summaryrefslogtreecommitdiff
path: root/inference-engine/thirdparty/clDNN/common/boost/1.64.0/include/boost-1_64/boost/math/special_functions/detail/bernoulli_details.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'inference-engine/thirdparty/clDNN/common/boost/1.64.0/include/boost-1_64/boost/math/special_functions/detail/bernoulli_details.hpp')
-rw-r--r--inference-engine/thirdparty/clDNN/common/boost/1.64.0/include/boost-1_64/boost/math/special_functions/detail/bernoulli_details.hpp712
1 files changed, 0 insertions, 712 deletions
diff --git a/inference-engine/thirdparty/clDNN/common/boost/1.64.0/include/boost-1_64/boost/math/special_functions/detail/bernoulli_details.hpp b/inference-engine/thirdparty/clDNN/common/boost/1.64.0/include/boost-1_64/boost/math/special_functions/detail/bernoulli_details.hpp
deleted file mode 100644
index ce9503443..000000000
--- a/inference-engine/thirdparty/clDNN/common/boost/1.64.0/include/boost-1_64/boost/math/special_functions/detail/bernoulli_details.hpp
+++ /dev/null
@@ -1,712 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-// Copyright 2013 John Maddock
-// Distributed under the Boost
-// Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-
-#ifndef BOOST_MATH_BERNOULLI_DETAIL_HPP
-#define BOOST_MATH_BERNOULLI_DETAIL_HPP
-
-#include <boost/config.hpp>
-#include <boost/detail/lightweight_mutex.hpp>
-#include <boost/utility/enable_if.hpp>
-#include <boost/math/tools/toms748_solve.hpp>
-#include <vector>
-
-#ifdef BOOST_HAS_THREADS
-
-#ifndef BOOST_NO_CXX11_HDR_ATOMIC
-# include <atomic>
-# define BOOST_MATH_ATOMIC_NS std
-#if ATOMIC_INT_LOCK_FREE == 2
-typedef std::atomic<int> atomic_counter_type;
-typedef int atomic_integer_type;
-#elif ATOMIC_SHORT_LOCK_FREE == 2
-typedef std::atomic<short> atomic_counter_type;
-typedef short atomic_integer_type;
-#elif ATOMIC_LONG_LOCK_FREE == 2
-typedef std::atomic<long> atomic_counter_type;
-typedef long atomic_integer_type;
-#elif ATOMIC_LLONG_LOCK_FREE == 2
-typedef std::atomic<long long> atomic_counter_type;
-typedef long long atomic_integer_type;
-#else
-# define BOOST_MATH_NO_ATOMIC_INT
-#endif
-
-#else // BOOST_NO_CXX11_HDR_ATOMIC
-//
-// We need Boost.Atomic, but on any platform that supports auto-linking we do
-// not need to link against a separate library:
-//
-#define BOOST_ATOMIC_NO_LIB
-#include <boost/atomic.hpp>
-# define BOOST_MATH_ATOMIC_NS boost
-
-namespace boost{ namespace math{ namespace detail{
-
-//
-// We need a type to use as an atomic counter:
-//
-#if BOOST_ATOMIC_INT_LOCK_FREE == 2
-typedef boost::atomic<int> atomic_counter_type;
-typedef int atomic_integer_type;
-#elif BOOST_ATOMIC_SHORT_LOCK_FREE == 2
-typedef boost::atomic<short> atomic_counter_type;
-typedef short atomic_integer_type;
-#elif BOOST_ATOMIC_LONG_LOCK_FREE == 2
-typedef boost::atomic<long> atomic_counter_type;
-typedef long atomic_integer_type;
-#elif BOOST_ATOMIC_LLONG_LOCK_FREE == 2
-typedef boost::atomic<long long> atomic_counter_type;
-typedef long long atomic_integer_type;
-#else
-# define BOOST_MATH_NO_ATOMIC_INT
-#endif
-
-}}} // namespaces
-
-#endif // BOOST_NO_CXX11_HDR_ATOMIC
-
-#endif // BOOST_HAS_THREADS
-
-namespace boost{ namespace math{ namespace detail{
-//
-// Asymptotic expansion for B2n due to
-// Luschny LogB3 formula (http://www.luschny.de/math/primes/bernincl.html)
-//
-template <class T, class Policy>
-T b2n_asymptotic(int n)
-{
- BOOST_MATH_STD_USING
- const T nx = static_cast<T>(n);
- const T nx2(nx * nx);
-
- const T approximate_log_of_bernoulli_bn =
- ((boost::math::constants::half<T>() + nx) * log(nx))
- + ((boost::math::constants::half<T>() - nx) * log(boost::math::constants::pi<T>()))
- + (((T(3) / 2) - nx) * boost::math::constants::ln_two<T>())
- + ((nx * (T(2) - (nx2 * 7) * (1 + ((nx2 * 30) * ((nx2 * 12) - 1))))) / (((nx2 * nx2) * nx2) * 2520));
- return ((n / 2) & 1 ? 1 : -1) * (approximate_log_of_bernoulli_bn > tools::log_max_value<T>()
- ? policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, nx, Policy())
- : static_cast<T>(exp(approximate_log_of_bernoulli_bn)));
-}
-
-template <class T, class Policy>
-T t2n_asymptotic(int n)
-{
- BOOST_MATH_STD_USING
- // Just get B2n and convert to a Tangent number:
- T t2n = fabs(b2n_asymptotic<T, Policy>(2 * n)) / (2 * n);
- T p2 = ldexp(T(1), n);
- if(tools::max_value<T>() / p2 < t2n)
- return policies::raise_overflow_error<T>("boost::math::tangent_t2n<%1%>(std::size_t)", 0, T(n), Policy());
- t2n *= p2;
- p2 -= 1;
- if(tools::max_value<T>() / p2 < t2n)
- return policies::raise_overflow_error<T>("boost::math::tangent_t2n<%1%>(std::size_t)", 0, Policy());
- t2n *= p2;
- return t2n;
-}
-//
-// We need to know the approximate value of /n/ which will
-// cause bernoulli_b2n<T>(n) to return infinity - this allows
-// us to elude a great deal of runtime checking for values below
-// n, and only perform the full overflow checks when we know that we're
-// getting close to the point where our calculations will overflow.
-// We use Luschny's LogB3 formula (http://www.luschny.de/math/primes/bernincl.html)
-// to find the limit, and since we're dealing with the log of the Bernoulli numbers
-// we need only perform the calculation at double precision and not with T
-// (which may be a multiprecision type). The limit returned is within 1 of the true
-// limit for all the types tested. Note that although the code below is basically
-// the same as b2n_asymptotic above, it has been recast as a continuous real-valued
-// function as this makes the root finding go smoother/faster. It also omits the
-// sign of the Bernoulli number.
-//
-struct max_bernoulli_root_functor
-{
- max_bernoulli_root_functor(long long t) : target(static_cast<double>(t)) {}
- double operator()(double n)
- {
- BOOST_MATH_STD_USING
-
- // Luschny LogB3(n) formula.
-
- const double nx2(n * n);
-
- const double approximate_log_of_bernoulli_bn
- = ((boost::math::constants::half<double>() + n) * log(n))
- + ((boost::math::constants::half<double>() - n) * log(boost::math::constants::pi<double>()))
- + (((double(3) / 2) - n) * boost::math::constants::ln_two<double>())
- + ((n * (2 - (nx2 * 7) * (1 + ((nx2 * 30) * ((nx2 * 12) - 1))))) / (((nx2 * nx2) * nx2) * 2520));
-
- return approximate_log_of_bernoulli_bn - target;
- }
-private:
- double target;
-};
-
-template <class T, class Policy>
-inline std::size_t find_bernoulli_overflow_limit(const mpl::false_&)
-{
- long long t = lltrunc(boost::math::tools::log_max_value<T>());
- max_bernoulli_root_functor fun(t);
- boost::math::tools::equal_floor tol;
- boost::uintmax_t max_iter = boost::math::policies::get_max_root_iterations<Policy>();
- return static_cast<std::size_t>(boost::math::tools::toms748_solve(fun, sqrt(double(t)), double(t), tol, max_iter).first) / 2;
-}
-
-template <class T, class Policy>
-inline std::size_t find_bernoulli_overflow_limit(const mpl::true_&)
-{
- return max_bernoulli_index<bernoulli_imp_variant<T>::value>::value;
-}
-
-template <class T, class Policy>
-std::size_t b2n_overflow_limit()
-{
- // This routine is called at program startup if it's called at all:
- // that guarantees safe initialization of the static variable.
- typedef mpl::bool_<(bernoulli_imp_variant<T>::value >= 1) && (bernoulli_imp_variant<T>::value <= 3)> tag_type;
- static const std::size_t lim = find_bernoulli_overflow_limit<T, Policy>(tag_type());
- return lim;
-}
-
-//
-// The tangent numbers grow larger much more rapidly than the Bernoulli numbers do....
-// so to compute the Bernoulli numbers from the tangent numbers, we need to avoid spurious
-// overflow in the calculation, we can do this by scaling all the tangent number by some scale factor:
-//
-template <class T>
-inline typename enable_if_c<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::radix == 2), T>::type tangent_scale_factor()
-{
- BOOST_MATH_STD_USING
- return ldexp(T(1), std::numeric_limits<T>::min_exponent + 5);
-}
-template <class T>
-inline typename disable_if_c<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::radix == 2), T>::type tangent_scale_factor()
-{
- return tools::min_value<T>() * 16;
-}
-//
-// Initializer: ensure all our constants are initialized prior to the first call of main:
-//
-template <class T, class Policy>
-struct bernoulli_initializer
-{
- struct init
- {
- init()
- {
- //
- // We call twice, once to initialize our static table, and once to
- // initialize our dymanic table:
- //
- boost::math::bernoulli_b2n<T>(2, Policy());
-#ifndef BOOST_NO_EXCEPTIONS
- try{
-#endif
- boost::math::bernoulli_b2n<T>(max_bernoulli_b2n<T>::value + 1, Policy());
-#ifndef BOOST_NO_EXCEPTIONS
- } catch(const std::overflow_error&){}
-#endif
- boost::math::tangent_t2n<T>(2, Policy());
- }
- void force_instantiate()const{}
- };
- static const init initializer;
- static void force_instantiate()
- {
- initializer.force_instantiate();
- }
-};
-
-template <class T, class Policy>
-const typename bernoulli_initializer<T, Policy>::init bernoulli_initializer<T, Policy>::initializer;
-
-//
-// We need something to act as a cache for our calculated Bernoulli numbers. In order to
-// ensure both fast access and thread safety, we need a stable table which may be extended
-// in size, but which never reallocates: that way values already calculated may be accessed
-// concurrently with another thread extending the table with new values.
-//
-// Very very simple vector class that will never allocate more than once, we could use
-// boost::container::static_vector here, but that allocates on the stack, which may well
-// cause issues for the amount of memory we want in the extreme case...
-//
-template <class T>
-struct fixed_vector : private std::allocator<T>
-{
- typedef unsigned size_type;
- typedef T* iterator;
- typedef const T* const_iterator;
- fixed_vector() : m_used(0)
- {
- std::size_t overflow_limit = 5 + b2n_overflow_limit<T, policies::policy<> >();
- m_capacity = static_cast<unsigned>((std::min)(overflow_limit, static_cast<std::size_t>(100000u)));
- m_data = this->allocate(m_capacity);
- }
- ~fixed_vector()
- {
- for(unsigned i = 0; i < m_used; ++i)
- this->destroy(&m_data[i]);
- this->deallocate(m_data, m_capacity);
- }
- T& operator[](unsigned n) { BOOST_ASSERT(n < m_used); return m_data[n]; }
- const T& operator[](unsigned n)const { BOOST_ASSERT(n < m_used); return m_data[n]; }
- unsigned size()const { return m_used; }
- unsigned size() { return m_used; }
- void resize(unsigned n, const T& val)
- {
- if(n > m_capacity)
- {
- BOOST_THROW_EXCEPTION(std::runtime_error("Exhausted storage for Bernoulli numbers."));
- }
- for(unsigned i = m_used; i < n; ++i)
- new (m_data + i) T(val);
- m_used = n;
- }
- void resize(unsigned n) { resize(n, T()); }
- T* begin() { return m_data; }
- T* end() { return m_data + m_used; }
- T* begin()const { return m_data; }
- T* end()const { return m_data + m_used; }
- unsigned capacity()const { return m_capacity; }
- void clear() { m_used = 0; }
-private:
- T* m_data;
- unsigned m_used, m_capacity;
-};
-
-template <class T, class Policy>
-class bernoulli_numbers_cache
-{
-public:
- bernoulli_numbers_cache() : m_overflow_limit((std::numeric_limits<std::size_t>::max)())
-#if defined(BOOST_HAS_THREADS) && !defined(BOOST_MATH_NO_ATOMIC_INT)
- , m_counter(0)
-#endif
- , m_current_precision(boost::math::tools::digits<T>())
- {}
-
- typedef fixed_vector<T> container_type;
-
- void tangent(std::size_t m)
- {
- static const std::size_t min_overflow_index = b2n_overflow_limit<T, Policy>() - 1;
- tn.resize(static_cast<typename container_type::size_type>(m), T(0U));
-
- BOOST_MATH_INSTRUMENT_VARIABLE(min_overflow_index);
-
- std::size_t prev_size = m_intermediates.size();
- m_intermediates.resize(m, T(0U));
-
- if(prev_size == 0)
- {
- m_intermediates[1] = tangent_scale_factor<T>() /*T(1U)*/;
- tn[0U] = T(0U);
- tn[1U] = tangent_scale_factor<T>()/* T(1U)*/;
- BOOST_MATH_INSTRUMENT_VARIABLE(tn[0]);
- BOOST_MATH_INSTRUMENT_VARIABLE(tn[1]);
- }
-
- for(std::size_t i = std::max<size_t>(2, prev_size); i < m; i++)
- {
- bool overflow_check = false;
- if(i >= min_overflow_index && (boost::math::tools::max_value<T>() / (i-1) < m_intermediates[1]) )
- {
- std::fill(tn.begin() + i, tn.end(), boost::math::tools::max_value<T>());
- break;
- }
- m_intermediates[1] = m_intermediates[1] * (i-1);
- for(std::size_t j = 2; j <= i; j++)
- {
- overflow_check =
- (i >= min_overflow_index) && (
- (boost::math::tools::max_value<T>() / (i - j) < m_intermediates[j])
- || (boost::math::tools::max_value<T>() / (i - j + 2) < m_intermediates[j-1])
- || (boost::math::tools::max_value<T>() - m_intermediates[j] * (i - j) < m_intermediates[j-1] * (i - j + 2))
- || ((boost::math::isinf)(m_intermediates[j]))
- );
-
- if(overflow_check)
- {
- std::fill(tn.begin() + i, tn.end(), boost::math::tools::max_value<T>());
- break;
- }
- m_intermediates[j] = m_intermediates[j] * (i - j) + m_intermediates[j-1] * (i - j + 2);
- }
- if(overflow_check)
- break; // already filled the tn...
- tn[static_cast<typename container_type::size_type>(i)] = m_intermediates[i];
- BOOST_MATH_INSTRUMENT_VARIABLE(i);
- BOOST_MATH_INSTRUMENT_VARIABLE(tn[static_cast<typename container_type::size_type>(i)]);
- }
- }
-
- void tangent_numbers_series(const std::size_t m)
- {
- BOOST_MATH_STD_USING
- static const std::size_t min_overflow_index = b2n_overflow_limit<T, Policy>() - 1;
-
- typename container_type::size_type old_size = bn.size();
-
- tangent(m);
- bn.resize(static_cast<typename container_type::size_type>(m));
-
- if(!old_size)
- {
- bn[0] = 1;
- old_size = 1;
- }
-
- T power_two(ldexp(T(1), static_cast<int>(2 * old_size)));
-
- for(std::size_t i = old_size; i < m; i++)
- {
- T b(static_cast<T>(i * 2));
- //
- // Not only do we need to take care to avoid spurious over/under flow in
- // the calculation, but we also need to avoid overflow altogether in case
- // we're calculating with a type where "bad things" happen in that case:
- //
- b = b / (power_two * tangent_scale_factor<T>());
- b /= (power_two - 1);
- bool overflow_check = (i >= min_overflow_index) && (tools::max_value<T>() / tn[static_cast<typename container_type::size_type>(i)] < b);
- if(overflow_check)
- {
- m_overflow_limit = i;
- while(i < m)
- {
- b = std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() : tools::max_value<T>();
- bn[static_cast<typename container_type::size_type>(i)] = ((i % 2U) ? b : T(-b));
- ++i;
- }
- break;
- }
- else
- {
- b *= tn[static_cast<typename container_type::size_type>(i)];
- }
-
- power_two = ldexp(power_two, 2);
-
- const bool b_neg = i % 2 == 0;
-
- bn[static_cast<typename container_type::size_type>(i)] = ((!b_neg) ? b : T(-b));
- }
- }
-
- template <class OutputIterator>
- OutputIterator copy_bernoulli_numbers(OutputIterator out, std::size_t start, std::size_t n, const Policy& pol)
- {
- //
- // There are basically 3 thread safety options:
- //
- // 1) There are no threads (BOOST_HAS_THREADS is not defined).
- // 2) There are threads, but we do not have a true atomic integer type,
- // in this case we just use a mutex to guard against race conditions.
- // 3) There are threads, and we have an atomic integer: in this case we can
- // use the double-checked locking pattern to avoid thread synchronisation
- // when accessing values already in the cache.
- //
- // First off handle the common case for overflow and/or asymptotic expansion:
- //
- if(start + n > bn.capacity())
- {
- if(start < bn.capacity())
- {
- out = copy_bernoulli_numbers(out, start, bn.capacity() - start, pol);
- n -= bn.capacity() - start;
- start = static_cast<std::size_t>(bn.capacity());
- }
- if(start < b2n_overflow_limit<T, Policy>() + 2u)
- {
- for(; n; ++start, --n)
- {
- *out = b2n_asymptotic<T, Policy>(static_cast<typename container_type::size_type>(start * 2U));
- ++out;
- }
- }
- for(; n; ++start, --n)
- {
- *out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(start), pol);
- ++out;
- }
- return out;
- }
- #if !defined(BOOST_HAS_THREADS)
- //
- // Single threaded code, very simple:
- //
- if(m_current_precision < boost::math::tools::digits<T>())
- {
- bn.clear();
- tn.clear();
- m_intermediates.clear();
- m_current_precision = boost::math::tools::digits<T>();
- }
- if(start + n >= bn.size())
- {
- std::size_t new_size = (std::min)((std::max)((std::max)(std::size_t(start + n), std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
- tangent_numbers_series(new_size);
- }
-
- for(std::size_t i = (std::max)(std::size_t(max_bernoulli_b2n<T>::value + 1), start); i < start + n; ++i)
- {
- *out = (i >= m_overflow_limit) ? policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol) : bn[i];
- ++out;
- }
- #elif defined(BOOST_MATH_NO_ATOMIC_INT)
- //
- // We need to grab a mutex every time we get here, for both readers and writers:
- //
- boost::detail::lightweight_mutex::scoped_lock l(m_mutex);
- if(m_current_precision < boost::math::tools::digits<T>())
- {
- bn.clear();
- tn.clear();
- m_intermediates.clear();
- m_current_precision = boost::math::tools::digits<T>();
- }
- if(start + n >= bn.size())
- {
- std::size_t new_size = (std::min)((std::max)((std::max)(std::size_t(start + n), std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
- tangent_numbers_series(new_size);
- }
-
- for(std::size_t i = (std::max)(std::size_t(max_bernoulli_b2n<T>::value + 1), start); i < start + n; ++i)
- {
- *out = (i >= m_overflow_limit) ? policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol) : bn[i];
- ++out;
- }
-
- #else
- //
- // Double-checked locking pattern, lets us access cached already cached values
- // without locking:
- //
- // Get the counter and see if we need to calculate more constants:
- //
- if((static_cast<std::size_t>(m_counter.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < start + n)
- || (static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>()))
- {
- boost::detail::lightweight_mutex::scoped_lock l(m_mutex);
-
- if((static_cast<std::size_t>(m_counter.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < start + n)
- || (static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>()))
- {
- if(static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>())
- {
- bn.clear();
- tn.clear();
- m_intermediates.clear();
- m_counter.store(0, BOOST_MATH_ATOMIC_NS::memory_order_release);
- m_current_precision = boost::math::tools::digits<T>();
- }
- if(start + n >= bn.size())
- {
- std::size_t new_size = (std::min)((std::max)((std::max)(std::size_t(start + n), std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
- tangent_numbers_series(new_size);
- }
- m_counter.store(static_cast<atomic_integer_type>(bn.size()), BOOST_MATH_ATOMIC_NS::memory_order_release);
- }
- }
-
- for(std::size_t i = (std::max)(static_cast<std::size_t>(max_bernoulli_b2n<T>::value + 1), start); i < start + n; ++i)
- {
- *out = (i >= m_overflow_limit) ? policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol) : bn[static_cast<typename container_type::size_type>(i)];
- ++out;
- }
-
- #endif
- return out;
- }
-
- template <class OutputIterator>
- OutputIterator copy_tangent_numbers(OutputIterator out, std::size_t start, std::size_t n, const Policy& pol)
- {
- //
- // There are basically 3 thread safety options:
- //
- // 1) There are no threads (BOOST_HAS_THREADS is not defined).
- // 2) There are threads, but we do not have a true atomic integer type,
- // in this case we just use a mutex to guard against race conditions.
- // 3) There are threads, and we have an atomic integer: in this case we can
- // use the double-checked locking pattern to avoid thread synchronisation
- // when accessing values already in the cache.
- //
- //
- // First off handle the common case for overflow and/or asymptotic expansion:
- //
- if(start + n > bn.capacity())
- {
- if(start < bn.capacity())
- {
- out = copy_tangent_numbers(out, start, bn.capacity() - start, pol);
- n -= bn.capacity() - start;
- start = static_cast<std::size_t>(bn.capacity());
- }
- if(start < b2n_overflow_limit<T, Policy>() + 2u)
- {
- for(; n; ++start, --n)
- {
- *out = t2n_asymptotic<T, Policy>(static_cast<typename container_type::size_type>(start));
- ++out;
- }
- }
- for(; n; ++start, --n)
- {
- *out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(start), pol);
- ++out;
- }
- return out;
- }
- #if !defined(BOOST_HAS_THREADS)
- //
- // Single threaded code, very simple:
- //
- if(m_current_precision < boost::math::tools::digits<T>())
- {
- bn.clear();
- tn.clear();
- m_intermediates.clear();
- m_current_precision = boost::math::tools::digits<T>();
- }
- if(start + n >= bn.size())
- {
- std::size_t new_size = (std::min)((std::max)((std::max)(start + n, std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
- tangent_numbers_series(new_size);
- }
-
- for(std::size_t i = start; i < start + n; ++i)
- {
- if(i >= m_overflow_limit)
- *out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
- else
- {
- if(tools::max_value<T>() * tangent_scale_factor<T>() < tn[static_cast<typename container_type::size_type>(i)])
- *out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
- else
- *out = tn[static_cast<typename container_type::size_type>(i)] / tangent_scale_factor<T>();
- }
- ++out;
- }
- #elif defined(BOOST_MATH_NO_ATOMIC_INT)
- //
- // We need to grab a mutex every time we get here, for both readers and writers:
- //
- boost::detail::lightweight_mutex::scoped_lock l(m_mutex);
- if(m_current_precision < boost::math::tools::digits<T>())
- {
- bn.clear();
- tn.clear();
- m_intermediates.clear();
- m_current_precision = boost::math::tools::digits<T>();
- }
- if(start + n >= bn.size())
- {
- std::size_t new_size = (std::min)((std::max)((std::max)(start + n, std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
- tangent_numbers_series(new_size);
- }
-
- for(std::size_t i = start; i < start + n; ++i)
- {
- if(i >= m_overflow_limit)
- *out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
- else
- {
- if(tools::max_value<T>() * tangent_scale_factor<T>() < tn[static_cast<typename container_type::size_type>(i)])
- *out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
- else
- *out = tn[static_cast<typename container_type::size_type>(i)] / tangent_scale_factor<T>();
- }
- ++out;
- }
-
- #else
- //
- // Double-checked locking pattern, lets us access cached already cached values
- // without locking:
- //
- // Get the counter and see if we need to calculate more constants:
- //
- if((static_cast<std::size_t>(m_counter.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < start + n)
- || (static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>()))
- {
- boost::detail::lightweight_mutex::scoped_lock l(m_mutex);
-
- if((static_cast<std::size_t>(m_counter.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < start + n)
- || (static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>()))
- {
- if(static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>())
- {
- bn.clear();
- tn.clear();
- m_intermediates.clear();
- m_counter.store(0, BOOST_MATH_ATOMIC_NS::memory_order_release);
- m_current_precision = boost::math::tools::digits<T>();
- }
- if(start + n >= bn.size())
- {
- std::size_t new_size = (std::min)((std::max)((std::max)(start + n, std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
- tangent_numbers_series(new_size);
- }
- m_counter.store(static_cast<atomic_integer_type>(bn.size()), BOOST_MATH_ATOMIC_NS::memory_order_release);
- }
- }
-
- for(std::size_t i = start; i < start + n; ++i)
- {
- if(i >= m_overflow_limit)
- *out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
- else
- {
- if(tools::max_value<T>() * tangent_scale_factor<T>() < tn[static_cast<typename container_type::size_type>(i)])
- *out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
- else
- *out = tn[static_cast<typename container_type::size_type>(i)] / tangent_scale_factor<T>();
- }
- ++out;
- }
-
- #endif
- return out;
- }
-
-private:
- //
- // The caches for Bernoulli and tangent numbers, once allocated,
- // these must NEVER EVER reallocate as it breaks our thread
- // safety guarantees:
- //
- fixed_vector<T> bn, tn;
- std::vector<T> m_intermediates;
- // The value at which we know overflow has already occurred for the Bn:
- std::size_t m_overflow_limit;
-#if !defined(BOOST_HAS_THREADS)
- int m_current_precision;
-#elif defined(BOOST_MATH_NO_ATOMIC_INT)
- boost::detail::lightweight_mutex m_mutex;
- int m_current_precision;
-#else
- boost::detail::lightweight_mutex m_mutex;
- atomic_counter_type m_counter, m_current_precision;
-#endif
-};
-
-template <class T, class Policy>
-inline bernoulli_numbers_cache<T, Policy>& get_bernoulli_numbers_cache()
-{
- //
- // Force this function to be called at program startup so all the static variables
- // get initailzed then (thread safety).
- //
- bernoulli_initializer<T, Policy>::force_instantiate();
- static bernoulli_numbers_cache<T, Policy> data;
- return data;
-}
-
-}}}
-
-#endif // BOOST_MATH_BERNOULLI_DETAIL_HPP