/* * libcryptsetup - cryptsetup library * * Copyright (C) 2004, Christophe Saout * Copyright (C) 2004-2007, Clemens Fruhwirth * Copyright (C) 2009-2012, Red Hat, Inc. All rights reserved. * Copyright (C) 2009-2013, Milan Broz * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include "libcryptsetup.h" #include "luks.h" #include "loopaes.h" #include "verity.h" #include "tcrypt.h" #include "internal.h" struct crypt_device { char *type; struct device *device; struct device *metadata_device; struct volume_key *volume_key; uint64_t timeout; uint64_t iteration_time; int tries; int password_verify; int rng_type; // FIXME: private binary headers and access it properly // through sub-library (LUKS1, TCRYPT) union { struct { /* used in CRYPT_LUKS1 */ struct luks_phdr hdr; uint64_t PBKDF2_per_sec; } luks1; struct { /* used in CRYPT_PLAIN */ struct crypt_params_plain hdr; char *cipher; char *cipher_mode; unsigned int key_size; } plain; struct { /* used in CRYPT_LOOPAES */ struct crypt_params_loopaes hdr; char *cipher; char *cipher_mode; unsigned int key_size; } loopaes; struct { /* used in CRYPT_VERITY */ struct crypt_params_verity hdr; char *root_hash; unsigned int root_hash_size; char *uuid; } verity; struct { /* used in CRYPT_TCRYPT */ struct crypt_params_tcrypt params; struct tcrypt_phdr hdr; } tcrypt; } u; /* callbacks definitions */ void (*log)(int level, const char *msg, void *usrptr); void *log_usrptr; int (*confirm)(const char *msg, void *usrptr); void *confirm_usrptr; int (*password)(const char *msg, char *buf, size_t length, void *usrptr); void *password_usrptr; /* last error message */ char error[MAX_ERROR_LENGTH]; }; /* Global error */ /* FIXME: not thread safe, remove this later */ static char global_error[MAX_ERROR_LENGTH] = {0}; /* Log helper */ static void (*_default_log)(int level, const char *msg, void *usrptr) = NULL; static int _debug_level = 0; void crypt_set_debug_level(int level) { _debug_level = level; } int crypt_get_debug_level(void) { return _debug_level; } static void crypt_set_error(struct crypt_device *cd, const char *error) { size_t size = strlen(error); /* Set global error, ugly hack... */ strncpy(global_error, error, MAX_ERROR_LENGTH - 2); if (size < MAX_ERROR_LENGTH && global_error[size - 1] == '\n') global_error[size - 1] = '\0'; /* Set error string per context */ if (cd) { strncpy(cd->error, error, MAX_ERROR_LENGTH - 2); if (size < MAX_ERROR_LENGTH && cd->error[size - 1] == '\n') cd->error[size - 1] = '\0'; } } void crypt_log(struct crypt_device *cd, int level, const char *msg) { if (cd && cd->log) cd->log(level, msg, cd->log_usrptr); else if (_default_log) _default_log(level, msg, NULL); if (level == CRYPT_LOG_ERROR) crypt_set_error(cd, msg); } __attribute__((format(printf, 5, 6))) void logger(struct crypt_device *cd, int level, const char *file, int line, const char *format, ...) { va_list argp; char *target = NULL; va_start(argp, format); if (vasprintf(&target, format, argp) > 0 ) { if (level >= 0) { crypt_log(cd, level, target); #ifdef CRYPT_DEBUG } else if (_debug_level) printf("# %s:%d %s\n", file ?: "?", line, target); #else } else if (_debug_level) printf("# %s\n", target); #endif } va_end(argp); free(target); } static const char *mdata_device_path(struct crypt_device *cd) { return device_path(cd->metadata_device ?: cd->device); } /* internal only */ struct device *crypt_metadata_device(struct crypt_device *cd) { return cd->metadata_device ?: cd->device; } struct device *crypt_data_device(struct crypt_device *cd) { return cd->device; } int init_crypto(struct crypt_device *ctx) { int r; crypt_fips_libcryptsetup_check(ctx); r = crypt_random_init(ctx); if (r < 0) { log_err(ctx, _("Cannot initialize crypto RNG backend.\n")); return r; } r = crypt_backend_init(ctx); if (r < 0) log_err(ctx, _("Cannot initialize crypto backend.\n")); log_dbg("Crypto backend (%s) initialized.", crypt_backend_version()); return r; } static int process_key(struct crypt_device *cd, const char *hash_name, size_t key_size, const char *pass, size_t passLen, struct volume_key **vk) { int r; if (!key_size) return -EINVAL; *vk = crypt_alloc_volume_key(key_size, NULL); if (!*vk) return -ENOMEM; if (hash_name) { r = crypt_plain_hash(cd, hash_name, (*vk)->key, key_size, pass, passLen); if (r < 0) { if (r == -ENOENT) log_err(cd, _("Hash algorithm %s not supported.\n"), hash_name); else log_err(cd, _("Key processing error (using hash %s).\n"), hash_name); crypt_free_volume_key(*vk); *vk = NULL; return -EINVAL; } } else if (passLen > key_size) { memcpy((*vk)->key, pass, key_size); } else { memcpy((*vk)->key, pass, passLen); } return 0; } static int isPLAIN(const char *type) { return (type && !strcmp(CRYPT_PLAIN, type)); } static int isLUKS(const char *type) { return (type && !strcmp(CRYPT_LUKS1, type)); } static int isLOOPAES(const char *type) { return (type && !strcmp(CRYPT_LOOPAES, type)); } static int isVERITY(const char *type) { return (type && !strcmp(CRYPT_VERITY, type)); } static int isTCRYPT(const char *type) { return (type && !strcmp(CRYPT_TCRYPT, type)); } /* keyslot helpers */ static int keyslot_verify_or_find_empty(struct crypt_device *cd, int *keyslot) { if (*keyslot == CRYPT_ANY_SLOT) { *keyslot = LUKS_keyslot_find_empty(&cd->u.luks1.hdr); if (*keyslot < 0) { log_err(cd, _("All key slots full.\n")); return -EINVAL; } } switch (LUKS_keyslot_info(&cd->u.luks1.hdr, *keyslot)) { case CRYPT_SLOT_INVALID: log_err(cd, _("Key slot %d is invalid, please select between 0 and %d.\n"), *keyslot, LUKS_NUMKEYS - 1); return -EINVAL; case CRYPT_SLOT_INACTIVE: break; default: log_err(cd, _("Key slot %d is full, please select another one.\n"), *keyslot); return -EINVAL; } return 0; } /* * compares UUIDs returned by device-mapper (striped by cryptsetup) and uuid in header */ static int crypt_uuid_cmp(const char *dm_uuid, const char *hdr_uuid) { int i, j; char *str; if (!dm_uuid || !hdr_uuid) return -EINVAL; str = strchr(dm_uuid, '-'); if (!str) return -EINVAL; for (i = 0, j = 1; hdr_uuid[i]; i++) { if (hdr_uuid[i] == '-') continue; if (!str[j] || str[j] == '-') return -EINVAL; if (str[j] != hdr_uuid[i]) return -EINVAL; j++; } return 0; } int PLAIN_activate(struct crypt_device *cd, const char *name, struct volume_key *vk, uint64_t size, uint32_t flags) { int r; char *dm_cipher = NULL; enum devcheck device_check; struct crypt_dm_active_device dmd = { .target = DM_CRYPT, .size = size, .flags = flags, .data_device = crypt_data_device(cd), .u.crypt = { .cipher = NULL, .vk = vk, .offset = crypt_get_data_offset(cd), .iv_offset = crypt_get_iv_offset(cd), } }; if (dmd.flags & CRYPT_ACTIVATE_SHARED) device_check = DEV_SHARED; else device_check = DEV_EXCL; r = device_block_adjust(cd, dmd.data_device, device_check, dmd.u.crypt.offset, &dmd.size, &dmd.flags); if (r) return r; if (crypt_get_cipher_mode(cd)) r = asprintf(&dm_cipher, "%s-%s", crypt_get_cipher(cd), crypt_get_cipher_mode(cd)); else r = asprintf(&dm_cipher, "%s", crypt_get_cipher(cd)); if (r < 0) return -ENOMEM; dmd.u.crypt.cipher = dm_cipher; log_dbg("Trying to activate PLAIN device %s using cipher %s.", name, dmd.u.crypt.cipher); r = dm_create_device(cd, name, CRYPT_PLAIN, &dmd, 0); free(dm_cipher); return r; } int crypt_confirm(struct crypt_device *cd, const char *msg) { if (!cd || !cd->confirm) return 1; else return cd->confirm(msg, cd->confirm_usrptr); } static int key_from_terminal(struct crypt_device *cd, char *msg, char **key, size_t *key_len, int force_verify) { char *prompt = NULL, *device_name; int r; *key = NULL; if(!msg) { if (crypt_loop_device(crypt_get_device_name(cd))) device_name = crypt_loop_backing_file(crypt_get_device_name(cd)); else device_name = strdup(crypt_get_device_name(cd)); if (!device_name) return -ENOMEM; r = asprintf(&prompt, _("Enter passphrase for %s: "), device_name); free(device_name); if (r < 0) return -ENOMEM; msg = prompt; } if (cd->password) { *key = crypt_safe_alloc(DEFAULT_PASSPHRASE_SIZE_MAX); if (!*key) { r = -ENOMEM; goto out; } r = cd->password(msg, *key, DEFAULT_PASSPHRASE_SIZE_MAX, cd->password_usrptr); if (r < 0) { crypt_safe_free(*key); *key = NULL; } else *key_len = r; } else r = crypt_get_key(msg, key, key_len, 0, 0, NULL, cd->timeout, (force_verify || cd->password_verify), cd); out: free(prompt); return (r < 0) ? r: 0; } static int volume_key_by_terminal_passphrase(struct crypt_device *cd, int keyslot, struct volume_key **vk) { char *passphrase_read = NULL; size_t passphrase_size_read; int r = -EINVAL, eperm = 0, tries = cd->tries; *vk = NULL; do { crypt_free_volume_key(*vk); *vk = NULL; r = key_from_terminal(cd, NULL, &passphrase_read, &passphrase_size_read, 0); /* Continue if it is just passphrase verify mismatch */ if (r == -EPERM) continue; if(r < 0) goto out; r = LUKS_open_key_with_hdr(keyslot, passphrase_read, passphrase_size_read, &cd->u.luks1.hdr, vk, cd); if (r == -EPERM) eperm = 1; crypt_safe_free(passphrase_read); passphrase_read = NULL; } while (r == -EPERM && (--tries > 0)); out: if (r < 0) { crypt_free_volume_key(*vk); *vk = NULL; /* Report wrong passphrase if at least one try failed */ if (eperm && r == -EPIPE) r = -EPERM; } crypt_safe_free(passphrase_read); return r; } static int key_from_file(struct crypt_device *cd, char *msg, char **key, size_t *key_len, const char *key_file, size_t key_offset, size_t key_size) { return crypt_get_key(msg, key, key_len, key_offset, key_size, key_file, cd->timeout, 0, cd); } void crypt_set_log_callback(struct crypt_device *cd, void (*log)(int level, const char *msg, void *usrptr), void *usrptr) { if (!cd) _default_log = log; else { cd->log = log; cd->log_usrptr = usrptr; } } void crypt_set_confirm_callback(struct crypt_device *cd, int (*confirm)(const char *msg, void *usrptr), void *usrptr) { cd->confirm = confirm; cd->confirm_usrptr = usrptr; } void crypt_set_password_callback(struct crypt_device *cd, int (*password)(const char *msg, char *buf, size_t length, void *usrptr), void *usrptr) { cd->password = password; cd->password_usrptr = usrptr; } static void _get_error(char *error, char *buf, size_t size) { if (!buf || size < 1) error[0] = '\0'; else if (*error) { strncpy(buf, error, size - 1); buf[size - 1] = '\0'; error[0] = '\0'; } else buf[0] = '\0'; } void crypt_last_error(struct crypt_device *cd, char *buf, size_t size) { if (cd) return _get_error(cd->error, buf, size); } /* Deprecated global error interface */ void crypt_get_error(char *buf, size_t size) { return _get_error(global_error, buf, size); } const char *crypt_get_dir(void) { return dm_get_dir(); } int crypt_init(struct crypt_device **cd, const char *device) { struct crypt_device *h = NULL; int r; if (!cd) return -EINVAL; log_dbg("Allocating crypt device %s context.", device); if (!(h = malloc(sizeof(struct crypt_device)))) return -ENOMEM; memset(h, 0, sizeof(*h)); r = device_alloc(&h->device, device); if (r < 0) goto bad; dm_backend_init(); h->iteration_time = 1000; h->password_verify = 0; h->tries = 3; h->rng_type = crypt_random_default_key_rng(); *cd = h; return 0; bad: device_free(h->device); free(h); return r; } static int crypt_check_data_device_size(struct crypt_device *cd) { int r; uint64_t size, size_min; /* Check data device size, require at least one sector */ size_min = crypt_get_data_offset(cd) << SECTOR_SHIFT ?: SECTOR_SIZE; r = device_size(cd->device, &size); if (r < 0) return r; if (size < size_min) { log_err(cd, _("Header detected but device %s is too small.\n"), device_path(cd->device)); return -EINVAL; } return r; } int crypt_set_data_device(struct crypt_device *cd, const char *device) { struct device *dev = NULL; int r; log_dbg("Setting ciphertext data device to %s.", device ?: "(none)"); if (!isLUKS(cd->type) && !isVERITY(cd->type)) { log_err(cd, _("This operation is not supported for this device type.\n")); return -EINVAL; } /* metadata device must be set */ if (!cd->device || !device) return -EINVAL; r = device_alloc(&dev, device); if (r < 0) return r; if (!cd->metadata_device) { cd->metadata_device = cd->device; } else device_free(cd->device); cd->device = dev; return crypt_check_data_device_size(cd); } static int _crypt_load_luks1(struct crypt_device *cd, int require_header, int repair) { struct luks_phdr hdr; int r; r = init_crypto(cd); if (r < 0) return r; r = LUKS_read_phdr(&hdr, require_header, repair, cd); if (r < 0) return r; if (!cd->type && !(cd->type = strdup(CRYPT_LUKS1))) return -ENOMEM; memcpy(&cd->u.luks1.hdr, &hdr, sizeof(hdr)); return r; } static int _crypt_load_tcrypt(struct crypt_device *cd, struct crypt_params_tcrypt *params) { int r; if (!params) return -EINVAL; r = init_crypto(cd); if (r < 0) return r; memcpy(&cd->u.tcrypt.params, params, sizeof(*params)); r = TCRYPT_read_phdr(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); cd->u.tcrypt.params.passphrase = NULL; cd->u.tcrypt.params.passphrase_size = 0; cd->u.tcrypt.params.keyfiles = NULL; cd->u.tcrypt.params.keyfiles_count = 0; if (r < 0) return r; if (!cd->type && !(cd->type = strdup(CRYPT_TCRYPT))) return -ENOMEM; return r; } static int _crypt_load_verity(struct crypt_device *cd, struct crypt_params_verity *params) { int r; size_t sb_offset = 0; r = init_crypto(cd); if (r < 0) return r; if (params && params->flags & CRYPT_VERITY_NO_HEADER) return -EINVAL; if (params) sb_offset = params->hash_area_offset; r = VERITY_read_sb(cd, sb_offset, &cd->u.verity.uuid, &cd->u.verity.hdr); if (r < 0) return r; if (params) cd->u.verity.hdr.flags = params->flags; /* Hash availability checked in sb load */ cd->u.verity.root_hash_size = crypt_hash_size(cd->u.verity.hdr.hash_name); if (cd->u.verity.root_hash_size > 4096) return -EINVAL; if (!cd->type && !(cd->type = strdup(CRYPT_VERITY))) return -ENOMEM; if (params && params->data_device && (r = crypt_set_data_device(cd, params->data_device)) < 0) return r; return r; } static int _init_by_name_crypt(struct crypt_device *cd, const char *name) { struct crypt_dm_active_device dmd = {}; char cipher[MAX_CIPHER_LEN], cipher_mode[MAX_CIPHER_LEN]; int key_nums, r; r = dm_query_device(cd, name, DM_ACTIVE_DEVICE | DM_ACTIVE_UUID | DM_ACTIVE_CRYPT_CIPHER | DM_ACTIVE_CRYPT_KEYSIZE, &dmd); if (r < 0) goto out; if (isPLAIN(cd->type)) { cd->u.plain.hdr.hash = NULL; /* no way to get this */ cd->u.plain.hdr.offset = dmd.u.crypt.offset; cd->u.plain.hdr.skip = dmd.u.crypt.iv_offset; cd->u.plain.key_size = dmd.u.crypt.vk->keylength; r = crypt_parse_name_and_mode(dmd.u.crypt.cipher, cipher, NULL, cipher_mode); if (!r) { cd->u.plain.cipher = strdup(cipher); cd->u.plain.cipher_mode = strdup(cipher_mode); } } else if (isLOOPAES(cd->type)) { cd->u.loopaes.hdr.offset = dmd.u.crypt.offset; r = crypt_parse_name_and_mode(dmd.u.crypt.cipher, cipher, &key_nums, cipher_mode); if (!r) { cd->u.loopaes.cipher = strdup(cipher); cd->u.loopaes.cipher_mode = strdup(cipher_mode); /* version 3 uses last key for IV */ if (dmd.u.crypt.vk->keylength % key_nums) key_nums++; cd->u.loopaes.key_size = dmd.u.crypt.vk->keylength / key_nums; } } else if (isLUKS(cd->type)) { if (crypt_metadata_device(cd)) { r = _crypt_load_luks1(cd, 0, 0); if (r < 0) { log_dbg("LUKS device header does not match active device."); free(cd->type); cd->type = NULL; r = 0; goto out; } /* check whether UUIDs match each other */ r = crypt_uuid_cmp(dmd.uuid, cd->u.luks1.hdr.uuid); if (r < 0) { log_dbg("LUKS device header uuid: %s mismatches DM returned uuid %s", cd->u.luks1.hdr.uuid, dmd.uuid); free(cd->type); cd->type = NULL; r = 0; } } else { log_dbg("LUKS device header not available."); free(cd->type); cd->type = NULL; r = 0; } } else if (isTCRYPT(cd->type)) { r = TCRYPT_init_by_name(cd, name, &dmd, &cd->device, &cd->u.tcrypt.params, &cd->u.tcrypt.hdr); } out: crypt_free_volume_key(dmd.u.crypt.vk); device_free(dmd.data_device); free(CONST_CAST(void*)dmd.u.crypt.cipher); free(CONST_CAST(void*)dmd.uuid); return r; } static int _init_by_name_verity(struct crypt_device *cd, const char *name) { struct crypt_params_verity params = {}; struct crypt_dm_active_device dmd = { .target = DM_VERITY, .u.verity.vp = ¶ms, }; int r; r = dm_query_device(cd, name, DM_ACTIVE_DEVICE | DM_ACTIVE_VERITY_HASH_DEVICE | DM_ACTIVE_VERITY_PARAMS, &dmd); if (r < 0) goto out; if (isVERITY(cd->type)) { cd->u.verity.uuid = NULL; // FIXME cd->u.verity.hdr.flags = CRYPT_VERITY_NO_HEADER; //FIXME cd->u.verity.hdr.data_size = params.data_size; cd->u.verity.root_hash_size = dmd.u.verity.root_hash_size; cd->u.verity.root_hash = NULL; cd->u.verity.hdr.hash_name = params.hash_name; cd->u.verity.hdr.data_device = NULL; cd->u.verity.hdr.hash_device = NULL; cd->u.verity.hdr.data_block_size = params.data_block_size; cd->u.verity.hdr.hash_block_size = params.hash_block_size; cd->u.verity.hdr.hash_area_offset = dmd.u.verity.hash_offset; cd->u.verity.hdr.hash_type = params.hash_type; cd->u.verity.hdr.flags = params.flags; cd->u.verity.hdr.salt_size = params.salt_size; cd->u.verity.hdr.salt = params.salt; cd->metadata_device = dmd.u.verity.hash_device; } out: device_free(dmd.data_device); return r; } int crypt_init_by_name_and_header(struct crypt_device **cd, const char *name, const char *header_device) { crypt_status_info ci; struct crypt_dm_active_device dmd; int r; log_dbg("Allocating crypt device context by device %s.", name); ci = crypt_status(NULL, name); if (ci == CRYPT_INVALID) return -ENODEV; if (ci < CRYPT_ACTIVE) { log_err(NULL, _("Device %s is not active.\n"), name); return -ENODEV; } r = dm_query_device(NULL, name, DM_ACTIVE_DEVICE | DM_ACTIVE_UUID, &dmd); if (r < 0) goto out; *cd = NULL; if (header_device) { r = crypt_init(cd, header_device); } else { r = crypt_init(cd, device_path(dmd.data_device)); /* Underlying device disappeared but mapping still active */ if (!dmd.data_device || r == -ENOTBLK) log_verbose(NULL, _("Underlying device for crypt device %s disappeared.\n"), name); /* Underlying device is not readable but crypt mapping exists */ if (r == -ENOTBLK) { device_free(dmd.data_device); dmd.data_device = NULL; r = crypt_init(cd, NULL); } } if (r < 0) goto out; if (dmd.uuid) { if (!strncmp(CRYPT_PLAIN, dmd.uuid, sizeof(CRYPT_PLAIN)-1)) (*cd)->type = strdup(CRYPT_PLAIN); else if (!strncmp(CRYPT_LOOPAES, dmd.uuid, sizeof(CRYPT_LOOPAES)-1)) (*cd)->type = strdup(CRYPT_LOOPAES); else if (!strncmp(CRYPT_LUKS1, dmd.uuid, sizeof(CRYPT_LUKS1)-1)) (*cd)->type = strdup(CRYPT_LUKS1); else if (!strncmp(CRYPT_VERITY, dmd.uuid, sizeof(CRYPT_VERITY)-1)) (*cd)->type = strdup(CRYPT_VERITY); else if (!strncmp(CRYPT_TCRYPT, dmd.uuid, sizeof(CRYPT_TCRYPT)-1)) (*cd)->type = strdup(CRYPT_TCRYPT); else log_dbg("Unknown UUID set, some parameters are not set."); } else log_dbg("Active device has no UUID set, some parameters are not set."); if (header_device) { r = crypt_set_data_device(*cd, device_path(dmd.data_device)); if (r < 0) goto out; } /* Try to initialise basic parameters from active device */ if (dmd.target == DM_CRYPT) r = _init_by_name_crypt(*cd, name); else if (dmd.target == DM_VERITY) r = _init_by_name_verity(*cd, name); out: if (r < 0) { crypt_free(*cd); *cd = NULL; } device_free(dmd.data_device); free(CONST_CAST(void*)dmd.uuid); return r; } int crypt_init_by_name(struct crypt_device **cd, const char *name) { return crypt_init_by_name_and_header(cd, name, NULL); } static int _crypt_format_plain(struct crypt_device *cd, const char *cipher, const char *cipher_mode, const char *uuid, size_t volume_key_size, struct crypt_params_plain *params) { if (!cipher || !cipher_mode) { log_err(cd, _("Invalid plain crypt parameters.\n")); return -EINVAL; } if (volume_key_size > 1024) { log_err(cd, _("Invalid key size.\n")); return -EINVAL; } if (uuid) { log_err(cd, _("UUID is not supported for this crypt type.\n")); return -EINVAL; } if (!(cd->type = strdup(CRYPT_PLAIN))) return -ENOMEM; cd->u.plain.key_size = volume_key_size; cd->volume_key = crypt_alloc_volume_key(volume_key_size, NULL); if (!cd->volume_key) return -ENOMEM; cd->u.plain.cipher = strdup(cipher); cd->u.plain.cipher_mode = strdup(cipher_mode); if (params && params->hash) cd->u.plain.hdr.hash = strdup(params->hash); cd->u.plain.hdr.offset = params ? params->offset : 0; cd->u.plain.hdr.skip = params ? params->skip : 0; cd->u.plain.hdr.size = params ? params->size : 0; if (!cd->u.plain.cipher || !cd->u.plain.cipher_mode) return -ENOMEM; return 0; } static int _crypt_format_luks1(struct crypt_device *cd, const char *cipher, const char *cipher_mode, const char *uuid, const char *volume_key, size_t volume_key_size, struct crypt_params_luks1 *params) { int r; unsigned long required_alignment = DEFAULT_DISK_ALIGNMENT; unsigned long alignment_offset = 0; if (!crypt_metadata_device(cd)) { log_err(cd, _("Can't format LUKS without device.\n")); return -EINVAL; } if (!(cd->type = strdup(CRYPT_LUKS1))) return -ENOMEM; if (volume_key) cd->volume_key = crypt_alloc_volume_key(volume_key_size, volume_key); else cd->volume_key = crypt_generate_volume_key(cd, volume_key_size); if(!cd->volume_key) return -ENOMEM; if (params && params->data_device) { cd->metadata_device = cd->device; cd->device = NULL; if (device_alloc(&cd->device, params->data_device) < 0) return -ENOMEM; required_alignment = params->data_alignment * SECTOR_SIZE; } else if (params && params->data_alignment) { required_alignment = params->data_alignment * SECTOR_SIZE; } else device_topology_alignment(cd->device, &required_alignment, &alignment_offset, DEFAULT_DISK_ALIGNMENT); /* Check early if we cannot allocate block device for key slot access */ r = device_block_adjust(cd, cd->device, DEV_OK, 0, NULL, NULL); if(r < 0) return r; r = LUKS_generate_phdr(&cd->u.luks1.hdr, cd->volume_key, cipher, cipher_mode, (params && params->hash) ? params->hash : "sha1", uuid, LUKS_STRIPES, required_alignment / SECTOR_SIZE, alignment_offset / SECTOR_SIZE, cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, cd->metadata_device ? 1 : 0, cd); if(r < 0) return r; /* Wipe first 8 sectors - fs magic numbers etc. */ r = crypt_wipe(crypt_metadata_device(cd), 0, 8 * SECTOR_SIZE, CRYPT_WIPE_ZERO, 1); if(r < 0) { if (r == -EBUSY) log_err(cd, _("Cannot format device %s which is still in use.\n"), mdata_device_path(cd)); else if (r == -EACCES) { log_err(cd, _("Cannot format device %s, permission denied.\n"), mdata_device_path(cd)); r = -EINVAL; } else log_err(cd, _("Cannot wipe header on device %s.\n"), mdata_device_path(cd)); return r; } r = LUKS_write_phdr(&cd->u.luks1.hdr, cd); return r; } static int _crypt_format_loopaes(struct crypt_device *cd, const char *cipher, const char *uuid, size_t volume_key_size, struct crypt_params_loopaes *params) { if (!crypt_metadata_device(cd)) { log_err(cd, _("Can't format LOOPAES without device.\n")); return -EINVAL; } if (volume_key_size > 1024) { log_err(cd, _("Invalid key size.\n")); return -EINVAL; } if (uuid) { log_err(cd, _("UUID is not supported for this crypt type.\n")); return -EINVAL; } if (!(cd->type = strdup(CRYPT_LOOPAES))) return -ENOMEM; cd->u.loopaes.key_size = volume_key_size; cd->u.loopaes.cipher = strdup(cipher ?: DEFAULT_LOOPAES_CIPHER); if (params && params->hash) cd->u.loopaes.hdr.hash = strdup(params->hash); cd->u.loopaes.hdr.offset = params ? params->offset : 0; cd->u.loopaes.hdr.skip = params ? params->skip : 0; return 0; } static int _crypt_format_verity(struct crypt_device *cd, const char *uuid, struct crypt_params_verity *params) { int r = 0, hash_size; uint64_t data_device_size; if (!crypt_metadata_device(cd)) { log_err(cd, _("Can't format VERITY without device.\n")); return -EINVAL; } if (!params || !params->data_device) return -EINVAL; if (params->hash_type > VERITY_MAX_HASH_TYPE) { log_err(cd, _("Unsupported VERITY hash type %d.\n"), params->hash_type); return -EINVAL; } if (VERITY_BLOCK_SIZE_OK(params->data_block_size) || VERITY_BLOCK_SIZE_OK(params->hash_block_size)) { log_err(cd, _("Unsupported VERITY block size.\n")); return -EINVAL; } if (params->hash_area_offset % 512) { log_err(cd, _("Unsupported VERITY hash offset.\n")); return -EINVAL; } if (!(cd->type = strdup(CRYPT_VERITY))) return -ENOMEM; r = crypt_set_data_device(cd, params->data_device); if (r) return r; if (!params->data_size) { r = device_size(cd->device, &data_device_size); if (r < 0) return r; cd->u.verity.hdr.data_size = data_device_size / params->data_block_size; } else cd->u.verity.hdr.data_size = params->data_size; hash_size = crypt_hash_size(params->hash_name); if (hash_size <= 0) { log_err(cd, _("Hash algorithm %s not supported.\n"), params->hash_name); return -EINVAL; } cd->u.verity.root_hash_size = hash_size; cd->u.verity.root_hash = malloc(cd->u.verity.root_hash_size); if (!cd->u.verity.root_hash) return -ENOMEM; cd->u.verity.hdr.flags = params->flags; if (!(cd->u.verity.hdr.hash_name = strdup(params->hash_name))) return -ENOMEM; cd->u.verity.hdr.data_device = NULL; cd->u.verity.hdr.data_block_size = params->data_block_size; cd->u.verity.hdr.hash_block_size = params->hash_block_size; cd->u.verity.hdr.hash_area_offset = params->hash_area_offset; cd->u.verity.hdr.hash_type = params->hash_type; cd->u.verity.hdr.flags = params->flags; cd->u.verity.hdr.salt_size = params->salt_size; if (!(cd->u.verity.hdr.salt = malloc(params->salt_size))) return -ENOMEM; if (params->salt) memcpy(CONST_CAST(char*)cd->u.verity.hdr.salt, params->salt, params->salt_size); else r = crypt_random_get(cd, CONST_CAST(char*)cd->u.verity.hdr.salt, params->salt_size, CRYPT_RND_SALT); if (r) return r; if (params->flags & CRYPT_VERITY_CREATE_HASH) { r = VERITY_create(cd, &cd->u.verity.hdr, cd->u.verity.root_hash, cd->u.verity.root_hash_size); if (r) return r; } if (!(params->flags & CRYPT_VERITY_NO_HEADER)) { if (uuid) cd->u.verity.uuid = strdup(uuid); else { r = VERITY_UUID_generate(cd, &cd->u.verity.uuid); if (r) return r; } r = VERITY_write_sb(cd, cd->u.verity.hdr.hash_area_offset, cd->u.verity.uuid, &cd->u.verity.hdr); } return r; } int crypt_format(struct crypt_device *cd, const char *type, const char *cipher, const char *cipher_mode, const char *uuid, const char *volume_key, size_t volume_key_size, void *params) { int r; if (!type) return -EINVAL; if (cd->type) { log_dbg("Context already formatted as %s.", cd->type); return -EINVAL; } log_dbg("Formatting device %s as type %s.", mdata_device_path(cd) ?: "(none)", type); r = init_crypto(cd); if (r < 0) return r; if (isPLAIN(type)) r = _crypt_format_plain(cd, cipher, cipher_mode, uuid, volume_key_size, params); else if (isLUKS(type)) r = _crypt_format_luks1(cd, cipher, cipher_mode, uuid, volume_key, volume_key_size, params); else if (isLOOPAES(type)) r = _crypt_format_loopaes(cd, cipher, uuid, volume_key_size, params); else if (isVERITY(type)) r = _crypt_format_verity(cd, uuid, params); else { log_err(cd, _("Unknown crypt device type %s requested.\n"), type); r = -EINVAL; } if (r < 0) { free(cd->type); cd->type = NULL; crypt_free_volume_key(cd->volume_key); cd->volume_key = NULL; } return r; } int crypt_load(struct crypt_device *cd, const char *requested_type, void *params) { int r; log_dbg("Trying to load %s crypt type from device %s.", requested_type ?: "any", mdata_device_path(cd) ?: "(none)"); if (!crypt_metadata_device(cd)) return -EINVAL; if (!requested_type || isLUKS(requested_type)) { if (cd->type && !isLUKS(cd->type)) { log_dbg("Context is already initialised to type %s", cd->type); return -EINVAL; } r = _crypt_load_luks1(cd, 1, 0); } else if (isVERITY(requested_type)) { if (cd->type && !isVERITY(cd->type)) { log_dbg("Context is already initialised to type %s", cd->type); return -EINVAL; } r = _crypt_load_verity(cd, params); } else if (isTCRYPT(requested_type)) { if (cd->type && !isTCRYPT(cd->type)) { log_dbg("Context is already initialised to type %s", cd->type); return -EINVAL; } r = _crypt_load_tcrypt(cd, params); } else return -EINVAL; return r; } int crypt_repair(struct crypt_device *cd, const char *requested_type, void *params __attribute__((unused))) { int r; log_dbg("Trying to repair %s crypt type from device %s.", requested_type ?: "any", mdata_device_path(cd) ?: "(none)"); if (!crypt_metadata_device(cd)) return -EINVAL; if (requested_type && !isLUKS(requested_type)) return -EINVAL; /* Load with repair */ r = _crypt_load_luks1(cd, 1, 1); if (r < 0) return r; /* cd->type and header must be set in context */ r = crypt_check_data_device_size(cd); if (r < 0) { free(cd->type); cd->type = NULL; } return r; } int crypt_resize(struct crypt_device *cd, const char *name, uint64_t new_size) { struct crypt_dm_active_device dmd; int r; /* Device context type must be initialised */ if (!cd->type) return -EINVAL; log_dbg("Resizing device %s to %" PRIu64 " sectors.", name, new_size); r = dm_query_device(cd, name, DM_ACTIVE_DEVICE | DM_ACTIVE_CRYPT_CIPHER | DM_ACTIVE_UUID | DM_ACTIVE_CRYPT_KEYSIZE | DM_ACTIVE_CRYPT_KEY, &dmd); if (r < 0) { log_err(NULL, _("Device %s is not active.\n"), name); return -EINVAL; } if (!dmd.uuid || dmd.target != DM_CRYPT) { r = -EINVAL; goto out; } r = device_block_adjust(cd, dmd.data_device, DEV_OK, dmd.u.crypt.offset, &new_size, &dmd.flags); if (r) goto out; if (new_size == dmd.size) { log_dbg("Device has already requested size %" PRIu64 " sectors.", dmd.size); r = 0; } else { dmd.size = new_size; if (isTCRYPT(cd->type)) r = -ENOTSUP; else r = dm_create_device(cd, name, cd->type, &dmd, 1); } out: if (dmd.target == DM_CRYPT) { crypt_free_volume_key(dmd.u.crypt.vk); free(CONST_CAST(void*)dmd.u.crypt.cipher); } free(CONST_CAST(void*)dmd.data_device); free(CONST_CAST(void*)dmd.uuid); return r; } int crypt_set_uuid(struct crypt_device *cd, const char *uuid) { if (!isLUKS(cd->type)) { log_err(cd, _("This operation is not supported for this device type.\n")); return -EINVAL; } if (uuid && !strncmp(uuid, cd->u.luks1.hdr.uuid, sizeof(cd->u.luks1.hdr.uuid))) { log_dbg("UUID is the same as requested (%s) for device %s.", uuid, mdata_device_path(cd)); return 0; } if (uuid) log_dbg("Requested new UUID change to %s for %s.", uuid, mdata_device_path(cd)); else log_dbg("Requested new UUID refresh for %s.", mdata_device_path(cd)); if (!crypt_confirm(cd, _("Do you really want to change UUID of device?"))) return -EPERM; return LUKS_hdr_uuid_set(&cd->u.luks1.hdr, uuid, cd); } int crypt_header_backup(struct crypt_device *cd, const char *requested_type, const char *backup_file) { int r; if ((requested_type && !isLUKS(requested_type)) || !backup_file) return -EINVAL; r = init_crypto(cd); if (r < 0) return r; log_dbg("Requested header backup of device %s (%s) to " "file %s.", mdata_device_path(cd), requested_type, backup_file); return LUKS_hdr_backup(backup_file, &cd->u.luks1.hdr, cd); } int crypt_header_restore(struct crypt_device *cd, const char *requested_type, const char *backup_file) { int r; if (requested_type && !isLUKS(requested_type)) return -EINVAL; if (cd->type && !isLUKS(cd->type)) return -EINVAL; r = init_crypto(cd); if (r < 0) return r; log_dbg("Requested header restore to device %s (%s) from " "file %s.", mdata_device_path(cd), requested_type, backup_file); return LUKS_hdr_restore(backup_file, &cd->u.luks1.hdr, cd); } void crypt_free(struct crypt_device *cd) { if (cd) { log_dbg("Releasing crypt device %s context.", mdata_device_path(cd)); dm_backend_exit(); crypt_free_volume_key(cd->volume_key); device_free(cd->device); device_free(cd->metadata_device); if (isPLAIN(cd->type)) { free(CONST_CAST(void*)cd->u.plain.hdr.hash); free(cd->u.plain.cipher); free(cd->u.plain.cipher_mode); } else if (isLOOPAES(cd->type)) { free(CONST_CAST(void*)cd->u.loopaes.hdr.hash); free(cd->u.loopaes.cipher); } else if (isVERITY(cd->type)) { free(CONST_CAST(void*)cd->u.verity.hdr.hash_name); free(CONST_CAST(void*)cd->u.verity.hdr.salt); free(cd->u.verity.root_hash); free(cd->u.verity.uuid); } free(cd->type); /* Some structures can contain keys (TCRYPT), wipe it */ memset(cd, 0, sizeof(*cd)); free(cd); } } int crypt_suspend(struct crypt_device *cd, const char *name) { crypt_status_info ci; int r; log_dbg("Suspending volume %s.", name); if (!cd || !isLUKS(cd->type)) { log_err(cd, _("This operation is supported only for LUKS device.\n")); r = -EINVAL; goto out; } ci = crypt_status(NULL, name); if (ci < CRYPT_ACTIVE) { log_err(cd, _("Volume %s is not active.\n"), name); return -EINVAL; } dm_backend_init(); r = dm_status_suspended(cd, name); if (r < 0) goto out; if (r) { log_err(cd, _("Volume %s is already suspended.\n"), name); r = -EINVAL; goto out; } r = dm_suspend_and_wipe_key(cd, name); if (r == -ENOTSUP) log_err(cd, _("Suspend is not supported for device %s.\n"), name); else if (r) log_err(cd, _("Error during suspending device %s.\n"), name); out: dm_backend_exit(); return r; } int crypt_resume_by_passphrase(struct crypt_device *cd, const char *name, int keyslot, const char *passphrase, size_t passphrase_size) { struct volume_key *vk = NULL; int r; log_dbg("Resuming volume %s.", name); if (!isLUKS(cd->type)) { log_err(cd, _("This operation is supported only for LUKS device.\n")); r = -EINVAL; goto out; } r = dm_status_suspended(cd, name); if (r < 0) return r; if (!r) { log_err(cd, _("Volume %s is not suspended.\n"), name); return -EINVAL; } if (passphrase) { r = LUKS_open_key_with_hdr(keyslot, passphrase, passphrase_size, &cd->u.luks1.hdr, &vk, cd); } else r = volume_key_by_terminal_passphrase(cd, keyslot, &vk); if (r >= 0) { keyslot = r; r = dm_resume_and_reinstate_key(cd, name, vk->keylength, vk->key); if (r == -ENOTSUP) log_err(cd, _("Resume is not supported for device %s.\n"), name); else if (r) log_err(cd, _("Error during resuming device %s.\n"), name); } else r = keyslot; out: crypt_free_volume_key(vk); return r < 0 ? r : keyslot; } int crypt_resume_by_keyfile_offset(struct crypt_device *cd, const char *name, int keyslot, const char *keyfile, size_t keyfile_size, size_t keyfile_offset) { struct volume_key *vk = NULL; char *passphrase_read = NULL; size_t passphrase_size_read; int r; log_dbg("Resuming volume %s.", name); if (!isLUKS(cd->type)) { log_err(cd, _("This operation is supported only for LUKS device.\n")); r = -EINVAL; goto out; } r = dm_status_suspended(cd, name); if (r < 0) return r; if (!r) { log_err(cd, _("Volume %s is not suspended.\n"), name); return -EINVAL; } if (!keyfile) return -EINVAL; r = key_from_file(cd, _("Enter passphrase: "), &passphrase_read, &passphrase_size_read, keyfile, keyfile_offset, keyfile_size); if (r < 0) goto out; r = LUKS_open_key_with_hdr(keyslot, passphrase_read, passphrase_size_read, &cd->u.luks1.hdr, &vk, cd); if (r < 0) goto out; keyslot = r; r = dm_resume_and_reinstate_key(cd, name, vk->keylength, vk->key); if (r) log_err(cd, _("Error during resuming device %s.\n"), name); out: crypt_safe_free(passphrase_read); crypt_free_volume_key(vk); return r < 0 ? r : keyslot; } int crypt_resume_by_keyfile(struct crypt_device *cd, const char *name, int keyslot, const char *keyfile, size_t keyfile_size) { return crypt_resume_by_keyfile_offset(cd, name, keyslot, keyfile, keyfile_size, 0); } // slot manipulation int crypt_keyslot_add_by_passphrase(struct crypt_device *cd, int keyslot, // -1 any const char *passphrase, // NULL -> terminal size_t passphrase_size, const char *new_passphrase, // NULL -> terminal size_t new_passphrase_size) { struct volume_key *vk = NULL; char *password = NULL, *new_password = NULL; size_t passwordLen, new_passwordLen; int r; log_dbg("Adding new keyslot, existing passphrase %sprovided," "new passphrase %sprovided.", passphrase ? "" : "not ", new_passphrase ? "" : "not "); if (!isLUKS(cd->type)) { log_err(cd, _("This operation is supported only for LUKS device.\n")); return -EINVAL; } r = keyslot_verify_or_find_empty(cd, &keyslot); if (r) return r; if (!LUKS_keyslot_active_count(&cd->u.luks1.hdr)) { /* No slots used, try to use pre-generated key in header */ if (cd->volume_key) { vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key); r = vk ? 0 : -ENOMEM; } else { log_err(cd, _("Cannot add key slot, all slots disabled and no volume key provided.\n")); return -EINVAL; } } else if (passphrase) { /* Passphrase provided, use it to unlock existing keyslot */ r = LUKS_open_key_with_hdr(CRYPT_ANY_SLOT, passphrase, passphrase_size, &cd->u.luks1.hdr, &vk, cd); } else { /* Passphrase not provided, ask first and use it to unlock existing keyslot */ r = key_from_terminal(cd, _("Enter any passphrase: "), &password, &passwordLen, 0); if (r < 0) goto out; r = LUKS_open_key_with_hdr(CRYPT_ANY_SLOT, password, passwordLen, &cd->u.luks1.hdr, &vk, cd); crypt_safe_free(password); } if(r < 0) goto out; if (new_passphrase) { new_password = CONST_CAST(char*)new_passphrase; new_passwordLen = new_passphrase_size; } else { r = key_from_terminal(cd, _("Enter new passphrase for key slot: "), &new_password, &new_passwordLen, 1); if(r < 0) goto out; } r = LUKS_set_key(keyslot, new_password, new_passwordLen, &cd->u.luks1.hdr, vk, cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, cd); if(r < 0) goto out; r = 0; out: if (!new_passphrase) crypt_safe_free(new_password); crypt_free_volume_key(vk); return r ?: keyslot; } int crypt_keyslot_change_by_passphrase(struct crypt_device *cd, int keyslot_old, int keyslot_new, const char *passphrase, size_t passphrase_size, const char *new_passphrase, size_t new_passphrase_size) { struct volume_key *vk = NULL; int r = -EINVAL; log_dbg("Changing passphrase from old keyslot %d to new %d.", keyslot_old, keyslot_new); if (!isLUKS(cd->type)) { log_err(cd, _("This operation is supported only for LUKS device.\n")); return -EINVAL; } r = LUKS_open_key_with_hdr(keyslot_old, passphrase, passphrase_size, &cd->u.luks1.hdr, &vk, cd); if (r < 0) goto out; if (keyslot_old != CRYPT_ANY_SLOT && keyslot_old != r) { log_dbg("Keyslot mismatch."); goto out; } keyslot_old = r; if (keyslot_new == CRYPT_ANY_SLOT) { keyslot_new = LUKS_keyslot_find_empty(&cd->u.luks1.hdr); if (keyslot_new < 0) keyslot_new = keyslot_old; } if (keyslot_old == keyslot_new) { log_dbg("Key slot %d is going to be overwritten.", keyslot_old); (void)crypt_keyslot_destroy(cd, keyslot_old); } r = LUKS_set_key(keyslot_new, new_passphrase, new_passphrase_size, &cd->u.luks1.hdr, vk, cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, cd); if (keyslot_old == keyslot_new) { if (r >= 0) log_verbose(cd, _("Key slot %d changed.\n"), r); } else { if (r >= 0) { log_verbose(cd, _("Replaced with key slot %d.\n"), r); r = crypt_keyslot_destroy(cd, keyslot_old); } } if (r < 0) log_err(cd, _("Failed to swap new key slot.\n")); out: crypt_free_volume_key(vk); return r ?: keyslot_new; } int crypt_keyslot_add_by_keyfile_offset(struct crypt_device *cd, int keyslot, const char *keyfile, size_t keyfile_size, size_t keyfile_offset, const char *new_keyfile, size_t new_keyfile_size, size_t new_keyfile_offset) { struct volume_key *vk = NULL; char *password = NULL; size_t passwordLen; char *new_password = NULL; size_t new_passwordLen; int r; log_dbg("Adding new keyslot, existing keyfile %s, new keyfile %s.", keyfile ?: "[none]", new_keyfile ?: "[none]"); if (!isLUKS(cd->type)) { log_err(cd, _("This operation is supported only for LUKS device.\n")); return -EINVAL; } r = keyslot_verify_or_find_empty(cd, &keyslot); if (r) return r; if (!LUKS_keyslot_active_count(&cd->u.luks1.hdr)) { /* No slots used, try to use pre-generated key in header */ if (cd->volume_key) { vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key); r = vk ? 0 : -ENOMEM; } else { log_err(cd, _("Cannot add key slot, all slots disabled and no volume key provided.\n")); return -EINVAL; } } else { /* Read password from file of (if NULL) from terminal */ if (keyfile) r = key_from_file(cd, _("Enter any passphrase: "), &password, &passwordLen, keyfile, keyfile_offset, keyfile_size); else r = key_from_terminal(cd, _("Enter any passphrase: "), &password, &passwordLen, 0); if (r < 0) goto out; r = LUKS_open_key_with_hdr(CRYPT_ANY_SLOT, password, passwordLen, &cd->u.luks1.hdr, &vk, cd); } if(r < 0) goto out; if (new_keyfile) r = key_from_file(cd, _("Enter new passphrase for key slot: "), &new_password, &new_passwordLen, new_keyfile, new_keyfile_offset, new_keyfile_size); else r = key_from_terminal(cd, _("Enter new passphrase for key slot: "), &new_password, &new_passwordLen, 1); if (r < 0) goto out; r = LUKS_set_key(keyslot, new_password, new_passwordLen, &cd->u.luks1.hdr, vk, cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, cd); out: crypt_safe_free(password); crypt_safe_free(new_password); crypt_free_volume_key(vk); return r < 0 ? r : keyslot; } int crypt_keyslot_add_by_keyfile(struct crypt_device *cd, int keyslot, const char *keyfile, size_t keyfile_size, const char *new_keyfile, size_t new_keyfile_size) { return crypt_keyslot_add_by_keyfile_offset(cd, keyslot, keyfile, keyfile_size, 0, new_keyfile, new_keyfile_size, 0); } int crypt_keyslot_add_by_volume_key(struct crypt_device *cd, int keyslot, const char *volume_key, size_t volume_key_size, const char *passphrase, size_t passphrase_size) { struct volume_key *vk = NULL; int r = -EINVAL; char *new_password = NULL; size_t new_passwordLen; log_dbg("Adding new keyslot %d using volume key.", keyslot); if (!isLUKS(cd->type)) { log_err(cd, _("This operation is supported only for LUKS device.\n")); return -EINVAL; } if (volume_key) vk = crypt_alloc_volume_key(volume_key_size, volume_key); else if (cd->volume_key) vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key); if (!vk) return -ENOMEM; r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk); if (r < 0) { log_err(cd, _("Volume key does not match the volume.\n")); goto out; } r = keyslot_verify_or_find_empty(cd, &keyslot); if (r) goto out; if (!passphrase) { r = key_from_terminal(cd, _("Enter new passphrase for key slot: "), &new_password, &new_passwordLen, 1); if (r < 0) goto out; passphrase = new_password; passphrase_size = new_passwordLen; } r = LUKS_set_key(keyslot, passphrase, passphrase_size, &cd->u.luks1.hdr, vk, cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, cd); out: crypt_safe_free(new_password); crypt_free_volume_key(vk); return (r < 0) ? r : keyslot; } int crypt_keyslot_destroy(struct crypt_device *cd, int keyslot) { crypt_keyslot_info ki; log_dbg("Destroying keyslot %d.", keyslot); if (!isLUKS(cd->type)) { log_err(cd, _("This operation is supported only for LUKS device.\n")); return -EINVAL; } ki = crypt_keyslot_status(cd, keyslot); if (ki == CRYPT_SLOT_INVALID) { log_err(cd, _("Key slot %d is invalid.\n"), keyslot); return -EINVAL; } if (ki == CRYPT_SLOT_INACTIVE) { log_err(cd, _("Key slot %d is not used.\n"), keyslot); return -EINVAL; } return LUKS_del_key(keyslot, &cd->u.luks1.hdr, cd); } // activation/deactivation of device mapping int crypt_activate_by_passphrase(struct crypt_device *cd, const char *name, int keyslot, const char *passphrase, size_t passphrase_size, uint32_t flags) { crypt_status_info ci; struct volume_key *vk = NULL; char *read_passphrase = NULL; size_t passphraseLen = 0; int r; log_dbg("%s volume %s [keyslot %d] using %spassphrase.", name ? "Activating" : "Checking", name ?: "", keyslot, passphrase ? "" : "[none] "); if (name) { ci = crypt_status(NULL, name); if (ci == CRYPT_INVALID) return -EINVAL; else if (ci >= CRYPT_ACTIVE) { log_err(cd, _("Device %s already exists.\n"), name); return -EEXIST; } } /* plain, use hashed passphrase */ if (isPLAIN(cd->type)) { if (!name) return -EINVAL; if (!passphrase) { r = key_from_terminal(cd, NULL, &read_passphrase, &passphraseLen, 0); if (r < 0) goto out; passphrase = read_passphrase; passphrase_size = passphraseLen; } r = process_key(cd, cd->u.plain.hdr.hash, cd->u.plain.key_size, passphrase, passphrase_size, &vk); if (r < 0) goto out; r = PLAIN_activate(cd, name, vk, cd->u.plain.hdr.size, flags); keyslot = 0; } else if (isLUKS(cd->type)) { /* provided passphrase, do not retry */ if (passphrase) { r = LUKS_open_key_with_hdr(keyslot, passphrase, passphrase_size, &cd->u.luks1.hdr, &vk, cd); } else r = volume_key_by_terminal_passphrase(cd, keyslot, &vk); if (r >= 0) { keyslot = r; if (name) r = LUKS1_activate(cd, name, vk, flags); } } else r = -EINVAL; out: crypt_safe_free(read_passphrase); crypt_free_volume_key(vk); return r < 0 ? r : keyslot; } int crypt_activate_by_keyfile_offset(struct crypt_device *cd, const char *name, int keyslot, const char *keyfile, size_t keyfile_size, size_t keyfile_offset, uint32_t flags) { crypt_status_info ci; struct volume_key *vk = NULL; char *passphrase_read = NULL; size_t passphrase_size_read; unsigned int key_count = 0; int r; log_dbg("Activating volume %s [keyslot %d] using keyfile %s.", name ?: "", keyslot, keyfile ?: "[none]"); if (name) { ci = crypt_status(NULL, name); if (ci == CRYPT_INVALID) return -EINVAL; else if (ci >= CRYPT_ACTIVE) { log_err(cd, _("Device %s already exists.\n"), name); return -EEXIST; } } if (!keyfile) return -EINVAL; if (isPLAIN(cd->type)) { if (!name) return -EINVAL; r = key_from_file(cd, _("Enter passphrase: "), &passphrase_read, &passphrase_size_read, keyfile, keyfile_offset, keyfile_size); if (r < 0) goto out; r = process_key(cd, cd->u.plain.hdr.hash, cd->u.plain.key_size, passphrase_read, passphrase_size_read, &vk); if (r < 0) goto out; r = PLAIN_activate(cd, name, vk, cd->u.plain.hdr.size, flags); } else if (isLUKS(cd->type)) { r = key_from_file(cd, _("Enter passphrase: "), &passphrase_read, &passphrase_size_read, keyfile, keyfile_offset, keyfile_size); if (r < 0) goto out; r = LUKS_open_key_with_hdr(keyslot, passphrase_read, passphrase_size_read, &cd->u.luks1.hdr, &vk, cd); if (r < 0) goto out; keyslot = r; if (name) { r = LUKS1_activate(cd, name, vk, flags); if (r < 0) goto out; } r = keyslot; } else if (isLOOPAES(cd->type)) { r = key_from_file(cd, NULL, &passphrase_read, &passphrase_size_read, keyfile, keyfile_offset, keyfile_size); if (r < 0) goto out; r = LOOPAES_parse_keyfile(cd, &vk, cd->u.loopaes.hdr.hash, &key_count, passphrase_read, passphrase_size_read); if (r < 0) goto out; if (name) r = LOOPAES_activate(cd, name, cd->u.loopaes.cipher, key_count, vk, flags); } else r = -EINVAL; out: crypt_safe_free(passphrase_read); crypt_free_volume_key(vk); return r; } int crypt_activate_by_keyfile(struct crypt_device *cd, const char *name, int keyslot, const char *keyfile, size_t keyfile_size, uint32_t flags) { return crypt_activate_by_keyfile_offset(cd, name, keyslot, keyfile, keyfile_size, 0, flags); } int crypt_activate_by_volume_key(struct crypt_device *cd, const char *name, const char *volume_key, size_t volume_key_size, uint32_t flags) { crypt_status_info ci; struct volume_key *vk = NULL; int r = -EINVAL; log_dbg("Activating volume %s by volume key.", name ?: "[none]"); if (name) { ci = crypt_status(NULL, name); if (ci == CRYPT_INVALID) return -EINVAL; else if (ci >= CRYPT_ACTIVE) { log_err(cd, _("Device %s already exists.\n"), name); return -EEXIST; } } /* use key directly, no hash */ if (isPLAIN(cd->type)) { if (!name) return -EINVAL; if (!volume_key || !volume_key_size || volume_key_size != cd->u.plain.key_size) { log_err(cd, _("Incorrect volume key specified for plain device.\n")); return -EINVAL; } vk = crypt_alloc_volume_key(volume_key_size, volume_key); if (!vk) return -ENOMEM; r = PLAIN_activate(cd, name, vk, cd->u.plain.hdr.size, flags); } else if (isLUKS(cd->type)) { /* If key is not provided, try to use internal key */ if (!volume_key) { if (!cd->volume_key) { log_err(cd, _("Volume key does not match the volume.\n")); return -EINVAL; } volume_key_size = cd->volume_key->keylength; volume_key = cd->volume_key->key; } vk = crypt_alloc_volume_key(volume_key_size, volume_key); if (!vk) return -ENOMEM; r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk); if (r == -EPERM) log_err(cd, _("Volume key does not match the volume.\n")); if (!r && name) r = LUKS1_activate(cd, name, vk, flags); } else if (isVERITY(cd->type)) { /* volume_key == root hash */ if (!volume_key || !volume_key_size) { log_err(cd, _("Incorrect root hash specified for verity device.\n")); return -EINVAL; } r = VERITY_activate(cd, name, volume_key, volume_key_size, &cd->u.verity.hdr, CRYPT_ACTIVATE_READONLY); if (r == -EPERM) { free(cd->u.verity.root_hash); cd->u.verity.root_hash = NULL; } if (!r) { cd->u.verity.root_hash_size = volume_key_size; if (!cd->u.verity.root_hash) cd->u.verity.root_hash = malloc(volume_key_size); if (cd->u.verity.root_hash) memcpy(cd->u.verity.root_hash, volume_key, volume_key_size); } } else if (isTCRYPT(cd->type)) { if (!name) return 0; r = TCRYPT_activate(cd, name, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params, flags); } else log_err(cd, _("Device type is not properly initialised.\n")); crypt_free_volume_key(vk); return r; } int crypt_deactivate(struct crypt_device *cd, const char *name) { struct crypt_device *fake_cd = NULL; int r; if (!name) return -EINVAL; log_dbg("Deactivating volume %s.", name); if (!cd) { r = crypt_init_by_name(&fake_cd, name); if (r < 0) return r; cd = fake_cd; } switch (crypt_status(cd, name)) { case CRYPT_ACTIVE: case CRYPT_BUSY: if (isTCRYPT(cd->type)) r = TCRYPT_deactivate(cd, name); else r = dm_remove_device(cd, name, 0, 0); if (r < 0 && crypt_status(cd, name) == CRYPT_BUSY) { log_err(cd, _("Device %s is still in use.\n"), name); r = -EBUSY; } break; case CRYPT_INACTIVE: log_err(cd, _("Device %s is not active.\n"), name); r = -ENODEV; break; default: log_err(cd, _("Invalid device %s.\n"), name); r = -EINVAL; } crypt_free(fake_cd); return r; } int crypt_volume_key_get(struct crypt_device *cd, int keyslot, char *volume_key, size_t *volume_key_size, const char *passphrase, size_t passphrase_size) { struct volume_key *vk = NULL; unsigned key_len; int r = -EINVAL; if (crypt_fips_mode()) { log_err(cd, _("Function not available in FIPS mode.\n")); return -EACCES; } key_len = crypt_get_volume_key_size(cd); if (key_len > *volume_key_size) { log_err(cd, _("Volume key buffer too small.\n")); return -ENOMEM; } if (isPLAIN(cd->type) && cd->u.plain.hdr.hash) { r = process_key(cd, cd->u.plain.hdr.hash, key_len, passphrase, passphrase_size, &vk); if (r < 0) log_err(cd, _("Cannot retrieve volume key for plain device.\n")); } else if (isLUKS(cd->type)) { r = LUKS_open_key_with_hdr(keyslot, passphrase, passphrase_size, &cd->u.luks1.hdr, &vk, cd); } else if (isTCRYPT(cd->type)) { r = TCRYPT_get_volume_key(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params, &vk); } else log_err(cd, _("This operation is not supported for %s crypt device.\n"), cd->type ?: "(none)"); if (r >= 0) { memcpy(volume_key, vk->key, vk->keylength); *volume_key_size = vk->keylength; } crypt_free_volume_key(vk); return r; } int crypt_volume_key_verify(struct crypt_device *cd, const char *volume_key, size_t volume_key_size) { struct volume_key *vk; int r; if (!isLUKS(cd->type)) { log_err(cd, _("This operation is supported only for LUKS device.\n")); return -EINVAL; } vk = crypt_alloc_volume_key(volume_key_size, volume_key); if (!vk) return -ENOMEM; r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk); if (r == -EPERM) log_err(cd, _("Volume key does not match the volume.\n")); crypt_free_volume_key(vk); return r; } void crypt_set_timeout(struct crypt_device *cd, uint64_t timeout_sec) { log_dbg("Timeout set to %" PRIu64 " miliseconds.", timeout_sec); cd->timeout = timeout_sec; } void crypt_set_password_retry(struct crypt_device *cd, int tries) { log_dbg("Password retry count set to %d.", tries); cd->tries = tries; } void crypt_set_iteration_time(struct crypt_device *cd, uint64_t iteration_time_ms) { log_dbg("Iteration time set to %" PRIu64 " miliseconds.", iteration_time_ms); cd->iteration_time = iteration_time_ms; } void crypt_set_iterarion_time(struct crypt_device *cd, uint64_t iteration_time_ms) { crypt_set_iteration_time(cd, iteration_time_ms); } void crypt_set_password_verify(struct crypt_device *cd, int password_verify) { log_dbg("Password verification %s.", password_verify ? "enabled" : "disabled"); cd->password_verify = password_verify ? 1 : 0; } void crypt_set_rng_type(struct crypt_device *cd, int rng_type) { switch (rng_type) { case CRYPT_RNG_URANDOM: case CRYPT_RNG_RANDOM: log_dbg("RNG set to %d (%s).", rng_type, rng_type ? "random" : "urandom"); cd->rng_type = rng_type; } } int crypt_get_rng_type(struct crypt_device *cd) { if (!cd) return -EINVAL; return cd->rng_type; } int crypt_memory_lock(struct crypt_device *cd, int lock) { return lock ? crypt_memlock_inc(cd) : crypt_memlock_dec(cd); } // reporting crypt_status_info crypt_status(struct crypt_device *cd, const char *name) { int r; if (!cd) dm_backend_init(); r = dm_status_device(cd, name); if (!cd) dm_backend_exit(); if (r < 0 && r != -ENODEV) return CRYPT_INVALID; if (r == 0) return CRYPT_ACTIVE; if (r > 0) return CRYPT_BUSY; return CRYPT_INACTIVE; } static void hexprint(struct crypt_device *cd, const char *d, int n, const char *sep) { int i; for(i = 0; i < n; i++) log_std(cd, "%02hhx%s", (const char)d[i], sep); } static int _luks_dump(struct crypt_device *cd) { int i; log_std(cd, "LUKS header information for %s\n\n", mdata_device_path(cd)); log_std(cd, "Version: \t%d\n", cd->u.luks1.hdr.version); log_std(cd, "Cipher name: \t%s\n", cd->u.luks1.hdr.cipherName); log_std(cd, "Cipher mode: \t%s\n", cd->u.luks1.hdr.cipherMode); log_std(cd, "Hash spec: \t%s\n", cd->u.luks1.hdr.hashSpec); log_std(cd, "Payload offset:\t%d\n", cd->u.luks1.hdr.payloadOffset); log_std(cd, "MK bits: \t%d\n", cd->u.luks1.hdr.keyBytes * 8); log_std(cd, "MK digest: \t"); hexprint(cd, cd->u.luks1.hdr.mkDigest, LUKS_DIGESTSIZE, " "); log_std(cd, "\n"); log_std(cd, "MK salt: \t"); hexprint(cd, cd->u.luks1.hdr.mkDigestSalt, LUKS_SALTSIZE/2, " "); log_std(cd, "\n \t"); hexprint(cd, cd->u.luks1.hdr.mkDigestSalt+LUKS_SALTSIZE/2, LUKS_SALTSIZE/2, " "); log_std(cd, "\n"); log_std(cd, "MK iterations: \t%d\n", cd->u.luks1.hdr.mkDigestIterations); log_std(cd, "UUID: \t%s\n\n", cd->u.luks1.hdr.uuid); for(i = 0; i < LUKS_NUMKEYS; i++) { if(cd->u.luks1.hdr.keyblock[i].active == LUKS_KEY_ENABLED) { log_std(cd, "Key Slot %d: ENABLED\n",i); log_std(cd, "\tIterations: \t%d\n", cd->u.luks1.hdr.keyblock[i].passwordIterations); log_std(cd, "\tSalt: \t"); hexprint(cd, cd->u.luks1.hdr.keyblock[i].passwordSalt, LUKS_SALTSIZE/2, " "); log_std(cd, "\n\t \t"); hexprint(cd, cd->u.luks1.hdr.keyblock[i].passwordSalt + LUKS_SALTSIZE/2, LUKS_SALTSIZE/2, " "); log_std(cd, "\n"); log_std(cd, "\tKey material offset:\t%d\n", cd->u.luks1.hdr.keyblock[i].keyMaterialOffset); log_std(cd, "\tAF stripes: \t%d\n", cd->u.luks1.hdr.keyblock[i].stripes); } else log_std(cd, "Key Slot %d: DISABLED\n", i); } return 0; } static int _verity_dump(struct crypt_device *cd) { log_std(cd, "VERITY header information for %s\n", mdata_device_path(cd)); log_std(cd, "UUID: \t%s\n", cd->u.verity.uuid ?: ""); log_std(cd, "Hash type: \t%u\n", cd->u.verity.hdr.hash_type); log_std(cd, "Data blocks: \t%" PRIu64 "\n", cd->u.verity.hdr.data_size); log_std(cd, "Data block size: \t%u\n", cd->u.verity.hdr.data_block_size); log_std(cd, "Hash block size: \t%u\n", cd->u.verity.hdr.hash_block_size); log_std(cd, "Hash algorithm: \t%s\n", cd->u.verity.hdr.hash_name); log_std(cd, "Salt: \t"); if (cd->u.verity.hdr.salt_size) hexprint(cd, cd->u.verity.hdr.salt, cd->u.verity.hdr.salt_size, ""); else log_std(cd, "-"); log_std(cd, "\n"); if (cd->u.verity.root_hash) { log_std(cd, "Root hash: \t"); hexprint(cd, cd->u.verity.root_hash, cd->u.verity.root_hash_size, ""); log_std(cd, "\n"); } return 0; } int crypt_dump(struct crypt_device *cd) { if (isLUKS(cd->type)) return _luks_dump(cd); else if (isVERITY(cd->type)) return _verity_dump(cd); else if (isTCRYPT(cd->type)) return TCRYPT_dump(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); log_err(cd, _("Dump operation is not supported for this device type.\n")); return -EINVAL; } const char *crypt_get_cipher(struct crypt_device *cd) { if (isPLAIN(cd->type)) return cd->u.plain.cipher; if (isLUKS(cd->type)) return cd->u.luks1.hdr.cipherName; if (isLOOPAES(cd->type)) return cd->u.loopaes.cipher; if (isTCRYPT(cd->type)) return cd->u.tcrypt.params.cipher; return NULL; } const char *crypt_get_cipher_mode(struct crypt_device *cd) { if (isPLAIN(cd->type)) return cd->u.plain.cipher_mode; if (isLUKS(cd->type)) return cd->u.luks1.hdr.cipherMode; if (isLOOPAES(cd->type)) return cd->u.loopaes.cipher_mode; if (isTCRYPT(cd->type)) return cd->u.tcrypt.params.mode; return NULL; } const char *crypt_get_uuid(struct crypt_device *cd) { if (isLUKS(cd->type)) return cd->u.luks1.hdr.uuid; if (isVERITY(cd->type)) return cd->u.verity.uuid; return NULL; } const char *crypt_get_device_name(struct crypt_device *cd) { const char *path = device_block_path(cd->device); if (!path) path = device_path(cd->device); return path; } int crypt_get_volume_key_size(struct crypt_device *cd) { if (isPLAIN(cd->type)) return cd->u.plain.key_size; if (isLUKS(cd->type)) return cd->u.luks1.hdr.keyBytes; if (isLOOPAES(cd->type)) return cd->u.loopaes.key_size; if (isVERITY(cd->type)) return cd->u.verity.root_hash_size; if (isTCRYPT(cd->type)) return cd->u.tcrypt.params.key_size; return 0; } uint64_t crypt_get_data_offset(struct crypt_device *cd) { if (isPLAIN(cd->type)) return cd->u.plain.hdr.offset; if (isLUKS(cd->type)) return cd->u.luks1.hdr.payloadOffset; if (isLOOPAES(cd->type)) return cd->u.loopaes.hdr.offset; if (isTCRYPT(cd->type)) return TCRYPT_get_data_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); return 0; } uint64_t crypt_get_iv_offset(struct crypt_device *cd) { if (isPLAIN(cd->type)) return cd->u.plain.hdr.skip; if (isLUKS(cd->type)) return 0; if (isLOOPAES(cd->type)) return cd->u.loopaes.hdr.skip; if (isTCRYPT(cd->type)) return TCRYPT_get_iv_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); return 0; } crypt_keyslot_info crypt_keyslot_status(struct crypt_device *cd, int keyslot) { if (!isLUKS(cd->type)) { log_err(cd, _("This operation is supported only for LUKS device.\n")); return CRYPT_SLOT_INVALID; } return LUKS_keyslot_info(&cd->u.luks1.hdr, keyslot); } int crypt_keyslot_max(const char *type) { if (type && isLUKS(type)) return LUKS_NUMKEYS; return -EINVAL; } int crypt_keyslot_area(struct crypt_device *cd, int keyslot, uint64_t *offset, uint64_t *length) { if (!isLUKS(cd->type)) return -EINVAL; return LUKS_keyslot_area(&cd->u.luks1.hdr, keyslot, offset, length); } const char *crypt_get_type(struct crypt_device *cd) { return cd->type; } int crypt_get_verity_info(struct crypt_device *cd, struct crypt_params_verity *vp) { if (!isVERITY(cd->type) || !vp) return -EINVAL; vp->data_device = device_path(cd->device); vp->hash_device = mdata_device_path(cd); vp->hash_name = cd->u.verity.hdr.hash_name; vp->salt = cd->u.verity.hdr.salt; vp->salt_size = cd->u.verity.hdr.salt_size; vp->data_block_size = cd->u.verity.hdr.data_block_size; vp->hash_block_size = cd->u.verity.hdr.hash_block_size; vp->data_size = cd->u.verity.hdr.data_size; vp->hash_area_offset = cd->u.verity.hdr.hash_area_offset; vp->hash_type = cd->u.verity.hdr.hash_type; vp->flags = cd->u.verity.hdr.flags & CRYPT_VERITY_NO_HEADER; return 0; } int crypt_get_active_device(struct crypt_device *cd, const char *name, struct crypt_active_device *cad) { struct crypt_dm_active_device dmd; int r; r = dm_query_device(cd, name, 0, &dmd); if (r < 0) return r; if (dmd.target != DM_CRYPT && dmd.target != DM_VERITY) return -ENOTSUP; if (cd && isTCRYPT(cd->type)) { cad->offset = TCRYPT_get_data_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); cad->iv_offset = TCRYPT_get_iv_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); } else { cad->offset = dmd.u.crypt.offset; cad->iv_offset = dmd.u.crypt.iv_offset; } cad->size = dmd.size; cad->flags = dmd.flags; return 0; }