summaryrefslogtreecommitdiff
path: root/inference-engine/thirdparty/clDNN/common/boost/1.64.0/include/boost-1_64/boost/numeric/odeint/stepper/runge_kutta_cash_karp54_classic.hpp
blob: 80f1a3c030c9cb89a2bad1ef1e93abf2ccc0bd31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*
 [auto_generated]
 boost/numeric/odeint/stepper/runge_kutta_cash_karp54_classic.hpp

 [begin_description]
 Classical implementation of the Runge-Kutta Cash-Karp 5(4) method.
 [end_description]

 Copyright 2010-2013 Mario Mulansky
 Copyright 2010-2013 Karsten Ahnert
 Copyright 2012 Christoph Koke

 Distributed under the Boost Software License, Version 1.0.
 (See accompanying file LICENSE_1_0.txt or
 copy at http://www.boost.org/LICENSE_1_0.txt)
 */


#ifndef BOOST_NUMERIC_ODEINT_STEPPER_RUNGE_KUTTA_CASH_KARP54_CLASSIC_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_STEPPER_RUNGE_KUTTA_CASH_KARP54_CLASSIC_HPP_INCLUDED


#include <boost/numeric/odeint/util/bind.hpp>

#include <boost/numeric/odeint/stepper/base/explicit_error_stepper_base.hpp>
#include <boost/numeric/odeint/algebra/range_algebra.hpp>
#include <boost/numeric/odeint/algebra/default_operations.hpp>
#include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
#include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
#include <boost/numeric/odeint/stepper/stepper_categories.hpp>
#include <boost/numeric/odeint/util/state_wrapper.hpp>
#include <boost/numeric/odeint/util/is_resizeable.hpp>
#include <boost/numeric/odeint/util/resizer.hpp>

namespace boost {
namespace numeric {
namespace odeint {




template<
class State ,
class Value = double ,
class Deriv = State ,
class Time = Value ,
class Algebra = typename algebra_dispatcher< State >::algebra_type ,
class Operations = typename operations_dispatcher< State >::operations_type ,
class Resizer = initially_resizer
>
#ifndef DOXYGEN_SKIP
class runge_kutta_cash_karp54_classic
: public explicit_error_stepper_base<
  runge_kutta_cash_karp54_classic< State , Value , Deriv , Time , Algebra , Operations , Resizer > ,
  5 , 5 , 4 , State , Value , Deriv , Time , Algebra , Operations , Resizer >
#else
class runge_kutta_cash_karp54_classic : public explicit_error_stepper_base
#endif 
{


public :

    #ifndef DOXYGEN_SKIP
    typedef explicit_error_stepper_base<
    runge_kutta_cash_karp54_classic< State , Value , Deriv , Time , Algebra , Operations , Resizer > ,
    5 , 5 , 4 , State , Value , Deriv , Time , Algebra , Operations , Resizer > stepper_base_type;
    #else
    typedef explicit_error_stepper_base< runge_kutta_cash_karp54_classic< ... > , ... > stepper_base_type;
    #endif

    typedef typename stepper_base_type::state_type state_type;
    typedef typename stepper_base_type::value_type value_type;
    typedef typename stepper_base_type::deriv_type deriv_type;
    typedef typename stepper_base_type::time_type time_type;
    typedef typename stepper_base_type::algebra_type algebra_type;
    typedef typename stepper_base_type::operations_type operations_type;
    typedef typename stepper_base_type::resizer_type resizer_type;

    #ifndef DOXYGEN_SKIP
    typedef typename stepper_base_type::wrapped_state_type wrapped_state_type;
    typedef typename stepper_base_type::wrapped_deriv_type wrapped_deriv_type;
    typedef typename stepper_base_type::stepper_type stepper_type;
    #endif


    runge_kutta_cash_karp54_classic( const algebra_type &algebra = algebra_type() ) : stepper_base_type( algebra )
    { }



    template< class System , class StateIn , class DerivIn , class StateOut , class Err >
    void do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt , Err &xerr )
    {
        const value_type c1 = static_cast<value_type> ( 37 ) / static_cast<value_type>( 378 );
        const value_type c3 = static_cast<value_type> ( 250 ) / static_cast<value_type>( 621 );
        const value_type c4 = static_cast<value_type> ( 125 ) / static_cast<value_type>( 594 );
        const value_type c6 = static_cast<value_type> ( 512 ) / static_cast<value_type>( 1771 );

        const value_type dc1 = c1 - static_cast<value_type> ( 2825 ) / static_cast<value_type>( 27648 );
        const value_type dc3 = c3 - static_cast<value_type> ( 18575 ) / static_cast<value_type>( 48384 );
        const value_type dc4 = c4 - static_cast<value_type> ( 13525 ) / static_cast<value_type>( 55296 );
        const value_type dc5 = static_cast<value_type> ( -277 ) / static_cast<value_type>( 14336 );
        const value_type dc6 = c6 - static_cast<value_type> ( 1 ) / static_cast<value_type> ( 4 );

        do_step_impl( system , in , dxdt , t , out , dt );

        //error estimate
        stepper_base_type::m_algebra.for_each6( xerr , dxdt , m_k3.m_v , m_k4.m_v , m_k5.m_v , m_k6.m_v ,
                typename operations_type::template scale_sum5< time_type , time_type , time_type , time_type , time_type >( dt*dc1 , dt*dc3 , dt*dc4 , dt*dc5 , dt*dc6 ));

    }



    template< class System , class StateIn , class DerivIn , class StateOut >
    void do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
    {
        const value_type a2 = static_cast<value_type> ( 1 ) / static_cast<value_type> ( 5 );
        const value_type a3 = static_cast<value_type> ( 3 ) / static_cast<value_type> ( 10 );
        const value_type a4 = static_cast<value_type> ( 3 ) / static_cast<value_type> ( 5 );
        const value_type a5 = static_cast<value_type> ( 1 );
        const value_type a6 = static_cast<value_type> ( 7 ) / static_cast<value_type> ( 8 );

        const value_type b21 = static_cast<value_type> ( 1 ) / static_cast<value_type> ( 5 );
        const value_type b31 = static_cast<value_type> ( 3 ) / static_cast<value_type>( 40 );
        const value_type b32 = static_cast<value_type> ( 9 ) / static_cast<value_type>( 40 );
        const value_type b41 = static_cast<value_type> ( 3 ) / static_cast<value_type> ( 10 );
        const value_type b42 = static_cast<value_type> ( -9 ) / static_cast<value_type> ( 10 );
        const value_type b43 = static_cast<value_type> ( 6 ) / static_cast<value_type> ( 5 );
        const value_type b51 = static_cast<value_type> ( -11 ) / static_cast<value_type>( 54 );
        const value_type b52 = static_cast<value_type> ( 5 ) / static_cast<value_type> ( 2 );
        const value_type b53 = static_cast<value_type> ( -70 ) / static_cast<value_type>( 27 );
        const value_type b54 = static_cast<value_type> ( 35 ) / static_cast<value_type>( 27 );
        const value_type b61 = static_cast<value_type> ( 1631 ) / static_cast<value_type>( 55296 );
        const value_type b62 = static_cast<value_type> ( 175 ) / static_cast<value_type>( 512 );
        const value_type b63 = static_cast<value_type> ( 575 ) / static_cast<value_type>( 13824 );
        const value_type b64 = static_cast<value_type> ( 44275 ) / static_cast<value_type>( 110592 );
        const value_type b65 = static_cast<value_type> ( 253 ) / static_cast<value_type>( 4096 );

        const value_type c1 = static_cast<value_type> ( 37 ) / static_cast<value_type>( 378 );
        const value_type c3 = static_cast<value_type> ( 250 ) / static_cast<value_type>( 621 );
        const value_type c4 = static_cast<value_type> ( 125 ) / static_cast<value_type>( 594 );
        const value_type c6 = static_cast<value_type> ( 512 ) / static_cast<value_type>( 1771 );

        typename odeint::unwrap_reference< System >::type &sys = system;

        m_resizer.adjust_size( in , detail::bind( &stepper_type::template resize_impl<StateIn> , detail::ref( *this ) , detail::_1 ) );

        //m_x1 = x + dt*b21*dxdt
        stepper_base_type::m_algebra.for_each3( m_x_tmp.m_v , in , dxdt ,
                typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , dt*b21 ) );

        sys( m_x_tmp.m_v , m_k2.m_v , t + dt*a2 );
        // m_x_tmp = x + dt*b31*dxdt + dt*b32*m_x2
        stepper_base_type::m_algebra.for_each4( m_x_tmp.m_v , in , dxdt , m_k2.m_v ,
                typename operations_type::template scale_sum3< value_type , time_type , time_type >( 1.0 , dt*b31 , dt*b32 ));

        sys( m_x_tmp.m_v , m_k3.m_v , t + dt*a3 );
        // m_x_tmp = x + dt * (b41*dxdt + b42*m_x2 + b43*m_x3)
        stepper_base_type::m_algebra.for_each5( m_x_tmp.m_v , in , dxdt , m_k2.m_v , m_k3.m_v ,
                typename operations_type::template scale_sum4< value_type , time_type , time_type , time_type >( 1.0 , dt*b41 , dt*b42 , dt*b43 ));

        sys( m_x_tmp.m_v, m_k4.m_v , t + dt*a4 );
        stepper_base_type::m_algebra.for_each6( m_x_tmp.m_v , in , dxdt , m_k2.m_v , m_k3.m_v , m_k4.m_v ,
                typename operations_type::template scale_sum5< value_type , time_type , time_type , time_type , time_type >( 1.0 , dt*b51 , dt*b52 , dt*b53 , dt*b54 ));

        sys( m_x_tmp.m_v , m_k5.m_v , t + dt*a5 );
        stepper_base_type::m_algebra.for_each7( m_x_tmp.m_v , in , dxdt , m_k2.m_v , m_k3.m_v , m_k4.m_v , m_k5.m_v ,
                typename operations_type::template scale_sum6< value_type , time_type , time_type , time_type , time_type , time_type >( 1.0 , dt*b61 , dt*b62 , dt*b63 , dt*b64 , dt*b65 ));

        sys( m_x_tmp.m_v , m_k6.m_v , t + dt*a6 );
        stepper_base_type::m_algebra.for_each6( out , in , dxdt , m_k3.m_v , m_k4.m_v , m_k6.m_v ,
                typename operations_type::template scale_sum5< value_type , time_type , time_type , time_type , time_type >( 1.0 , dt*c1 , dt*c3 , dt*c4 , dt*c6 ));

    }

    /**
     * \brief Adjust the size of all temporaries in the stepper manually.
     * \param x A state from which the size of the temporaries to be resized is deduced.
     */
    template< class StateIn >
    void adjust_size( const StateIn &x )
    {
        resize_impl( x );
        stepper_base_type::adjust_size( x );
    }

private:

    template< class StateIn >
    bool resize_impl( const StateIn &x )
    {
        bool resized = false;
        resized |= adjust_size_by_resizeability( m_x_tmp , x , typename is_resizeable<state_type>::type() );
        resized |= adjust_size_by_resizeability( m_k2 , x , typename is_resizeable<deriv_type>::type() );
        resized |= adjust_size_by_resizeability( m_k3 , x , typename is_resizeable<deriv_type>::type() );
        resized |= adjust_size_by_resizeability( m_k4 , x , typename is_resizeable<deriv_type>::type() );
        resized |= adjust_size_by_resizeability( m_k5 , x , typename is_resizeable<deriv_type>::type() );
        resized |= adjust_size_by_resizeability( m_k6 , x , typename is_resizeable<deriv_type>::type() );
        return resized;
    }


    wrapped_state_type m_x_tmp;
    wrapped_deriv_type m_k2, m_k3, m_k4, m_k5, m_k6;
    resizer_type m_resizer;

};



/************ DOXYGEN *************/

/**
 * \class runge_kutta_cash_karp54_classic
 * \brief The Runge-Kutta Cash-Karp method implemented without the generic Runge-Kutta algorithm.
 *
 * The Runge-Kutta Cash-Karp method is one of the standard methods for
 * solving ordinary differential equations, see
 * <a href="http://en.wikipedia.org/wiki/Cash%E2%80%93Karp_method">en.wikipedia.org/wiki/Cash-Karp_method</a>.
 * The method is explicit and fulfills the Error Stepper concept. Step size control
 * is provided but continuous output is not available for this method.
 * 
 * This class derives from explicit_error_stepper_base and inherits its interface via CRTP (current recurring
 * template pattern). This class implements the method directly, hence the generic Runge-Kutta algorithm is not used.
 *
 * \tparam State The state type.
 * \tparam Value The value type.
 * \tparam Deriv The type representing the time derivative of the state.
 * \tparam Time The time representing the independent variable - the time.
 * \tparam Algebra The algebra type.
 * \tparam Operations The operations type.
 * \tparam Resizer The resizer policy type.
 */


    /**
     * \fn runge_kutta_cash_karp54_classic::runge_kutta_cash_karp54_classic( const algebra_type &algebra )
     * \brief Constructs the runge_kutta_cash_karp54_classic class. This constructor can be used as a default
     * constructor if the algebra has a default constructor.
     * \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
     */


    /**
     * \fn runge_kutta_cash_karp54_classic::do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt , Err &xerr )
     * \brief This method performs one step. The derivative `dxdt` of `in` at the time `t` is passed to the method.
     *
     * The result is updated out-of-place, hence the input is in `in` and the output in `out`. Futhermore, an
     * estimation of the error is stored in `xerr`. 
     * Access to this step functionality is provided by explicit_error_stepper_base and 
     * `do_step_impl` should not be called directly.

     *
     * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
     *               Simple System concept.
     * \param in The state of the ODE which should be solved. in is not modified in this method
     * \param dxdt The derivative of x at t.
     * \param t The value of the time, at which the step should be performed.
     * \param out The result of the step is written in out.
     * \param dt The step size.
     * \param xerr The result of the error estimation is written in xerr.
     */

    /**
     * \fn runge_kutta_cash_karp54_classic::do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
     * \brief This method performs one step. The derivative `dxdt` of `in` at the time `t` is passed to the method.
     * The result is updated out-of-place, hence the input is in `in` and the output in `out`.
     * Access to this step functionality is provided by explicit_error_stepper_base and 
     * `do_step_impl` should not be called directly.
     *
     * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
     *               Simple System concept.
     * \param in The state of the ODE which should be solved. in is not modified in this method
     * \param dxdt The derivative of x at t.
     * \param t The value of the time, at which the step should be performed.
     * \param out The result of the step is written in out.
     * \param dt The step size.
     */

} // odeint
} // numeric
} // boost




#endif // BOOST_NUMERIC_ODEINT_STEPPER_RUNGE_KUTTA_CASH_KARP54_CLASSIC_HPP_INCLUDED