summaryrefslogtreecommitdiff
path: root/tests/src/JIT/Performance/CodeQuality/V8/DeltaBlue/DeltaBlue.cs
blob: ee14b8b1b10ea6e819d07722bd44cf2ee14f9571 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
/*
  This is a Java implemention of the DeltaBlue algorithm described in:
    "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
    by Bjorn N. Freeman-Benson and John Maloney
    January 1990 Communications of the ACM,
    also available as University of Washington TR 89-08-06.

  This implementation by Mario Wolczko, Sun Microsystems, Sep 1996,
  based on the Smalltalk implementation by John Maloney.

*/

// The code has been adapted for use as a C# benchmark by Microsoft.

#define USE_STACK

using Microsoft.Xunit.Performance;
using System;
using System.Collections;

[assembly: OptimizeForBenchmarks]
[assembly: MeasureInstructionsRetired]

/* 
Strengths are used to measure the relative importance of constraints.
New strengths may be inserted in the strength hierarchy without
disrupting current constraints.  Strengths cannot be created outside
this class, so pointer comparison can be used for value comparison.
*/

internal class Strength
{
    private int _strengthValue;
    private String _name;

    private Strength(int strengthValue, String name)
    {
        _strengthValue = strengthValue;
        _name = name;
    }

    public static Boolean stronger(Strength s1, Strength s2)
    {
        return s1._strengthValue < s2._strengthValue;
    }

    public static Boolean weaker(Strength s1, Strength s2)
    {
        return s1._strengthValue > s2._strengthValue;
    }

    public static Strength weakestOf(Strength s1, Strength s2)
    {
        return weaker(s1, s2) ? s1 : s2;
    }

    public static Strength strongest(Strength s1, Strength s2)
    {
        return stronger(s1, s2) ? s1 : s2;
    }

    // for iteration
    public Strength nextWeaker()
    {
        switch (_strengthValue)
        {
            case 0: return weakest;
            case 1: return weakDefault;
            case 2: return normal;
            case 3: return strongDefault;
            case 4: return preferred;
            case 5: return strongPreferred;

            case 6:
            default:
                Console.Error.WriteLine("Invalid call to nextStrength()!");
                //System.exit(1);
                return null;
        }
    }

    // Strength constants
    public static Strength required = new Strength(0, "required");
    public static Strength strongPreferred = new Strength(1, "strongPreferred");
    public static Strength preferred = new Strength(2, "preferred");
    public static Strength strongDefault = new Strength(3, "strongDefault");
    public static Strength normal = new Strength(4, "normal");
    public static Strength weakDefault = new Strength(5, "weakDefault");
    public static Strength weakest = new Strength(6, "weakest");

    public void print()
    {
        Console.Write("strength[" + _strengthValue + "]");
    }
}




//------------------------------ variables ------------------------------

// I represent a constrained variable. In addition to my value, I
// maintain the structure of the constraint graph, the current
// dataflow graph, and various parameters of interest to the DeltaBlue
// incremental constraint solver.

internal class Variable
{
    public int value;               // my value; changed by constraints
    public ArrayList constraints;   // normal constraints that reference me
    public Constraint determinedBy; // the constraint that currently determines
                                    // my value (or null if there isn't one)
    public int mark;                // used by the planner to mark constraints
    public Strength walkStrength;   // my walkabout strength
    public Boolean stay;            // true if I am a planning-time constant
    public String name;             // a symbolic name for reporting purposes


    private Variable(String name, int initialValue, Strength walkStrength,
             int nconstraints)
    {
        value = initialValue;
        constraints = new ArrayList(nconstraints);
        determinedBy = null;
        mark = 0;
        this.walkStrength = walkStrength;
        stay = true;
        this.name = name;
    }

    public Variable(String name, int value) : this(name, value, Strength.weakest, 2)
    {
    }

    public Variable(String name) : this(name, 0, Strength.weakest, 2)
    {
    }

    public void print()
    {
        Console.Write(name + "(");
        walkStrength.print();
        Console.Write("," + value + ")");
    }

    // Add the given constraint to the set of all constraints that refer to me.
    public void addConstraint(Constraint c)
    {
        constraints.Add(c);
    }

    // Remove all traces of c from this variable.
    public void removeConstraint(Constraint c)
    {
        constraints.Remove(c);
        if (determinedBy == c) determinedBy = null;
    }

    // Attempt to assign the given value to me using the given strength.
    public void setValue(int value, Strength strength)
    {
        EditConstraint e = new EditConstraint(this, strength);
        if (e.isSatisfied())
        {
            this.value = value;
            deltablue.planner.propagateFrom(this);
        }
        e.destroyConstraint();
    }
}




//------------------------ constraints ------------------------------------

// I am an abstract class representing a system-maintainable
// relationship (or "constraint") between a set of variables. I supply
// a strength instance variable; concrete subclasses provide a means
// of storing the constrained variables and other information required
// to represent a constraint.

internal abstract class Constraint
{
    public Strength strength; // the strength of this constraint

    public Constraint() { } // this has to be here because of
                            // Java's constructor idiocy.

    public Constraint(Strength strength)
    {
        this.strength = strength;
    }

    // Answer true if this constraint is satisfied in the current solution.
    public abstract Boolean isSatisfied();

    // Record the fact that I am unsatisfied.
    public abstract void markUnsatisfied();

    // Normal constraints are not input constraints. An input constraint
    // is one that depends on external state, such as the mouse, the
    // keyboard, a clock, or some arbitrary piece of imperative code.
    public virtual Boolean isInput() { return false; }

    // Activate this constraint and attempt to satisfy it.
    public void addConstraint()
    {
        addToGraph();
        deltablue.planner.incrementalAdd(this);
    }

    // Deactivate this constraint, remove it from the constraint graph,
    // possibly causing other constraints to be satisfied, and destroy
    // it.
    public void destroyConstraint()
    {
        if (isSatisfied()) deltablue.planner.incrementalRemove(this);
        else
            removeFromGraph();
    }

    // Add myself to the constraint graph.
    public abstract void addToGraph();

    // Remove myself from the constraint graph.
    public abstract void removeFromGraph();

    // Decide if I can be satisfied and record that decision. The output
    // of the choosen method must not have the given mark and must have
    // a walkabout strength less than that of this constraint.
    public abstract void chooseMethod(int mark);

    // Set the mark of all input from the given mark.
    public abstract void markInputs(int mark);

    // Assume that I am satisfied. Answer true if all my current inputs
    // are known. A variable is known if either a) it is 'stay' (i.e. it
    // is a constant at plan execution time), b) it has the given mark
    // (indicating that it has been computed by a constraint appearing
    // earlier in the plan), or c) it is not determined by any
    // constraint.
    public abstract Boolean inputsKnown(int mark);

    // Answer my current output variable. Raise an error if I am not
    // currently satisfied.
    public abstract Variable output();

    // Attempt to find a way to enforce this constraint. If successful,
    // record the solution, perhaps modifying the current dataflow
    // graph. Answer the constraint that this constraint overrides, if
    // there is one, or nil, if there isn't.
    // Assume: I am not already satisfied.
    //
    public Constraint satisfy(int mark)
    {
        chooseMethod(mark);
        if (!isSatisfied())
        {
            if (strength == Strength.required)
            {
                deltablue.error("Could not satisfy a required constraint");
            }
            return null;
        }
        // constraint can be satisfied
        // mark inputs to allow cycle detection in addPropagate
        markInputs(mark);
        Variable outvar = output();
        Constraint overridden = outvar.determinedBy;
        if (overridden != null) overridden.markUnsatisfied();
        outvar.determinedBy = this;
        if (!deltablue.planner.addPropagate(this, mark))
        {
            Console.WriteLine("Cycle encountered");
            return null;
        }
        outvar.mark = mark;
        return overridden;
    }

    // Enforce this constraint. Assume that it is satisfied.
    public abstract void execute();

    // Calculate the walkabout strength, the stay flag, and, if it is
    // 'stay', the value for the current output of this
    // constraint. Assume this constraint is satisfied.
    public abstract void recalculate();

    public abstract void printInputs();

    public void printOutput() { output().print(); }

    public void print()
    {
        if (!isSatisfied())
        {
            Console.Write("Unsatisfied");
        }
        else
        {
            Console.Write("Satisfied(");
            printInputs();
            Console.Write(" -> ");
            printOutput();
            Console.Write(")");
        }
        Console.Write("\n");
    }
}



//-------------unary constraints-------------------------------------------

// I am an abstract superclass for constraints having a single
// possible output variable.
//
internal abstract class UnaryConstraint : Constraint
{
    public Variable myOutput; // possible output variable
    public Boolean satisfied; // true if I am currently satisfied

    public UnaryConstraint(Variable v, Strength strength) : base(strength)

    {
        myOutput = v;
        satisfied = false;
        addConstraint();
    }

    // Answer true if this constraint is satisfied in the current solution.
    public override Boolean isSatisfied() { return satisfied; }

    // Record the fact that I am unsatisfied.
    public override void markUnsatisfied() { satisfied = false; }

    // Answer my current output variable.
    public override Variable output() { return myOutput; }

    // Add myself to the constraint graph.
    public override void addToGraph()
    {
        myOutput.addConstraint(this);
        satisfied = false;
    }

    // Remove myself from the constraint graph.
    public override void removeFromGraph()
    {
        if (myOutput != null) myOutput.removeConstraint(this);
        satisfied = false;
    }

    // Decide if I can be satisfied and record that decision.
    public override void chooseMethod(int mark)
    {
        satisfied = myOutput.mark != mark
                   && Strength.stronger(strength, myOutput.walkStrength);
    }

    public override void markInputs(int mark) { }   // I have no inputs

    public override Boolean inputsKnown(int mark) { return true; }

    // Calculate the walkabout strength, the stay flag, and, if it is
    // 'stay', the value for the current output of this
    // constraint. Assume this constraint is satisfied."
    public override void recalculate()
    {
        myOutput.walkStrength = strength;
        myOutput.stay = !isInput();
        if (myOutput.stay) execute(); // stay optimization
    }

    public override void printInputs() { } // I have no inputs
}


// I am a unary input constraint used to mark a variable that the
// client wishes to change.
//
internal class EditConstraint : UnaryConstraint
{
    public EditConstraint(Variable v, Strength str) : base(v, str) { }

    // I indicate that a variable is to be changed by imperative code.
    public override Boolean isInput() { return true; }

    public override void execute() { } // Edit constraints do nothing.
}

// I mark variables that should, with some level of preference, stay
// the same. I have one method with zero inputs and one output, which
// does nothing. Planners may exploit the fact that, if I am
// satisfied, my output will not change during plan execution. This is
// called "stay optimization".
//
internal class StayConstraint : UnaryConstraint
{
    // Install a stay constraint with the given strength on the given variable.
    public StayConstraint(Variable v, Strength str) : base(v, str) { }

    public override void execute() { } // Stay constraints do nothing.
}




//-------------binary constraints-------------------------------------------


// I am an abstract superclass for constraints having two possible
// output variables.
//
internal abstract class BinaryConstraint : Constraint
{
    public Variable v1, v2; // possible output variables
    public sbyte direction; // one of the following...
    public static sbyte backward = -1;    // v1 is output
    public static sbyte nodirection = 0;  // not satisfied
    public static sbyte forward = 1;      // v2 is output

    public BinaryConstraint() { } // this has to be here because of
                                  // Java's constructor idiocy.

    public BinaryConstraint(Variable var1, Variable var2, Strength strength)
      : base(strength)
    {
        v1 = var1;
        v2 = var2;
        direction = nodirection;
        addConstraint();
    }

    // Answer true if this constraint is satisfied in the current solution.
    public override Boolean isSatisfied() { return direction != nodirection; }

    // Add myself to the constraint graph.
    public override void addToGraph()
    {
        v1.addConstraint(this);
        v2.addConstraint(this);
        direction = nodirection;
    }

    // Remove myself from the constraint graph.
    public override void removeFromGraph()
    {
        if (v1 != null) v1.removeConstraint(this);
        if (v2 != null) v2.removeConstraint(this);
        direction = nodirection;
    }

    // Decide if I can be satisfied and which way I should flow based on
    // the relative strength of the variables I relate, and record that
    // decision.
    //
    public override void chooseMethod(int mark)
    {
        if (v1.mark == mark)
            direction =
          v2.mark != mark && Strength.stronger(strength, v2.walkStrength)
            ? forward : nodirection;

        if (v2.mark == mark)
            direction =
          v1.mark != mark && Strength.stronger(strength, v1.walkStrength)
            ? backward : nodirection;

        // If we get here, neither variable is marked, so we have a choice.
        if (Strength.weaker(v1.walkStrength, v2.walkStrength))
            direction =
          Strength.stronger(strength, v1.walkStrength) ? backward : nodirection;
        else
            direction =
          Strength.stronger(strength, v2.walkStrength) ? forward : nodirection;
    }

    // Record the fact that I am unsatisfied.
    public override void markUnsatisfied() { direction = nodirection; }

    // Mark the input variable with the given mark.
    public override void markInputs(int mark)
    {
        input().mark = mark;
    }

    public override Boolean inputsKnown(int mark)
    {
        Variable i = input();
        return i.mark == mark || i.stay || i.determinedBy == null;
    }

    // Answer my current output variable.
    public override Variable output() { return direction == forward ? v2 : v1; }

    // Answer my current input variable
    public Variable input() { return direction == forward ? v1 : v2; }

    // Calculate the walkabout strength, the stay flag, and, if it is
    // 'stay', the value for the current output of this
    // constraint. Assume this constraint is satisfied.
    //
    public override void recalculate()
    {
        Variable invar = input(), outvar = output();
        outvar.walkStrength = Strength.weakestOf(strength, invar.walkStrength);
        outvar.stay = invar.stay;
        if (outvar.stay) execute();
    }

    public override void printInputs()
    {
        input().print();
    }
}


// I constrain two variables to have the same value: "v1 = v2".
//
internal class EqualityConstraint : BinaryConstraint
{
    // Install a constraint with the given strength equating the given variables.
    public EqualityConstraint(Variable var1, Variable var2, Strength strength)
        : base(var1, var2, strength)

    {
    }

    // Enforce this constraint. Assume that it is satisfied.
    public override void execute()
    {
        output().value = input().value;
    }
}


// I relate two variables by the linear scaling relationship: "v2 =
// (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
// this relationship but the scale factor and offset are considered
// read-only.
//
internal class ScaleConstraint : BinaryConstraint
{
    public Variable scale; // scale factor input variable
    public Variable offset; // offset input variable

    // Install a scale constraint with the given strength on the given variables.
    public ScaleConstraint(Variable src, Variable scale, Variable offset,
                   Variable dest, Strength strength)
    {
        // Curse this wretched language for insisting that constructor invocation
        // must be the first thing in a method...
        // ..because of that, we must copy the code from the inherited
        // constructors.
        this.strength = strength;
        v1 = src;
        v2 = dest;
        direction = nodirection;
        this.scale = scale;
        this.offset = offset;
        addConstraint();
    }

    // Add myself to the constraint graph.
    public override void addToGraph()
    {
        base.addToGraph();
        scale.addConstraint(this);
        offset.addConstraint(this);
    }

    // Remove myself from the constraint graph.
    public override void removeFromGraph()
    {
        base.removeFromGraph();
        if (scale != null) scale.removeConstraint(this);
        if (offset != null) offset.removeConstraint(this);
    }

    // Mark the inputs from the given mark.
    public override void markInputs(int mark)
    {
        base.markInputs(mark);
        scale.mark = offset.mark = mark;
    }

    // Enforce this constraint. Assume that it is satisfied.
    public override void execute()
    {
        if (direction == forward)
            v2.value = v1.value * scale.value + offset.value;
        else
            v1.value = (v2.value - offset.value) / scale.value;
    }

    // Calculate the walkabout strength, the stay flag, and, if it is
    // 'stay', the value for the current output of this
    // constraint. Assume this constraint is satisfied.
    public override void recalculate()
    {
        Variable invar = input(), outvar = output();
        outvar.walkStrength = Strength.weakestOf(strength, invar.walkStrength);
        outvar.stay = invar.stay && scale.stay && offset.stay;
        if (outvar.stay) execute(); // stay optimization
    }
}


// ------------------------------------------------------------


// A Plan is an ordered list of constraints to be executed in sequence
// to resatisfy all currently satisfiable constraints in the face of
// one or more changing inputs.

internal class Plan
{
    private ArrayList _v;

    public Plan() { _v = new ArrayList(); }

    public void addConstraint(Constraint c) { _v.Add(c); }

    public int size() { return _v.Count; }

    public Constraint constraintAt(int index)
    {
        return (Constraint)_v[index];
    }

    public void execute()
    {
        for (int i = 0; i < size(); ++i)
        {
            Constraint c = (Constraint)constraintAt(i);
            c.execute();
        }
    }
}


// ------------------------------------------------------------

// The deltablue planner

internal class Planner
{
    private int _currentMark = 0;

    // Select a previously unused mark value.
    private int newMark() { return ++_currentMark; }

    public Planner()
    {
        _currentMark = 0;
    }

    // Attempt to satisfy the given constraint and, if successful,
    // incrementally update the dataflow graph.  Details: If satifying
    // the constraint is successful, it may override a weaker constraint
    // on its output. The algorithm attempts to resatisfy that
    // constraint using some other method. This process is repeated
    // until either a) it reaches a variable that was not previously
    // determined by any constraint or b) it reaches a constraint that
    // is too weak to be satisfied using any of its methods. The
    // variables of constraints that have been processed are marked with
    // a unique mark value so that we know where we've been. This allows
    // the algorithm to avoid getting into an infinite loop even if the
    // constraint graph has an inadvertent cycle.
    //
    public void incrementalAdd(Constraint c)
    {
        int mark = newMark();
        Constraint overridden = c.satisfy(mark);
        while (overridden != null)
        {
            overridden = overridden.satisfy(mark);
        }
    }


    // Entry point for retracting a constraint. Remove the given
    // constraint and incrementally update the dataflow graph.
    // Details: Retracting the given constraint may allow some currently
    // unsatisfiable downstream constraint to be satisfied. We therefore collect
    // a list of unsatisfied downstream constraints and attempt to
    // satisfy each one in turn. This list is traversed by constraint
    // strength, strongest first, as a heuristic for avoiding
    // unnecessarily adding and then overriding weak constraints.
    // Assume: c is satisfied.
    //
    public void incrementalRemove(Constraint c)
    {
        Variable outvar = c.output();
        c.markUnsatisfied();
        c.removeFromGraph();
        ArrayList unsatisfied = removePropagateFrom(outvar);
        Strength strength = Strength.required;
        do
        {
            for (int i = 0; i < unsatisfied.Count; ++i)
            {
                Constraint u = (Constraint)unsatisfied[i];
                if (u.strength == strength)
                    incrementalAdd(u);
            }
            strength = strength.nextWeaker();
        } while (strength != Strength.weakest);
    }

    // Recompute the walkabout strengths and stay flags of all variables
    // downstream of the given constraint and recompute the actual
    // values of all variables whose stay flag is true. If a cycle is
    // detected, remove the given constraint and answer
    // false. Otherwise, answer true.
    // Details: Cycles are detected when a marked variable is
    // encountered downstream of the given constraint. The sender is
    // assumed to have marked the inputs of the given constraint with
    // the given mark. Thus, encountering a marked node downstream of
    // the output constraint means that there is a path from the
    // constraint's output to one of its inputs.
    //
    public Boolean addPropagate(Constraint c, int mark)
    {
        ArrayList todo = new ArrayList();
        todo.Add(c);
        while (!(todo.Count == 0))
        {
#if USE_STACK
            Constraint d = (Constraint)todo[todo.Count - 1];
            todo.RemoveAt(todo.Count - 1);
#else
            Constraint d= (Constraint)todo[0];
            todo.RemoveAt(0);
#endif
            if (d.output().mark == mark)
            {
                incrementalRemove(c);
                return false;
            }
            d.recalculate();
            addConstraintsConsumingTo(d.output(), todo);
        }
        return true;
    }


    // The given variable has changed. Propagate new values downstream.
    public void propagateFrom(Variable v)
    {
        ArrayList todo = new ArrayList();
        addConstraintsConsumingTo(v, todo);
        while (!(todo.Count == 0))
        {
#if USE_STACK
            Constraint c = (Constraint)todo[todo.Count - 1];
            todo.RemoveAt(0);
#else
            Constraint c= (Constraint)todo[todo.Count-1];
            todo.RemoveAt(0);
#endif
            c.execute();
            addConstraintsConsumingTo(c.output(), todo);
        }
    }

    // Update the walkabout strengths and stay flags of all variables
    // downstream of the given constraint. Answer a collection of
    // unsatisfied constraints sorted in order of decreasing strength.
    //
    public ArrayList removePropagateFrom(Variable outvar)
    {
        outvar.determinedBy = null;
        outvar.walkStrength = Strength.weakest;
        outvar.stay = true;
        ArrayList unsatisfied = new ArrayList();
        ArrayList todo = new ArrayList();
        todo.Add(outvar);
        while (!(todo.Count == 0))
        {
#if USE_STACK
            Variable v = (Variable)todo[todo.Count - 1];
            todo.RemoveAt(todo.Count - 1);
#else
            Variable v= (Variable)todo[0];
            todo.RemoveAt(0);
#endif
            for (int i = 0; i < v.constraints.Count; ++i)
            {
                Constraint c = (Constraint)v.constraints[i];
                if (!c.isSatisfied())
                    unsatisfied.Add(c);
            }
            Constraint determiningC = v.determinedBy;
            for (int i = 0; i < v.constraints.Count; ++i)
            {
                Constraint nextC = (Constraint)v.constraints[i];
                if (nextC != determiningC && nextC.isSatisfied())
                {
                    nextC.recalculate();
                    todo.Add(nextC.output());
                }
            }
        }
        return unsatisfied;
    }

    // Extract a plan for resatisfaction starting from the outputs of
    // the given constraints, usually a set of input constraints.
    //
    public Plan extractPlanFromConstraints(ArrayList constraints)
    {
        ArrayList sources = new ArrayList();
        for (int i = 0; i < constraints.Count; ++i)
        {
            Constraint c = (Constraint)constraints[i];
            if (c.isInput() && c.isSatisfied())
                sources.Add(c);
        }
        return makePlan(sources);
    }

    // Extract a plan for resatisfaction starting from the given source
    // constraints, usually a set of input constraints. This method
    // assumes that stay optimization is desired; the plan will contain
    // only constraints whose output variables are not stay. Constraints
    // that do no computation, such as stay and edit constraints, are
    // not included in the plan.
    // Details: The outputs of a constraint are marked when it is added
    // to the plan under construction. A constraint may be appended to
    // the plan when all its input variables are known. A variable is
    // known if either a) the variable is marked (indicating that has
    // been computed by a constraint appearing earlier in the plan), b)
    // the variable is 'stay' (i.e. it is a constant at plan execution
    // time), or c) the variable is not determined by any
    // constraint. The last provision is for past states of history
    // variables, which are not stay but which are also not computed by
    // any constraint.
    // Assume: sources are all satisfied.
    //
    public Plan makePlan(ArrayList sources)
    {
        int mark = newMark();
        Plan plan = new Plan();
        ArrayList todo = sources;
        while (!(todo.Count == 0))
        {
#if USE_STACK
            Constraint c = (Constraint)todo[todo.Count - 1];
            todo.RemoveAt(todo.Count - 1);
#else
            Constraint c= (Constraint)todo[todo.Count-1];
            todo.RemoveAt(0);
#endif
            if (c.output().mark != mark && c.inputsKnown(mark))
            {
                // not in plan already and eligible for inclusion
                plan.addConstraint(c);
                c.output().mark = mark;
                addConstraintsConsumingTo(c.output(), todo);
            }
        }
        return plan;
    }

    public void addConstraintsConsumingTo(Variable v, ArrayList coll)
    {
        Constraint determiningC = v.determinedBy;
        ArrayList cc = v.constraints;
        for (int i = 0; i < cc.Count; ++i)
        {
            Constraint c = (Constraint)cc[i];
            if (c != determiningC && c.isSatisfied())
                coll.Add(c);
        }
    }
}

//------------------------------------------------------------

public class deltablue
{
    internal static Planner planner;
    internal static int chains, projections;

    public static int Main(String[] args)
    {
        deltablue d = new deltablue();
        bool result = d.inst_main(args);
        return (result ? 100 : -1);
    }

    [Benchmark]
    public static void Bench()
    {
        deltablue d = new deltablue();
        int iterations = 200;
        foreach (var iteration in Benchmark.Iterations)
        {
            using (iteration.StartMeasurement())
            {
                d.inst_inner(iterations, false);
            }
        }
    }

    public bool inst_main(String[] args)
    {
        int iterations = 200; // read iterations from arguments, walter 7/97
        if (args.Length > 0)
        {
            bool parsed = Int32.TryParse(args[0], out iterations);
            if (!parsed)
            {
                Console.WriteLine("Error: expected iteration count, got '{0}'", args[0]);
                return false;
            }
        }

        inst_inner(iterations, true);

        return true;
    }

    public void inst_inner(int iterations, bool verbose)
    {
        chains = 0;         // NS 11/11
        projections = 0;    // NS 11/11
        if (verbose)
        {
            Console.WriteLine("deltablue parameters: " + iterations + " iterations");
        }

        DateTime start = DateTime.Now;
        for (int i = 0; i < iterations; i++)
        {
            chainTest(1000);
            projectionTest(1000);
        }
        DateTime end = DateTime.Now;
        TimeSpan dur = end - start;
        if (verbose)
        {
            Console.WriteLine("chains : " + chains); //NS
            Console.WriteLine("projections : " + projections); //NS
            Console.WriteLine("Doing {0} iters of Deltablue takes {1} ms; {2} us/iter.",
                              iterations, dur.TotalMilliseconds, (1000.0 * dur.TotalMilliseconds) / iterations);
        }
    }

    //  This is the standard DeltaBlue benchmark. A long chain of
    //  equality constraints is constructed with a stay constraint on
    //  one end. An edit constraint is then added to the opposite end
    //  and the time is measured for adding and removing this
    //  constraint, and extracting and executing a constraint
    //  satisfaction plan. There are two cases. In case 1, the added
    //  constraint is stronger than the stay constraint and values must
    //  propagate down the entire length of the chain. In case 2, the
    //  added constraint is weaker than the stay constraint so it cannot
    //  be accomodated. The cost in this case is, of course, very
    //  low. Typical situations lie somewhere between these two
    //  extremes.
    //
    private void chainTest(int n)
    {
        planner = new Planner();

        Variable prev = null, first = null, last = null;

        // Build chain of n equality constraints
        for (int i = 0; i <= n; i++)
        {
            String name = "v" + i;
            Variable v = new Variable(name);
            if (prev != null)
                new EqualityConstraint(prev, v, Strength.required);
            if (i == 0) first = v;
            if (i == n) last = v;
            prev = v;
        }

        new StayConstraint(last, Strength.strongDefault);
        Constraint editC = new EditConstraint(first, Strength.preferred);
        ArrayList editV = new ArrayList();
        editV.Add(editC);
        Plan plan = planner.extractPlanFromConstraints(editV);
        for (int i = 0; i < 100; i++)
        {
            first.value = i;
            plan.execute();
            if (last.value != i)
                error("Chain test failed!");
        }
        editC.destroyConstraint();
        deltablue.chains++;
    }


    // This test constructs a two sets of variables related to each
    // other by a simple linear transformation (scale and offset). The
    // time is measured to change a variable on either side of the
    // mapping and to change the scale and offset factors.
    //
    private void projectionTest(int n)
    {
        planner = new Planner();

        Variable scale = new Variable("scale", 10);
        Variable offset = new Variable("offset", 1000);
        Variable src = null, dst = null;

        ArrayList dests = new ArrayList();

        for (int i = 0; i < n; ++i)
        {
            src = new Variable("src" + i, i);
            dst = new Variable("dst" + i, i);
            dests.Add(dst);
            new StayConstraint(src, Strength.normal);
            new ScaleConstraint(src, scale, offset, dst, Strength.required);
        }

        change(src, 17);
        if (dst.value != 1170) error("Projection test 1 failed!");

        change(dst, 1050);
        if (src.value != 5) error("Projection test 2 failed!");

        change(scale, 5);
        for (int i = 0; i < n - 1; ++i)
        {
            if (((Variable)dests[i]).value != i * 5 + 1000)
                error("Projection test 3 failed!");
        }

        change(offset, 2000);
        for (int i = 0; i < n - 1; ++i)
        {
            if (((Variable)dests[i]).value != i * 5 + 2000)
                error("Projection test 4 failed!");
        }
        deltablue.projections++;
    }

    private void change(Variable var, int newValue)
    {
        EditConstraint editC = new EditConstraint(var, Strength.preferred);
        ArrayList editV = new ArrayList();
        editV.Add(editC);
        Plan plan = planner.extractPlanFromConstraints(editV);
        for (int i = 0; i < 10; i++)
        {
            var.value = newValue;
            plan.execute();
        }
        editC.destroyConstraint();
    }

    public static void error(String s)
    {
        throw new Exception(s);
    }
}