summaryrefslogtreecommitdiff
path: root/tests/src/JIT/Performance/CodeQuality/Bytemark/emfloatclass.cs
blob: 1667231e3d3d13c53eac596a27cb301d022b11e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
/*
** Copyright (c) Microsoft. All rights reserved.
** Licensed under the MIT license. 
** See LICENSE file in the project root for full license information.
** 
** This program was translated to C# and adapted for xunit-performance.
** New variants of several tests were added to compare class versus 
** struct and to compare jagged arrays vs multi-dimensional arrays.
*/

/*
** BYTEmark (tm)
** BYTE Magazine's Native Mode benchmarks
** Rick Grehan, BYTE Magazine
**
** Create:
** Revision: 3/95
**
** DISCLAIMER
** The source, executable, and documentation files that comprise
** the BYTEmark benchmarks are made available on an "as is" basis.
** This means that we at BYTE Magazine have made every reasonable
** effort to verify that the there are no errors in the source and
** executable code.  We cannot, however, guarantee that the programs
** are error-free.  Consequently, McGraw-HIll and BYTE Magazine make
** no claims in regard to the fitness of the source code, executable
** code, and documentation of the BYTEmark.
** 
** Furthermore, BYTE Magazine, McGraw-Hill, and all employees
** of McGraw-Hill cannot be held responsible for any damages resulting
** from the use of this code or the results obtained from using
** this code.
*/

using System;

/*
** DEFINES
*/
public class EMFloatClass : EmFloatStruct
{
    public override string Name()
    {
        return "FP EMULATION(class)";
    }

    private const int MAX_EXP = 32767;
    private const int MIN_EXP = (-32767);

    private enum IFPF : byte
    {
        IFPF_IS_ZERO = 0,
        IFPF_IS_SUBNORMAL = 1,
        IFPF_IS_NORMAL = 2,
        IFPF_IS_INFINITY = 3,
        IFPF_IS_NAN = 4,
        IFPF_TYPE_COUNT = 5,
    };

    private enum STATE
    {
        ZERO_ZERO = 0,
        ZERO_SUBNORMAL = 1,
        ZERO_NORMAL = 2,
        ZERO_INFINITY = 3,
        ZERO_NAN = 4,

        SUBNORMAL_ZERO = 5,
        SUBNORMAL_SUBNORMAL = 6,
        SUBNORMAL_NORMAL = 7,
        SUBNORMAL_INFINITY = 8,
        SUBNORMAL_NAN = 9,

        NORMAL_ZERO = 10,
        NORMAL_SUBNORMAL = 11,
        NORMAL_NORMAL = 12,
        NORMAL_INFINITY = 13,
        NORMAL_NAN = 14,

        INFINITY_ZERO = 15,
        INFINITY_SUBNORMAL = 16,
        INFINITY_NORMAL = 17,
        INFINITY_INFINITY = 18,
        INFINITY_NAN = 19,

        NAN_ZERO = 20,
        NAN_SUBNORMAL = 21,
        NAN_NORMAL = 22,
        NAN_INFINITY = 23,
        NAN_NAN = 24,
    };

    private enum OPERAND
    {
        OPERAND_ZERO = 0,
        OPERAND_SUBNORMAL = 1,
        OPERAND_NORMAL = 2,
        OPERAND_INFINITY = 3,
        OPERAND_NAN = 4,
    };

    /*
    ** Following was already defined in NMGLOBAL.H
    **
    */
    private const int INTERNAL_FPF_PRECISION = 4;

    /*
    ** TYPEDEFS
    */

    private class InternalFPF
    {
        public InternalFPF()
        {
            type = IFPF.IFPF_IS_ZERO; sign = (byte)0;
            exp = (short)0; mantissa = new char[INTERNAL_FPF_PRECISION];
        }
        public IFPF type;        /* Indicates, NORMAL, SUBNORMAL, etc. */
        public byte sign;        /* Mantissa sign */
        public short exp;      /* Signed exponent...no bias */
        public char[] mantissa; // [INTERNAL_FPF_PRECISION]
    };

    /*
    ** emfloat.c
    ** Source for emulated floating-point routines.
    ** BYTEmark (tm)
    ** BYTE's Native Mode Benchmarks
    ** Rick Grehan, BYTE Magazine.
    **
    ** Created:
    ** Last update: 3/95
    **
    ** DISCLAIMER
    ** The source, executable, and documentation files that comprise
    ** the BYTEmark benchmarks are made available on an "as is" basis.
    ** This means that we at BYTE Magazine have made every reasonable
    ** effort to verify that the there are no errors in the source and
    ** executable code.  We cannot, however, guarantee that the programs
    ** are error-free.  Consequently, McGraw-HIll and BYTE Magazine make
    ** no claims in regard to the fitness of the source code, executable
    ** code, and documentation of the BYTEmark.
    **  Furthermore, BYTE Magazine, McGraw-Hill, and all employees
    ** of McGraw-Hill cannot be held responsible for any damages resulting
    ** from the use of this code or the results obtained from using
    ** this code.
    */

    /*
    ** Floating-point emulator.
    ** These routines are only "sort of" IEEE-compliant.  All work is
    ** done using an internal representation.  Also, the routines do
    ** not check for many of the exceptions that might occur.
    ** Still, the external formats produced are IEEE-compatible,
    ** with the restriction that they presume a low-endian machine
    ** (though the endianism will not effect the performance).
    **
    ** Some code here was based on work done by Steve Snelgrove of
    ** Orem, UT.  Other code comes from routines presented in
    ** the long-ago book: "Microprocessor Programming for
    ** Computer Hobbyists" by Neill Graham.
    */

    /*****************************
    ** FLOATING-POINT EMULATION **
    *****************************/

    /**************
    ** DoEmFloat **
    ***************
    ** Perform the floating-point emulation routines portion of the
    ** CPU benchmark.  Returns the operations per second.
    */
    public override double Run()
    {
        InternalFPF[] abase;             /* Base of A array */
        InternalFPF[] bbase;             /* Base of B array */
        InternalFPF[] cbase;             /* Base of C array */
        long accumtime;                /* Accumulated time in ticks */
        double iterations;              /* # of iterations */
        long tickcount;                /* # of ticks */
        int loops;                    /* # of loops */

        /*
        ** Test the emulation routines.
        */

        abase = new InternalFPF[this.arraysize];
        bbase = new InternalFPF[this.arraysize];
        cbase = new InternalFPF[this.arraysize];

        for (int i = 0; i < this.arraysize; i++)
        {
            abase[i] = new InternalFPF();
            bbase[i] = new InternalFPF();
            cbase[i] = new InternalFPF();
        }

        /*
        for (int i = 0; i < this.arraysize; i++) 
        {
            abase[i].type = IFPF.IFPF_IS_ZERO;
            abase[i].sign = (byte)0;
            abase[i].exp = (short)0;
            abase[i].mantissa = new char[INTERNAL_FPF_PRECISION];

            bbase[i].type = IFPF.IFPF_IS_ZERO;
            bbase[i].sign = (byte)0;
            bbase[i].exp = (short)0;
            bbase[i].mantissa = new char[INTERNAL_FPF_PRECISION];

            cbase[i].type = IFPF.IFPF_IS_ZERO;
            cbase[i].sign = (byte)0;
            cbase[i].exp = (short)0;
            cbase[i].mantissa = new char[INTERNAL_FPF_PRECISION];
        }
        */

        /*
        ** Set up the arrays
        */
        SetupCPUEmFloatArrays(abase, bbase, cbase, this.arraysize);

        /*
        ** See if we need to do self-adjusting code.
        */
        if (this.adjust == 0)
        {
            this.loops = 0;

            /*
            ** Do an iteration of the tests.  If the elapsed time is
            ** less than minimum, increase the loop count and try
            ** again.
            */
            for (loops = 1; loops < global.CPUEMFLOATLOOPMAX; loops += loops)
            {
                tickcount = DoEmFloatIteration(abase, bbase, cbase,
                    this.arraysize,
                    loops);
                if (tickcount > global.min_ticks)
                {
                    this.loops = loops;
                    break;
                }
            }
        }

        /*
        ** Verify that selft adjustment code worked.
        */
        if (this.loops == 0)
        {
            throw new Exception("CPU:EMFPU -- CMPUEMFLOATLOOPMAX limit hit\n");
        }

        /*
        ** All's well if we get here.  Repeatedly perform floating
        ** tests until the accumulated time is greater than the
        ** # of seconds requested.
        ** Each iteration performs arraysize * 3 operations.
        */
        accumtime = 0L;
        iterations = (double)0.0;
        do
        {
            accumtime += DoEmFloatIteration(abase, bbase, cbase,
                this.arraysize,
                this.loops);
            iterations += (double)1.0;
        } while (ByteMark.TicksToSecs(accumtime) < this.request_secs);

        /*
        ** Clean up, calculate results, and go home.
        ** Also, indicate that adjustment is done.
        */

        if (this.adjust == 0)
            this.adjust = 1;
        double emflops = (iterations * (double)this.loops) /
            (double)ByteMark.TicksToFracSecs(accumtime);

        return (emflops);
    }






    /**************************
    ** SetupCPUEmFloatArrays **
    ***************************
    ** Set up the arrays that will be used in the emulated
    ** floating-point tests.
    ** This is done by loading abase and bbase elements with
    ** random numbers.  We use our long-to-floating point
    ** routine to set them up.
    ** NOTE: We really don't need the pointer to cbase...cbase
    ** is overwritten in the benchmark.
    */
    private static
    void SetupCPUEmFloatArrays(InternalFPF[] abase,
        InternalFPF[] bbase,
        InternalFPF[] cbase,
        int arraysize)
    {
        int i;
        InternalFPF locFPF1, locFPF2;
        locFPF1 = new InternalFPF();
        locFPF2 = new InternalFPF();

        for (i = 0; i < arraysize; i++)
        {
            LongToInternalFPF(ByteMark.randwc(50000), locFPF1);
            LongToInternalFPF(ByteMark.randwc(50000) + 1, locFPF2);
            DivideInternalFPF(locFPF1, locFPF2, abase[i]);
            LongToInternalFPF(ByteMark.randwc(50000) + 1, locFPF2);
            DivideInternalFPF(locFPF1, locFPF2, bbase[i]);
        }
        return;
    }

    /***********************
    ** DoEmFloatIteration **
    ************************
    ** Perform an iteration of the emulated floating-point
    ** benchmark.  Note that "an iteration" can involve multiple
    ** loops through the benchmark.
    */
    private static
    long DoEmFloatIteration(InternalFPF[] abase,
        InternalFPF[] bbase,
        InternalFPF[] cbase,
        int arraysize, int loops)
    {
        long elapsed;          /* For the stopwatch */
        byte[] jtable = new byte[] { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3 };
        int i;

        /*
        ** Begin timing
        */
        elapsed = ByteMark.StartStopwatch();

        /*
        ** Each pass through the array performs operations in
        ** the followingratios:
        **   4 adds, 4 subtracts, 5 multiplies, 3 divides
        ** (adds and subtracts being nearly the same operation)
        */
        while (loops-- > 0)
        {
            for (i = 0; i < arraysize; i++)
                switch (jtable[i % 16])
                {
                    case 0: /* Add */
                        AddSubInternalFPF(0, abase[i],
                            bbase[i],
                            cbase[i]);
                        break;
                    case 1: /* Subtract */
                        AddSubInternalFPF(1, abase[i],
                            bbase[i],
                            cbase[i]);
                        break;
                    case 2: /* Multiply */
                        MultiplyInternalFPF(abase[i],
                            bbase[i],
                            cbase[i]);
                        break;
                    case 3: /* Divide */
                        DivideInternalFPF(abase[i],
                            bbase[i],
                            cbase[i]);
                        break;
                }
        }

        return (ByteMark.StopStopwatch(elapsed));
    }

    /***********************
    ** SetInternalFPFZero **
    ************************
    ** Set an internal floating-point-format number to zero.
    ** sign determines the sign of the zero.
    */
    private static void SetInternalFPFZero(InternalFPF dest,
        byte sign)
    {
        int i;          /* Index */

        dest.type = IFPF.IFPF_IS_ZERO;
        dest.sign = sign;
        dest.exp = MIN_EXP;

        for (i = 0; i < INTERNAL_FPF_PRECISION; i++)
            dest.mantissa[i] = (char)0;
        return;
    }

    /***************************
    ** SetInternalFPFInfinity **
    ****************************
    ** Set an internal floating-point-format number to infinity.
    ** This can happen if the exponent exceeds MAX_EXP.
    ** As above, sign picks the sign of infinity.
    */
    private static void SetInternalFPFInfinity(InternalFPF dest,
        byte sign)
    {
        int i;          /* Index */

        dest.type = IFPF.IFPF_IS_INFINITY;
        dest.sign = sign;
        dest.exp = MIN_EXP;

        for (i = 0; i < INTERNAL_FPF_PRECISION; i++)
            dest.mantissa[i] = (char)0;
        return;
    }

    /**********************
    ** SetInternalFPFNaN **
    ***********************
    ** Set an internal floating-point-format number to Nan
    ** (not a number).  Note that we "emulate" an 80x87 as far
    ** as the mantissa bits go.
    */
    private static void SetInternalFPFNaN(InternalFPF dest)
    {
        int i;          /* Index */

        dest.type = IFPF.IFPF_IS_NAN;
        dest.exp = MAX_EXP;
        dest.sign = 1;

        dest.mantissa[0] = (char)0x4000;
        for (i = 1; i < INTERNAL_FPF_PRECISION; i++)
            dest.mantissa[i] = (char)0;

        return;
    }

    /*******************
    ** IsMantissaZero **
    ********************
    ** Pass this routine a pointer to an internal floating point format
    ** number's mantissa.  It checks for an all-zero mantissa.
    ** Returns 0 if it is NOT all zeros, !=0 otherwise.
    */
    private static bool IsMantissaZero(char[] mant)
    {
        int i;          /* Index */
        int n;          /* Return value */

        n = 0;
        for (i = 0; i < INTERNAL_FPF_PRECISION; i++)
            n |= mant[i];

        return (n == 0);
    }

    /**************
    ** Add16Bits **
    ***************
    ** Add b, c, and carry.  Retult in a.  New carry in carry.
    */
    private static void Add16Bits(ref char carry,
        out char a,
        char b,
        char c)
    {
        int accum;              /* Accumulator */

        /*
        ** Do the work in the 32-bit accumulator so we can return
        ** the carry.
        */
        accum = b;
        accum += c;
        accum += carry;
        carry = (char)(((accum & 0x00010000) != 0) ? 1 : 0);     /* New carry */
        a = (char)(accum & 0xFFFF);       /* Result is lo 16 bits */
        return;
    }

    /**************
    ** Sub16Bits **
    ***************
    ** Additive inverse of above.
    */
    private static void Sub16Bits(ref char borrow,
        out char a,
        char b,
        char c)
    {
        int accum;              /* Accumulator */

        accum = b;
        accum -= c;
        accum -= borrow;
        borrow = (char)(((accum & 0x00010000) != 0) ? 1 : 0);    /* New borrow */
        a = (char)(accum & 0xFFFF);
        return;
    }

    /*******************
    ** ShiftMantLeft1 **
    ********************
    ** Shift a vector of 16-bit numbers left 1 bit.  Also provides
    ** a carry bit, which is shifted in at the beginning, and
    ** shifted out at the end.
    */
    private static void ShiftMantLeft1(ref char carry,
        char[] mantissa)
    {
        int i;          /* Index */
        int new_carry;
        char accum;      /* Temporary holding placed */

        for (i = INTERNAL_FPF_PRECISION - 1; i >= 0; i--)
        {
            accum = mantissa[i];
            new_carry = accum & 0x8000;       /* Get new carry */
            accum = unchecked((char)(accum << 1)); /* Do the shift */
            if (carry != 0)
                accum |= (char)1;               /* Insert previous carry */
            carry = (char)new_carry;
            mantissa[i] = accum;              /* Return shifted value */
        }
        return;
    }

    /********************
    ** ShiftMantRight1 **
    *********************
    ** Shift a mantissa right by 1 bit.  Provides carry, as
    ** above
    */
    private static void ShiftMantRight1(ref char carry,
        char[] mantissa)
    {
        int i;          /* Index */
        int new_carry;
        char accum;

        for (i = 0; i < INTERNAL_FPF_PRECISION; i++)
        {
            accum = mantissa[i];
            new_carry = accum & 1;            /* Get new carry */
            accum = (char)(accum >> 1);
            if (carry != 0)
                accum |= (char)0x8000;
            carry = (char)new_carry;
            mantissa[i] = accum;
        }
        return;
    }


    /*****************************
    ** StickyShiftMantRight **
    ******************************
    ** This is a shift right of the mantissa with a "sticky bit".
    ** I.E., if a carry of 1 is shifted out of the least significant
    ** bit, the least significant bit is set to 1.
    */
    private static void StickyShiftRightMant(InternalFPF ptr,
        int amount)
    {
        int i;          /* Index */
        char carry;      /* Self-explanatory */

        if (ptr.type != IFPF.IFPF_IS_ZERO)     /* Don't bother shifting a zero */
        {
            /*
            ** If the amount of shifting will shift everyting
            ** out of existence, then just clear the whole mantissa
            ** and set the lowmost bit to 1.
            */
            if (amount >= INTERNAL_FPF_PRECISION * 16)
            {
                for (i = 0; i < INTERNAL_FPF_PRECISION - 1; i++)
                    ptr.mantissa[i] = (char)0;
                ptr.mantissa[INTERNAL_FPF_PRECISION - 1] = (char)1;
            }
            else
                for (i = 0; i < amount; i++)
                {
                    carry = (char)0;
                    ShiftMantRight1(ref carry, ptr.mantissa);
                    if (carry != 0)
                        ptr.mantissa[INTERNAL_FPF_PRECISION - 1] |= (char)1;
                }
        }
        return;
    }


    /**************************************************
    **         POST ARITHMETIC PROCESSING            **
    **  (NORMALIZE, ROUND, OVERFLOW, AND UNDERFLOW)  **
    **************************************************/

    /**************
    ** normalize **
    ***************
    ** Normalize an internal-representation number.  Normalization
    ** discards empty most-significant bits.
    */
    private static void normalize(InternalFPF ptr)
    {
        char carry;

        /*
        ** As long as there's a highmost 0 bit, shift the significand
        ** left 1 bit.  Each time you do this, though, you've
        ** gotta decrement the exponent.
        */
        while ((ptr.mantissa[0] & 0x8000) == 0)
        {
            carry = (char)0;
            ShiftMantLeft1(ref carry, ptr.mantissa);
            ptr.exp--;
        }
        return;
    }

    /****************
    ** denormalize **
    *****************
    ** Denormalize an internal-representation number.  This means
    ** shifting it right until its exponent is equivalent to
    ** minimum_exponent. (You have to do this often in order
    ** to perform additions and subtractions).
    */
    private static void denormalize(InternalFPF ptr,
        int minimum_exponent)
    {
        int exponent_difference;

        if (IsMantissaZero(ptr.mantissa))
        {
            throw new Exception("Error:  zero significand in denormalize");
        }

        exponent_difference = ptr.exp - minimum_exponent;
        if (exponent_difference < 0)
        {
            /*
            ** The number is subnormal
            */
            exponent_difference = -exponent_difference;
            if (exponent_difference >= (INTERNAL_FPF_PRECISION * 16))
            {
                /* Underflow */
                SetInternalFPFZero(ptr, ptr.sign);
            }
            else
            {
                ptr.exp += (short)exponent_difference;
                StickyShiftRightMant(ptr, exponent_difference);
            }
        }
        return;
    }


    /*********************
    ** RoundInternalFPF **
    **********************
    ** Round an internal-representation number.
    ** The kind of rounding we do here is simplest...referred to as
    ** "chop".  "Extraneous" rightmost bits are simply hacked off.
    */
    private static
    void RoundInternalFPF(InternalFPF ptr)
    {
        /* int i; */

        if (ptr.type == IFPF.IFPF_IS_NORMAL ||
            ptr.type == IFPF.IFPF_IS_SUBNORMAL)
        {
            denormalize(ptr, MIN_EXP);
            if (ptr.type != IFPF.IFPF_IS_ZERO)
            {
                /* clear the extraneous bits */
                ptr.mantissa[3] &= (char)0xfff8;
                /*              for (i=4; i<INTERNAL_FPF_PRECISION; i++)
                {
                ptr->mantissa[i] = 0;
                }
                */
                /*
                ** Check for overflow
                */
                if (ptr.exp > MAX_EXP)
                {
                    SetInternalFPFInfinity(ptr, ptr.sign);
                }
            }
        }
        return;
    }

    /*******************************************************
    **  ARITHMETIC OPERATIONS ON INTERNAL REPRESENTATION  **
    *******************************************************/

    private static void memmove(InternalFPF dest, InternalFPF src)
    {
        dest.type = src.type;
        dest.sign = src.sign;
        dest.exp = src.exp;
        for (int i = 0; i < INTERNAL_FPF_PRECISION; i++)
        {
            dest.mantissa[i] = src.mantissa[i];
        }
    }

    /***************
    ** choose_nan **
    ****************
    ** Called by routines that are forced to perform math on
    ** a pair of NaN's.  This routine "selects" which NaN is
    ** to be returned.
    */
    private static void choose_nan(InternalFPF x,
        InternalFPF y,
        InternalFPF z,
        int intel_flag)
    {
        int i;

        /*
        ** Compare the two mantissas,
        ** return the larger.  Note that we will be emulating
        ** an 80387 in this operation.
        */
        for (i = 0; i < INTERNAL_FPF_PRECISION; i++)
        {
            if (x.mantissa[i] > y.mantissa[i])
            {
                memmove(z, x);
                return;
            }
            if (x.mantissa[i] < y.mantissa[i])
            {
                memmove(z, y);
                return;
            }
        }

        /*
        ** They are equal
        */
        if (intel_flag == 0)
            /* if the operation is addition */
            memmove(z, x);
        else
            /* if the operation is multiplication */
            memmove(z, y);
        return;
    }


    /**********************
    ** AddSubInternalFPF **
    ***********************
    ** Adding or subtracting internal-representation numbers.
    ** Internal-representation numbers pointed to by x and y are
    ** added/subtracted and the result returned in z.
    */
    private static void AddSubInternalFPF(byte operation,
        InternalFPF x,
        InternalFPF y,
        InternalFPF z)
    {
        int exponent_difference;
        char borrow;
        char carry;
        int i;
        InternalFPF locx, locy;  /* Needed since we alter them */
        /*
        ** Following big switch statement handles the
        ** various combinations of operand types.
        */
        int count = (int)IFPF.IFPF_TYPE_COUNT;
        switch ((STATE)(((int)x.type * count) + (int)y.type))
        {
            case STATE.ZERO_ZERO:
                memmove(z, x);
                if ((x.sign ^ y.sign ^ operation) != 0)
                {
                    z.sign = 0; /* positive */
                }
                break;

            case STATE.NAN_ZERO:
            case STATE.NAN_SUBNORMAL:
            case STATE.NAN_NORMAL:
            case STATE.NAN_INFINITY:
            case STATE.SUBNORMAL_ZERO:
            case STATE.NORMAL_ZERO:
            case STATE.INFINITY_ZERO:
            case STATE.INFINITY_SUBNORMAL:
            case STATE.INFINITY_NORMAL:
                memmove(z, x);
                break;


            case STATE.ZERO_NAN:
            case STATE.SUBNORMAL_NAN:
            case STATE.NORMAL_NAN:
            case STATE.INFINITY_NAN:
                memmove(z, y);
                break;

            case STATE.ZERO_SUBNORMAL:
            case STATE.ZERO_NORMAL:
            case STATE.ZERO_INFINITY:
            case STATE.SUBNORMAL_INFINITY:
            case STATE.NORMAL_INFINITY:
                memmove(z, x);
                z.sign ^= operation;
                break;

            case STATE.SUBNORMAL_SUBNORMAL:
            case STATE.SUBNORMAL_NORMAL:
            case STATE.NORMAL_SUBNORMAL:
            case STATE.NORMAL_NORMAL:
                /*
                ** Copy x and y to locals, since we may have
                ** to alter them.
                */
                locx = new InternalFPF();
                locy = new InternalFPF();
                memmove(locx, x);
                memmove(locy, y);

                /* compute sum/difference */
                exponent_difference = locx.exp - locy.exp;
                if (exponent_difference == 0)
                {
                    /*
                    ** locx.exp == locy.exp
                    ** so, no shifting required
                    */
                    if (locx.type == IFPF.IFPF_IS_SUBNORMAL ||
                        locy.type == IFPF.IFPF_IS_SUBNORMAL)
                        z.type = IFPF.IFPF_IS_SUBNORMAL;
                    else
                        z.type = IFPF.IFPF_IS_NORMAL;

                    /*
                    ** Assume that locx.mantissa > locy.mantissa
                    */
                    z.sign = locx.sign;
                    z.exp = locx.exp;
                }
                else
                    if (exponent_difference > 0)
                {
                    /*
                    ** locx.exp > locy.exp
                    */
                    StickyShiftRightMant(locy,
                        exponent_difference);
                    z.type = locx.type;
                    z.sign = locx.sign;
                    z.exp = locx.exp;
                }
                else    /* if (exponent_difference < 0) */
                {
                    /*
                    ** locx.exp < locy.exp
                    */
                    StickyShiftRightMant(locx,
                        -exponent_difference);
                    z.type = locy.type;
                    z.sign = (byte)(locy.sign ^ operation);
                    z.exp = locy.exp;
                }

                if ((locx.sign ^ locy.sign ^ operation) != 0)
                {
                    /*
                    ** Signs are different, subtract mantissas
                    */
                    borrow = (char)0;
                    for (i = (INTERNAL_FPF_PRECISION - 1); i >= 0; i--)
                        Sub16Bits(ref borrow,
                        out z.mantissa[i],
                        locx.mantissa[i],
                        locy.mantissa[i]);

                    if (borrow != 0)
                    {
                        /* The y->mantissa was larger than the
                        ** x->mantissa leaving a negative
                        ** result.  Change the result back to
                        ** an unsigned number and flip the
                        ** sign flag.
                        */
                        z.sign = (byte)(locy.sign ^ operation);
                        borrow = (char)0;
                        for (i = (INTERNAL_FPF_PRECISION - 1); i >= 0; i--)
                        {
                            Sub16Bits(ref borrow,
                                out z.mantissa[i],
                                (char)0,
                                z.mantissa[i]);
                        }
                    }
                    else
                    {
                        /* The assumption made above
                        ** (i.e. x->mantissa >= y->mantissa)
                        ** was correct.  Therefore, do nothing.
                        ** z->sign = x->sign;
                        */
                    }

                    if (IsMantissaZero(z.mantissa))
                    {
                        z.type = IFPF.IFPF_IS_ZERO;
                        z.sign = 0; /* positive */
                    }
                    else
                        if (locx.type == IFPF.IFPF_IS_NORMAL ||
                            locy.type == IFPF.IFPF_IS_NORMAL)
                    {
                        normalize(z);
                    }
                }
                else
                {
                    /* signs are the same, add mantissas */
                    carry = (char)0;
                    for (i = (INTERNAL_FPF_PRECISION - 1); i >= 0; i--)
                    {
                        Add16Bits(ref carry,
                            out z.mantissa[i],
                            locx.mantissa[i],
                            locy.mantissa[i]);
                    }

                    if (carry != 0)
                    {
                        z.exp++;
                        carry = (char)0;
                        ShiftMantRight1(ref carry, z.mantissa);
                        z.mantissa[0] |= (char)0x8000;
                        z.type = IFPF.IFPF_IS_NORMAL;
                    }
                    else
                        if ((z.mantissa[0] & 0x8000) != 0)
                        z.type = IFPF.IFPF_IS_NORMAL;
                }
                break;

            case STATE.INFINITY_INFINITY:
                SetInternalFPFNaN(z);
                break;

            case STATE.NAN_NAN:
                choose_nan(x, y, z, 1);
                break;
        }

        /*
        ** All the math is done; time to round.
        */
        RoundInternalFPF(z);
        return;
    }


    /************************
    ** MultiplyInternalFPF **
    *************************
    ** Two internal-representation numbers x and y are multiplied; the
    ** result is returned in z.
    */
    private static void MultiplyInternalFPF(
        InternalFPF x,
        InternalFPF y,
        InternalFPF z)
    {
        int i;
        int j;
        char carry;
        char[] extra_bits = new char[INTERNAL_FPF_PRECISION];
        InternalFPF locy;       /* Needed since this will be altered */
        /*
        ** As in the preceding function, this large switch
        ** statement selects among the many combinations
        ** of operands.
        */
        int count = (int)IFPF.IFPF_TYPE_COUNT;
        switch ((STATE)(((int)x.type * count) + (int)y.type))
        {
            case STATE.INFINITY_SUBNORMAL:
            case STATE.INFINITY_NORMAL:
            case STATE.INFINITY_INFINITY:
            case STATE.ZERO_ZERO:
            case STATE.ZERO_SUBNORMAL:
            case STATE.ZERO_NORMAL:
                memmove(z, x);
                z.sign ^= y.sign;
                break;

            case STATE.SUBNORMAL_INFINITY:
            case STATE.NORMAL_INFINITY:
            case STATE.SUBNORMAL_ZERO:
            case STATE.NORMAL_ZERO:
                memmove(z, y);
                z.sign ^= x.sign;
                break;

            case STATE.ZERO_INFINITY:
            case STATE.INFINITY_ZERO:
                SetInternalFPFNaN(z);
                break;

            case STATE.NAN_ZERO:
            case STATE.NAN_SUBNORMAL:
            case STATE.NAN_NORMAL:
            case STATE.NAN_INFINITY:
                memmove(z, x);
                break;

            case STATE.ZERO_NAN:
            case STATE.SUBNORMAL_NAN:
            case STATE.NORMAL_NAN:
            case STATE.INFINITY_NAN:
                memmove(z, y);
                break;


            case STATE.SUBNORMAL_SUBNORMAL:
            case STATE.SUBNORMAL_NORMAL:
            case STATE.NORMAL_SUBNORMAL:
            case STATE.NORMAL_NORMAL:
                /*
                ** Make a local copy of the y number, since we will be
                ** altering it in the process of multiplying.
                */
                locy = new InternalFPF();
                memmove(locy, y);

                /*
                ** Check for unnormal zero arguments
                */
                if (IsMantissaZero(x.mantissa) || IsMantissaZero(y.mantissa))
                {
                    SetInternalFPFInfinity(z, 0);
                }

                /*
                ** Initialize the result
                */
                if (x.type == IFPF.IFPF_IS_SUBNORMAL ||
                    y.type == IFPF.IFPF_IS_SUBNORMAL)
                    z.type = IFPF.IFPF_IS_SUBNORMAL;
                else
                    z.type = IFPF.IFPF_IS_NORMAL;

                z.sign = (byte)(x.sign ^ y.sign);
                z.exp = (short)(x.exp + y.exp);
                for (i = 0; i < INTERNAL_FPF_PRECISION; i++)
                {
                    z.mantissa[i] = (char)0;
                    extra_bits[i] = (char)0;
                }

                for (i = 0; i < (INTERNAL_FPF_PRECISION * 16); i++)
                {
                    /*
                    ** Get rightmost bit of the multiplier
                    */
                    carry = (char)0;
                    ShiftMantRight1(ref carry, locy.mantissa);
                    if (carry != 0)
                    {
                        /*
                        ** Add the multiplicand to the product
                        */
                        carry = (char)0;
                        for (j = (INTERNAL_FPF_PRECISION - 1); j >= 0; j--)
                            Add16Bits(ref carry,
                            out z.mantissa[j],
                            z.mantissa[j],
                            x.mantissa[j]);
                    }
                    else
                    {
                        carry = (char)0;
                    }

                    /*
                    ** Shift the product right.  Overflow bits get
                    ** shifted into extra_bits.  We'll use it later
                    ** to help with the "sticky" bit.
                    */
                    ShiftMantRight1(ref carry, z.mantissa);
                    ShiftMantRight1(ref carry, extra_bits);
                }

                /*
                ** Normalize
                ** Note that we use a "special" normalization routine
                ** because we need to use the extra bits. (These are
                ** bits that may have been shifted off the bottom that
                ** we want to reclaim...if we can.
                */
                while ((z.mantissa[0] & 0x8000) == 0)
                {
                    carry = (char)0;
                    ShiftMantLeft1(ref carry, extra_bits);
                    ShiftMantLeft1(ref carry, z.mantissa);
                    z.exp--;
                }

                /*
                ** Set the sticky bit if any bits set in extra bits.
                */
                if (IsMantissaZero(extra_bits))
                {
                    z.mantissa[INTERNAL_FPF_PRECISION - 1] |= (char)1;
                }
                break;

            case STATE.NAN_NAN:
                choose_nan(x, y, z, 0);
                break;
        }

        /*
        ** All math done...do rounding.
        */
        RoundInternalFPF(z);
        return;
    }


    /**********************
    ** DivideInternalFPF **
    ***********************
    ** Divide internal FPF number x by y.  Return result in z.
    */
    private static void DivideInternalFPF(
        InternalFPF x,
        InternalFPF y,
        InternalFPF z)
    {
        int i;
        int j;
        char carry;
        char[] extra_bits = new char[INTERNAL_FPF_PRECISION];
        InternalFPF locx;       /* Local for x number */

        /*
        ** As with preceding function, the following switch
        ** statement selects among the various possible
        ** operands.
        */
        int count = (int)IFPF.IFPF_TYPE_COUNT;
        switch ((STATE)(((int)x.type * count) + (int)y.type))
        {
            case STATE.ZERO_ZERO:
            case STATE.INFINITY_INFINITY:
                SetInternalFPFNaN(z);
                break;

            case STATE.ZERO_SUBNORMAL:
            case STATE.ZERO_NORMAL:
                if (IsMantissaZero(y.mantissa))
                {
                    SetInternalFPFNaN(z);
                    break;
                }
                goto case STATE.ZERO_INFINITY;

            case STATE.ZERO_INFINITY:
            case STATE.SUBNORMAL_INFINITY:
            case STATE.NORMAL_INFINITY:
                SetInternalFPFZero(z, (byte)(x.sign ^ y.sign));
                break;

            case STATE.SUBNORMAL_ZERO:
            case STATE.NORMAL_ZERO:
                if (IsMantissaZero(x.mantissa))
                {
                    SetInternalFPFNaN(z);
                    break;
                }
                goto case STATE.INFINITY_ZERO;

            case STATE.INFINITY_ZERO:
            case STATE.INFINITY_SUBNORMAL:
            case STATE.INFINITY_NORMAL:
                SetInternalFPFInfinity(z, 0);
                z.sign = (byte)(x.sign ^ y.sign);
                break;

            case STATE.NAN_ZERO:
            case STATE.NAN_SUBNORMAL:
            case STATE.NAN_NORMAL:
            case STATE.NAN_INFINITY:
                memmove(z, x);
                break;

            case STATE.ZERO_NAN:
            case STATE.SUBNORMAL_NAN:
            case STATE.NORMAL_NAN:
            case STATE.INFINITY_NAN:
                memmove(z, y);
                break;

            case STATE.SUBNORMAL_SUBNORMAL:
            case STATE.NORMAL_SUBNORMAL:
            case STATE.SUBNORMAL_NORMAL:
            case STATE.NORMAL_NORMAL:
                /*
                ** Make local copy of x number, since we'll be
                ** altering it in the process of dividing.
                */

                locx = new InternalFPF();
                memmove(locx, x);

                /*
                ** Check for unnormal zero arguments
                */
                if (IsMantissaZero(locx.mantissa))
                {
                    if (IsMantissaZero(y.mantissa))
                        SetInternalFPFNaN(z);
                    else
                        SetInternalFPFZero(z, 0);
                    break;
                }
                if (IsMantissaZero(y.mantissa))
                {
                    SetInternalFPFInfinity(z, 0);
                    break;
                }

                /*
                ** Initialize the result
                */
                z.type = x.type;
                z.sign = (byte)(x.sign ^ y.sign);
                z.exp = (short)(x.exp - y.exp +
                    ((INTERNAL_FPF_PRECISION * 16 * 2)));
                for (i = 0; i < INTERNAL_FPF_PRECISION; i++)
                {
                    z.mantissa[i] = (char)0;
                    extra_bits[i] = (char)0;
                }

                while ((z.mantissa[0] & 0x8000) == 0)
                {
                    carry = (char)0;
                    ShiftMantLeft1(ref carry, locx.mantissa);
                    ShiftMantLeft1(ref carry, extra_bits);

                    /*
                    ** Time to subtract yet?
                    */
                    if (carry == 0)
                        for (j = 0; j < INTERNAL_FPF_PRECISION; j++)
                        {
                            if (y.mantissa[j] > extra_bits[j])
                            {
                                carry = (char)0;
                                goto no_subtract;
                            }
                            if (y.mantissa[j] < extra_bits[j])
                                break;
                        }
                    /*
                    ** Divisor (y) <= dividend (x), subtract
                    */
                    carry = (char)0;
                    for (j = (INTERNAL_FPF_PRECISION - 1); j >= 0; j--)
                        Sub16Bits(ref carry,
                        out extra_bits[j],
                        extra_bits[j],
                        y.mantissa[j]);
                    carry = (char)1;      /* 1 shifted into quotient */
                no_subtract:
                    ShiftMantLeft1(ref carry, z.mantissa);
                    z.exp--;
                }
                break;

            case STATE.NAN_NAN:
                choose_nan(x, y, z, 0);
                break;
        }

        /*
        ** Math complete...do rounding
        */
        RoundInternalFPF(z);
    }

    /**********************
    ** LongToInternalFPF **
    ***********************
    ** Convert a signed long integer into an internal FPF number.
    */
    private static void LongToInternalFPF(
        int mylong,
        InternalFPF dest)
    {
        int i;          /* Index */
        char myword;     /* Used to hold converted stuff */
        /*
        ** Save the sign and get the absolute value.  This will help us
        ** with 64-bit machines, since we use only the lower 32
        ** bits just in case.
        */
        if (mylong < 0)
        {
            dest.sign = 1;
            mylong = 0 - mylong;
        }
        else
            dest.sign = 0;
        /*
        ** Prepare the destination floating point number
        */
        dest.type = IFPF.IFPF_IS_NORMAL;
        for (i = 0; i < INTERNAL_FPF_PRECISION; i++)
            dest.mantissa[i] = (char)0;

        /*
        ** See if we've got a zero.  If so, make the resultant FP
        ** number a true zero and go home.
        */
        if (mylong == 0)
        {
            dest.type = IFPF.IFPF_IS_ZERO;
            dest.exp = 0;
            return;
        }

        /*
        ** Not a true zero.  Set the exponent to 32 (internal FPFs have
        ** no bias) and load the low and high words into their proper
        ** locations in the mantissa.  Then normalize.  The action of
        ** normalizing slides the mantissa bits into place and sets
        ** up the exponent properly.
        */
        dest.exp = 32;
        myword = (char)((mylong >> 16) & 0xFFFFL);
        dest.mantissa[0] = myword;
        myword = (char)(mylong & 0xFFFFL);
        dest.mantissa[1] = myword;
        normalize(dest);
        return;
    }

    /************************
    ** InternalFPFToString **
    *************************
    ** FOR DEBUG PURPOSES
    ** This routine converts an internal floating point representation
    ** number to a string.  Used in debugging the package.
    ** Returns length of converted number.
    ** NOTE: dest must point to a buffer big enough to hold the
    **  result.  Also, this routine does append a null (an effect
    **  of using the sprintf() function).  It also returns
    **  a length count.
    ** NOTE: This routine returns 5 significant digits.  Thats
    **  about all I feel safe with, given the method of
    **  conversion.  It should be more than enough for programmers
    **  to determine whether the package is properly ported.
    */
    private static int InternalFPFToString(
        out string dest,
        InternalFPF src)
    {
        InternalFPF locFPFNum;          /* Local for src (will be altered) */
        InternalFPF IFPF10;             /* Floating-point 10 */
        InternalFPF IFPFComp;           /* For doing comparisons */
        int msign;                      /* Holding for mantissa sign */
        int expcount;                   /* Exponent counter */
        int ccount;                     /* Character counter */
        int i, j, k;                      /* Index */
        char carryaccum;                 /* Carry accumulator */
        char mycarry;                    /* Local for carry */

        locFPFNum = new InternalFPF();
        IFPF10 = new InternalFPF();
        IFPFComp = new InternalFPF();
        dest = "";
        /*
        ** Check first for the simple things...Nan, Infinity, Zero.
        ** If found, copy the proper string in and go home.
        */
        switch (src.type)
        {
            case IFPF.IFPF_IS_NAN:
                dest = "NaN";
                return (3);

            case IFPF.IFPF_IS_INFINITY:
                if (src.sign == 0)
                    dest = "+Inf";
                else
                    dest = "-Inf";
                return (4);

            case IFPF.IFPF_IS_ZERO:
                if (src.sign == 0)
                    dest = "+0";
                else
                    dest = "-0";
                return (2);
        }

        /*
        ** Move the internal number into our local holding area, since
        ** we'll be altering it to print it out.
        */
        memmove(locFPFNum, src);

        /*
        ** Set up a floating-point 10...which we'll use a lot in a minute.
        */
        LongToInternalFPF(10, IFPF10);

        /*
        ** Save the mantissa sign and make it positive.
        */
        msign = src.sign;
        src.sign = 0;

        expcount = 0;             /* Init exponent counter */

        /*
        ** See if the number is less than 10.  If so, multiply
        ** the number repeatedly by 10 until it's not.   For each
        ** multiplication, decrement a counter so we can keep track
        ** of the exponent.
        */
        while (true)
        {
            AddSubInternalFPF(1, locFPFNum, IFPF10, IFPFComp);
            if (IFPFComp.sign == 0)
                break;
            MultiplyInternalFPF(locFPFNum, IFPF10, IFPFComp);
            expcount--;
            memmove(locFPFNum, IFPFComp);
        }

        /*
        ** Do the reverse of the above.  As long as the number is
        ** greater than or equal to 10, divide it by 10.  Increment the
        ** exponent counter for each multiplication.
        */
        while (true)
        {
            AddSubInternalFPF(1, locFPFNum, IFPF10, IFPFComp);
            if (IFPFComp.sign != 0)
                break;
            DivideInternalFPF(locFPFNum, IFPF10, IFPFComp);
            expcount++;
            memmove(locFPFNum, IFPFComp);
        }

        /*
        ** About time to start storing things.  First, store the
        ** mantissa sign.
        */
        ccount = 1;               /* Init character counter */
        if (msign == 0)
            dest += "+";
        else
            dest += "-";

        /*
        ** At this point we know that the number is in the range
        ** 10 > n >=1.  We need to "strip digits" out of the
        ** mantissa.  We do this by treating the mantissa as
        ** an integer and multiplying by 10. (Not a floating-point
        ** 10, but an integer 10.  Since this is debug code and we
        ** could care less about speed, we'll do it the stupid
        ** way and simply add the number to itself 10 times.
        ** Anything that makes it to the left of the implied binary point
        ** gets stripped off and emitted.  We'll do this for
        ** 5 significant digits (which should be enough to
        ** verify things).
        */
        /*
        ** Re-position radix point
        */
        carryaccum = (char)0;
        while (locFPFNum.exp > 0)
        {
            mycarry = (char)0;
            ShiftMantLeft1(ref mycarry, locFPFNum.mantissa);
            carryaccum = (char)(carryaccum << 1);
            if (mycarry != 0)
                carryaccum++;
            locFPFNum.exp--;
        }

        while (locFPFNum.exp < 0)
        {
            mycarry = (char)0;
            ShiftMantRight1(ref mycarry, locFPFNum.mantissa);
            locFPFNum.exp++;
        }

        for (i = 0; i < 6; i++)
            if (i == 1)
            {       /* Emit decimal point */
                dest += ".";
                ccount++;
            }
            else
            {       /* Emit a digit */
                string s = "0"; // ((char)('0'+carryaccum)); // never gets called.
                dest += s;
                ccount++;

                carryaccum = (char)0;
                memmove(IFPF10, locFPFNum);

                /* Do multiply via repeated adds */
                for (j = 0; j < 9; j++)
                {
                    mycarry = (char)0;
                    for (k = (INTERNAL_FPF_PRECISION - 1); k >= 0; k--)
                        Add16Bits(ref mycarry, out IFPFComp.mantissa[k],
                            locFPFNum.mantissa[k],
                            IFPF10.mantissa[k]);
                    carryaccum += (char)(mycarry != 0 ? 1 : 0);
                    memmove(locFPFNum, IFPFComp);
                }
            }

        /*
        ** Now move the 'E', the exponent sign, and the exponent
        ** into the string.
        */
        dest += "E";
        dest += expcount.ToString();

        /*
        ** All done, go home.
        */
        return (dest.Length);
    }
}