summaryrefslogtreecommitdiff
path: root/inference-engine/thirdparty/clDNN/common/boost/1.64.0/include/boost-1_64/boost/numeric/odeint/stepper/base/symplectic_rkn_stepper_base.hpp
blob: eb09aefc8f92be0bc4c9c6b26bf376547ed424b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/*
 [auto_generated]
 boost/numeric/odeint/stepper/base/symplectic_rkn_stepper_base.hpp

 [begin_description]
 Base class for symplectic Runge-Kutta-Nystrom steppers.
 [end_description]

 Copyright 2011-2013 Karsten Ahnert
 Copyright 2011-2013 Mario Mulansky
 Copyright 2012 Christoph Koke

 Distributed under the Boost Software License, Version 1.0.
 (See accompanying file LICENSE_1_0.txt or
 copy at http://www.boost.org/LICENSE_1_0.txt)
 */


#ifndef BOOST_NUMERIC_ODEINT_STEPPER_BASE_SYMPLECTIC_RKN_STEPPER_BASE_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_STEPPER_BASE_SYMPLECTIC_RKN_STEPPER_BASE_HPP_INCLUDED

#include <boost/array.hpp>

#include <boost/numeric/odeint/util/bind.hpp>
#include <boost/numeric/odeint/util/unwrap_reference.hpp>

#include <boost/numeric/odeint/util/copy.hpp>
#include <boost/numeric/odeint/util/is_pair.hpp>

#include <boost/numeric/odeint/util/state_wrapper.hpp>
#include <boost/numeric/odeint/util/resizer.hpp>

#include <boost/numeric/odeint/stepper/stepper_categories.hpp>

#include <boost/numeric/odeint/stepper/base/algebra_stepper_base.hpp>




namespace boost {
namespace numeric {
namespace odeint {


template<
size_t NumOfStages ,
unsigned short Order ,
class Coor ,
class Momentum ,
class Value ,
class CoorDeriv ,
class MomentumDeriv ,
class Time ,
class Algebra ,
class Operations ,
class Resizer
>
class symplectic_nystroem_stepper_base : public algebra_stepper_base< Algebra , Operations >
{

public:

    typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type;
    typedef typename algebra_stepper_base_type::algebra_type algebra_type;
    typedef typename algebra_stepper_base_type::operations_type operations_type;

    const static size_t num_of_stages = NumOfStages;
    typedef Coor coor_type;
    typedef Momentum momentum_type;
    typedef std::pair< coor_type , momentum_type > state_type;
    typedef CoorDeriv coor_deriv_type;
    typedef state_wrapper< coor_deriv_type> wrapped_coor_deriv_type;
    typedef MomentumDeriv momentum_deriv_type;
    typedef state_wrapper< momentum_deriv_type > wrapped_momentum_deriv_type;
    typedef std::pair< coor_deriv_type , momentum_deriv_type > deriv_type;
    typedef Value value_type;
    typedef Time time_type;
    typedef Resizer resizer_type;
    typedef stepper_tag stepper_category;
    
    #ifndef DOXYGEN_SKIP
    typedef symplectic_nystroem_stepper_base< NumOfStages , Order , Coor , Momentum , Value ,
            CoorDeriv , MomentumDeriv , Time , Algebra , Operations , Resizer > internal_stepper_base_type;
    #endif 
    typedef unsigned short order_type;

    static const order_type order_value = Order;

    typedef boost::array< value_type , num_of_stages > coef_type;

    symplectic_nystroem_stepper_base( const coef_type &coef_a , const coef_type &coef_b , const algebra_type &algebra = algebra_type() )
        : algebra_stepper_base_type( algebra ) , m_coef_a( coef_a ) , m_coef_b( coef_b ) ,
          m_dqdt_resizer() , m_dpdt_resizer() , m_dqdt() , m_dpdt() 
    { }


    order_type order( void ) const
    {
        return order_value;
    }

    /*
     * Version 1 : do_step( system , x , t , dt )
     *
     * This version does not solve the forwarding problem, boost.range can not be used.
     */
    template< class System , class StateInOut >
    void do_step( System system , const StateInOut &state , time_type t , time_type dt )
    {
        typedef typename odeint::unwrap_reference< System >::type system_type;
        do_step_impl( system , state , t , state , dt , typename is_pair< system_type >::type() );
    }

    /**
     * \brief Same function as above. It differs only in a different const specifier in order
     * to solve the forwarding problem, can be used with Boost.Range.
     */
    template< class System , class StateInOut >
    void do_step( System system , StateInOut &state , time_type t , time_type dt )
    {
        typedef typename odeint::unwrap_reference< System >::type system_type;
        do_step_impl( system , state , t , state , dt , typename is_pair< system_type >::type() );
    }




    /*
     * Version 2 : do_step( system , q , p , t , dt );
     *
     * For Convenience
     *
     * The two overloads are needed in order to solve the forwarding problem.
     */
    template< class System , class CoorInOut , class MomentumInOut >
    void do_step( System system , CoorInOut &q , MomentumInOut &p , time_type t , time_type dt )
    {
        do_step( system , std::make_pair( detail::ref( q ) , detail::ref( p ) ) , t , dt );
    }

    /**
     * \brief Same function as do_step( system , q , p , t , dt ). It differs only in a different const specifier in order
     * to solve the forwarding problem, can be called with Boost.Range.
     */
    template< class System , class CoorInOut , class MomentumInOut >
    void do_step( System system , const CoorInOut &q , const MomentumInOut &p , time_type t , time_type dt )
    {
        do_step( system , std::make_pair( detail::ref( q ) , detail::ref( p ) ) , t , dt );
    }





    /*
     * Version 3 : do_step( system , in , t , out , dt )
     *
     * The forwarding problem is not solved in this version
     */
    template< class System , class StateIn , class StateOut >
    void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
    {
        typedef typename odeint::unwrap_reference< System >::type system_type;
        do_step_impl( system , in , t , out , dt , typename is_pair< system_type >::type() );
    }


    template< class StateType >
    void adjust_size( const StateType &x )
    {
        resize_dqdt( x );
        resize_dpdt( x );
    }

    /** \brief Returns the coefficients a. */
    const coef_type& coef_a( void ) const { return m_coef_a; }

    /** \brief Returns the coefficients b. */
    const coef_type& coef_b( void ) const { return m_coef_b; }

private:

    // stepper for systems with function for dq/dt = f(p) and dp/dt = -f(q)
    template< class System , class StateIn , class StateOut >
    void do_step_impl( System system , const StateIn &in , time_type /* t */ , StateOut &out , time_type dt , boost::mpl::true_ )
    {
        typedef typename odeint::unwrap_reference< System >::type system_type;
        typedef typename odeint::unwrap_reference< typename system_type::first_type >::type coor_deriv_func_type;
        typedef typename odeint::unwrap_reference< typename system_type::second_type >::type momentum_deriv_func_type;
        system_type &sys = system;
        coor_deriv_func_type &coor_func = sys.first;
        momentum_deriv_func_type &momentum_func = sys.second;

        typedef typename odeint::unwrap_reference< StateIn >::type state_in_type;
        typedef typename odeint::unwrap_reference< typename state_in_type::first_type >::type coor_in_type;
        typedef typename odeint::unwrap_reference< typename state_in_type::second_type >::type momentum_in_type;
        const state_in_type &state_in = in;
        const coor_in_type &coor_in = state_in.first;
        const momentum_in_type &momentum_in = state_in.second;

        typedef typename odeint::unwrap_reference< StateOut >::type state_out_type;
        typedef typename odeint::unwrap_reference< typename state_out_type::first_type >::type coor_out_type;
        typedef typename odeint::unwrap_reference< typename state_out_type::second_type >::type momentum_out_type;
        state_out_type &state_out = out;
        coor_out_type &coor_out = state_out.first;
        momentum_out_type &momentum_out = state_out.second;

        m_dqdt_resizer.adjust_size( coor_in , detail::bind( &internal_stepper_base_type::template resize_dqdt< coor_in_type > , detail::ref( *this ) , detail::_1 ) );
        m_dpdt_resizer.adjust_size( momentum_in , detail::bind( &internal_stepper_base_type::template resize_dpdt< momentum_in_type > , detail::ref( *this ) , detail::_1 ) );

        // ToDo: check sizes?

        for( size_t l=0 ; l<num_of_stages ; ++l )
        {
            if( l == 0 )
            {
                coor_func( momentum_in , m_dqdt.m_v );
                this->m_algebra.for_each3( coor_out , coor_in , m_dqdt.m_v ,
                        typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[l] * dt ) );
                momentum_func( coor_out , m_dpdt.m_v );
                this->m_algebra.for_each3( momentum_out , momentum_in , m_dpdt.m_v ,
                        typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[l] * dt ) );
            }
            else
            {
                coor_func( momentum_out , m_dqdt.m_v );
                this->m_algebra.for_each3( coor_out , coor_out , m_dqdt.m_v ,
                        typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[l] * dt ) );
                momentum_func( coor_out , m_dpdt.m_v );
                this->m_algebra.for_each3( momentum_out , momentum_out , m_dpdt.m_v ,
                        typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[l] * dt ) );
            }
        }
    }


    // stepper for systems with only function dp /dt = -f(q), dq/dt = p, time not required but still expected for compatibility reasons
    template< class System , class StateIn , class StateOut >
    void do_step_impl( System system , const StateIn &in , time_type  /* t */ , StateOut &out , time_type dt , boost::mpl::false_ )
    {
        typedef typename odeint::unwrap_reference< System >::type momentum_deriv_func_type;
        momentum_deriv_func_type &momentum_func = system;

        typedef typename odeint::unwrap_reference< StateIn >::type state_in_type;
        typedef typename odeint::unwrap_reference< typename state_in_type::first_type >::type coor_in_type;
        typedef typename odeint::unwrap_reference< typename state_in_type::second_type >::type momentum_in_type;
        const state_in_type &state_in = in;
        const coor_in_type &coor_in = state_in.first;
        const momentum_in_type &momentum_in = state_in.second;

        typedef typename odeint::unwrap_reference< StateOut >::type state_out_type;
        typedef typename odeint::unwrap_reference< typename state_out_type::first_type >::type coor_out_type;
        typedef typename odeint::unwrap_reference< typename state_out_type::second_type >::type momentum_out_type;
        state_out_type &state_out = out;
        coor_out_type &coor_out = state_out.first;
        momentum_out_type &momentum_out = state_out.second;


        // m_dqdt not required when called with momentum_func only - don't resize
        // m_dqdt_resizer.adjust_size( coor_in , detail::bind( &internal_stepper_base_type::template resize_dqdt< coor_in_type > , detail::ref( *this ) , detail::_1 ) );
        m_dpdt_resizer.adjust_size( momentum_in , detail::bind( &internal_stepper_base_type::template resize_dpdt< momentum_in_type > , detail::ref( *this ) , detail::_1 ) );


        // ToDo: check sizes?

        // step 0
        this->m_algebra.for_each3( coor_out  , coor_in , momentum_in ,
                        typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[0] * dt ) );
        momentum_func( coor_out , m_dpdt.m_v );
        this->m_algebra.for_each3( momentum_out , momentum_in , m_dpdt.m_v ,
                                           typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[0] * dt ) );

        for( size_t l=1 ; l<num_of_stages ; ++l )
        {
            this->m_algebra.for_each3( coor_out , coor_out , momentum_out ,
                        typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[l] * dt ) );
            momentum_func( coor_out , m_dpdt.m_v );
            this->m_algebra.for_each3( momentum_out , momentum_out , m_dpdt.m_v ,
                                       typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[l] * dt ) );
        }
    }

    template< class StateIn >
    bool resize_dqdt( const StateIn &x )
    {
        return adjust_size_by_resizeability( m_dqdt , x , typename is_resizeable<coor_deriv_type>::type() );
    }

    template< class StateIn >
    bool resize_dpdt( const StateIn &x )
    {
        return adjust_size_by_resizeability( m_dpdt , x , typename is_resizeable<momentum_deriv_type>::type() );
    }


    const coef_type m_coef_a;
    const coef_type m_coef_b;

    resizer_type m_dqdt_resizer;
    resizer_type m_dpdt_resizer;
    wrapped_coor_deriv_type m_dqdt;
    wrapped_momentum_deriv_type m_dpdt;

};

/********* DOXYGEN *********/

/**
 * \class symplectic_nystroem_stepper_base
 * \brief Base class for all symplectic steppers of Nystroem type.
 *
 * This class is the base class for the symplectic Runge-Kutta-Nystroem steppers. Symplectic steppers are usually
 * used to solve Hamiltonian systems and they conserve the phase space volume, see
 * <a href="http://en.wikipedia.org/wiki/Symplectic_integrator">en.wikipedia.org/wiki/Symplectic_integrator</a>. 
 * Furthermore, the energy is conserved
 * in average. In detail this class of steppers can be used to solve separable Hamiltonian systems which can be written
 * in the form H(q,p) = H1(p) + H2(q). q is usually called the coordinate, while p is the momentum. The equations of motion
 * are dq/dt = dH1/dp, dp/dt = -dH2/dq.
 *
 * ToDo : add formula for solver and explanation of the coefficients
 * 
 * symplectic_nystroem_stepper_base uses odeints algebra and operation system. Step size and error estimation are not
 * provided for this class of solvers. It derives from algebra_stepper_base. Several `do_step` variants are provided:
 *
 * - `do_step( sys , x , t , dt )` - The classical `do_step` method. The sys can be either a pair of function objects
 *    for the coordinate or the momentum part or one function object for the momentum part. `x` is a pair of coordinate
 *    and momentum. The state is updated in-place.
 * - `do_step( sys , q , p , t , dt )` - This method is similar to the method above with the difference that the coordinate
 *    and the momentum are passed explicitly and not packed into a pair.
 * - `do_step( sys , x_in , t , x_out , dt )` - This method transforms the state out-of-place. `x_in` and `x_out` are here pairs
 *    of coordinate and momentum.
 *
 * \tparam NumOfStages Number of stages.
 * \tparam Order The order of the stepper.
 * \tparam Coor The type representing the coordinates q.
 * \tparam Momentum The type representing the coordinates p.
 * \tparam Value The basic value type. Should be something like float, double or a high-precision type.
 * \tparam CoorDeriv The type representing the time derivative of the coordinate dq/dt.
 * \tparam MomemtnumDeriv The type representing the time derivative of the momentum dp/dt.
 * \tparam Time The type representing the time t.
 * \tparam Algebra The algebra.
 * \tparam Operations The operations.
 * \tparam Resizer The resizer policy.
 */

    /**
     * \fn symplectic_nystroem_stepper_base::symplectic_nystroem_stepper_base( const coef_type &coef_a , const coef_type &coef_b , const algebra_type &algebra )
     * \brief Constructs a symplectic_nystroem_stepper_base class. The parameters of the specific Nystroem method and the
     * algebra have to be passed.
     * \param coef_a The coefficients a.
     * \param coef_b The coefficients b.
     * \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
     */

    /**
     * \fn symplectic_nystroem_stepper_base::order( void ) const
     * \return Returns the order of the stepper.
     */

    /**
     * \fn symplectic_nystroem_stepper_base::do_step( System system , const StateInOut &state , time_type t , time_type dt )
     * \brief This method performs one step. The system can be either a pair of two function object
     * describing the momentum part and the coordinate part or one function object describing only
     * the momentum part. In this case the coordinate is assumed to be trivial dq/dt = p. The state
     * is updated in-place.
     *
     * \note boost::ref or std::ref can be used for the system as well as for the state. So, it is correct
     * to write `stepper.do_step( make_pair( std::ref( fq ) , std::ref( fp ) ) , make_pair( std::ref( q ) , std::ref( p ) ) , t , dt )`.
     *
     * \note This method solves the forwarding problem.
     *
     * \param system The system, can be represented as a pair of two function object or one function object. See above.
     * \param state The state of the ODE. It is a pair of Coor and Momentum. The state is updated in-place, therefore, the
     * new value of the state will be written into this variable.
     * \param t The time of the ODE. It is not advanced by this method.
     * \param dt The time step.
     */

    /**
     * \fn symplectic_nystroem_stepper_base::do_step( System system , CoorInOut &q , MomentumInOut &p , time_type t , time_type dt )
     * \brief This method performs one step. The system can be either a pair of two function object
     * describing the momentum part and the coordinate part or one function object describing only
     * the momentum part. In this case the coordinate is assumed to be trivial dq/dt = p. The state
     * is updated in-place.
     *
     * \note boost::ref or std::ref can be used for the system. So, it is correct
     * to write `stepper.do_step( make_pair( std::ref( fq ) , std::ref( fp ) ) , q , p , t , dt )`.
     *
     * \note This method solves the forwarding problem.
     *
     * \param system The system, can be represented as a pair of two function object or one function object. See above.
     * \param q The coordinate of the ODE. It is updated in-place. Therefore, the new value of the coordinate will be written
     * into this variable.
     * \param p The momentum of the ODE. It is updated in-place. Therefore, the new value of the momentum will be written info
     * this variable.
     * \param t The time of the ODE. It is not advanced by this method.
     * \param dt The time step.
     */

    /**
     * \fn symplectic_nystroem_stepper_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
     * \brief This method performs one step. The system can be either a pair of two function object
     * describing the momentum part and the coordinate part or one function object describing only
     * the momentum part. In this case the coordinate is assumed to be trivial dq/dt = p. The state
     * is updated out-of-place.
     *
     * \note boost::ref or std::ref can be used for the system. So, it is correct
     * to write `stepper.do_step( make_pair( std::ref( fq ) , std::ref( fp ) ) , x_in , t , x_out , dt )`.
     *
     * \note This method NOT solve the forwarding problem.
     *
     * \param system The system, can be represented as a pair of two function object or one function object. See above.
     * \param in The state of the ODE, which is a pair of coordinate and momentum. The state is updated out-of-place, therefore the 
     * new value is written into out
     * \param t The time of the ODE. It is not advanced by this method.
     * \param out The new state of the ODE.
     * \param dt The time step.
     */

    /**
     * \fn symplectic_nystroem_stepper_base::adjust_size( const StateType &x )
     * \brief Adjust the size of all temporaries in the stepper manually.
     * \param x A state from which the size of the temporaries to be resized is deduced.
     */

} // namespace odeint
} // namespace numeric
} // namespace boost


#endif // BOOST_NUMERIC_ODEINT_STEPPER_BASE_SYMPLECTIC_RKN_STEPPER_BASE_HPP_INCLUDED