/* dnsmasq is Copyright (c) 2000-2011 Simon Kelley This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 dated June, 1991, or (at your option) version 3 dated 29 June, 2007. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "dnsmasq.h" #ifdef HAVE_LINUX_NETWORK #include #include #include /* linux 2.6.19 buggers up the headers, patch it up here. */ #ifndef IFA_RTA # define IFA_RTA(r) \ ((struct rtattr*)(((char*)(r)) + NLMSG_ALIGN(sizeof(struct ifaddrmsg)))) # include #endif #ifndef NDA_RTA # define NDA_RTA(r) ((struct rtattr*)(((char*)(r)) + NLMSG_ALIGN(sizeof(struct ndmsg)))) #endif static struct iovec iov; static u32 netlink_pid; static void nl_err(struct nlmsghdr *h); static void nl_routechange(struct nlmsghdr *h); void netlink_init(void) { struct sockaddr_nl addr; socklen_t slen = sizeof(addr); addr.nl_family = AF_NETLINK; addr.nl_pad = 0; addr.nl_pid = 0; /* autobind */ #ifdef HAVE_IPV6 addr.nl_groups = RTMGRP_IPV4_ROUTE | RTMGRP_IPV6_ROUTE; #else addr.nl_groups = RTMGRP_IPV4_ROUTE; #endif /* May not be able to have permission to set multicast groups don't die in that case */ if ((daemon->netlinkfd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE)) != -1) { if (bind(daemon->netlinkfd, (struct sockaddr *)&addr, sizeof(addr)) == -1) { addr.nl_groups = 0; if (errno != EPERM || bind(daemon->netlinkfd, (struct sockaddr *)&addr, sizeof(addr)) == -1) daemon->netlinkfd = -1; } } if (daemon->netlinkfd == -1 || getsockname(daemon->netlinkfd, (struct sockaddr *)&addr, &slen) == 1) die(_("cannot create netlink socket: %s"), NULL, EC_MISC); /* save pid assigned by bind() and retrieved by getsockname() */ netlink_pid = addr.nl_pid; iov.iov_len = 100; iov.iov_base = safe_malloc(iov.iov_len); } static ssize_t netlink_recv(void) { struct msghdr msg; struct sockaddr_nl nladdr; ssize_t rc; while (1) { msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_name = &nladdr; msg.msg_namelen = sizeof(nladdr); msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_flags = 0; while ((rc = recvmsg(daemon->netlinkfd, &msg, MSG_PEEK | MSG_TRUNC)) == -1 && errno == EINTR); /* make buffer big enough */ if (rc != -1 && (msg.msg_flags & MSG_TRUNC)) { /* Very new Linux kernels return the actual size needed, older ones always return truncated size */ if ((size_t)rc == iov.iov_len) { if (expand_buf(&iov, rc + 100)) continue; } else expand_buf(&iov, rc); } /* read it for real */ msg.msg_flags = 0; while ((rc = recvmsg(daemon->netlinkfd, &msg, 0)) == -1 && errno == EINTR); /* Make sure this is from the kernel */ if (rc == -1 || nladdr.nl_pid == 0) break; } /* discard stuff which is truncated at this point (expand_buf() may fail) */ if (msg.msg_flags & MSG_TRUNC) { rc = -1; errno = ENOMEM; } return rc; } /* family = AF_UNSPEC finds ARP table entries. */ int iface_enumerate(int family, void *parm, int (*callback)()) { struct sockaddr_nl addr; struct nlmsghdr *h; ssize_t len; static unsigned int seq = 0; struct { struct nlmsghdr nlh; struct rtgenmsg g; } req; addr.nl_family = AF_NETLINK; addr.nl_pad = 0; addr.nl_groups = 0; addr.nl_pid = 0; /* address to kernel */ again: req.nlh.nlmsg_len = sizeof(req); req.nlh.nlmsg_type = family == AF_UNSPEC ? RTM_GETNEIGH : RTM_GETADDR; req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST | NLM_F_ACK; req.nlh.nlmsg_pid = 0; req.nlh.nlmsg_seq = ++seq; req.g.rtgen_family = family; /* Don't block in recvfrom if send fails */ while((len = sendto(daemon->netlinkfd, (void *)&req, sizeof(req), 0, (struct sockaddr *)&addr, sizeof(addr))) == -1 && retry_send()); if (len == -1) return 0; while (1) { if ((len = netlink_recv()) == -1) { if (errno == ENOBUFS) { sleep(1); goto again; } return 0; } for (h = (struct nlmsghdr *)iov.iov_base; NLMSG_OK(h, (size_t)len); h = NLMSG_NEXT(h, len)) if (h->nlmsg_seq != seq || h->nlmsg_pid != netlink_pid) nl_routechange(h); /* May be multicast arriving async */ else if (h->nlmsg_type == NLMSG_ERROR) nl_err(h); else if (h->nlmsg_type == NLMSG_DONE) return 1; else if (h->nlmsg_type == RTM_NEWADDR && family != AF_UNSPEC) { struct ifaddrmsg *ifa = NLMSG_DATA(h); struct rtattr *rta = IFA_RTA(ifa); unsigned int len1 = h->nlmsg_len - NLMSG_LENGTH(sizeof(*ifa)); if (ifa->ifa_family == family) { if (ifa->ifa_family == AF_INET) { struct in_addr netmask, addr, broadcast; netmask.s_addr = htonl(0xffffffff << (32 - ifa->ifa_prefixlen)); addr.s_addr = 0; broadcast.s_addr = 0; while (RTA_OK(rta, len1)) { if (rta->rta_type == IFA_LOCAL) addr = *((struct in_addr *)(rta+1)); else if (rta->rta_type == IFA_BROADCAST) broadcast = *((struct in_addr *)(rta+1)); rta = RTA_NEXT(rta, len1); } if (addr.s_addr) if (!((*callback)(addr, ifa->ifa_index, netmask, broadcast, parm))) return 0; } #ifdef HAVE_IPV6 else if (ifa->ifa_family == AF_INET6) { struct in6_addr *addrp = NULL; while (RTA_OK(rta, len1)) { if (rta->rta_type == IFA_ADDRESS) addrp = ((struct in6_addr *)(rta+1)); rta = RTA_NEXT(rta, len1); } if (addrp) if (!((*callback)(addrp, ifa->ifa_index, ifa->ifa_index, parm))) return 0; } #endif } } else if (h->nlmsg_type == RTM_NEWNEIGH && family == AF_UNSPEC) { struct ndmsg *neigh = NLMSG_DATA(h); struct rtattr *rta = NDA_RTA(neigh); unsigned int len1 = h->nlmsg_len - NLMSG_LENGTH(sizeof(*neigh)); size_t maclen = 0; char *inaddr = NULL, *mac = NULL; while (RTA_OK(rta, len1)) { if (rta->rta_type == NDA_DST) inaddr = (char *)(rta+1); else if (rta->rta_type == NDA_LLADDR) { maclen = rta->rta_len - sizeof(struct rtattr); mac = (char *)(rta+1); } rta = RTA_NEXT(rta, len1); } if (inaddr && mac) if (!((*callback)(neigh->ndm_family, inaddr, mac, maclen, parm))) return 0; } } } void netlink_multicast(void) { ssize_t len; struct nlmsghdr *h; int flags; /* don't risk blocking reading netlink messages here. */ if ((flags = fcntl(daemon->netlinkfd, F_GETFL)) == -1 || fcntl(daemon->netlinkfd, F_SETFL, flags | O_NONBLOCK) == -1) return; if ((len = netlink_recv()) != -1) { for (h = (struct nlmsghdr *)iov.iov_base; NLMSG_OK(h, (size_t)len); h = NLMSG_NEXT(h, len)) if (h->nlmsg_type == NLMSG_ERROR) nl_err(h); else nl_routechange(h); } /* restore non-blocking status */ fcntl(daemon->netlinkfd, F_SETFL, flags); } static void nl_err(struct nlmsghdr *h) { struct nlmsgerr *err = NLMSG_DATA(h); if (err->error != 0) my_syslog(LOG_ERR, _("netlink returns error: %s"), strerror(-(err->error))); } /* We arrange to receive netlink multicast messages whenever the network route is added. If this happens and we still have a DNS packet in the buffer, we re-send it. This helps on DoD links, where frequently the packet which triggers dialling is a DNS query, which then gets lost. By re-sending, we can avoid the lookup failing. Note that we only accept these messages from the kernel (pid == 0) */ static void nl_routechange(struct nlmsghdr *h) { if (h->nlmsg_pid == 0 && h->nlmsg_type == RTM_NEWROUTE) { struct rtmsg *rtm = NLMSG_DATA(h); int fd; if (rtm->rtm_type != RTN_UNICAST || rtm->rtm_scope != RT_SCOPE_LINK) return; /* Force re-reading resolv file right now, for luck. */ daemon->last_resolv = 0; if (daemon->srv_save) { if (daemon->srv_save->sfd) fd = daemon->srv_save->sfd->fd; else if (daemon->rfd_save && daemon->rfd_save->refcount != 0) fd = daemon->rfd_save->fd; else return; while(sendto(fd, daemon->packet, daemon->packet_len, 0, &daemon->srv_save->addr.sa, sa_len(&daemon->srv_save->addr)) == -1 && retry_send()); } } } #endif