigger an assertion. // TODO(derekbailey): maybe optimize for the case where there is no // 64offsets in the whole schema? ForAllFieldsOrderedByOffset(struct_def, [&](const FieldDef *field) { if (field->deprecated) { return; } code_.SetValue("FIELD_NAME", Name(*field)); if (IsString(field->value.type)) { if (!field->shared) { code_.SetValue( "CREATE_STRING", "CreateString" + std::string(field->offset64 ? "<::flatbuffers::Offset64>" : "")); } else { code_.SetValue("CREATE_STRING", "CreateSharedString"); } code_ += " auto {{FIELD_NAME}}__ = {{FIELD_NAME}} ? " "_fbb.{{CREATE_STRING}}({{FIELD_NAME}}) : 0;"; } else if (IsVector(field->value.type)) { const std::string force_align_code = GenVectorForceAlign(*field, Name(*field) + "->size()"); if (!force_align_code.empty()) { code_ += " if ({{FIELD_NAME}}) { " + force_align_code + " }"; } code_ += " auto {{FIELD_NAME}}__ = {{FIELD_NAME}} ? \\"; const auto vtype = field->value.type.VectorType(); const auto has_key = TypeHasKey(vtype); if (IsStruct(vtype)) { const std::string type = WrapInNameSpace(*vtype.struct_def); if (has_key) { code_ += "_fbb.CreateVectorOfSortedStructs<" + type + ">\\"; } else { // If the field uses 64-bit addressing, create a 64-bit vector. if (field->value.type.base_type == BASE_TYPE_VECTOR64) { code_ += "_fbb.CreateVectorOfStructs64\\"; } else { code_ += "_fbb.CreateVectorOfStructs\\"; if (field->offset64) { // This is normal 32-bit vector, with 64-bit addressing. code_ += "64<::flatbuffers::Vector>\\"; } else { code_ += "<" + type + ">\\"; } } } } else if (has_key) { const auto type = WrapInNameSpace(*vtype.struct_def); code_ += "_fbb.CreateVectorOfSortedTables<" + type + ">\\"; } else { const auto type = GenTypeWire( vtype, "", VectorElementUserFacing(vtype), field->offset64); if (field->value.type.base_type == BASE_TYPE_VECTOR64) { code_ += "_fbb.CreateVector64\\"; } else { // If the field uses 64-bit addressing, create a 64-bit vector. code_.SetValue("64OFFSET", field->offset64 ? "64" : ""); code_.SetValue("TYPE", field->offset64 ? "::flatbuffers::Vector" : type); code_ += "_fbb.CreateVector{{64OFFSET}}<{{TYPE}}>\\"; } } code_ += has_key ? "({{FIELD_NAME}}) : 0;" : "(*{{FIELD_NAME}}) : 0;"; } }); code_ += " return {{CREATE_NAME}}{{STRUCT_NAME}}("; code_ += " _fbb\\"; for (const auto &field : struct_def.fields.vec) { if (field->deprecated) { continue; } code_.SetValue("FIELD_NAME", Name(*field)); code_ += ",\n {{FIELD_NAME}}\\"; if (IsString(field->value.type) || IsVector(field->value.type)) { code_ += "__\\"; } } code_ += ");"; code_ += "}"; code_ += ""; } } std::string GenUnionUnpackVal(const FieldDef &afield, const char *vec_elem_access, const char *vec_type_access) { auto type_name = WrapInNameSpace(*afield.value.type.enum_def); return type_name + "Union::UnPack(" + "_e" + vec_elem_access + ", " + EscapeKeyword(afield.name + UnionTypeFieldSuffix()) + "()" + vec_type_access + ", _resolver)"; } std::string GenUnpackVal(const Type &type, const std::string &val, bool invector, const FieldDef &afield) { switch (type.base_type) { case BASE_TYPE_STRING: { if (FlexibleStringConstructor(&afield)) { return NativeString(&afield) + "(" + val + "->c_str(), " + val + "->size())"; } else { return val + "->str()"; } } case BASE_TYPE_STRUCT: { if (IsStruct(type)) { const auto &struct_attrs = type.struct_def->attributes; const auto native_type = struct_attrs.Lookup("native_type"); if (native_type) { std::string unpack_call = "::flatbuffers::UnPack"; const auto pack_name = struct_attrs.Lookup("native_type_pack_name"); if (pack_name) { unpack_call += pack_name->constant; } unpack_call += "(*" + val + ")"; return unpack_call; } else if (invector || afield.native_inline) { return "*" + val; } else { const auto name = WrapInNameSpace(*type.struct_def); const auto ptype = GenTypeNativePtr(name, &afield, true); return ptype + "(new " + name + "(*" + val + "))"; } } else { std::string ptype = afield.native_inline ? "*" : ""; ptype += GenTypeNativePtr( WrapNativeNameInNameSpace(*type.struct_def, opts_), &afield, true); return ptype + "(" + val + "->UnPack(_resolver))"; } } case BASE_TYPE_UNION: { return GenUnionUnpackVal( afield, invector ? "->Get(_i)" : "", invector ? ("->GetEnum<" + type.enum_def->name + ">(_i)").c_str() : ""); } default: { return val; break; } } } std::string GenUnpackFieldStatement(const FieldDef &field, const FieldDef *union_field) { std::string code; switch (field.value.type.base_type) { case BASE_TYPE_VECTOR64: case BASE_TYPE_VECTOR: { auto name = Name(field); if (field.value.type.element == BASE_TYPE_UTYPE) { name = StripUnionType(Name(field)); } const std::string vector_field = "_o->" + name; code += "{ " + vector_field + ".resize(_e->size()); "; if (!field.value.type.enum_def && !IsBool(field.value.type.element) && IsOneByte(field.value.type.element)) { // For vectors of bytes, std::copy is used to improve performance. // This doesn't work for: // - enum types because they have to be explicitly static_cast. // - vectors of bool, since they are a template specialization. // - multiple-byte types due to endianness. code += "std::copy(_e->begin(), _e->end(), _o->" + name + ".begin()); }"; } else { std::string indexing; if (field.value.type.enum_def) { indexing += "static_cast<" + WrapInNameSpace(*field.value.type.enum_def) + ">("; } indexing += "_e->Get(_i)"; if (field.value.type.enum_def) { indexing += ")"; } if (field.value.type.element == BASE_TYPE_BOOL) { indexing += " != 0"; } // Generate code that pushes data from _e to _o in the form: // for (uoffset_t i = 0; i < _e->size(); ++i) { // _o->field.push_back(_e->Get(_i)); // } auto access = field.value.type.element == BASE_TYPE_UTYPE ? ".type" : (field.value.type.element == BASE_TYPE_UNION ? ".value" : ""); if (field.value.type.base_type == BASE_TYPE_VECTOR64) { code += "for (::flatbuffers::uoffset64_t _i = 0;"; } else { code += "for (::flatbuffers::uoffset_t _i = 0;"; } code += " _i < _e->size(); _i++) { "; auto cpp_type = field.attributes.Lookup("cpp_type"); if (cpp_type) { // Generate code that resolves the cpp pointer type, of the form: // if (resolver) // (*resolver)(&_o->field, (hash_value_t)(_e)); // else // _o->field = nullptr; code += "/*vector resolver, " + PtrType(&field) + "*/ "; code += "if (_resolver) "; code += "(*_resolver)"; code += "(reinterpret_cast(&_o->" + name + "[_i]" + access + "), "; code += "static_cast<::flatbuffers::hash_value_t>(" + indexing + "));"; if (PtrType(&field) == "naked") { code += " else "; code += "_o->" + name + "[_i]" + access + " = nullptr"; } else { // code += " else "; // code += "_o->" + name + "[_i]" + access + " = " + // GenTypeNativePtr(cpp_type->constant, &field, true) + "();"; code += "/* else do nothing */"; } } else { const bool is_pointer = IsVectorOfPointers(field); if (is_pointer) { code += "if(_o->" + name + "[_i]" + ") { "; code += indexing + "->UnPackTo(_o->" + name + "[_i].get(), _resolver);"; code += " } else { "; } code += "_o->" + name + "[_i]" + access + " = "; code += GenUnpackVal(field.value.type.VectorType(), indexing, true, field); if (is_pointer) { code += "; }"; } } code += "; } } else { " + vector_field + ".resize(0); }"; } break; } case BASE_TYPE_UTYPE: { FLATBUFFERS_ASSERT(union_field->value.type.base_type == BASE_TYPE_UNION); // Generate code that sets the union type, of the form: // _o->field.type = _e; code += "_o->" + union_field->name + ".type = _e;"; break; } case BASE_TYPE_UNION: { // Generate code that sets the union value, of the form: // _o->field.value = Union::Unpack(_e, field_type(), resolver); code += "_o->" + Name(field) + ".value = "; code += GenUnionUnpackVal(field, "", ""); code += ";"; break; } default: { auto cpp_type = field.attributes.Lookup("cpp_type"); if (cpp_type) { // Generate code that resolves the cpp pointer type, of the form: // if (resolver) // (*resolver)(&_o->field, (hash_value_t)(_e)); // else // _o->field = nullptr; code += "/*scalar resolver, " + PtrType(&field) + "*/ "; code += "if (_resolver) "; code += "(*_resolver)"; code += "(reinterpret_cast(&_o->" + Name(field) + "), "; code += "static_cast<::flatbuffers::hash_value_t>(_e));"; if (PtrType(&field) == "naked") { code += " else "; code += "_o->" + Name(field) + " = nullptr;"; } else { // code += " else "; // code += "_o->" + Name(field) + " = " + // GenTypeNativePtr(cpp_type->constant, &field, true) + "();"; code += "/* else do nothing */;"; } } else { // Generate code for assigning the value, of the form: // _o->field = value; const bool is_pointer = IsPointer(field); const std::string out_field = "_o->" + Name(field); if (is_pointer) { code += "{ if(" + out_field + ") { "; code += "_e->UnPackTo(" + out_field + ".get(), _resolver);"; code += " } else { "; } code += out_field + " = "; code += GenUnpackVal(field.value.type, "_e", false, field) + ";"; if (is_pointer) { code += " } } else if (" + out_field + ") { " + out_field + ".reset(); }"; } } break; } } return code; } std::string GenCreateParam(const FieldDef &field) { std::string value = "_o->"; if (field.value.type.base_type == BASE_TYPE_UTYPE) { value += StripUnionType(Name(field)); value += ".type"; } else { value += Name(field); } if (!IsVector(field.value.type) && field.attributes.Lookup("cpp_type")) { auto type = GenTypeBasic(field.value.type, false); value = "_rehasher ? " "static_cast<" + type + ">((*_rehasher)(" + value + GenPtrGet(field) + ")) : 0"; } std::string code; switch (field.value.type.base_type) { // String fields are of the form: // _fbb.CreateString(_o->field) // or // _fbb.CreateSharedString(_o->field) case BASE_TYPE_STRING: { if (!field.shared) { code += "_fbb.CreateString" + std::string(field.offset64 ? "<::flatbuffers::Offset64>" : "") + "("; } else { code += "_fbb.CreateSharedString("; } code += value; code.push_back(')'); // For optional fields, check to see if there actually is any data // in _o->field before attempting to access it. If there isn't, // depending on set_empty_strings_to_null either set it to 0 or an empty // string. if (!field.IsRequired()) { auto empty_value = opts_.set_empty_strings_to_null ? "0" : "_fbb.CreateSharedString(\"\")"; code = value + ".empty() ? " + empty_value + " : " + code; } break; } // Vector fields come in several flavours, of the forms: // _fbb.CreateVector(_o->field); // _fbb.CreateVector((const utype*)_o->field.data(), // _o->field.size()); _fbb.CreateVectorOfStrings(_o->field) // _fbb.CreateVectorOfStructs(_o->field) // _fbb.CreateVector>(_o->field.size() [&](size_t i) { // return CreateT(_fbb, _o->Get(i), rehasher); // }); case BASE_TYPE_VECTOR64: case BASE_TYPE_VECTOR: { auto vector_type = field.value.type.VectorType(); switch (vector_type.base_type) { case BASE_TYPE_STRING: { if (NativeString(&field) == "std::string") { code += "_fbb.CreateVectorOfStrings(" + value + ")"; } else { // Use by-function serialization to emulate // CreateVectorOfStrings(); this works also with non-std strings. code += "_fbb.CreateVector<::flatbuffers::Offset<::flatbuffers::" "String>>" " "; code += "(" + value + ".size(), "; code += "[](size_t i, _VectorArgs *__va) { "; code += "return __va->__fbb->CreateString(__va->_" + value + "[i]);"; code += " }, &_va )"; } break; } case BASE_TYPE_STRUCT: { if (IsStruct(vector_type)) { const auto &struct_attrs = field.value.type.struct_def->attributes; const auto native_type = struct_attrs.Lookup("native_type"); if (native_type) { code += "_fbb.CreateVectorOfNativeStructs<"; code += WrapInNameSpace(*vector_type.struct_def) + ", " + native_type->constant + ">"; code += "(" + value; const auto pack_name = struct_attrs.Lookup("native_type_pack_name"); if (pack_name) { code += ", ::flatbuffers::Pack" + pack_name->constant; } code += ")"; } else { // If the field uses 64-bit addressing, create a 64-bit vector. if (field.value.type.base_type == BASE_TYPE_VECTOR64) { code += "_fbb.CreateVectorOfStructs64"; } else { code += "_fbb.CreateVectorOfStructs"; if (field.offset64) { // This is normal 32-bit vector, with 64-bit addressing. code += "64<::flatbuffers::Vector>"; } } code += "(" + value + ")"; } } else { code += "_fbb.CreateVector<::flatbuffers::Offset<"; code += WrapInNameSpace(*vector_type.struct_def) + ">> "; code += "(" + value + ".size(), "; code += "[](size_t i, _VectorArgs *__va) { "; code += "return Create" + vector_type.struct_def->name; code += "(*__va->__fbb, "; if (field.native_inline) { code += "&(__va->_" + value + "[i])"; } else { code += "__va->_" + value + "[i]" + GenPtrGet(field); } code += ", __va->__rehasher); }, &_va )"; } break; } case BASE_TYPE_BOOL: { code += "_fbb.CreateVector(" + value + ")"; break; } case BASE_TYPE_UNION: { code += "_fbb.CreateVector<::flatbuffers::" "Offset>(" + value + ".size(), [](size_t i, _VectorArgs *__va) { " "return __va->_" + value + "[i].Pack(*__va->__fbb, __va->__rehasher); }, &_va)"; break; } case BASE_TYPE_UTYPE: { value = StripUnionType(value); const std::string &type = opts_.scoped_enums ? Name(*field.value.type.enum_def) : "uint8_t"; auto enum_value = "__va->_" + value + "[i].type"; if (!opts_.scoped_enums) enum_value = "static_cast(" + enum_value + ")"; code += "_fbb.CreateVector<" + type + ">(" + value + ".size(), [](size_t i, _VectorArgs *__va) { return " + enum_value + "; }, &_va)"; break; } default: { if (field.value.type.enum_def && !VectorElementUserFacing(vector_type)) { // For enumerations, we need to get access to the array data for // the underlying storage type (eg. uint8_t). const auto basetype = GenTypeBasic( field.value.type.enum_def->underlying_type, false); code += "_fbb.CreateVectorScalarCast<" + basetype + ">(::flatbuffers::data(" + value + "), " + value + ".size())"; } else if (field.attributes.Lookup("cpp_type")) { auto type = GenTypeBasic(vector_type, false); code += "_fbb.CreateVector<" + type + ">(" + value + ".size(), "; code += "[](size_t i, _VectorArgs *__va) { "; code += "return __va->__rehasher ? "; code += "static_cast<" + type + ">((*__va->__rehasher)"; code += "(__va->_" + value + "[i]" + GenPtrGet(field) + ")) : 0"; code += "; }, &_va )"; } else { // If the field uses 64-bit addressing, create a 64-bit vector. if (field.value.type.base_type == BASE_TYPE_VECTOR64) { code += "_fbb.CreateVector64(" + value + ")"; } else { code += "_fbb.CreateVector"; if (field.offset64) { // This is normal 32-bit vector, with 64-bit addressing. code += "64<::flatbuffers::Vector>"; } code += "(" + value + ")"; } } break; } } // If set_empty_vectors_to_null option is enabled, for optional fields, // check to see if there actually is any data in _o->field before // attempting to access it. if (field.attributes.Lookup("nested_flatbuffer") || (opts_.set_empty_vectors_to_null && !field.IsRequired())) { code = value + ".size() ? " + code + " : 0"; } break; } case BASE_TYPE_UNION: { // _o->field.Pack(_fbb); code += value + ".Pack(_fbb)"; break; } case BASE_TYPE_STRUCT: { if (IsStruct(field.value.type)) { const auto &struct_attribs = field.value.type.struct_def->attributes; const auto native_type = struct_attribs.Lookup("native_type"); if (native_type) { code += "::flatbuffers::Pack"; const auto pack_name = struct_attribs.Lookup("native_type_pack_name"); if (pack_name) { code += pack_name->constant; } code += "(" + value + ")"; } else if (field.native_inline) { code += "&" + value; } else { code += value + " ? " + value + GenPtrGet(field) + " : nullptr"; } } else { // _o->field ? CreateT(_fbb, _o->field.get(), _rehasher); const std::string &type = field.value.type.struct_def->name; code += value + " ? Create" + type; code += "(_fbb, " + value; if (!field.native_inline) code += GenPtrGet(field); code += ", _rehasher) : 0"; } break; } default: { code += value; break; } } return code; } // Generate code for tables that needs to come after the regular definition. void GenTablePost(const StructDef &struct_def) { if (opts_.generate_object_based_api) { GenNativeTablePost(struct_def); } code_.SetValue("STRUCT_NAME", Name(struct_def)); code_.SetValue("NATIVE_NAME", NativeName(Name(struct_def), &struct_def, opts_)); if (opts_.generate_object_based_api) { // Generate the >= C++11 copy ctor and assignment operator definitions. GenCopyCtorAssignOpDefs(struct_def); // Generate the X::UnPack() method. code_ += "inline " + TableUnPackSignature(struct_def, false, opts_) + " {"; if (opts_.g_cpp_std == cpp::CPP_STD_X0) { auto native_name = WrapNativeNameInNameSpace(struct_def, parser_.opts); code_.SetValue("POINTER_TYPE", GenTypeNativePtr(native_name, nullptr, false)); code_ += " {{POINTER_TYPE}} _o = {{POINTER_TYPE}}(new {{NATIVE_NAME}}());"; } else if (opts_.g_cpp_std == cpp::CPP_STD_11) { code_ += " auto _o = std::unique_ptr<{{NATIVE_NAME}}>(new " "{{NATIVE_NAME}}());"; } else { code_ += " auto _o = std::make_unique<{{NATIVE_NAME}}>();"; } code_ += " UnPackTo(_o.get(), _resolver);"; code_ += " return _o.release();"; code_ += "}"; code_ += ""; code_ += "inline " + TableUnPackToSignature(struct_def, false, opts_) + " {"; code_ += " (void)_o;"; code_ += " (void)_resolver;"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (field.deprecated) { continue; } // Assign a value from |this| to |_o|. Values from |this| are stored // in a variable |_e| by calling this->field_type(). The value is then // assigned to |_o| using the GenUnpackFieldStatement. const bool is_union = field.value.type.base_type == BASE_TYPE_UTYPE; const auto statement = GenUnpackFieldStatement(field, is_union ? *(it + 1) : nullptr); code_.SetValue("FIELD_NAME", Name(field)); auto prefix = " { auto _e = {{FIELD_NAME}}(); "; auto check = IsScalar(field.value.type.base_type) ? "" : "if (_e) "; auto postfix = " }"; code_ += std::string(prefix) + check + statement + postfix; } code_ += "}"; code_ += ""; // Generate the X::Pack member function that simply calls the global // CreateX function. code_ += "inline " + TablePackSignature(struct_def, false, opts_) + " {"; code_ += " return Create{{STRUCT_NAME}}(_fbb, _o, _rehasher);"; code_ += "}"; code_ += ""; // Generate a CreateX method that works with an unpacked C++ object. code_ += "inline " + TableCreateSignature(struct_def, false, opts_) + " {"; code_ += " (void)_rehasher;"; code_ += " (void)_o;"; code_ += " struct _VectorArgs " "{ " + GetBuilder() + " *__fbb; " "const " + NativeName(Name(struct_def), &struct_def, opts_) + "* __o; " "const ::flatbuffers::rehasher_function_t *__rehasher; } _va = { " "&_fbb, _o, _rehasher}; (void)_va;"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (field.deprecated) { continue; } if (IsVector(field.value.type)) { const std::string force_align_code = GenVectorForceAlign(field, "_o->" + Name(field) + ".size()"); if (!force_align_code.empty()) { code_ += " " + force_align_code; } } code_ += " auto _" + Name(field) + " = " + GenCreateParam(field) + ";"; } // Need to call "Create" with the struct namespace. const auto qualified_create_name = struct_def.defined_namespace->GetFullyQualifiedName("Create"); code_.SetValue("CREATE_NAME", TranslateNameSpace(qualified_create_name)); code_ += " return {{CREATE_NAME}}{{STRUCT_NAME}}("; code_ += " _fbb\\"; for (const auto &field : struct_def.fields.vec) { if (field->deprecated) { continue; } bool pass_by_address = false; if (field->value.type.base_type == BASE_TYPE_STRUCT) { if (IsStruct(field->value.type)) { auto native_type = field->value.type.struct_def->attributes.Lookup("native_type"); if (native_type) { pass_by_address = true; } } } // Call the CreateX function using values from |_o|. if (pass_by_address) { code_ += ",\n &_" + Name(*field) + "\\"; } else { code_ += ",\n _" + Name(*field) + "\\"; } } code_ += ");"; code_ += "}"; code_ += ""; } } static void GenPadding( const FieldDef &field, std::string *code_ptr, int *id, const std::function &f) { if (field.padding) { for (int i = 0; i < 4; i++) { if (static_cast(field.padding) & (1 << i)) { f((1 << i) * 8, code_ptr, id); } } FLATBUFFERS_ASSERT(!(field.padding & ~0xF)); } } static void PaddingDefinition(int bits, std::string *code_ptr, int *id) { *code_ptr += " int" + NumToString(bits) + "_t padding" + NumToString((*id)++) + "__;"; } static void PaddingInitializer(int bits, std::string *code_ptr, int *id) { (void)bits; if (!code_ptr->empty()) *code_ptr += ",\n "; *code_ptr += "padding" + NumToString((*id)++) + "__(0)"; } static void PaddingNoop(int bits, std::string *code_ptr, int *id) { (void)bits; if (!code_ptr->empty()) *code_ptr += '\n'; *code_ptr += " (void)padding" + NumToString((*id)++) + "__;"; } void GenStructDefaultConstructor(const StructDef &struct_def) { std::string init_list; std::string body; bool first_in_init_list = true; int padding_initializer_id = 0; int padding_body_id = 0; for (const auto &field : struct_def.fields.vec) { const auto field_name = Name(*field) + "_"; if (first_in_init_list) { first_in_init_list = false; } else { init_list += ","; init_list += "\n "; } init_list += field_name; if (IsStruct(field->value.type) || IsArray(field->value.type)) { // this is either default initialization of struct // or // implicit initialization of array // for each object in array it: // * sets it as zeros for POD types (integral, floating point, etc) // * calls default constructor for classes/structs init_list += "()"; } else { init_list += "(0)"; } if (field->padding) { GenPadding(*field, &init_list, &padding_initializer_id, PaddingInitializer); GenPadding(*field, &body, &padding_body_id, PaddingNoop); } } if (init_list.empty()) { code_ += " {{STRUCT_NAME}}()"; code_ += " {}"; } else { code_.SetValue("INIT_LIST", init_list); code_ += " {{STRUCT_NAME}}()"; code_ += " : {{INIT_LIST}} {"; if (!body.empty()) { code_ += body; } code_ += " }"; } } void GenStructConstructor(const StructDef &struct_def, GenArrayArgMode array_mode) { std::string arg_list; std::string init_list; int padding_id = 0; auto first = struct_def.fields.vec.begin(); // skip arrays if generate ctor without array assignment const auto init_arrays = (array_mode != kArrayArgModeNone); for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; const auto &type = field.value.type; const auto is_array = IsArray(type); const auto arg_name = "_" + Name(field); if (!is_array || init_arrays) { if (it != first && !arg_list.empty()) { arg_list += ", "; } arg_list += !is_array ? GenTypeGet(type, " ", "const ", " &", true) : GenTypeSpan(type, true, type.fixed_length); arg_list += arg_name; } // skip an array with initialization from span if (false == (is_array && init_arrays)) { if (it != first && !init_list.empty()) { init_list += ",\n "; } init_list += Name(field) + "_"; if (IsScalar(type.base_type)) { auto scalar_type = GenUnderlyingCast(field, false, arg_name); init_list += "(::flatbuffers::EndianScalar(" + scalar_type + "))"; } else { FLATBUFFERS_ASSERT((is_array && !init_arrays) || IsStruct(type)); if (!is_array) init_list += "(" + arg_name + ")"; else init_list += "()"; } } if (field.padding) GenPadding(field, &init_list, &padding_id, PaddingInitializer); } if (!arg_list.empty()) { code_.SetValue("ARG_LIST", arg_list); code_.SetValue("INIT_LIST", init_list); if (!init_list.empty()) { code_ += " {{STRUCT_NAME}}({{ARG_LIST}})"; code_ += " : {{INIT_LIST}} {"; } else { code_ += " {{STRUCT_NAME}}({{ARG_LIST}}) {"; } padding_id = 0; for (const auto &field : struct_def.fields.vec) { const auto &type = field->value.type; if (IsArray(type) && init_arrays) { const auto &element_type = type.VectorType(); const auto is_enum = IsEnum(element_type); FLATBUFFERS_ASSERT( (IsScalar(element_type.base_type) || IsStruct(element_type)) && "invalid declaration"); const auto face_type = GenTypeGet(type, " ", "", "", is_enum); std::string get_array = is_enum ? "CastToArrayOfEnum<" + face_type + ">" : "CastToArray"; const auto field_name = Name(*field) + "_"; const auto arg_name = "_" + Name(*field); code_ += " ::flatbuffers::" + get_array + "(" + field_name + ").CopyFromSpan(" + arg_name + ");"; } if (field->padding) { std::string padding; GenPadding(*field, &padding, &padding_id, PaddingNoop); code_ += padding; } } code_ += " }"; } } void GenArrayAccessor(const Type &type, bool mutable_accessor) { FLATBUFFERS_ASSERT(IsArray(type)); const auto is_enum = IsEnum(type.VectorType()); // The Array is a tricky case, like std::vector. // It requires a specialization of Array class. // Generate Array for Array. const auto face_type = GenTypeGet(type, " ", "", "", is_enum); std::string ret_type = "::flatbuffers::Array<" + face_type + ", " + NumToString(type.fixed_length) + ">"; if (mutable_accessor) code_ += " " + ret_type + " *mutable_{{FIELD_NAME}}() {"; else code_ += " const " + ret_type + " *{{FIELD_NAME}}() const {"; std::string get_array = is_enum ? "CastToArrayOfEnum<" + face_type + ">" : "CastToArray"; code_ += " return &::flatbuffers::" + get_array + "({{FIELD_VALUE}});"; code_ += " }"; } // Generate an accessor struct with constructor for a flatbuffers struct. void GenStruct(const StructDef &struct_def) { // Generate an accessor struct, with private variables of the form: // type name_; // Generates manual padding and alignment. // Variables are private because they contain little endian data on all // platforms. GenComment(struct_def.doc_comment); code_.SetValue("ALIGN", NumToString(struct_def.minalign)); code_.SetValue("STRUCT_NAME", Name(struct_def)); code_ += "FLATBUFFERS_MANUALLY_ALIGNED_STRUCT({{ALIGN}}) " "{{STRUCT_NAME}} FLATBUFFERS_FINAL_CLASS {"; code_ += " private:"; int padding_id = 0; for (const auto &field : struct_def.fields.vec) { const auto &field_type = field->value.type; code_.SetValue("FIELD_TYPE", GenTypeGet(field_type, " ", "", " ", false)); code_.SetValue("FIELD_NAME", Name(*field)); code_.SetValue("ARRAY", IsArray(field_type) ? "[" + NumToString(field_type.fixed_length) + "]" : ""); code_ += (" {{FIELD_TYPE}}{{FIELD_NAME}}_{{ARRAY}};"); if (field->padding) { std::string padding; GenPadding(*field, &padding, &padding_id, PaddingDefinition); code_ += padding; } } // Generate GetFullyQualifiedName code_ += ""; code_ += " public:"; if (opts_.g_cpp_std >= cpp::CPP_STD_17) { code_ += " struct Traits;"; } // Make TypeTable accessible via the generated struct. if (opts_.mini_reflect != IDLOptions::kNone) { code_ += " static const ::flatbuffers::TypeTable *MiniReflectTypeTable() {"; code_ += " return {{STRUCT_NAME}}TypeTable();"; code_ += " }"; } GenFullyQualifiedNameGetter(struct_def, Name(struct_def)); // Generate a default constructor. GenStructDefaultConstructor(struct_def); // Generate a constructor that takes all fields as arguments, // excluding arrays. GenStructConstructor(struct_def, kArrayArgModeNone); auto arrays_num = std::count_if( struct_def.fields.vec.begin(), struct_def.fields.vec.end(), [](const FieldDef *fd) { return IsArray(fd->value.type); }); if (arrays_num > 0) { GenStructConstructor(struct_def, kArrayArgModeSpanStatic); } // Generate accessor methods of the form: // type name() const { return ::flatbuffers::EndianScalar(name_); } for (const auto &field : struct_def.fields.vec) { const auto &type = field->value.type; const auto is_scalar = IsScalar(type.base_type); const auto is_array = IsArray(type); const auto field_type = GenTypeGet(type, " ", is_array ? "" : "const ", is_array ? "" : " &", true); auto member = Name(*field) + "_"; const std::string &value = is_scalar ? "::flatbuffers::EndianScalar(" + member + ")" : member; code_.SetValue("FIELD_NAME", Name(*field)); code_.SetValue("FIELD_TYPE", field_type); code_.SetValue("FIELD_VALUE", GenUnderlyingCast(*field, true, value)); GenComment(field->doc_comment, " "); // Generate a const accessor function. if (is_array) { GenArrayAccessor(type, false); } else { code_ += " {{FIELD_TYPE}}{{FIELD_NAME}}() const {"; code_ += " return {{FIELD_VALUE}};"; code_ += " }"; } // Generate a mutable accessor function. if (opts_.mutable_buffer) { auto mut_field_type = GenTypeGet(type, " ", "", is_array ? "" : " &", true); code_.SetValue("FIELD_TYPE", mut_field_type); if (is_scalar) { code_.SetValue("ARG", GenTypeBasic(type, true)); code_.SetValue("FIELD_VALUE", GenUnderlyingCast(*field, false, "_" + Name(*field))); code_ += " void mutate_{{FIELD_NAME}}({{ARG}} _{{FIELD_NAME}}) {"; code_ += " ::flatbuffers::WriteScalar(&{{FIELD_NAME}}_, " "{{FIELD_VALUE}});"; code_ += " }"; } else if (is_array) { GenArrayAccessor(type, true); } else { code_ += " {{FIELD_TYPE}}mutable_{{FIELD_NAME}}() {"; code_ += " return {{FIELD_VALUE}};"; code_ += " }"; } } // Generate a comparison function for this field if it is a key. if (field->key) { GenKeyFieldMethods(*field); } } code_.SetValue("NATIVE_NAME", Name(struct_def)); GenOperatorNewDelete(struct_def); if (opts_.cpp_static_reflection) { GenIndexBasedFieldGetter(struct_def); } code_ += "};"; code_.SetValue("STRUCT_BYTE_SIZE", NumToString(struct_def.bytesize)); code_ += "FLATBUFFERS_STRUCT_END({{STRUCT_NAME}}, {{STRUCT_BYTE_SIZE}});"; if (opts_.gen_compare) GenCompareOperator(struct_def, "()"); code_ += ""; // Definition for type traits for this table type. This allows querying var- // ious compile-time traits of the table. if (opts_.g_cpp_std >= cpp::CPP_STD_17) { GenTraitsStruct(struct_def); } } // Set up the correct namespace. Only open a namespace if the existing one is // different (closing/opening only what is necessary). // // The file must start and end with an empty (or null) namespace so that // namespaces are properly opened and closed. void SetNameSpace(const Namespace *ns) { if (cur_name_space_ == ns) { return; } // Compute the size of the longest common namespace prefix. // If cur_name_space is A::B::C::D and ns is A::B::E::F::G, // the common prefix is A::B:: and we have old_size = 4, new_size = 5 // and common_prefix_size = 2 size_t old_size = cur_name_space_ ? cur_name_space_->components.size() : 0; size_t new_size = ns ? ns->components.size() : 0; size_t common_prefix_size = 0; while (common_prefix_size < old_size && common_prefix_size < new_size && ns->components[common_prefix_size] == cur_name_space_->components[common_prefix_size]) { common_prefix_size++; } // Close cur_name_space in reverse order to reach the common prefix. // In the previous example, D then C are closed. for (size_t j = old_size; j > common_prefix_size; --j) { code_ += "} // namespace " + cur_name_space_->components[j - 1]; } if (old_size != common_prefix_size) { code_ += ""; } // open namespace parts to reach the ns namespace // in the previous example, E, then F, then G are opened for (auto j = common_prefix_size; j != new_size; ++j) { code_ += "namespace " + ns->components[j] + " {"; } if (new_size != common_prefix_size) { code_ += ""; } cur_name_space_ = ns; } }; } // namespace cpp static bool GenerateCPP(const Parser &parser, const std::string &path, const std::string &file_name) { cpp::IDLOptionsCpp opts(parser.opts); // The '--cpp_std' argument could be extended (like ASAN): // Example: "flatc --cpp_std c++17:option1:option2". std::string cpp_std = !opts.cpp_std.empty() ? opts.cpp_std : "C++11"; std::transform(cpp_std.begin(), cpp_std.end(), cpp_std.begin(), CharToUpper); if (cpp_std == "C++0X") { opts.g_cpp_std = cpp::CPP_STD_X0; opts.g_only_fixed_enums = false; } else if (cpp_std == "C++11") { // Use the standard C++11 code generator. opts.g_cpp_std = cpp::CPP_STD_11; opts.g_only_fixed_enums = true; } else if (cpp_std == "C++17") { opts.g_cpp_std = cpp::CPP_STD_17; // With c++17 generate strong enums only. opts.scoped_enums = true; // By default, prefixed_enums==true, reset it. opts.prefixed_enums = false; } else { LogCompilerError("Unknown value of the '--cpp-std' switch: " + opts.cpp_std); return false; } // The opts.scoped_enums has priority. opts.g_only_fixed_enums |= opts.scoped_enums; if (opts.cpp_static_reflection && opts.g_cpp_std < cpp::CPP_STD_17) { LogCompilerError( "--cpp-static-reflection requires using --cpp-std at \"C++17\" or " "higher."); return false; } cpp::CppGenerator generator(parser, path, file_name, opts); return generator.generate(); } static std::string CPPMakeRule(const Parser &parser, const std::string &path, const std::string &file_name) { const auto filebase = StripPath(StripExtension(file_name)); cpp::CppGenerator geneartor(parser, path, file_name, parser.opts); const auto included_files = parser.GetIncludedFilesRecursive(file_name); std::string make_rule = geneartor.GeneratedFileName(path, filebase, parser.opts) + ": "; for (const std::string &included_file : included_files) { make_rule += " " + included_file; } return make_rule; } namespace { class CppCodeGenerator : public CodeGenerator { public: Status GenerateCode(const Parser &parser, const std::string &path, const std::string &filename) override { if (!GenerateCPP(parser, path, filename)) { return Status::ERROR; } return Status::OK; } // Generate code from the provided `buffer` of given `length`. The buffer is a // serialized reflection.fbs. Status GenerateCode(const uint8_t *, int64_t, const CodeGenOptions &) override { return Status::NOT_IMPLEMENTED; } Status GenerateMakeRule(const Parser &parser, const std::string &path, const std::string &filename, std::string &output) override { output = CPPMakeRule(parser, path, filename); return Status::OK; } Status GenerateGrpcCode(const Parser &parser, const std::string &path, const std::string &filename) override { if (!GenerateCppGRPC(parser, path, filename)) { return Status::ERROR; } return Status::OK; } Status GenerateRootFile(const Parser &parser, const std::string &path) override { (void)parser; (void)path; return Status::NOT_IMPLEMENTED; } bool IsSchemaOnly() const override { return true; } bool SupportsBfbsGeneration() const override { return false; } bool SupportsRootFileGeneration() const override { return false; } IDLOptions::Language Language() const override { return IDLOptions::kCpp; } std::string LanguageName() const override { return "C++"; } }; } // namespace std::unique_ptr NewCppCodeGenerator() { return std::unique_ptr(new CppCodeGenerator()); } } // namespace flatbuffers