/* * Implementation of SHA-256, based on Adam Back's sha-1 implementation. * This software is in the public domain as per * http://archives.neohapsis.com/archives/crypto/2000-q4/0730.html * Changes by Jonathan Dieter are also in the public domain */ #include "stdlib.h" #include "stdio.h" #include "string.h" #include "sha256.h" #define min( x, y ) ( ( x ) < ( y ) ? ( x ) : ( y ) ) #define S(x,n) ( ((x)>>(n)) | ((x)<<(32-(n))) ) #define R(x,n) ( (x)>>(n) ) #define Ch(x,y,z) ( ((x) & (y)) | (~(x) & (z)) ) #define Maj(x,y,z) ( ( (x) & (y) ) | ( (x) & (z) ) | ( (y) & (z) ) ) #define SIG0(x) ( S(x, 2) ^ S(x,13) ^ S(x,22) ) #define SIG1(x) ( S(x, 6) ^ S(x,11) ^ S(x,25) ) #define sig0(x) ( S(x, 7) ^ S(x,18) ^ R(x, 3) ) #define sig1(x) ( S(x,17) ^ S(x,19) ^ R(x,10) ) static unsigned int K[] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; #define H1 0x6a09e667 #define H2 0xbb67ae85 #define H3 0x3c6ef372 #define H4 0xa54ff53a #define H5 0x510e527f #define H6 0x9b05688c #define H7 0x1f83d9ab #define H8 0x5be0cd19 unsigned int H[ 8 ] = { H1, H2, H3, H4, H5, H6, H7, H8 }; /* convert to big endian where needed */ static void convert_to_bigendian( void *data, int len ) { /* test endianness */ unsigned int test_value = 0x01; unsigned char *test_as_bytes = (unsigned char*) &test_value; int little_endian = test_as_bytes[ 0 ]; unsigned int temp; unsigned char *temp_as_bytes = (unsigned char*) &temp; unsigned int *data_as_words = (unsigned int*) data; unsigned char *data_as_bytes; int i; if ( little_endian ) { len /= 4; for ( i = 0; i < len; i++ ) { temp = data_as_words[ i ]; data_as_bytes = (unsigned char*) &( data_as_words[ i ] ); data_as_bytes[ 0 ] = temp_as_bytes[ 3 ]; data_as_bytes[ 1 ] = temp_as_bytes[ 2 ]; data_as_bytes[ 2 ] = temp_as_bytes[ 1 ]; data_as_bytes[ 3 ] = temp_as_bytes[ 0 ]; } } /* on big endian machines do nothing as the CPU representation * automatically does the right thing for SHA1 */ } void SHA256_init( SHA256_ctx* ctx ) { memcpy( ctx->H, H, 8 * sizeof( unsigned int ) ); ctx->lbits = 0; ctx->hbits = 0; ctx->mlen = 0; } static void SHA256_transform( SHA256_ctx* ctx ) { int t; unsigned int A = ctx->H[ 0 ]; unsigned int B = ctx->H[ 1 ]; unsigned int C = ctx->H[ 2 ]; unsigned int D = ctx->H[ 3 ]; unsigned int E = ctx->H[ 4 ]; unsigned int F = ctx->H[ 5 ]; unsigned int G = ctx->H[ 6 ]; unsigned int H = ctx->H[ 7 ]; unsigned int T1, T2; unsigned int W[ 64 ]; memcpy( W, ctx->M, 64 ); for ( t = 16; t < 64; t++ ) { W[ t ] = sig1(W[t-2]) + W[t-7] + sig0(W[t-15]) + W[t-16]; } for ( t = 0; t < 64; t++ ) { T1 = H + SIG1(E) + Ch(E,F,G) + K[t] + W[t]; T2 = SIG0(A) + Maj(A,B,C); H = G; G = F; F = E; E = D + T1; D = C; C = B; B = A; A = T1 + T2; } ctx->H[ 0 ] += A; ctx->H[ 1 ] += B; ctx->H[ 2 ] += C; ctx->H[ 3 ] += D; ctx->H[ 4 ] += E; ctx->H[ 5 ] += F; ctx->H[ 6 ] += G; ctx->H[ 7 ] += H; } void SHA256_update( SHA256_ctx* ctx, const unsigned char *data, unsigned int length) { unsigned int use; unsigned int low_bits; /* convert length to bits and add to the 64 bit word formed by lbits * and hbits */ ctx->hbits += length >> 29; low_bits = length << 3; ctx->lbits += low_bits; if ( ctx->lbits < low_bits ) { ctx->hbits++; } /* deal with first block */ use = min( 64 - ctx->mlen, length ); memcpy( ctx->M + ctx->mlen, data, use ); ctx->mlen += use; length -= use; data += use; while ( ctx->mlen == 64 ) { convert_to_bigendian( (unsigned int*)ctx->M, 64 ); SHA256_transform( ctx ); use = min( 64, length ); memcpy( ctx->M, data, use ); ctx->mlen = use; length -= use; data += use; /* was missing */ } } void SHA256_final( SHA256_ctx* ctx ) { if ( ctx->mlen < 56 ) { ctx->M[ ctx->mlen ] = 0x80; ctx->mlen++; memset( ctx->M + ctx->mlen, 0x00, 56 - ctx->mlen ); convert_to_bigendian( ctx->M, 56 ); } else { ctx->M[ ctx->mlen ] = 0x80; ctx->mlen++; memset( ctx->M + ctx->mlen, 0x00, 64 - ctx->mlen ); convert_to_bigendian( ctx->M, 64 ); SHA256_transform( ctx ); memset( ctx->M, 0x00, 56 ); } memcpy( ctx->M + 56, (void*)(&(ctx->hbits)), 8 ); SHA256_transform( ctx ); } void SHA256_digest( SHA256_ctx* ctx, unsigned char *digest ) { if ( digest ) { memcpy( digest, ctx->H, 8 * sizeof( unsigned int ) ); convert_to_bigendian( digest, 8 * sizeof( unsigned int ) ); } } void SHA256_update32( SHA256_ctx* ctx, unsigned int i) { unsigned char d[4]; d[0] = i >> 24; d[1] = i >> 16; d[2] = i >> 8; d[3] = i; SHA256_update(ctx, d, 4); }