

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

Document version 1.1.2

Tizen Content Screening

Test Specification

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

Copyright (c) 2014, McAfee, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided

that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and

the following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of McAfee, Inc. nor the names of its contributors may be used to endorse or

promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

1 Contents

1 Contents .. 4

1.1 Document History ... 6
1.2 References ... 6
1.3 Glossary and definitions .. 6

2 Purpose and Scope ... 7

3 Component Description ... 8

4 Test Environment Description .. 10

5 Test Cases Specifications ... 11

5.1 Test Case TC_SEC_CS_TCSLibraryOpen_0001 ... 11
5.2 Test Case TC_SEC_CS_TCSLibraryOpen_0002 ... 11
5.3 Test Case TC_SEC_CS_TCSLibraryOpen_0003 ... 12
5.4 Test Case TC_SEC_CS_TCSLibraryOpen_0004 ... 12
5.5 Test Case TC_SEC_CS_TCSGetLastError_0001 ... 13
5.6 Test Case TC_SEC_CS_TCSLibraryClose_0001 ... 15
5.7 Test Case TC_SEC_CS_TCSScanData_0001 .. 16
5.8 Test Case TC_SEC_CS_TCSScanData_0002 .. 17
5.9 Test Case TC_SEC_CS_TCSScanData_0003 .. 18
5.10 Test Case TC_SEC_CS_TCSScanData_0004 .. 19
5.11 Test Case TC_SEC_CS_TCSScanData_0005 .. 20
5.12 Test Case TC_SEC_CS_TCSScanData_0006 .. 21
5.13 Test Case TC_SEC_CS_TCSScanData_0007 .. 22
5.14 Test Case TC_SEC_CS_TCSScanData_0008 .. 23
5.15 Test Case TC_SEC_CS_TCSScanData_0009 .. 24
5.16 Test Case TC_SEC_CS_TCSScanData_0010 .. 25
5.17 Test Case TC_SEC_CS_TCSScanData_0011 .. 26
5.18 Test Case TC_SEC_CS_TCSScanData_0012 .. 27
5.19 Test Case TC_SEC_CS_TCSScanData_0013 .. 28
5.20 Test Case TC_SEC_CS_TCSScanData_0014 .. 29
5.21 Test Case TC_SEC_CS_TCSScanData_0015 .. 30
5.22 Test Case TC_SEC_CS_TCSScanData_0016 .. 31
5.23 Test Case TC_SEC_CS_TCSScanData_0017 .. 32
5.24 Test Case TC_SEC_CS_TCSScanData_0018 .. 33
5.25 Test Case TC_SEC_CS_TCSScanData_0019 .. 34
5.26 Test Case TC_SEC_CS_TCSScanData_0020 .. 35
5.27 Test Case TC_SEC_CS_TCSScanData_0021 .. 36
5.28 Test Case TC_SEC_CS_TCSScanData_0022 .. 37
5.29 Test Case TC_SEC_CS_TCSScanData_0023 .. 38
5.30 Test Case TC_SEC_CS_TCSScanData_0024 .. 39
5.31 Test Case TC_SEC_CS_TCSScanData_0025 .. 39
5.32 Test Case TC_SEC_CS_TCSScanData_0026 .. 41
5.33 Test Case TC_SEC_CS_TCSScanData_0027 .. 42
5.34 Test Case TC_SEC_CS_TCSScanData_0028 .. 43
5.35 Test Case TC_SEC_CS_TCSScanData_0029 .. 44
5.36 Test Case TC_SEC_CS_TCSScanData_0030 .. 45
5.37 Test Case TC_SEC_CS_TCSScanData_0031 .. 46
5.38 Test Case TC_SEC_CS_TCSScanData_0032 .. 47
5.39 Test Case TC_SEC_CS_TCSScanData_0033 .. 48
5.40 Test Case TC_SEC_CS_TCSScanData_0034 .. 49
5.41 Test Case TC_SEC_CS_TCSScanData_0035 .. 50

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.42 Test Case TC_SEC_CS_TCSScanData_0036 .. 51
5.43 Test Case TC_SEC_CS_TCSScanData_0037 .. 52
5.44 Test Case TC_SEC_CS_TCSScanData_0038 .. 53
5.45 Test Case TC_SEC_CS_TCSScanData_0039 .. 54
5.46 Test Case TC_SEC_CS_TCSScanData_0040 .. 55
5.47 Test Case TC_SEC_CS_TCSScanData_0041 .. 56
5.48 Test Case TC_SEC_CS_TCSScanData_0042 .. 57
5.49 Test Case TC_SEC_CS_TCSScanData_0043 .. 58
5.50 Test Case TC_SEC_CS_TCSScanData_0044 .. 59
5.51 Test Case TC_SEC_CS_TCSScanData_0045 .. 60
5.52 Test Case TC_SEC_CS_TCSScanData_0046 .. 60
5.53 Test Case TC_SEC_CS_TCSScanData_0047 .. 61
5.54 Test Case TC_SEC_CS_TCSScanData_0048 .. 62
5.55 Test Case TC_SEC_CS_TCSScanData_0049 .. 63
5.56 Test Case TC_SEC_CS_TCSScanData_0050 .. 63
5.57 Test Case TC_SEC_CS_TCSScanData_0051 .. 64
5.58 Test Case TC_SEC_CS_TCSScanData_0052 .. 65
5.59 Test Case TC_SEC_CS_TCSScanDataAsync_0053 .. 66
5.60 Test Case TC_SEC_CS_TCSScanDataAsync_0054 .. 66
5.61 Test Case TC_SEC_CS_TCSScanFile_0001 .. 68
5.62 Test Case TC_SEC_CS_TCSScanFile_0002 .. 69
5.63 Test Case TC_SEC_CS_TCSScanFile_0003 .. 70
5.64 Test Case TC_SEC_CS_TCSScanFile_0004 .. 71
5.65 Test Case TC_SEC_CS_TCSScanFile_0005 .. 72
5.66 Test Case TC_SEC_CS_TCSScanFile_0006 .. 73
5.67 Test Case TC_SEC_CS_TCSScanFile_0007 .. 74
5.68 Test Case TC_SEC_CS_TCSScanFile_0008 .. 75
5.69 Test Case TC_SEC_CS_TCSScanFile_0009 .. 76
5.70 Test Case TC_SEC_CS_TCSScanFile_0010 .. 77
5.71 Test Case TC_SEC_CS_TCSScanFile_0011 .. 78
5.72 Test Case TC_SEC_CS_TCSScanFile_0012 .. 79
5.73 Test Case TC_SEC_CS_TCSScanFile_0013 .. 80
5.74 Test Case TC_SEC_CS_TCSScanFile_0014 .. 81
5.75 Test Case TC_SEC_CS_TCSScanFile_0015 .. 82
5.76 Test Case TC_SEC_CS_TCSScanFile_0016 .. 83
5.77 Test Case TC_SEC_CS_TCSScanFile_0017 .. 84
5.78 Test Case TC_SEC_CS_TCSScanFile_0018 .. 85
5.79 Test Case TC_SEC_CS_TCSScanFile_0019 .. 86
5.80 Test Case TC_SEC_CS_TCSScanFile_0020 .. 87
5.81 Test Case TC_SEC_CS_TCSScanFile_0021 .. 88
5.82 Test Case TC_SEC_CS_TCSScanFile_0022 .. 89
5.83 Test Case TC_SEC_CS_TCSScanFile_0023 .. 90
5.84 Test Case TC_SEC_CS_TCSScanFile_0024 .. 91
5.85 Test Case TC_SEC_CS_TCSScanFile_0025 .. 92
5.86 Test Case TC_SEC_CS_TCSScanFile_0026 .. 93
5.87 Test Case TC_SEC_CS_TCSScanFile_0027 .. 94
5.88 Test Case TC_SEC_CS_TCSScanFile_0028 .. 94
5.89 Test Case TC_SEC_CS_TCSScanFile_0029 .. 96
5.90 Test Case TC_SEC_CS_TCSScanFile_0030 .. 96
5.91 Test Case TC_SEC_CS_TCSScanFile_0031 .. 98
5.92 Test Case TC_SEC_CS_TCSScanFile_0032 .. 98
5.93 Test Case TC_SEC_CS_TCSScanFile_0033 .. 99
5.94 Test Case TC_SEC_CS_TCSScanFile_0034 .. 100
5.95 Test Case TC_SEC_CS_TCSScanFile_0035 .. 101
5.96 Test Case TC_SEC_CS_TCSScanFileEx_0036 ... 102
5.97 Test Case TC_SEC_CS_TCSScanFileAsync_0037 .. 103
5.98 Test Case TC_SEC_CS_TCSScanFileAsync_0038 .. 103
5.99 Test Case TC_SEC_CS_TCSGetVersion_0001 ... 104

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.100 Test Case TC_SEC_CS_TCSGetVersion_0002 ... 105
5.101 Test Case TC_SEC_CS_TCSGetVersion_0003 ... 106
5.102 Test Case TC_SEC_CS_TCSGetInfo_0001 ... 106
5.103 Test Case TC_SEC_CS_TCSGetInfo_0002 ... 107
5.104 Test Case TC_SEC_CS_TCSGetInfo_0003 ... 108

6 Test Guide ... 109

7 Test Contents .. 110

1.1 Document History

Version Date Reason

1.0.0 11/05/2012 First draft from McAfee

1.0.1 11/07/2012 Added more test cases for stub funtions

1.0.2 11/08/2012 Correct some test statement and wording

1.0.3 11/12/2012 Add library replacement test cases, add test contents and test guide.

1.0.4 01/26/2013 Add license

1.0.5 07/23/2013 Add multiple bytes test case

1.1.0 03/28/2014 Add test cases for TCSGetversion API

1.1.1 06/24/2014
Add testcases for scan cancel, async scan and TCSGetInfo API
changes

1.1.2 07/30/2014 Fix backward compatible issues for scan API

1.2 References

Ref Document Issue Title

[1]
Tizen Content
Screening API
Specification

1.0.2 Tizen Content Screening API Specification

1.3 Glossary and definitions

API Application Programming Interface

TCS Tizen Content Screening

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

2 Purpose and Scope

The overall purpose of this document is to describe the conformance test cases for the Tizen
Content Screening framework.

This document shall include:

1. Tizen Content Screening Test Configuration

2. Test Case procedures

The scope of this document is the Tizen Content Screening Foundation API functions that are
common to all Content Screening implementations. Specific functions of the Content Screening
plug-in are not tested. All TCS implementations must include and meet the test cases defined in
this document.

TCS validation plug-in

 A security plug-in for Tizen Content Screening Framework validation. Includes the
functionalities required for the validation, including scanning, and conforms to the TCS
framework API specification.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

3 Component Description

Content

Source

Content Screening subsystem

TCS

Calling

Application

User

Interface

TCS

Framework

Source of test contents.

TCS test calling application.

Test user interface which is

response for user interaction,

report generation, etc.

Tizen Content Screening

Framework to be tested.

Test resources required by TCS

plug-in e.g. configuration files,

database, etc.

TCS Framework API

TCS Plug-in API

TCS

Plug-in

TCS

Test

Resourc

es

Tizen Content Screening

Validation plug-in

Figure 1: Tiezn Content Screening Architecture

The TCS framework (here on will be referenced as “tizen content screening library”, “TCS library”)
works (interacts) with the calling application through an interface identified as one of the main
elements to be tested in this test specification.

TCS plug-in is the content screening function implementation interfacing the TCS framework via
Tizen Content screening Framework API functions.

“TCS Test Resources” is the resource data used by the TCS plug-in for test purposes (e.g.
configurations, signatures for test content, etc.).

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

For testing purposes, the TCS library can be interchanged with a test tool. Rather than using
software to analyze the content from the calling application and return the result of the scanning, a
test tool is used to return the desired result matching the input content and the test case under
execution. The test tool should also analyze the request from the calling application
implementation to check that the process and the implementation is successful in both of the
following ways:

1. The input content received from the calling application triggers the scanning process
according to the content type (the request to the engine/test tool could be different if the
content is an e-mail, a HTML document, a binary file, etc.).

2. The result of the scanning APIs must be understood by the calling application which should
take an action with the received content:

a) Do nothing if the content is correct, or

b) Request more information from the TCS library (by the test tool).

This test tool can generate a log file with the result of the performed tests for checking purposes.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

4 Test Environment Description

The test environment used is on Tizen platform.

The following requirements apply to all test cases defined in this document:

1. Any resources required by Tizen Content Screening subsystem in runtime should be
installed in the test environment.

2. Test samples required by test suite should be installed in the test environment.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5 Test Cases Specifications

5.1 Test Case TC_SEC_CS_TCSLibraryOpen_0001

TC_SEC_CS_TCSLibraryOpen_0001 TCS library interface initialization test.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the calling application can correctly initialize the TCS library handle.

Test pre-conditions:

validation plug-in

Test Procedure:

1. Call TCSLibraryOpen().

2. Verify the API return value.

Test PASS Condition:

Step 2 should return valid TCSLIB_HANDLE instead of INVALID_TCSLIB_HANDLE.

Test Clean-up procedure:

Call TCSLibraryClose() with the TCS library handle returned by TCSLibraryOpen().

5.2 Test Case TC_SEC_CS_TCSLibraryOpen_0002

TC_SEC_CS_TCSLibraryOpen_0002 TCS library interface initialization test.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

Test Objectives:

This test case verifies that the calling application can get proper error when there is no TCS plugin found in system.

Test pre-conditions:

Stub functions

Test Procedure:

1. Call TCSLibraryOpen().

2. Verify it returns INVALID_TCSLIB_HANDLE.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSLibraryOpen_0002 TCS library interface initialization test.

Test PASS Condition:

Step 2 should return valid INVALID_TCSLIB_HANDLE.

Test Clean-up procedure:

None.

5.3 Test Case TC_SEC_CS_TCSLibraryOpen_0003

TC_SEC_CS_TCSLibraryOpen_0003 TCS library replacement test.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSLibraryClose(void);

Test Objectives:

This test case verifies that the calling application can get always get the latest TCS library API call after close/open.

Test pre-conditions:

Stub functions

Test Procedure:

1. Call TCSLibraryOpen().

2. Verify it returns INVALID_TCSLIB_HANDLE.

3. Copy validation plug-in to “/opt/usr/share/sec_plugin”

4. Call TCSLibraryOpen().

5. Verify it returns valid TCS library handle.

6. Call TCSLibraryClose().

Test PASS Condition:

Step 2 should pass.

Step 5 should pass.

Test Clean-up procedure:

None.

5.4 Test Case TC_SEC_CS_TCSLibraryOpen_0004

TC_SEC_CS_TCSLibraryOpen_0004 TCS library replacement test.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSLibraryOpen_0004 TCS library replacement test.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSLibraryClose(void);

Test Objectives:

This test case verifies that the calling application can get always get the latest TCS library API call after close/open.

Test pre-conditions:

validation plug-in

Test Procedure:

1. Call TCSLibraryOpen().

2. Verify it returns valid TCS library handle.

3. Delete validation plug-in from “/opt/usr/share/sec_plugin”

4. Call TCSLibraryClose().

5. Call TCSLibraryOpen().

6. Verify it returns INVALID_TCSLIB_HANDLE.

Test PASS Condition:

Step 2 should pass.

Step 6 should pass.

Test Clean-up procedure:

None.

5.5 Test Case TC_SEC_CS_TCSGetLastError_0001

TC_SEC_CS_TCSGetLastError_0001 Stub TCS function error return.

API Function(s) covered:

int TCSGetLastError(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the calling application can get proper error code from TCS stub functions.

Test pre-conditions:

Stub functions

Test Procedure:

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSGetLastError_0001 Stub TCS function error return.

1. Call TCSGetLastError() with INVALID_TCSLIB_HANDLE.

2. Verify it returns TCS_ERROR_NOT_IMPLEMENTED.

Test PASS Condition:

Step 2 should passed.

Test Clean-up procedure:

None.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.6 Test Case TC_SEC_CS_TCSLibraryClose_0001

TC_SEC_CS_TCSLibraryClose_0001 TCS library interface finalization.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the calling application can close the TCS library handle.

Test pre-conditions:

validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Verify that the API returns valid TCSLIB_HANDLE instead of INVALID_TCSLIB_HANDLE.

3. Call TCSLibraryClose() with the TCS library handle returned by TCSLibraryOpen().

4. Verify that the return value of the TCSLibraryClose() is 0.

Test PASS Condition:

Step 2 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.7 Test Case TC_SEC_CS_TCSScanData_0001

TC_SEC_CS_TCSScanData_0001 Call TCS interface to scan benign content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case tests the scan request interface and verifies that the TCS interface returns the expected return value in the

case of benign content data.

Test pre-conditions:

 validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign data, TCS_SA_SCANONLY as the scan action ID,

TCS_DTYPE_UNKNOWN as the data type identifier and set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.8 Test Case TC_SEC_CS_TCSScanData_0002

TC_SEC_CS_TCSScanData_0002 Call TCS interface to scan benign content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case tests the scan request interface and verifies that the TCS interface returns the expected return value in the

case of benign content data.

Test pre-conditions:

 For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign, TCS_SA_SCANONLY as the scan action ID,

TCS_DTYPE_UNKNOWN as the data type identifier and pfCallback is not NULL.

3. Verify that the pfCallback is not called.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.9 Test Case TC_SEC_CS_TCSScanData_0003

TC_SEC_CS_TCSScanData_0003 Call TCS interface to scan infected content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan infected

content data

Test pre-conditions:

 For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected data, TCS_SA_SCANONLY as the scan action ID,

TCS_DTYPE_UNKNOWN as the data type identifier and set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.10 Test Case TC_SEC_CS_TCSScanData_0004

TC_SEC_CS_TCSScanData_0004 Call TCS interface to scan infected content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan infected

content data

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected data, TCS_SA_SCANONLY as the scan action ID,

TCS_DTYPE_UNKNOWN as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called and that the malware name or variant name is as expected and the

severity/behaviour is as expected.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.11 Test Case TC_SEC_CS_TCSScanData_0005

TC_SEC_CS_TCSScanData_0005 Call TCS interface to scan benign HTML formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the TCS interface returns the expected return value when it is called to scan benign HTML

formatted content data

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign HTML formatted data, TCS_SA_SCANONLY as the

scan action ID, and TCS_DTYPE_HTML as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.12 Test Case TC_SEC_CS_TCSScanData_0006

TC_SEC_CS_TCSScanData_0006 Call TCS interface to scan benign HTML formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the TCS interface returns the expected return value when it is called to scan benign HTML

formatted content data

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign HTML formatted data, TCS_SA_SCANONLY as the

scan action ID, TCS_DTYPE_HTML as the data type identifier and pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.13 Test Case TC_SEC_CS_TCSScanData_0007

TC_SEC_CS_TCSScanData_0007 Call TCS interface to scan infected HTML

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan infected HTML

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected HTML formatted data, TCS_SA_SCANONLY as the

scan action ID, TCS_DTYPE_HTML as the data type identifier and set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.14 Test Case TC_SEC_CS_TCSScanData_0008

TC_SEC_CS_TCSScanData_0008 Call TCS interface to scan infected HTML formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan infected HTML

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected HTML formatted data, TCS_SA_SCANONLY as the

scan action ID, TCS_DTYPE_HTML as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the severity/behaviour

is as expected.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as expected

and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.15 Test Case TC_SEC_CS_TCSScanData_0009

TC_SEC_CS_TCSScanData_0009 Call TCS interface to scan benign URL formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned from the interface when it is called to scan benign URL

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign URL formatted data, TCS_SA_SCANONLY as the

scan action ID, and TCS_DTYPE_URL as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.16 Test Case TC_SEC_CS_TCSScanData_0010

TC_SEC_CS_TCSScanData_0010 Call TCS interface to scan benign URL formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned from the interface when it is called to scan benign URL

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign URL formatted data, TCS_SA_SCANONLY as the

scan action ID, TCS_DTYPE_URL as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.17 Test Case TC_SEC_CS_TCSScanData_0011

TC_SEC_CS_TCSScanData_0011 Call TCS interface to scan infected URL formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected URL

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected URL formatted data, TCS_SA_SCANONLY as the

scan action ID, and TCS_DTYPE_URL as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.18 Test Case TC_SEC_CS_TCSScanData_0012

TC_SEC_CS_TCSScanData_0012 Call TCS interface to scan infected URL formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected URL

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected URL formatted data, TCS_SA_SCANONLY as the

scan action ID, TCS_DTYPE_URL as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the

severity/behaviour is as expected.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.19 Test Case TC_SEC_CS_TCSScanData_0013

TC_SEC_CS_TCSScanData_0013 Call TCS interface to scan benign Email

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign Email

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign Email formatted data, TCS_SA_SCANONLY as the

scan action ID, and TCS_DTYPE_EMAIL as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.20 Test Case TC_SEC_CS_TCSScanData_0014

TC_SEC_CS_TCSScanData_0014 Call TCS interface to scan benign Email

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign Email

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign Email formatted data, TCS_SA_SCANONLY as the

scan action ID, TCS_DTYPE_EMAIL as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.21 Test Case TC_SEC_CS_TCSScanData_0015

TC_SEC_CS_TCSScanData_0015 Call TCS interface to scan infected Email

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected Email

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected Email formatted data, TCS_SA_SCANONLY as the

scan action ID, and TCS_DTYPE_EMAIL as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.22 Test Case TC_SEC_CS_TCSScanData_0016

TC_SEC_CS_TCSScanData_0016 Call TCS interface to scan infected Email

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected Email

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected Email formatted data, TCS_SA_SCANONLY as the

scan action ID, TCS_DTYPE_EMAIL as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the

severity/behaviour is as expected.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.23 Test Case TC_SEC_CS_TCSScanData_0017

TC_SEC_CS_TCSScanData_0017 Call TCS interface to scan benign phone number

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign phone

number formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign phone number formatted data, TCS_SA_SCANONLY

as the scan action ID, and TCS_DTYPE_PHONE as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.24 Test Case TC_SEC_CS_TCSScanData_0018

TC_SEC_CS_TCSScanData_0018 Call TCS interface to scan benign phone number

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign phone

number formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign phone number formatted data, TCS_SA_SCANONLY

as the scan action ID, TCS_DTYPE_PHONE as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.25 Test Case TC_SEC_CS_TCSScanData_0019

TC_SEC_CS_TCSScanData_0019 Call TCS interface to scan infected phone

number formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected phone number

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected phone number formatted data, TCS_SA_SCANONLY

as the scan action ID, and TCS_DTYPE_PHONE as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.26 Test Case TC_SEC_CS_TCSScanData_0020

TC_SEC_CS_TCSScanData_0020 Call TCS interface to scan infected phone

number formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected phone number

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected phone number formatted data, TCS_SA_SCANONLY

as the scan action ID, TCS_DTYPE_PHONE as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the

severity/behaviour is as expected.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.27 Test Case TC_SEC_CS_TCSScanData_0021

TC_SEC_CS_TCSScanData_0021 Call TCS interface to scan benign Java code

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign Java code

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign Java code formatted data, TCS_SA_SCANONLY as

the scan action ID, and TCS_DTYPE_JAVA as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.28 Test Case TC_SEC_CS_TCSScanData_0022

TC_SEC_CS_TCSScanData_0022 Call TCS interface to scan benign Java code

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign Java code

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign Java code formatted data, TCS_SA_SCANONLY as

the scan action ID, TCS_DTYPE_JAVA as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.29 Test Case TC_SEC_CS_TCSScanData_0023

TC_SEC_CS_TCSScanData_0023 Call TCS interface to scan infected Java code

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected Java code

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected Java code formatted data, TCS_SA_SCANONLY as

the scan action ID, and TCS_DTYPE_JAVA as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.30 Test Case TC_SEC_CS_TCSScanData_0024

TC_SEC_CS_TCSScanData_0024 Call TCS interface to scan infected Java code

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected Java code

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected Java code formatted data, TCS_SA_SCANONLY as

the scan action ID, TCS_DTYPE_JAVA as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the

severity/behaviour is as expected.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.31 Test Case TC_SEC_CS_TCSScanData_0025

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0025 Call TCS interface to scan benign JavaScript

code formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign JavaScript

code formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign JavaScript code formatted data,

TCS_SA_SCANONLY as the scan action ID, and TCS_DTYPE_JAVAS as the data type identifier. Set

pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.32 Test Case TC_SEC_CS_TCSScanData_0026

TC_SEC_CS_TCSScanData_0026 Call TCS interface to scan benign JavaScript

code formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign JavaScript

code formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign Java code formatted data, TCS_SA_SCANONLY as

the scan action ID, TCS_DTYPE_JAVAS as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.33 Test Case TC_SEC_CS_TCSScanData_0027

TC_SEC_CS_TCSScanData_0027 Call TCS interface to scan infected JavaScript

code formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected JavaScript code

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected JavaScript code formatted data,

TCS_SA_SCANONLY as the scan action ID, and TCS_DTYPE_JAVAS as the data type identifier. Set

pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.34 Test Case TC_SEC_CS_TCSScanData_0028

TC_SEC_CS_TCSScanData_0028 Call TCS interface to scan infected JavaScript

code formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected JavaScript code

formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected JavaScript code formatted data,

TCS_SA_SCANONLY as the scan action ID, TCS_DTYPE_JAVAS as the data type identifier and where

pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the

severity/behaviour is as expected.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.35 Test Case TC_SEC_CS_TCSScanData_0029

TC_SEC_CS_TCSScanData_0029 Call TCS interface to scan benign text content

data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when interface is called to scan benign text content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign text data, TCS_SA_SCANONLY as the scan action ID,

and TCS_DTYPE_TEXT as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.36 Test Case TC_SEC_CS_TCSScanData_0030

TC_SEC_CS_TCSScanData_0030 Call TCS interface to scan benign text content

data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when interface is called to scan benign text content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with benign text data, TCS_SA_SCANONLY as the scan action ID,

TCS_DTYPE_TEXT as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.37 Test Case TC_SEC_CS_TCSScanData_0031

TC_SEC_CS_TCSScanData_0031 Call TCS interface to scan infected text content

data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected text content

data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected text data, TCS_SA_SCANONLY as the scan action

ID, and TCS_DTYPE_TEXT as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.38 Test Case TC_SEC_CS_TCSScanData_0032

TC_SEC_CS_TCSScanData_0032 Call TCS interface to scan infected text content

data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected text content

data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected text data, TCS_SA_SCANONLY as the scan action

ID, TCS_DTYPE_TEXT as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called. The malware name or variant name is as expected and the

severity/behaviour is as expected.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.39 Test Case TC_SEC_CS_TCSScanData_0033

TC_SEC_CS_TCSScanData_0033 Call TCS interface to scan content data infected

by multiple malware.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan content data infected

by multiple malware.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with data infected by multiple malwares, TCS_SA_SCANONLY as

the scan action ID, and TCS_DTYPE_UNKNOWN as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.40 Test Case TC_SEC_CS_TCSScanData_0034

TC_SEC_CS_TCSScanData_0034 Call TCS interface to scan content data infected

by multiple malware.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan content data infected

by multiple malware.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with data infected by multiple malwares, TCS_SA_SCANONLY as

the scan action ID, TCS_DTYPE_UNKNOWN as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the

severity/behaviour is as expected.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.41 Test Case TC_SEC_CS_TCSScanData_0035

TC_SEC_CS_TCSScanData_0035 Call TCS interface to repair infected content

data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies the expected return value is returned when TCS interface is called to repair infected content data

Test pre-conditions:

For validation plug-in only.

 Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected data, TCS_SA_SCANREPAIR as the scan action ID

and TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the content data is repaired by comparing with prepared clean data.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.42 Test Case TC_SEC_CS_TCSScanData_0036

TC_SEC_CS_TCSScanData_0036 Call TCS interface to repair infected HTML

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to repair infected HTML

formatted content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected HTML formatted data, TCS_SA_SCANREPAIR as the

scan action ID and TCS_DTYPE_HTML as the data type identifier.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the content data is repaired by comparing with prepared clean data.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.43 Test Case TC_SEC_CS_TCSScanData_0037

TC_SEC_CS_TCSScanData_0037 Call TCS interface to repair infected URL formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair infected URL

formatted content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected URL formatted data, TCS_SA_SCANREPAIR as the

scan action ID and TCS_DTYPE_URL as the data type identifier.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the content data is repaired by comparing with prepared clean data.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.44 Test Case TC_SEC_CS_TCSScanData_0038

TC_SEC_CS_TCSScanData_0038 Call TCS interface to repair infected Email

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair infected Email

formatted content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected Email formatted data, TCS_SA_SCANREPAIR as

the scan action ID and TCS_DTYPE_EMAIL as the data type identifier.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the content data is repaired by comparing with prepared clean data.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.45 Test Case TC_SEC_CS_TCSScanData_0039

TC_SEC_CS_TCSScanData_0039 Call TCS interface to repair infected phone

number formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to repair infected phone number

formatted content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected phone number formatted data,

TCS_SA_SCANREPAIR as the scan action ID and TCS_DTYPE_PHONE as the data type identifier.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the content data is repaired by comparing with prepared clean data.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.46 Test Case TC_SEC_CS_TCSScanData_0040

TC_SEC_CS_TCSScanData_0040 Call TCS interface to repair infected Java code

formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to repair infected Java code

formatted content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected Java code formatted data, TCS_SA_SCANREPAIR

as the scan action ID and TCS_DTYPE_JAVA as the data type identifier.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the content data is repaired by comparing with prepared clean data.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.47 Test Case TC_SEC_CS_TCSScanData_0041

TC_SEC_CS_TCSScanData_0041 Call TCS interface to repair infected text content

data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair infected text

content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected text data, TCS_SA_SCANREPAIR as the scan

action ID and TCS_DTYPE_TEXT as the data type identifier.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the content data is repaired by comparing with prepared clean data.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.48 Test Case TC_SEC_CS_TCSScanData_0042

TC_SEC_CS_TCSScanData_0042 Call TCS interface to repair content data

infected by multiple malware.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair content data

infected by multiple malware.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with test multiple malware data, TCS_SA_SCANREPAIR as the

scan action ID and TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the content data is repaired by comparing with prepared clean data.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.49 Test Case TC_SEC_CS_TCSScanData_0043

TC_SEC_CS_TCSScanData_0043 Return -1 in pfCallback.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when pfCallback returns -1 to the TCS library.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with test malware data, TCS_SA_SCANONLY as the scan action

ID, TCS_DTYPE_UNKNOWN as the data type identifier and where pfCallback is not NULL.

3. Return -1 in pfCallback when the detection notify occurrs.

4. Verify that the return value of TCSScanData() is -1.

5. Call TCSGetLastError().

6. Verify that the error code returned from TCSGetLastError() is TCS_ERROR_CANCELLED.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 4 should pass verification.

Step 6 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.50 Test Case TC_SEC_CS_TCSScanData_0044

TC_SEC_CS_TCSScanData_0044 Call TCS interface to repair infected content

data when repair functionality is not

implemented in TCS library.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when calling the TCS interface to repair infected content

data where the repair functionality is not implemented in the TCS library.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required to be not implemented in validation plug-in for this test case.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled with infected data, TCS_SA_SCANREPAIR as the scan action ID,

TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanData() is -1.

4. Call TCSGetLastError() to get error code.

5. Verify that the error code returned by TCSGetLastError() is TCS_ERROR_NOT_IMPLEMENTED.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.51 Test Case TC_SEC_CS_TCSScanData_0045

TC_SEC_CS_TCSScanData_0045 Call TCS data scan interface with invalid library

instance handle.

API Function(s) covered:

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

Test Objectives:

This test case verifies that -1 is returned when an invalid scanner instance handle is passed to data scan interface.

Test pre-conditions:

 For validation plug-in only.

Test Procedure:

1. Call TCSScanData() with an invalid library instance handle INVALID_TCSLIB_HANDLE.

2. Verify that the return value of TCSScanData() is -1.

Test PASS Condition:

Step 2 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.52 Test Case TC_SEC_CS_TCSScanData_0046

TC_SEC_CS_TCSScanData_0046 Concurrency TCS data scan test.

API Function(s) covered:

int TCSScanData(TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

 TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData() can be correctly handled by multiple scanner instance handles in multiple

threads.

Test pre-conditions:

 For validation plug-in only.

Test Procedure:

1. Create multiple threads to execute from 2 to 10.

2. Call TCSLibraryOpen().

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0046 Concurrency TCS data scan test.

3. Call TCSScanData() with an infected buffer with test malware data, TCS_SA_SCANONLY as the scan

action ID, TCS_DTYPE_UNKNOWN as the data type identifier.

4. Verify that the return value of TCSScanData() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

8. Repeat 2 ~ 9 with different parameter for TCSScanData(), other test samples: (html, url, email, phone

number, Java code, text) and respective data type identifier.

Test PASS Condition:

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.53 Test Case TC_SEC_CS_TCSScanData_0047

TC_SEC_CS_TCSScanData_0047 Concurrency TCS data clean test.

API Function(s) covered:

int TCSScanData(TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

 TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData() can be correctly handled by multiple scanner instance handles in multiple

threads.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Create multiple threads to execute from 2 to 10.

2. Call TCSLibraryOpen().

3. Call TCSScanData() with an infected buffer with test malware data, TCS_SA_SCANREPAIR as the scan

action ID, TCS_DTYPE_UNKNOWN as the data type identifier.

4. Verify that the return value of TCSScanData() is 0.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0047 Concurrency TCS data clean test.

5. Verify that the infected data is repaired by comparing with the respective clean buffer data if the input data is

supposed to be infected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

8. Repeat 2 ~ 9 with different parameter for TCSScanData(), other test samples: (html, url, email, phone

number, java code, text) and respective data type identifier.

Test PASS Condition:

 Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.54 Test Case TC_SEC_CS_TCSScanData_0048

TC_SEC_CS_TCSScanData_0048 Compress flag TCS data clean test.

API Function(s) covered:

int TCSScanData(TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

 TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData() can correctly scan clean data with compress flag enabled.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled by clean data, TCS_SA_SCANONLY as the scan action ID,

TCS_DTYPE_UNKNOWN as the data type identifier, set compress flag to 1.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the no malware found.

5. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

 Step 3 should pass verification.

Step 4 should pass verification.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0048 Compress flag TCS data clean test.

Test Clean-up procedure:

No specific cleanup required.

5.55 Test Case TC_SEC_CS_TCSScanData_0049

TC_SEC_CS_TCSScanData_0049 Compress flag TCS data clean test.

API Function(s) covered:

int TCSScanData(TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

 TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData() can correctly scan clean data with compress flag disabled.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled by clean data, TCS_SA_SCANONLY as the scan action ID,

TCS_DTYPE_UNKNOWN as the data type identifier, set compress flag to 0.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the no malware found.

5. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.56 Test Case TC_SEC_CS_TCSScanData_0050

TC_SEC_CS_TCSScanData_0050 Compress flag TCS data test.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0050 Compress flag TCS data test.

API Function(s) covered:

int TCSScanData(TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

 TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData() can correctly detect malware with compress flag enabled.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled by test malware, TCS_SA_SCANONLY as the scan action ID,

TCS_DTYPE_UNKNOWN as the data type identifier, set compress flag to 1.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that the infected data is repaired by comparing with the respective clean buffer data if the input data is

supposed to be infected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.57 Test Case TC_SEC_CS_TCSScanData_0051

TC_SEC_CS_TCSScanData_0051 Compress flag TCS data test.

API Function(s) covered:

int TCSScanData(TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

 TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData() cannot correctly detect malware without compress flag enabled.

Test pre-conditions:

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0051 Compress flag TCS data test.

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanData() with a buffer filled by test malware, TCS_SA_SCANONLY as the scan action ID,

TCS_DTYPE_UNKNOWN as the data type identifier, set compress flag to 0.

3. Verify that the return value of TCSScanData() is 0.

4. Verify that no malware found.

5. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.58 Test Case TC_SEC_CS_TCSScanData_0052

TC_SEC_CSSTUB_TCSScanData_0052 Stub TCS function error return.

API Function(s) covered:

int TCSScanData(TCSLIB_HANDLE hLib, TCSScanParam *pParam,

 TCSScanResult *pResult);

Test Objectives:

This test case verifies that the calling application can get proper error code from TCS stub functions.

Test pre-conditions:

Stub functions

Test Procedure:

1. Call TCSScanData() with INVALID_TCSLIB_HANDLE.

2. Verify it returns -1.

Test PASS Condition:

Step 2 should passed.

Test Clean-up procedure:

None.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.59 Test Case TC_SEC_CS_TCSScanDataAsync_0053

TC_SEC_CS_TCSScanDataAsync_0053 Concurrency Async TCS data scan test.

API Function(s) covered:

int TCSScanDataAsync(TCSSCAN_HANDLE hScan, TCSScanParam *pParam);

Test Objectives:

This test case verifies that TCSScanDataAsync() can be correctly handled by multiple scanner instance handles in

multiple threads.

Test pre-conditions:

 For validation plug-in only.

Test Procedure:

1. Create multiple threads to execute below steps from 3 to 6.

2. Call TCSLibraryOpen().

3. Call TCSScanDataAsync() with an infected buffer with test malware data, TCS_SA_SCANONLY as the

scan action ID, TCS_DTYPE_UNKNOWN as the data type identifier.

4. Verify that the return value of TCSScanDataAsync() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.60 Test Case TC_SEC_CS_TCSScanDataAsync_0054

TC_SEC_CS_TCSScanDataAsync_54 Return -1 in pfCallback.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanDataAsync(TCSLIB_HANDLE hLib, TCSScanParam *pParam);

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanDataAsync_54 Return -1 in pfCallback.

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when pfCallback returns -1 to the TCS library.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Create multiple threads to execute below steps from 3 to 7.

2. Call TCSLibraryOpen().

3. Call TCSScanDataAsync() with a buffer filled with test malware data, TCS_SA_SCANONLY as the scan

action ID, TCS_DTYPE_UNKNOWN as the data type identifier and where pfCallback is not NULL.

4. Return -1 in pfCallback when the detection notify occurrs.

5. Verify that the return value of TCSScanDataAsync() is 0.

6. Verify the callback pParam is set to NULL.

7. Call TCSGetLastError().

8. Verify that the error code returned from TCSGetLastError() is TCS_ERROR_CANCELLED.

9. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 5, 6 and 8 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.61 Test Case TC_SEC_CS_TCSScanFile_0001

TC_SEC_CS_TCSScanFile_0001 Call TCS interface to scan a benign file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case tests the scan request interface and verifies that the TCS interface returns the expected return value in the

case of a benign file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.62 Test Case TC_SEC_CS_TCSScanFile_0002

TC_SEC_CS_TCSScanFile_0002 Call TCS interface to scan an infected file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan an infected file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected file, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.63 Test Case TC_SEC_CS_TCSScanFile_0003

TC_SEC_CS_TCSScanFile_0003 Call TCS interface to scan a benign HTML file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the TCS interface returns the expected return value when it is called to scan a benign HTML

file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign HTML file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_HTML as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.64 Test Case TC_SEC_CS_TCSScanFile_0004

TC_SEC_CS_TCSScanData_0004 Call TCS interface to scan an infected HTML file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan an infected

HTML file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected HTML file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_HTML as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as expected

and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.65 Test Case TC_SEC_CS_TCSScanFile_0005

TC_SEC_CS_TCSScanFile_0005 Call TCS interface to scan a benign URL within a

file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned from the interface when it is called to scan a benign URL

within a file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign URL file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_URL as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.66 Test Case TC_SEC_CS_TCSScanFile_0006

TC_SEC_CS_TCSScanFile_0006 Call TCS interface to scan an infected URL within a

file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan an infected URL

within a file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected URL file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_URL as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.67 Test Case TC_SEC_CS_TCSScanFile_0007

TC_SEC_CS_TCSScanFile_0007 Call TCS interface to scan a benign Email file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign Email file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign Email file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_EMAIL as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.68 Test Case TC_SEC_CS_TCSScanFile_0008

TC_SEC_CS_TCSScanFile_0008 Call TCS interface to scan an infected Email file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan an infected Email

file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected Email file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_EMAIL as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.69 Test Case TC_SEC_CS_TCSScanFile_0009

TC_SEC_CS_TCSScanFile_0009 Call TCS interface to scan a benign phone

number within a file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign phone

number within a file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign phone number file path, TCS_SA_SCANONLY as the scan action ID

and TCS_DTYPE_PHONE as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.70 Test Case TC_SEC_CS_TCSScanFile_0010

TC_SEC_CS_TCSScanFile_0010 Call TCS interface to scan an infected phone

number within a file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan an infected phone number

within a file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected phone number file path, TCS_SA_SCANONLY as the scan action ID

and TCS_DTYPE_PHONE as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.71 Test Case TC_SEC_CS_TCSScanFile_0011

TC_SEC_CS_TCSScanFile_0011 Call TCS interface to scan a benign Java file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign Java file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign Java file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_JAVA as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.72 Test Case TC_SEC_CS_TCSScanFile_0012

TC_SEC_CS_TCSScanFile_0012 Call TCS interface to scan an infected Java file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan an infected Java file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected Java file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_JAVA as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.73 Test Case TC_SEC_CS_TCSScanFile_0013

TC_SEC_CS_TCSScanFile_0013 Call TCS interface to scan a benign text file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when interface is called to scan a benign text file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign text file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_TEXT as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.74 Test Case TC_SEC_CS_TCSScanFile_0014

TC_SEC_CS_TCSScanFile_0014 Call TCS interface to scan an infected text file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan an infected text file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected text file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_TEXT as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.75 Test Case TC_SEC_CS_TCSScanFile_0015

TC_SEC_CS_TCSScanFile_0015 Call TCS interface to scan a file infected by

multiple malware.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a file infected by

multiple malware.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a file path of a file infected by multiple malware, TCS_SA_SCANONLY as the

scan action ID and TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.76 Test Case TC_SEC_CS_TCSScanFile_0016

TC_SEC_CS_TCSScanFile_0016 Call TCS interface to repair an infected file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to repair an infected

file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected file path, TCS_SA_SCANREPAIR as the scan action ID and

TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the content file is repaired by comparing with prepared clean file.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.77 Test Case TC_SEC_CS_TCSScanFile_0017

TC_SEC_CS_TCSScanFile_0017 Call TCS interface to repair an infected HTML file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to repair an infected

HTML file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected HTML file path, TCS_SA_SCANREPAIR as the scan action ID and

TCS_DTYPE_HTML as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the content file is repaired by comparing with prepared clean file.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.78 Test Case TC_SEC_CS_TCSScanFile_0018

TC_SEC_CS_TCSScanFile_0018 Call TCS interface to repair an infected URL within

a file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair an infected URL

within a file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected URL file path, TCS_SA_SCANREPAIR as the scan action ID and

TCS_DTYPE_URL as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the content file is repaired by comparing with prepared clean file.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.79 Test Case TC_SEC_CS_TCSScanFile_0019

TC_SEC_CS_TCSScanFile_0019 Call TCS interface to repair an infected Email file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair an infected Email

file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected Email file path, TCS_SA_SCANREPAIR as the scan action ID and

TCS_DTYPE_EMAIL as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the content file is repaired by comparing with prepared clean file.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.80 Test Case TC_SEC_CS_TCSScanFile_0020

TC_SEC_CS_TCSScanFile_0020 Call TCS interface to repair an infected phone

number within a file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to repair an infected phone number

within a file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected phone number file path, TCS_SA_SCANREPAIR as the scan action

ID and TCS_DTYPE_PHONE as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the content file is repaired by comparing with prepared clean file.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.81 Test Case TC_SEC_CS_TCSScanFile_0021

TC_SEC_CS_TCSScanFile_0021 Call TCS interface to repair an infected Java file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to repair an infected Java file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected Java file path, TCS_SA_SCANREPAIR as the scan action ID and

TCS_DTYPE_JAVA as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the content file is repaired by comparing with prepared clean file.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.82 Test Case TC_SEC_CS_TCSScanFile_0022

TC_SEC_CS_TCSScanFile_0022 Call TCS interface to repair an infected text file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair an infected text

file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected text file path, TCS_SA_SCANREPAIR as the scan action ID and

TCS_DTYPE_TEXT as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the content file is repaired by comparing with prepared clean file.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.83 Test Case TC_SEC_CS_TCSScanFile_0023

TC_SEC_CS_TCSScanFile_0023 Call TCS interface to repair a file infected by

multiple malware.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair a file infected by

multiple malware.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected file path of the file infected by multiple malware,

TCS_SA_SCANREPAIR as the scan action ID and TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the content file is repaired by comparing with prepared clean file.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.84 Test Case TC_SEC_CS_TCSScanFile_0024

TC_SEC_CS_TCSScanFile_0024 Call TCS interface to repair an infected file

where the repair functionality is not

implemented in the TCS library.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when calling the TCS interface to repair an infected file

where the repair functionality is not implemented in the TCS library.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required to be not implemented in validation plug-in for this test case.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected file path and TCS_DTYPE_TEXT as the data type identifier, and

TCS_SA_SCANREPAIR as the scan action ID.

3. Verify that the return value of TCSScanFile() is -1.

4. Call TCSGetLastError() to get error code.

5. Verify that the error code returned by TCSGetLastError() is TCS_ERROR_NOT_IMPLEMENTED.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.85 Test Case TC_SEC_CS_TCSScanFile_0025

TC_SEC_CS_TCSScanFile_0025 Call TCS file scan interface with an invalid

library instance handle.

API Function(s) covered:

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

Test Objectives:

This test case verifies that -1 is returned when an invalid scanner instance handle is passed to the TCS file scan

interface.

Test pre-conditions:

 For validation plug-in only.

Test Procedure:

1. Call TCSScanFile() with an invalid TCS scanner instance handle INVALID_TCSLIB_HANDLE.

2. Verify that the return value of TCSScanFile() is -1.

Test PASS Condition:

Step 2 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.86 Test Case TC_SEC_CS_TCSScanFile_0026

TC_SEC_CS_TCSScanFile_0026 Concurrency TCS file scan test.

API Function(s) covered:

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

Test Objectives:

 This test case verifies that TCSScanFile() can be correctly handled by multiple scanner instance handles in

multiple threads.

Test pre-conditions:

 For validation plug-in only.

Test Procedure:

1. Create multiple threads to execute from 2 to 10.

2. Call TCSLibraryOpen().

3. Call TCSScanFile() with an infected file, TCS_SA_SCANONLY as the scan action ID,

TCS_DTYPE_UNKNOWN as the data type identifier.

4. Verify that the return value of TCSScanFile() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

8. Repeat 2 ~ 9 with different parameter for TCSScanFile(), other test samples: (html, url, email, phone

number, Java code, text) and respective data type identifier.

Test PASS Condition:

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.87 Test Case TC_SEC_CS_TCSScanFile_0027

TC_SEC_CS_TCSScanFile_0027 Concurrency TCS file clean test.

API Function(s) covered:

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

Test Objectives:

 This test case verifies that TCSScanFile() can be correctly handled by multiple scanner instance handles in

multiple threads.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Create multiple threads to execute from 2 to 10.

2. Call TCSLibraryOpen().

3. Call TCSScanFile() with an infected file, TCS_SA_SCANREPAIR as the scan action ID,

TCS_DTYPE_UNKNOWN as the data type identifier.

4. Verify that the return value of TCSScanFile() is 0.

5. Verify that the file is repaired by comparing with the respective clean file if the input file is supposed to be

infected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

8. Repeat 2 ~ 9 with different parameter for TCSScanFile(), other test samples: (html, url, email, phone

number, java code, text) and respective data type identifier.

Test PASS Condition:

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.88 Test Case TC_SEC_CS_TCSScanFile_0028

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFile_0028 Call TCS interface to scan a benign JavaScript

file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign JavaScript

file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign Java file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_JAVAS as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.89 Test Case TC_SEC_CS_TCSScanFile_0029

TC_SEC_CS_TCSScanFile_0029 Call TCS interface to scan an infected JavaScript

file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan an infected JavaScript file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected Java file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_JAVAS as the data type identifier.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.90 Test Case TC_SEC_CS_TCSScanFile_0030

TC_SEC_CS_TCSScanFile_0030 Call TCS interface to scan a benign file with

compress flag.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFile_0030 Call TCS interface to scan a benign file with

compress flag.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign Java file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_UNKOWN as the data type identifier, and compress flag to 1.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.91 Test Case TC_SEC_CS_TCSScanFile_0031

TC_SEC_CS_TCSScanFile_0031 Call TCS interface to scan an infected file with

compress flag.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan an infected file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with an infected Java file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_UNKNOWN as the data type identifier, and compress flag to 1.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.92 Test Case TC_SEC_CS_TCSScanFile_0032

TC_SEC_CS_TCSScanFile_0032 Call TCS interface to scan a benign file with

compress flag.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFile_0032 Call TCS interface to scan a benign file with

compress flag.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign Java file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_UNKOWN as the data type identifier, and compress flag to 0.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.93 Test Case TC_SEC_CS_TCSScanFile_0033

TC_SEC_CS_TCSScanFile_0033 Call TCS interface to scan an infected file with

compress flag.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFile_0033 Call TCS interface to scan an infected file with

compress flag.

 TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a infected file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign Java file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_UNKOWN as the data type identifier, and compress flag to 0.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.94 Test Case TC_SEC_CS_TCSScanFile_0034

TC_SEC_CS_TCSScanFile_0034 Stub TCS function error return.

API Function(s) covered:

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

Test Objectives:

This test case verifies that the calling application can get proper error code from TCS stub functions.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFile_0034 Stub TCS function error return.

Test pre-conditions:

Stub functions

Test Procedure:

1. Call TCSScanFile() with INVALID_TCSLIB_HANDLE.

2. Verify it returns -1.

Test PASS Condition:

Step 2 should passed.

Test Clean-up procedure:

None.

5.95 Test Case TC_SEC_CS_TCSScanFile_0035

TC_SEC_CS_TCSScanFile_0035 Scan multiple bytes infected file.

API Function(s) covered:

int TCSScanFile(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 TCSScanResult *pResult);

Test Objectives:

This test case verifies that the calling application can get proper result from TCS plugin when infected file is encoded

by multiple bytes encoding.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSScanFile() with a benign Java file path, TCS_SA_SCANONLY as the scan action ID and

TCS_DTYPE_UNKOWN as the data type identifier, and compress flag to 0.

3. Verify that the return value of TCSScanFile() is 0.

4. Verify that the number of the detected malware is 1.

5. Call pfFreeResult() to release the resource returned by TCS library.

6. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 3 should passed.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFile_0035 Scan multiple bytes infected file.

Step 4 should passed.

Test Clean-up procedure:

None.

5.96 Test Case TC_SEC_CS_TCSScanFileEx_0036

TC_SEC_CS_TCSScanFileEx_00533

6

Return -1 in pfCallback.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFileEx(TCSLIB_HANDLE hLib, char const *pszFileName, int iDataType,

 int iAction, int iCompressFlag, void *pPrivate, TCSCbFunc

 pfCallBack, TCSScanResult *pResult);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when pfCallback returns -1 to the TCS library.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

8. Call TCSLibraryOpen().

9. Call TCSScanFileEx() with a buffer filled with test malware data, TCS_SA_SCANONLY as the scan

action ID, TCS_DTYPE_UNKNOWN as the data type identifier and where pfCallback is not NULL.

10. Return -1 in pfCallback when the detection notify occurrs.

11. Verify that the return value of TCSScanFileEx() is -1.

12. Call TCSGetLastError().

13. Verify that the error code returned from TCSGetLastError() is TCS_ERROR_CANCELLED.

14. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 4 should pass verification.

Step 6 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

5.97 Test Case TC_SEC_CS_TCSScanFileAsync_0037

TC_SEC_CS_TCSScanFileAsync_0037 Concurrency Async TCS file scan test.

API Function(s) covered:

int TCSScanFileAsync(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 void *pPrivate, TCSCbFunc pfCallBack);

Test Objectives:

This test case verifies that TCSScanFileAsync() can be correctly handled by multiple scanner instance handles in

multiple threads.

Test pre-conditions:

 For validation plug-in only.

Test Procedure:

1. Create multiple threads to execute below steps from 3 to 6.

2. Call TCSLibraryOpen().

3. Call TCSScanFileAsync() with an infected buffer with test malware data, TCS_SA_SCANONLY as the

scan action ID, TCS_DTYPE_UNKNOWN as the data type identifier.

4. Verify that the return value of TCSScanFileAsync() is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as

expected and the severity/behaviour is as expected.

6. Call pfFreeResult() to release the resource returned by TCS library.

7. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.98 Test Case TC_SEC_CS_TCSScanFileAsync_0038

TC_SEC_CS_TCSScanFileAsync_38 Return -1 in pfCallback.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFileAsync_38 Return -1 in pfCallback.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFileAsync(TCSLIB_HANDLE hLib, char const *pszFileName,

 int iDataType, int iAction, int iCompressFlag,

 void *pPrivate, TCSCbFunc pfCallBack);

int TCSLibraryClose(TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when pfCallback returns -1 to the TCS library.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Create multiple threads to execute below steps from 3 to 8.

2. Call TCSLibraryOpen().

3. Call TCSScanFileAsync() with a buffer filled with test malware data, TCS_SA_SCANONLY as the scan

action ID, TCS_DTYPE_UNKNOWN as the data type identifier and where pfCallback is not NULL.

4. Return -1 in pfCallback when the detection notify occurs.

5. Verify that the return value of TCSScanFileAsync() is 0.

6. Verify the callback pParam is set to NULL.

7. Call TCSGetLastError().

8. Verify that the error code returned from TCSGetLastError() is TCS_ERROR_CANCELLED.

9. Call TCSLibraryClose() with the TCS library handle returned by the TCSLibraryOpen().

Test PASS Condition:

Step 5, 6 and 8 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.99 Test Case TC_SEC_CS_TCSGetVersion_0001

TC_SEC_CS_TCSGetVersion_0001 Get framework and plugin version info.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSGetVersion(TCSLIB_HANDLE hLib, TCSVerInfo *pVerInfo);

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSGetVersion_0001 Get framework and plugin version info.

Test Objectives:

This test case verifies that the calling application can get version information from the library.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSGetVersion()with a valid handle and TCSVerInfo pointer variable.

3. Verify that the return value of TCSGetVersion() is 0.

4. Verify string length of plugin version is greater than zero.

5. Verify string length of framework version is greater than zero.

6. Verify the framework version matches in format and value with TCS_FRAMEWORK_VERSION.

Test PASS Condition:

Step 3 should pass.

Step 4 should pass.

Step 5 should pass.

Step 6 should pass.

Test Clean-up procedure:

None.

5.100 Test Case TC_SEC_CS_TCSGetVersion_0002

TC_SEC_CS_TCSGetVersion_0002 Get framework and plugin version info.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSGetVersion(TCSLIB_HANDLE hLib, TCSVerInfo *pVerInfo);

Test Objectives:

This test case verifies that the calling application can get error from library.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSGetVersion()with a invalid handle and TCSVerInfo pointer variable.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSGetVersion_0002 Get framework and plugin version info.

2. Verify that the return value of TCSGetVersion() is -1.

Test PASS Condition:

Step 2 should pass.

Test Clean-up procedure:

None.

5.101 Test Case TC_SEC_CS_TCSGetVersion_0003

TC_SEC_CS_TCSGetVersion_0003 Get framework and plugin version info.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSGetVersion(TCSLIB_HANDLE hLib, TCSVerInfo *pVerInfo);

Test Objectives:

This test case verifies that the calling application can get error from the library.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSGetVersion()with a valid handle and NULL for TCSVerInfo.

3. Verify that the return value of TCSGetVersion() is -1.

Test PASS Condition:

Step 3 should pass.

Test Clean-up procedure:

None.

5.102 Test Case TC_SEC_CS_TCSGetInfo_0001

TC_SEC_CS_TCSGetInfo_0001 Get Meta info.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSGetInfo_0001 Get Meta info.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSGetInfo(TCSLIB_HANDLE hLib, char *pszInfo);

Test Objectives:

This test case verifies that the calling application can get version information from the library.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSGetInfo()with a valid handle and pszInfo pointer variable.

3. Verify that the return value of TCSGetInfo() is 0.

4. Verify string length of pszInfo is greater than zero.

Test PASS Condition:

Step 3 should pass.

Step 4 should pass.

Test Clean-up procedure:

None.

5.103 Test Case TC_SEC_CS_TCSGetInfo_0002

TC_SEC_CS_TCSGetInfo_0002 Check if API handles invalid input

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSGetInfo(TCSLIB_HANDLE hLib, char *pszInfo);

Test Objectives:

This test case verifies that the calling application can get error from library.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSGetInfo()with a invalid handle and pszInfo pointer variable.

2. Verify that the return value of TCSGetInfo() is -1.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSGetInfo_0002 Check if API handles invalid input

Test PASS Condition:

Step 2 should pass.

Test Clean-up procedure:

None.

5.104 Test Case TC_SEC_CS_TCSGetInfo_0003

TC_SEC_CS_TCSGetInfo_0003 Check if API handles invalid input.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSGetInfo(TCSLIB_HANDLE hLib, char *pszInfo);

Test Objectives:

This test case verifies that the calling application can get error from the library.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen().

2. Call TCSGetInfo()with a valid handle and NULL for pszInfo.

3. Verify that the return value of TCSGetInfo() is -1.

Test PASS Condition:

Step 3 should pass.

Test Clean-up procedure:

None.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

6 Test Guide

To run test cases, we need to have:

- TCS plug-in for test purpose

- Test contents

- Test cases

- TCS security framework

Test cases need to be compiled with TCS security framework. A TCS plug-in need to be created
which can detect the test contents as expected. All test contents, test cases and test TCS plug-in
will be provided as a test suite along with accordinate script file which will automate the test
process.

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

7 Test Contents

Sample
Name

Status Content
Type

Malware
Name

Variant
Name

Severity Class Behavior Class

tcs-testfile-
0.buf

clean Unknown n/a n/a n/a n/a

tcs-testfile-
0.class

clean Java n/a n/a n/a n/a

tcs-testfile-
0.email

clean Email n/a n/a n/a n/a

tcs-testfile-
0.html

clean HTML n/a n/a n/a n/a

tcs-testfile-
0.js

clean JavaScript n/a n/a n/a n/a

tcs-testfile-
0.phone

clean Phone
Number

n/a n/a n/a n/a

tcs-testfile-
0.txt

clean Text n/a n/a n/a n/a

tcs-testfile-
0.url

clean URL n/a n/a n/a n/a

tcs-testfile-
0.z

clean Archived n/a n/a n/a n/a

tcs-testfile-
0.multiple

clean Unknown n/a n/a n/a n/a

tcs-testfile-
1.buf

infected unknown Malware-
fortest-
1.6.0

Variant-
fortest-
1.6.0

TCS_SC_USER TCS_BC_LEVEL1

tcs-testfile-
1.class

infected Java Malware-
fortest-
1.7.0

Variant-
fortest-
1.7.0

TCS_SC_USER TCS_BC_LEVEL0

tcs-testfile-
1.email

infected Email Malware-
fortest-
1.2.0

Variant-
fortest-
1.2.0

TCS_SC_TERMINAL TCS_BC_LEVEL2

tcs-testfile-
1.html

infected HTML Malware-
fortest-
1.0.0

Variant-
fortest-
1.0.0

TCS_SC_USER TCS_BC_LEVEL0

tcs-testfile-
1.js

infected JavaScript Malware-
fortest-
1.8.0

Variant-
fortest-
1.8.0

TCS_SC_USER TCS_BC_LEVEL2

tcs-testfile-
1.phone

infected Phone
Number

Malware-
fortest-
1.3.0

Variant-
fortest-
1.3.0

TCS_SC_TERMINAL TCS_BC_LEVEL3

tcs-testfile-
1.txt

infected Text Malware-
fortest-
1.4.0

Variant-
fortest-
1.4.0

TCS_SC_TERMINAL TCS_BC_LEVEL4

tcs-testfile-
1.url

infected URL Malware-
fortest-

Variant-
fortest-

TCS_SC_USER TCS_BC_LEVEL1

Tizen Content Screening Test Specification Copyright © 2014 McAfee, Inc. All Rights Reserved.

1.1.0 1.1.0

tcs-testfile-
1.z

infected Archived Malware-
fortest-
1.9.0

Variant-
fortest-
1.9.0

TCS_SC_USER TCS_BC_LEVEL2

tcs-testfile-
1.multiple

infected Unknown Malware-
fortest-
1.6.0

Variant-
fortest-
1.6.0

TCS_SC_USER TCS_BC_LEVEL1

Malware-
fortest-
1.5.0

Variant-
fortest-
1.5.0

TCS_SC_USER TCS_BC_LEVEL0

