summaryrefslogtreecommitdiff
path: root/sha256.c
blob: 7ce38030fa22002281b2e7d5e6075a3e673694db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*
 * Implementation of SHA-256, based on Adam Back's sha-1 implementation.
 * This software is in the public domain as per
 * http://archives.neohapsis.com/archives/crypto/2000-q4/0730.html
 * Changes by Jonathan Dieter are also in the public domain
 */

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "sha256.h"

#define min( x, y ) ( ( x ) < ( y ) ? ( x ) : ( y ) )

#define S(x,n) ( ((x)>>(n)) | ((x)<<(32-(n))) )
#define R(x,n) ( (x)>>(n) )

#define Ch(x,y,z) ( ((x) & (y)) | (~(x) & (z)) )
#define Maj(x,y,z) ( ( (x) & (y) ) | ( (x) & (z) ) | ( (y) & (z) ) )

#define SIG0(x) ( S(x, 2) ^ S(x,13) ^ S(x,22) )
#define SIG1(x) ( S(x, 6) ^ S(x,11) ^ S(x,25) )
#define sig0(x) ( S(x, 7) ^ S(x,18) ^ R(x, 3) )
#define sig1(x) ( S(x,17) ^ S(x,19) ^ R(x,10) )

static unsigned int K[] = {
        0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
        0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
        0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
        0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
        0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
        0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
        0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
        0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
        0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
        0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
        0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
        0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
        0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
        0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
        0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
        0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

#define H1 0x6a09e667
#define H2 0xbb67ae85
#define H3 0x3c6ef372
#define H4 0xa54ff53a
#define H5 0x510e527f
#define H6 0x9b05688c
#define H7 0x1f83d9ab
#define H8 0x5be0cd19

unsigned int H[ 8 ] = { H1, H2, H3, H4, H5, H6, H7, H8 };

/* convert to big endian where needed */

static void convert_to_bigendian( void *data, int len )
{
/* test endianness */
   unsigned int test_value = 0x01;
   unsigned char *test_as_bytes = (unsigned char*) &test_value;
   int little_endian = test_as_bytes[ 0 ];

   unsigned int temp;
   unsigned char *temp_as_bytes = (unsigned char*) &temp;
   unsigned int *data_as_words = (unsigned int*) data;
   unsigned char *data_as_bytes;
   int i;

   if ( little_endian )
   {
      len /= 4;
      for ( i = 0; i < len; i++ )
      {
         temp = data_as_words[ i ];
         data_as_bytes = (unsigned char*) &( data_as_words[ i ] );
         
         data_as_bytes[ 0 ] = temp_as_bytes[ 3 ];
         data_as_bytes[ 1 ] = temp_as_bytes[ 2 ];
         data_as_bytes[ 2 ] = temp_as_bytes[ 1 ];
         data_as_bytes[ 3 ] = temp_as_bytes[ 0 ];
      }
   }

/* on big endian machines do nothing as the CPU representation
 *    automatically does the right thing for SHA1 */
}

void SHA256_init( SHA256_ctx* ctx )
{
   memcpy( ctx->H, H, 8 * sizeof( unsigned int ) );
   ctx->lbits = 0;
   ctx->hbits = 0;
   ctx->mlen = 0;
}

static void SHA256_transform( SHA256_ctx* ctx )
{
   int t;
   unsigned int A = ctx->H[ 0 ];
   unsigned int B = ctx->H[ 1 ];
   unsigned int C = ctx->H[ 2 ];
   unsigned int D = ctx->H[ 3 ];
   unsigned int E = ctx->H[ 4 ];
   unsigned int F = ctx->H[ 5 ];
   unsigned int G = ctx->H[ 6 ];
   unsigned int H = ctx->H[ 7 ];
   unsigned int T1, T2;
   unsigned int W[ 64 ];

   memcpy( W, ctx->M, 64 );

   for ( t = 16; t < 64; t++ )
   {
      W[ t ] = sig1(W[t-2]) + W[t-7] + sig0(W[t-15]) + W[t-16];
   }

   for ( t = 0; t < 64; t++ )
   {
      T1 = H + SIG1(E) + Ch(E,F,G) + K[t] + W[t];
      T2 = SIG0(A) + Maj(A,B,C);
      H = G;
      G = F;
      F = E;
      E = D + T1;
      D = C;
      C = B;
      B = A;
      A = T1 + T2;
   }


   ctx->H[ 0 ] += A;
   ctx->H[ 1 ] += B;
   ctx->H[ 2 ] += C;
   ctx->H[ 3 ] += D;
   ctx->H[ 4 ] += E;
   ctx->H[ 5 ] += F;
   ctx->H[ 6 ] += G;
   ctx->H[ 7 ] += H;
}

void SHA256_update( SHA256_ctx* ctx, const unsigned char *data, unsigned int length)
{
   unsigned int use;
   unsigned int low_bits;
   
/* convert length to bits and add to the 64 bit word formed by lbits
 *    and hbits */

   ctx->hbits += length >> 29;
   low_bits = length << 3;
   ctx->lbits += low_bits;
   if ( ctx->lbits < low_bits ) { ctx->hbits++; }

/* deal with first block */

   use = min( 64 - ctx->mlen, length );
   memcpy( ctx->M + ctx->mlen, data, use );
   ctx->mlen += use;
   length -= use;
   data += use;

   while ( ctx->mlen == 64 )
   {
      convert_to_bigendian( (unsigned int*)ctx->M, 64 );
      SHA256_transform( ctx );
      use = min( 64, length );
      memcpy( ctx->M, data, use );
      ctx->mlen = use;
      length -= use;
      data += use; /* was missing */
   }
}

void SHA256_final( SHA256_ctx* ctx )
{
   if ( ctx->mlen < 56 )
   {
      ctx->M[ ctx->mlen ] = 0x80; ctx->mlen++;
      memset( ctx->M + ctx->mlen, 0x00, 56 - ctx->mlen );
      convert_to_bigendian( ctx->M, 56 );
   }
   else
   {
      ctx->M[ ctx->mlen ] = 0x80;
      ctx->mlen++;
      memset( ctx->M + ctx->mlen, 0x00, 64 - ctx->mlen );
      convert_to_bigendian( ctx->M, 64 );
      SHA256_transform( ctx );
      memset( ctx->M, 0x00, 56 );
   }

   memcpy( ctx->M + 56, (void*)(&(ctx->hbits)), 8 );
   SHA256_transform( ctx );
}

void SHA256_digest( SHA256_ctx* ctx, unsigned char *digest )
{
   if ( digest )
   {
      memcpy( digest, ctx->H, 8 * sizeof( unsigned int ) );
      convert_to_bigendian( digest, 8 * sizeof( unsigned int ) );
   }
}

void SHA256_update32( SHA256_ctx* ctx, unsigned int i)
{
   unsigned char d[4];
   d[0] = i >> 24;
   d[1] = i >> 16;
   d[2] = i >> 8;
   d[3] = i;
   SHA256_update(ctx, d, 4);
}