From f33599c1441553954832851a0cec1e4ef570162f Mon Sep 17 00:00:00 2001 From: Jim Meyering Date: Sun, 2 Mar 2008 12:16:49 +0100 Subject: Create sha256 and sha512 modules and move files into gl/. * bootstrap.conf (gnulib_modules): Add sha256 and sha512. * m4/prereq.m4: Don't require gl_SHA256 or gl_SHA512. * gl/modules/sha512: New file. * gl/modules/sha256: New file. * m4/sha256.m4: Move to ... * gl/m4/sha256.m4: ...here, removing use of AC_SOURCES. * m4/sha512.m4: Move to ... * gl/m4/sha512.m4: ...here, removing use of AC_SOURCES. * lib/sha256.c, lib/sha256.h: Move to ... * gl/lib/sha256.c, gl/lib/sha256.h: ...here. * lib/sha512.c, lib/sha512.h: Move to ... * gl/lib/sha512.c, gl/lib/sha512.h: ...here. * lib/u64.h: Move to ... * gl/lib/u64.h: ...here. --- lib/sha256.c | 550 ------------------------------------------------------ lib/sha256.h | 81 -------- lib/sha512.c | 600 ----------------------------------------------------------- lib/sha512.h | 85 --------- lib/u64.h | 159 ---------------- 5 files changed, 1475 deletions(-) delete mode 100644 lib/sha256.c delete mode 100644 lib/sha256.h delete mode 100644 lib/sha512.c delete mode 100644 lib/sha512.h delete mode 100644 lib/u64.h (limited to 'lib') diff --git a/lib/sha256.c b/lib/sha256.c deleted file mode 100644 index 4a632c9fb..000000000 --- a/lib/sha256.c +++ /dev/null @@ -1,550 +0,0 @@ -/* sha256.c - Functions to compute SHA256 and SHA224 message digest of files or - memory blocks according to the NIST specification FIPS-180-2. - - Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc. - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . */ - -/* Written by David Madore, considerably copypasting from - Scott G. Miller's sha1.c -*/ - -#include - -#include "sha256.h" - -#include -#include - -#if USE_UNLOCKED_IO -# include "unlocked-io.h" -#endif - -#ifdef WORDS_BIGENDIAN -# define SWAP(n) (n) -#else -# define SWAP(n) \ - (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) -#endif - -#define BLOCKSIZE 4096 -#if BLOCKSIZE % 64 != 0 -# error "invalid BLOCKSIZE" -#endif - -/* This array contains the bytes used to pad the buffer to the next - 64-byte boundary. */ -static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; - - -/* - Takes a pointer to a 256 bit block of data (eight 32 bit ints) and - intializes it to the start constants of the SHA256 algorithm. This - must be called before using hash in the call to sha256_hash -*/ -void -sha256_init_ctx (struct sha256_ctx *ctx) -{ - ctx->state[0] = 0x6a09e667UL; - ctx->state[1] = 0xbb67ae85UL; - ctx->state[2] = 0x3c6ef372UL; - ctx->state[3] = 0xa54ff53aUL; - ctx->state[4] = 0x510e527fUL; - ctx->state[5] = 0x9b05688cUL; - ctx->state[6] = 0x1f83d9abUL; - ctx->state[7] = 0x5be0cd19UL; - - ctx->total[0] = ctx->total[1] = 0; - ctx->buflen = 0; -} - -void -sha224_init_ctx (struct sha256_ctx *ctx) -{ - ctx->state[0] = 0xc1059ed8UL; - ctx->state[1] = 0x367cd507UL; - ctx->state[2] = 0x3070dd17UL; - ctx->state[3] = 0xf70e5939UL; - ctx->state[4] = 0xffc00b31UL; - ctx->state[5] = 0x68581511UL; - ctx->state[6] = 0x64f98fa7UL; - ctx->state[7] = 0xbefa4fa4UL; - - ctx->total[0] = ctx->total[1] = 0; - ctx->buflen = 0; -} - -/* Copy the value from v into the memory location pointed to by *cp, - If your architecture allows unaligned access this is equivalent to - * (uint32_t *) cp = v */ -static inline void -set_uint32 (char *cp, uint32_t v) -{ - memcpy (cp, &v, sizeof v); -} - -/* Put result from CTX in first 32 bytes following RESBUF. The result - must be in little endian byte order. */ -void * -sha256_read_ctx (const struct sha256_ctx *ctx, void *resbuf) -{ - int i; - char *r = resbuf; - - for (i = 0; i < 8; i++) - set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); - - return resbuf; -} - -void * -sha224_read_ctx (const struct sha256_ctx *ctx, void *resbuf) -{ - int i; - char *r = resbuf; - - for (i = 0; i < 7; i++) - set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); - - return resbuf; -} - -/* Process the remaining bytes in the internal buffer and the usual - prolog according to the standard and write the result to RESBUF. */ -static void -sha256_conclude_ctx (struct sha256_ctx *ctx) -{ - /* Take yet unprocessed bytes into account. */ - uint32_t bytes = ctx->buflen; - size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; - - /* Now count remaining bytes. */ - ctx->total[0] += bytes; - if (ctx->total[0] < bytes) - ++ctx->total[1]; - - /* Put the 64-bit file length in *bits* at the end of the buffer. */ - ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); - ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); - - memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); - - /* Process last bytes. */ - sha256_process_block (ctx->buffer, size * 4, ctx); -} - -void * -sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf) -{ - sha256_conclude_ctx (ctx); - return sha256_read_ctx (ctx, resbuf); -} - -void * -sha224_finish_ctx (struct sha256_ctx *ctx, void *resbuf) -{ - sha256_conclude_ctx (ctx); - return sha224_read_ctx (ctx, resbuf); -} - -/* Compute SHA256 message digest for bytes read from STREAM. The - resulting message digest number will be written into the 32 bytes - beginning at RESBLOCK. */ -int -sha256_stream (FILE *stream, void *resblock) -{ - struct sha256_ctx ctx; - char buffer[BLOCKSIZE + 72]; - size_t sum; - - /* Initialize the computation context. */ - sha256_init_ctx (&ctx); - - /* Iterate over full file contents. */ - while (1) - { - /* We read the file in blocks of BLOCKSIZE bytes. One call of the - computation function processes the whole buffer so that with the - next round of the loop another block can be read. */ - size_t n; - sum = 0; - - /* Read block. Take care for partial reads. */ - while (1) - { - n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); - - sum += n; - - if (sum == BLOCKSIZE) - break; - - if (n == 0) - { - /* Check for the error flag IFF N == 0, so that we don't - exit the loop after a partial read due to e.g., EAGAIN - or EWOULDBLOCK. */ - if (ferror (stream)) - return 1; - goto process_partial_block; - } - - /* We've read at least one byte, so ignore errors. But always - check for EOF, since feof may be true even though N > 0. - Otherwise, we could end up calling fread after EOF. */ - if (feof (stream)) - goto process_partial_block; - } - - /* Process buffer with BLOCKSIZE bytes. Note that - BLOCKSIZE % 64 == 0 - */ - sha256_process_block (buffer, BLOCKSIZE, &ctx); - } - - process_partial_block:; - - /* Process any remaining bytes. */ - if (sum > 0) - sha256_process_bytes (buffer, sum, &ctx); - - /* Construct result in desired memory. */ - sha256_finish_ctx (&ctx, resblock); - return 0; -} - -/* FIXME: Avoid code duplication */ -int -sha224_stream (FILE *stream, void *resblock) -{ - struct sha256_ctx ctx; - char buffer[BLOCKSIZE + 72]; - size_t sum; - - /* Initialize the computation context. */ - sha224_init_ctx (&ctx); - - /* Iterate over full file contents. */ - while (1) - { - /* We read the file in blocks of BLOCKSIZE bytes. One call of the - computation function processes the whole buffer so that with the - next round of the loop another block can be read. */ - size_t n; - sum = 0; - - /* Read block. Take care for partial reads. */ - while (1) - { - n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); - - sum += n; - - if (sum == BLOCKSIZE) - break; - - if (n == 0) - { - /* Check for the error flag IFF N == 0, so that we don't - exit the loop after a partial read due to e.g., EAGAIN - or EWOULDBLOCK. */ - if (ferror (stream)) - return 1; - goto process_partial_block; - } - - /* We've read at least one byte, so ignore errors. But always - check for EOF, since feof may be true even though N > 0. - Otherwise, we could end up calling fread after EOF. */ - if (feof (stream)) - goto process_partial_block; - } - - /* Process buffer with BLOCKSIZE bytes. Note that - BLOCKSIZE % 64 == 0 - */ - sha256_process_block (buffer, BLOCKSIZE, &ctx); - } - - process_partial_block:; - - /* Process any remaining bytes. */ - if (sum > 0) - sha256_process_bytes (buffer, sum, &ctx); - - /* Construct result in desired memory. */ - sha224_finish_ctx (&ctx, resblock); - return 0; -} - -/* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The - result is always in little endian byte order, so that a byte-wise - output yields to the wanted ASCII representation of the message - digest. */ -void * -sha256_buffer (const char *buffer, size_t len, void *resblock) -{ - struct sha256_ctx ctx; - - /* Initialize the computation context. */ - sha256_init_ctx (&ctx); - - /* Process whole buffer but last len % 64 bytes. */ - sha256_process_bytes (buffer, len, &ctx); - - /* Put result in desired memory area. */ - return sha256_finish_ctx (&ctx, resblock); -} - -void * -sha224_buffer (const char *buffer, size_t len, void *resblock) -{ - struct sha256_ctx ctx; - - /* Initialize the computation context. */ - sha224_init_ctx (&ctx); - - /* Process whole buffer but last len % 64 bytes. */ - sha256_process_bytes (buffer, len, &ctx); - - /* Put result in desired memory area. */ - return sha224_finish_ctx (&ctx, resblock); -} - -void -sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx) -{ - /* When we already have some bits in our internal buffer concatenate - both inputs first. */ - if (ctx->buflen != 0) - { - size_t left_over = ctx->buflen; - size_t add = 128 - left_over > len ? len : 128 - left_over; - - memcpy (&((char *) ctx->buffer)[left_over], buffer, add); - ctx->buflen += add; - - if (ctx->buflen > 64) - { - sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx); - - ctx->buflen &= 63; - /* The regions in the following copy operation cannot overlap. */ - memcpy (ctx->buffer, - &((char *) ctx->buffer)[(left_over + add) & ~63], - ctx->buflen); - } - - buffer = (const char *) buffer + add; - len -= add; - } - - /* Process available complete blocks. */ - if (len >= 64) - { -#if !_STRING_ARCH_unaligned -# define alignof(type) offsetof (struct { char c; type x; }, x) -# define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0) - if (UNALIGNED_P (buffer)) - while (len > 64) - { - sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); - buffer = (const char *) buffer + 64; - len -= 64; - } - else -#endif - { - sha256_process_block (buffer, len & ~63, ctx); - buffer = (const char *) buffer + (len & ~63); - len &= 63; - } - } - - /* Move remaining bytes in internal buffer. */ - if (len > 0) - { - size_t left_over = ctx->buflen; - - memcpy (&((char *) ctx->buffer)[left_over], buffer, len); - left_over += len; - if (left_over >= 64) - { - sha256_process_block (ctx->buffer, 64, ctx); - left_over -= 64; - memcpy (ctx->buffer, &ctx->buffer[16], left_over); - } - ctx->buflen = left_over; - } -} - -/* --- Code below is the primary difference between sha1.c and sha256.c --- */ - -/* SHA256 round constants */ -#define K(I) sha256_round_constants[I] -static const uint32_t sha256_round_constants[64] = { - 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, - 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, - 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, - 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, - 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, - 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, - 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, - 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, - 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, - 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, - 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, - 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, - 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, - 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, - 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, - 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL, -}; - -/* Round functions. */ -#define F2(A,B,C) ( ( A & B ) | ( C & ( A | B ) ) ) -#define F1(E,F,G) ( G ^ ( E & ( F ^ G ) ) ) - -/* Process LEN bytes of BUFFER, accumulating context into CTX. - It is assumed that LEN % 64 == 0. - Most of this code comes from GnuPG's cipher/sha1.c. */ - -void -sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx) -{ - const uint32_t *words = buffer; - size_t nwords = len / sizeof (uint32_t); - const uint32_t *endp = words + nwords; - uint32_t x[16]; - uint32_t a = ctx->state[0]; - uint32_t b = ctx->state[1]; - uint32_t c = ctx->state[2]; - uint32_t d = ctx->state[3]; - uint32_t e = ctx->state[4]; - uint32_t f = ctx->state[5]; - uint32_t g = ctx->state[6]; - uint32_t h = ctx->state[7]; - - /* First increment the byte count. FIPS PUB 180-2 specifies the possible - length of the file up to 2^64 bits. Here we only compute the - number of bytes. Do a double word increment. */ - ctx->total[0] += len; - if (ctx->total[0] < len) - ++ctx->total[1]; - -#define rol(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) -#define S0(x) (rol(x,25)^rol(x,14)^(x>>3)) -#define S1(x) (rol(x,15)^rol(x,13)^(x>>10)) -#define SS0(x) (rol(x,30)^rol(x,19)^rol(x,10)) -#define SS1(x) (rol(x,26)^rol(x,21)^rol(x,7)) - -#define M(I) ( tm = S1(x[(I-2)&0x0f]) + x[(I-7)&0x0f] \ - + S0(x[(I-15)&0x0f]) + x[I&0x0f] \ - , x[I&0x0f] = tm ) - -#define R(A,B,C,D,E,F,G,H,K,M) do { t0 = SS0(A) + F2(A,B,C); \ - t1 = H + SS1(E) \ - + F1(E,F,G) \ - + K \ - + M; \ - D += t1; H = t0 + t1; \ - } while(0) - - while (words < endp) - { - uint32_t tm; - uint32_t t0, t1; - int t; - /* FIXME: see sha1.c for a better implementation. */ - for (t = 0; t < 16; t++) - { - x[t] = SWAP (*words); - words++; - } - - R( a, b, c, d, e, f, g, h, K( 0), x[ 0] ); - R( h, a, b, c, d, e, f, g, K( 1), x[ 1] ); - R( g, h, a, b, c, d, e, f, K( 2), x[ 2] ); - R( f, g, h, a, b, c, d, e, K( 3), x[ 3] ); - R( e, f, g, h, a, b, c, d, K( 4), x[ 4] ); - R( d, e, f, g, h, a, b, c, K( 5), x[ 5] ); - R( c, d, e, f, g, h, a, b, K( 6), x[ 6] ); - R( b, c, d, e, f, g, h, a, K( 7), x[ 7] ); - R( a, b, c, d, e, f, g, h, K( 8), x[ 8] ); - R( h, a, b, c, d, e, f, g, K( 9), x[ 9] ); - R( g, h, a, b, c, d, e, f, K(10), x[10] ); - R( f, g, h, a, b, c, d, e, K(11), x[11] ); - R( e, f, g, h, a, b, c, d, K(12), x[12] ); - R( d, e, f, g, h, a, b, c, K(13), x[13] ); - R( c, d, e, f, g, h, a, b, K(14), x[14] ); - R( b, c, d, e, f, g, h, a, K(15), x[15] ); - R( a, b, c, d, e, f, g, h, K(16), M(16) ); - R( h, a, b, c, d, e, f, g, K(17), M(17) ); - R( g, h, a, b, c, d, e, f, K(18), M(18) ); - R( f, g, h, a, b, c, d, e, K(19), M(19) ); - R( e, f, g, h, a, b, c, d, K(20), M(20) ); - R( d, e, f, g, h, a, b, c, K(21), M(21) ); - R( c, d, e, f, g, h, a, b, K(22), M(22) ); - R( b, c, d, e, f, g, h, a, K(23), M(23) ); - R( a, b, c, d, e, f, g, h, K(24), M(24) ); - R( h, a, b, c, d, e, f, g, K(25), M(25) ); - R( g, h, a, b, c, d, e, f, K(26), M(26) ); - R( f, g, h, a, b, c, d, e, K(27), M(27) ); - R( e, f, g, h, a, b, c, d, K(28), M(28) ); - R( d, e, f, g, h, a, b, c, K(29), M(29) ); - R( c, d, e, f, g, h, a, b, K(30), M(30) ); - R( b, c, d, e, f, g, h, a, K(31), M(31) ); - R( a, b, c, d, e, f, g, h, K(32), M(32) ); - R( h, a, b, c, d, e, f, g, K(33), M(33) ); - R( g, h, a, b, c, d, e, f, K(34), M(34) ); - R( f, g, h, a, b, c, d, e, K(35), M(35) ); - R( e, f, g, h, a, b, c, d, K(36), M(36) ); - R( d, e, f, g, h, a, b, c, K(37), M(37) ); - R( c, d, e, f, g, h, a, b, K(38), M(38) ); - R( b, c, d, e, f, g, h, a, K(39), M(39) ); - R( a, b, c, d, e, f, g, h, K(40), M(40) ); - R( h, a, b, c, d, e, f, g, K(41), M(41) ); - R( g, h, a, b, c, d, e, f, K(42), M(42) ); - R( f, g, h, a, b, c, d, e, K(43), M(43) ); - R( e, f, g, h, a, b, c, d, K(44), M(44) ); - R( d, e, f, g, h, a, b, c, K(45), M(45) ); - R( c, d, e, f, g, h, a, b, K(46), M(46) ); - R( b, c, d, e, f, g, h, a, K(47), M(47) ); - R( a, b, c, d, e, f, g, h, K(48), M(48) ); - R( h, a, b, c, d, e, f, g, K(49), M(49) ); - R( g, h, a, b, c, d, e, f, K(50), M(50) ); - R( f, g, h, a, b, c, d, e, K(51), M(51) ); - R( e, f, g, h, a, b, c, d, K(52), M(52) ); - R( d, e, f, g, h, a, b, c, K(53), M(53) ); - R( c, d, e, f, g, h, a, b, K(54), M(54) ); - R( b, c, d, e, f, g, h, a, K(55), M(55) ); - R( a, b, c, d, e, f, g, h, K(56), M(56) ); - R( h, a, b, c, d, e, f, g, K(57), M(57) ); - R( g, h, a, b, c, d, e, f, K(58), M(58) ); - R( f, g, h, a, b, c, d, e, K(59), M(59) ); - R( e, f, g, h, a, b, c, d, K(60), M(60) ); - R( d, e, f, g, h, a, b, c, K(61), M(61) ); - R( c, d, e, f, g, h, a, b, K(62), M(62) ); - R( b, c, d, e, f, g, h, a, K(63), M(63) ); - - a = ctx->state[0] += a; - b = ctx->state[1] += b; - c = ctx->state[2] += c; - d = ctx->state[3] += d; - e = ctx->state[4] += e; - f = ctx->state[5] += f; - g = ctx->state[6] += g; - h = ctx->state[7] += h; - } -} diff --git a/lib/sha256.h b/lib/sha256.h deleted file mode 100644 index 9fd83c94c..000000000 --- a/lib/sha256.h +++ /dev/null @@ -1,81 +0,0 @@ -/* Declarations of functions and data types used for SHA256 and SHA224 sum - library functions. - Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc. - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . */ - -#ifndef SHA256_H -# define SHA256_H 1 - -# include -# include - -/* Structure to save state of computation between the single steps. */ -struct sha256_ctx -{ - uint32_t state[8]; - - uint32_t total[2]; - uint32_t buflen; - uint32_t buffer[32]; -}; - - -/* Initialize structure containing state of computation. */ -extern void sha256_init_ctx (struct sha256_ctx *ctx); -extern void sha224_init_ctx (struct sha256_ctx *ctx); - -/* Starting with the result of former calls of this function (or the - initialization function update the context for the next LEN bytes - starting at BUFFER. - It is necessary that LEN is a multiple of 64!!! */ -extern void sha256_process_block (const void *buffer, size_t len, - struct sha256_ctx *ctx); - -/* Starting with the result of former calls of this function (or the - initialization function update the context for the next LEN bytes - starting at BUFFER. - It is NOT required that LEN is a multiple of 64. */ -extern void sha256_process_bytes (const void *buffer, size_t len, - struct sha256_ctx *ctx); - -/* Process the remaining bytes in the buffer and put result from CTX - in first 32 (28) bytes following RESBUF. The result is always in little - endian byte order, so that a byte-wise output yields to the wanted - ASCII representation of the message digest. */ -extern void *sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf); -extern void *sha224_finish_ctx (struct sha256_ctx *ctx, void *resbuf); - - -/* Put result from CTX in first 32 (28) bytes following RESBUF. The result is - always in little endian byte order, so that a byte-wise output yields - to the wanted ASCII representation of the message digest. */ -extern void *sha256_read_ctx (const struct sha256_ctx *ctx, void *resbuf); -extern void *sha224_read_ctx (const struct sha256_ctx *ctx, void *resbuf); - - -/* Compute SHA256 (SHA224) message digest for bytes read from STREAM. The - resulting message digest number will be written into the 32 (28) bytes - beginning at RESBLOCK. */ -extern int sha256_stream (FILE *stream, void *resblock); -extern int sha224_stream (FILE *stream, void *resblock); - -/* Compute SHA256 (SHA224) message digest for LEN bytes beginning at BUFFER. The - result is always in little endian byte order, so that a byte-wise - output yields to the wanted ASCII representation of the message - digest. */ -extern void *sha256_buffer (const char *buffer, size_t len, void *resblock); -extern void *sha224_buffer (const char *buffer, size_t len, void *resblock); - -#endif diff --git a/lib/sha512.c b/lib/sha512.c deleted file mode 100644 index e0109f80f..000000000 --- a/lib/sha512.c +++ /dev/null @@ -1,600 +0,0 @@ -/* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or - memory blocks according to the NIST specification FIPS-180-2. - - Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc. - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . */ - -/* Written by David Madore, considerably copypasting from - Scott G. Miller's sha1.c -*/ - -#include - -#include "sha512.h" - -#include -#include - -#if USE_UNLOCKED_IO -# include "unlocked-io.h" -#endif - -#ifdef WORDS_BIGENDIAN -# define SWAP(n) (n) -#else -# define SWAP(n) \ - u64or (u64or (u64or (u64shl (n, 56), \ - u64shl (u64and (n, u64lo (0x0000ff00)), 40)), \ - u64or (u64shl (u64and (n, u64lo (0x00ff0000)), 24), \ - u64shl (u64and (n, u64lo (0xff000000)), 8))), \ - u64or (u64or (u64and (u64shr (n, 8), u64lo (0xff000000)), \ - u64and (u64shr (n, 24), u64lo (0x00ff0000))), \ - u64or (u64and (u64shr (n, 40), u64lo (0x0000ff00)), \ - u64shr (n, 56)))) -#endif - -#define BLOCKSIZE 4096 -#if BLOCKSIZE % 128 != 0 -# error "invalid BLOCKSIZE" -#endif - -/* This array contains the bytes used to pad the buffer to the next - 128-byte boundary. */ -static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ }; - - -/* - Takes a pointer to a 512 bit block of data (eight 64 bit ints) and - intializes it to the start constants of the SHA512 algorithm. This - must be called before using hash in the call to sha512_hash -*/ -void -sha512_init_ctx (struct sha512_ctx *ctx) -{ - ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908); - ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b); - ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b); - ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1); - ctx->state[4] = u64hilo (0x510e527f, 0xade682d1); - ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f); - ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b); - ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179); - - ctx->total[0] = ctx->total[1] = u64lo (0); - ctx->buflen = 0; -} - -void -sha384_init_ctx (struct sha512_ctx *ctx) -{ - ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8); - ctx->state[1] = u64hilo (0x629a292a, 0x367cd507); - ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17); - ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939); - ctx->state[4] = u64hilo (0x67332667, 0xffc00b31); - ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511); - ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7); - ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4); - - ctx->total[0] = ctx->total[1] = u64lo (0); - ctx->buflen = 0; -} - -/* Copy the value from V into the memory location pointed to by *CP, - If your architecture allows unaligned access, this is equivalent to - * (__typeof__ (v) *) cp = v */ -static inline void -set_uint64 (char *cp, u64 v) -{ - memcpy (cp, &v, sizeof v); -} - -/* Put result from CTX in first 64 bytes following RESBUF. - The result must be in little endian byte order. */ -void * -sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf) -{ - int i; - char *r = resbuf; - - for (i = 0; i < 8; i++) - set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); - - return resbuf; -} - -void * -sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf) -{ - int i; - char *r = resbuf; - - for (i = 0; i < 6; i++) - set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); - - return resbuf; -} - -/* Process the remaining bytes in the internal buffer and the usual - prolog according to the standard and write the result to RESBUF. */ -static void -sha512_conclude_ctx (struct sha512_ctx *ctx) -{ - /* Take yet unprocessed bytes into account. */ - size_t bytes = ctx->buflen; - size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8; - - /* Now count remaining bytes. */ - ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes)); - if (u64lt (ctx->total[0], u64lo (bytes))) - ctx->total[1] = u64plus (ctx->total[1], u64lo (1)); - - /* Put the 64-bit file length in *bits* at the end of the buffer. */ - ctx->buffer[size - 2] = SWAP (u64or (u64shl (ctx->total[1], 3), - u64shr (ctx->total[0], 61))); - ctx->buffer[size - 1] = SWAP (u64shl (ctx->total[0], 3)); - - memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes); - - /* Process last bytes. */ - sha512_process_block (ctx->buffer, size * 8, ctx); -} - -void * -sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf) -{ - sha512_conclude_ctx (ctx); - return sha512_read_ctx (ctx, resbuf); -} - -void * -sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf) -{ - sha512_conclude_ctx (ctx); - return sha384_read_ctx (ctx, resbuf); -} - -/* Compute SHA512 message digest for bytes read from STREAM. The - resulting message digest number will be written into the 64 bytes - beginning at RESBLOCK. */ -int -sha512_stream (FILE *stream, void *resblock) -{ - struct sha512_ctx ctx; - char buffer[BLOCKSIZE + 72]; - size_t sum; - - /* Initialize the computation context. */ - sha512_init_ctx (&ctx); - - /* Iterate over full file contents. */ - while (1) - { - /* We read the file in blocks of BLOCKSIZE bytes. One call of the - computation function processes the whole buffer so that with the - next round of the loop another block can be read. */ - size_t n; - sum = 0; - - /* Read block. Take care for partial reads. */ - while (1) - { - n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); - - sum += n; - - if (sum == BLOCKSIZE) - break; - - if (n == 0) - { - /* Check for the error flag IFF N == 0, so that we don't - exit the loop after a partial read due to e.g., EAGAIN - or EWOULDBLOCK. */ - if (ferror (stream)) - return 1; - goto process_partial_block; - } - - /* We've read at least one byte, so ignore errors. But always - check for EOF, since feof may be true even though N > 0. - Otherwise, we could end up calling fread after EOF. */ - if (feof (stream)) - goto process_partial_block; - } - - /* Process buffer with BLOCKSIZE bytes. Note that - BLOCKSIZE % 128 == 0 - */ - sha512_process_block (buffer, BLOCKSIZE, &ctx); - } - - process_partial_block:; - - /* Process any remaining bytes. */ - if (sum > 0) - sha512_process_bytes (buffer, sum, &ctx); - - /* Construct result in desired memory. */ - sha512_finish_ctx (&ctx, resblock); - return 0; -} - -/* FIXME: Avoid code duplication */ -int -sha384_stream (FILE *stream, void *resblock) -{ - struct sha512_ctx ctx; - char buffer[BLOCKSIZE + 72]; - size_t sum; - - /* Initialize the computation context. */ - sha384_init_ctx (&ctx); - - /* Iterate over full file contents. */ - while (1) - { - /* We read the file in blocks of BLOCKSIZE bytes. One call of the - computation function processes the whole buffer so that with the - next round of the loop another block can be read. */ - size_t n; - sum = 0; - - /* Read block. Take care for partial reads. */ - while (1) - { - n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); - - sum += n; - - if (sum == BLOCKSIZE) - break; - - if (n == 0) - { - /* Check for the error flag IFF N == 0, so that we don't - exit the loop after a partial read due to e.g., EAGAIN - or EWOULDBLOCK. */ - if (ferror (stream)) - return 1; - goto process_partial_block; - } - - /* We've read at least one byte, so ignore errors. But always - check for EOF, since feof may be true even though N > 0. - Otherwise, we could end up calling fread after EOF. */ - if (feof (stream)) - goto process_partial_block; - } - - /* Process buffer with BLOCKSIZE bytes. Note that - BLOCKSIZE % 128 == 0 - */ - sha512_process_block (buffer, BLOCKSIZE, &ctx); - } - - process_partial_block:; - - /* Process any remaining bytes. */ - if (sum > 0) - sha512_process_bytes (buffer, sum, &ctx); - - /* Construct result in desired memory. */ - sha384_finish_ctx (&ctx, resblock); - return 0; -} - -/* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The - result is always in little endian byte order, so that a byte-wise - output yields to the wanted ASCII representation of the message - digest. */ -void * -sha512_buffer (const char *buffer, size_t len, void *resblock) -{ - struct sha512_ctx ctx; - - /* Initialize the computation context. */ - sha512_init_ctx (&ctx); - - /* Process whole buffer but last len % 128 bytes. */ - sha512_process_bytes (buffer, len, &ctx); - - /* Put result in desired memory area. */ - return sha512_finish_ctx (&ctx, resblock); -} - -void * -sha384_buffer (const char *buffer, size_t len, void *resblock) -{ - struct sha512_ctx ctx; - - /* Initialize the computation context. */ - sha384_init_ctx (&ctx); - - /* Process whole buffer but last len % 128 bytes. */ - sha512_process_bytes (buffer, len, &ctx); - - /* Put result in desired memory area. */ - return sha384_finish_ctx (&ctx, resblock); -} - -void -sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx) -{ - /* When we already have some bits in our internal buffer concatenate - both inputs first. */ - if (ctx->buflen != 0) - { - size_t left_over = ctx->buflen; - size_t add = 256 - left_over > len ? len : 256 - left_over; - - memcpy (&((char *) ctx->buffer)[left_over], buffer, add); - ctx->buflen += add; - - if (ctx->buflen > 128) - { - sha512_process_block (ctx->buffer, ctx->buflen & ~63, ctx); - - ctx->buflen &= 127; - /* The regions in the following copy operation cannot overlap. */ - memcpy (ctx->buffer, - &((char *) ctx->buffer)[(left_over + add) & ~127], - ctx->buflen); - } - - buffer = (const char *) buffer + add; - len -= add; - } - - /* Process available complete blocks. */ - if (len >= 128) - { -#if !_STRING_ARCH_unaligned -# define alignof(type) offsetof (struct { char c; type x; }, x) -# define UNALIGNED_P(p) (((size_t) p) % alignof (u64) != 0) - if (UNALIGNED_P (buffer)) - while (len > 128) - { - sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx); - buffer = (const char *) buffer + 128; - len -= 128; - } - else -#endif - { - sha512_process_block (buffer, len & ~127, ctx); - buffer = (const char *) buffer + (len & ~127); - len &= 127; - } - } - - /* Move remaining bytes in internal buffer. */ - if (len > 0) - { - size_t left_over = ctx->buflen; - - memcpy (&((char *) ctx->buffer)[left_over], buffer, len); - left_over += len; - if (left_over >= 128) - { - sha512_process_block (ctx->buffer, 128, ctx); - left_over -= 128; - memcpy (ctx->buffer, &ctx->buffer[16], left_over); - } - ctx->buflen = left_over; - } -} - -/* --- Code below is the primary difference between sha1.c and sha512.c --- */ - -/* SHA512 round constants */ -#define K(I) sha512_round_constants[I] -static u64 const sha512_round_constants[80] = { - u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd), - u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc), - u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019), - u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118), - u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe), - u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2), - u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1), - u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694), - u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3), - u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65), - u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483), - u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5), - u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210), - u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4), - u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725), - u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70), - u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926), - u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df), - u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8), - u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b), - u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001), - u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30), - u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910), - u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8), - u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53), - u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8), - u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb), - u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3), - u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60), - u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec), - u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9), - u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b), - u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207), - u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178), - u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6), - u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b), - u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493), - u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c), - u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a), - u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817), -}; - -/* Round functions. */ -#define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B))) -#define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G))) - -/* Process LEN bytes of BUFFER, accumulating context into CTX. - It is assumed that LEN % 128 == 0. - Most of this code comes from GnuPG's cipher/sha1.c. */ - -void -sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx) -{ - u64 const *words = buffer; - u64 const *endp = words + len / sizeof (u64); - u64 x[16]; - u64 a = ctx->state[0]; - u64 b = ctx->state[1]; - u64 c = ctx->state[2]; - u64 d = ctx->state[3]; - u64 e = ctx->state[4]; - u64 f = ctx->state[5]; - u64 g = ctx->state[6]; - u64 h = ctx->state[7]; - - /* First increment the byte count. FIPS PUB 180-2 specifies the possible - length of the file up to 2^128 bits. Here we only compute the - number of bytes. Do a double word increment. */ - ctx->total[0] = u64plus (ctx->total[0], u64lo (len)); - if (u64lt (ctx->total[0], u64lo (len))) - ctx->total[1] = u64plus (ctx->total[1], u64lo (1)); - -#define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7))) -#define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6))) -#define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25))) -#define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23))) - -#define M(I) (x[(I) & 15] \ - = u64plus (x[(I) & 15], \ - u64plus (S1 (x[((I) - 2) & 15]), \ - u64plus (x[((I) - 7) & 15], \ - S0 (x[((I) - 15) & 15]))))) - -#define R(A, B, C, D, E, F, G, H, K, M) \ - do \ - { \ - u64 t0 = u64plus (SS0 (A), F2 (A, B, C)); \ - u64 t1 = \ - u64plus (H, u64plus (SS1 (E), \ - u64plus (F1 (E, F, G), u64plus (K, M)))); \ - D = u64plus (D, t1); \ - H = u64plus (t0, t1); \ - } \ - while (0) - - while (words < endp) - { - int t; - /* FIXME: see sha1.c for a better implementation. */ - for (t = 0; t < 16; t++) - { - x[t] = SWAP (*words); - words++; - } - - R( a, b, c, d, e, f, g, h, K( 0), x[ 0] ); - R( h, a, b, c, d, e, f, g, K( 1), x[ 1] ); - R( g, h, a, b, c, d, e, f, K( 2), x[ 2] ); - R( f, g, h, a, b, c, d, e, K( 3), x[ 3] ); - R( e, f, g, h, a, b, c, d, K( 4), x[ 4] ); - R( d, e, f, g, h, a, b, c, K( 5), x[ 5] ); - R( c, d, e, f, g, h, a, b, K( 6), x[ 6] ); - R( b, c, d, e, f, g, h, a, K( 7), x[ 7] ); - R( a, b, c, d, e, f, g, h, K( 8), x[ 8] ); - R( h, a, b, c, d, e, f, g, K( 9), x[ 9] ); - R( g, h, a, b, c, d, e, f, K(10), x[10] ); - R( f, g, h, a, b, c, d, e, K(11), x[11] ); - R( e, f, g, h, a, b, c, d, K(12), x[12] ); - R( d, e, f, g, h, a, b, c, K(13), x[13] ); - R( c, d, e, f, g, h, a, b, K(14), x[14] ); - R( b, c, d, e, f, g, h, a, K(15), x[15] ); - R( a, b, c, d, e, f, g, h, K(16), M(16) ); - R( h, a, b, c, d, e, f, g, K(17), M(17) ); - R( g, h, a, b, c, d, e, f, K(18), M(18) ); - R( f, g, h, a, b, c, d, e, K(19), M(19) ); - R( e, f, g, h, a, b, c, d, K(20), M(20) ); - R( d, e, f, g, h, a, b, c, K(21), M(21) ); - R( c, d, e, f, g, h, a, b, K(22), M(22) ); - R( b, c, d, e, f, g, h, a, K(23), M(23) ); - R( a, b, c, d, e, f, g, h, K(24), M(24) ); - R( h, a, b, c, d, e, f, g, K(25), M(25) ); - R( g, h, a, b, c, d, e, f, K(26), M(26) ); - R( f, g, h, a, b, c, d, e, K(27), M(27) ); - R( e, f, g, h, a, b, c, d, K(28), M(28) ); - R( d, e, f, g, h, a, b, c, K(29), M(29) ); - R( c, d, e, f, g, h, a, b, K(30), M(30) ); - R( b, c, d, e, f, g, h, a, K(31), M(31) ); - R( a, b, c, d, e, f, g, h, K(32), M(32) ); - R( h, a, b, c, d, e, f, g, K(33), M(33) ); - R( g, h, a, b, c, d, e, f, K(34), M(34) ); - R( f, g, h, a, b, c, d, e, K(35), M(35) ); - R( e, f, g, h, a, b, c, d, K(36), M(36) ); - R( d, e, f, g, h, a, b, c, K(37), M(37) ); - R( c, d, e, f, g, h, a, b, K(38), M(38) ); - R( b, c, d, e, f, g, h, a, K(39), M(39) ); - R( a, b, c, d, e, f, g, h, K(40), M(40) ); - R( h, a, b, c, d, e, f, g, K(41), M(41) ); - R( g, h, a, b, c, d, e, f, K(42), M(42) ); - R( f, g, h, a, b, c, d, e, K(43), M(43) ); - R( e, f, g, h, a, b, c, d, K(44), M(44) ); - R( d, e, f, g, h, a, b, c, K(45), M(45) ); - R( c, d, e, f, g, h, a, b, K(46), M(46) ); - R( b, c, d, e, f, g, h, a, K(47), M(47) ); - R( a, b, c, d, e, f, g, h, K(48), M(48) ); - R( h, a, b, c, d, e, f, g, K(49), M(49) ); - R( g, h, a, b, c, d, e, f, K(50), M(50) ); - R( f, g, h, a, b, c, d, e, K(51), M(51) ); - R( e, f, g, h, a, b, c, d, K(52), M(52) ); - R( d, e, f, g, h, a, b, c, K(53), M(53) ); - R( c, d, e, f, g, h, a, b, K(54), M(54) ); - R( b, c, d, e, f, g, h, a, K(55), M(55) ); - R( a, b, c, d, e, f, g, h, K(56), M(56) ); - R( h, a, b, c, d, e, f, g, K(57), M(57) ); - R( g, h, a, b, c, d, e, f, K(58), M(58) ); - R( f, g, h, a, b, c, d, e, K(59), M(59) ); - R( e, f, g, h, a, b, c, d, K(60), M(60) ); - R( d, e, f, g, h, a, b, c, K(61), M(61) ); - R( c, d, e, f, g, h, a, b, K(62), M(62) ); - R( b, c, d, e, f, g, h, a, K(63), M(63) ); - R( a, b, c, d, e, f, g, h, K(64), M(64) ); - R( h, a, b, c, d, e, f, g, K(65), M(65) ); - R( g, h, a, b, c, d, e, f, K(66), M(66) ); - R( f, g, h, a, b, c, d, e, K(67), M(67) ); - R( e, f, g, h, a, b, c, d, K(68), M(68) ); - R( d, e, f, g, h, a, b, c, K(69), M(69) ); - R( c, d, e, f, g, h, a, b, K(70), M(70) ); - R( b, c, d, e, f, g, h, a, K(71), M(71) ); - R( a, b, c, d, e, f, g, h, K(72), M(72) ); - R( h, a, b, c, d, e, f, g, K(73), M(73) ); - R( g, h, a, b, c, d, e, f, K(74), M(74) ); - R( f, g, h, a, b, c, d, e, K(75), M(75) ); - R( e, f, g, h, a, b, c, d, K(76), M(76) ); - R( d, e, f, g, h, a, b, c, K(77), M(77) ); - R( c, d, e, f, g, h, a, b, K(78), M(78) ); - R( b, c, d, e, f, g, h, a, K(79), M(79) ); - - a = ctx->state[0] = u64plus (ctx->state[0], a); - b = ctx->state[1] = u64plus (ctx->state[1], b); - c = ctx->state[2] = u64plus (ctx->state[2], c); - d = ctx->state[3] = u64plus (ctx->state[3], d); - e = ctx->state[4] = u64plus (ctx->state[4], e); - f = ctx->state[5] = u64plus (ctx->state[5], f); - g = ctx->state[6] = u64plus (ctx->state[6], g); - h = ctx->state[7] = u64plus (ctx->state[7], h); - } -} diff --git a/lib/sha512.h b/lib/sha512.h deleted file mode 100644 index 7ee3ac4f8..000000000 --- a/lib/sha512.h +++ /dev/null @@ -1,85 +0,0 @@ -/* Declarations of functions and data types used for SHA512 and SHA384 sum - library functions. - Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc. - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . */ - -#ifndef SHA512_H -# define SHA512_H 1 - -# include - -# include "u64.h" - -/* Structure to save state of computation between the single steps. */ -struct sha512_ctx -{ - u64 state[8]; - - u64 total[2]; - size_t buflen; - u64 buffer[32]; -}; - - -/* Initialize structure containing state of computation. */ -extern void sha512_init_ctx (struct sha512_ctx *ctx); -extern void sha384_init_ctx (struct sha512_ctx *ctx); - -/* Starting with the result of former calls of this function (or the - initialization function update the context for the next LEN bytes - starting at BUFFER. - It is necessary that LEN is a multiple of 128!!! */ -extern void sha512_process_block (const void *buffer, size_t len, - struct sha512_ctx *ctx); - -/* Starting with the result of former calls of this function (or the - initialization function update the context for the next LEN bytes - starting at BUFFER. - It is NOT required that LEN is a multiple of 128. */ -extern void sha512_process_bytes (const void *buffer, size_t len, - struct sha512_ctx *ctx); - -/* Process the remaining bytes in the buffer and put result from CTX - in first 64 (48) bytes following RESBUF. The result is always in little - endian byte order, so that a byte-wise output yields to the wanted - ASCII representation of the message digest. */ -extern void *sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf); -extern void *sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf); - - -/* Put result from CTX in first 64 (48) bytes following RESBUF. The result is - always in little endian byte order, so that a byte-wise output yields - to the wanted ASCII representation of the message digest. - - IMPORTANT: On some systems it is required that RESBUF is correctly - aligned for a 32 bits value. */ -extern void *sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf); -extern void *sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf); - - -/* Compute SHA512 (SHA384) message digest for bytes read from STREAM. The - resulting message digest number will be written into the 64 (48) bytes - beginning at RESBLOCK. */ -extern int sha512_stream (FILE *stream, void *resblock); -extern int sha384_stream (FILE *stream, void *resblock); - -/* Compute SHA512 (SHA384) message digest for LEN bytes beginning at BUFFER. The - result is always in little endian byte order, so that a byte-wise - output yields to the wanted ASCII representation of the message - digest. */ -extern void *sha512_buffer (const char *buffer, size_t len, void *resblock); -extern void *sha384_buffer (const char *buffer, size_t len, void *resblock); - -#endif diff --git a/lib/u64.h b/lib/u64.h deleted file mode 100644 index 34fd32be0..000000000 --- a/lib/u64.h +++ /dev/null @@ -1,159 +0,0 @@ -/* uint64_t-like operations that work even on hosts lacking uint64_t - - Copyright (C) 2006 Free Software Foundation, Inc. - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . */ - -/* Written by Paul Eggert. */ - -#include -#include - -/* Return X rotated left by N bits, where 0 < N < 64. */ -#define u64rol(x, n) u64or (u64shl (x, n), u64shr (x, 64 - n)) - -#ifdef UINT64_MAX - -/* Native implementations are trivial. See below for comments on what - these operations do. */ -typedef uint64_t u64; -# define u64hilo(hi, lo) ((u64) (((u64) (hi) << 32) + (lo))) -# define u64init(hi, lo) u64hilo (hi, lo) -# define u64lo(x) ((u64) (x)) -# define u64lt(x, y) ((x) < (y)) -# define u64and(x, y) ((x) & (y)) -# define u64or(x, y) ((x) | (y)) -# define u64xor(x, y) ((x) ^ (y)) -# define u64plus(x, y) ((x) + (y)) -# define u64shl(x, n) ((x) << (n)) -# define u64shr(x, n) ((x) >> (n)) - -#else - -/* u64 is a 64-bit unsigned integer value. - u64init (HI, LO), is like u64hilo (HI, LO), but for use in - initializer contexts. */ -# ifdef WORDS_BIGENDIAN -typedef struct { uint32_t hi, lo; } u64; -# define u64init(hi, lo) { hi, lo } -# else -typedef struct { uint32_t lo, hi; } u64; -# define u64init(hi, lo) { lo, hi } -# endif - -/* Given the high and low-order 32-bit quantities HI and LO, return a u64 - value representing (HI << 32) + LO. */ -static inline u64 -u64hilo (uint32_t hi, uint32_t lo) -{ - u64 r; - r.hi = hi; - r.lo = lo; - return r; -} - -/* Return a u64 value representing LO. */ -static inline u64 -u64lo (uint32_t lo) -{ - u64 r; - r.hi = 0; - r.lo = lo; - return r; -} - -/* Return X < Y. */ -static inline int -u64lt (u64 x, u64 y) -{ - return x.hi < y.hi || (x.hi == y.hi && x.lo < y.lo); -} - -/* Return X & Y. */ -static inline u64 -u64and (u64 x, u64 y) -{ - u64 r; - r.hi = x.hi & y.hi; - r.lo = x.lo & y.lo; - return r; -} - -/* Return X | Y. */ -static inline u64 -u64or (u64 x, u64 y) -{ - u64 r; - r.hi = x.hi | y.hi; - r.lo = x.lo | y.lo; - return r; -} - -/* Return X ^ Y. */ -static inline u64 -u64xor (u64 x, u64 y) -{ - u64 r; - r.hi = x.hi ^ y.hi; - r.lo = x.lo ^ y.lo; - return r; -} - -/* Return X + Y. */ -static inline u64 -u64plus (u64 x, u64 y) -{ - u64 r; - r.lo = x.lo + y.lo; - r.hi = x.hi + y.hi + (r.lo < x.lo); - return r; -} - -/* Return X << N. */ -static inline u64 -u64shl (u64 x, int n) -{ - u64 r; - if (n < 32) - { - r.hi = (x.hi << n) | (x.lo >> (32 - n)); - r.lo = x.lo << n; - } - else - { - r.hi = x.lo << (n - 32); - r.lo = 0; - } - return r; -} - -/* Return X >> N. */ -static inline u64 -u64shr (u64 x, int n) -{ - u64 r; - if (n < 32) - { - r.hi = x.hi >> n; - r.lo = (x.hi << (32 - n)) | (x.lo >> n); - } - else - { - r.hi = 0; - r.lo = x.hi >> (n - 32); - } - return r; -} - -#endif -- cgit v1.2.3