summaryrefslogtreecommitdiff
path: root/src/zap/nativeformatwriter.h
blob: 99db10d21059cdb218c9fcde75dc31e2452922d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

// ---------------------------------------------------------------------------
// NativeFormatWriter
//
// Utilities to write native data to images, that can be read by the NativeFormat.Reader class
// ---------------------------------------------------------------------------

#pragma once

#include <assert.h>
#include <stdint.h>

// To reduce differences between C# and C++ versions
#define byte uint8_t

#define UInt16 uint16_t
#define UInt32 uint32_t
#define UInt64 uint64_t

#include <clr_std/vector>

namespace NativeFormat
{
    using namespace std;

    class NativeSection;
    class NativeWriter;

    class Vertex
    {
        friend class NativeWriter;
        friend class NativeSection;

        int m_offset;
        int m_iteration; // Iteration that the offset is valid for

        static const int NotPlaced = -1;
        static const int Placed = -2;

    public:
        Vertex()
            : m_offset(Vertex::NotPlaced), m_iteration(-1)
        {
        }

        virtual ~Vertex() {}

        virtual void Save(NativeWriter * pWriter) = 0;

        int GetOffset()
        {
            assert(m_offset >= 0);
            return m_offset;
        }
    };

    class NativeSection : vector<Vertex *>
    {
        friend class NativeWriter;

    public:
        Vertex * Place(Vertex * pVertex);

        Vertex * Pop()
        {
            Vertex * pVertex = *(end() - 1);
            erase(end() - 1);

            assert(pVertex->m_offset == Vertex::Placed);
            pVertex->m_offset = Vertex::NotPlaced;

            return pVertex;
        }
    };

    class NativeWriter
    {
        vector<NativeSection *> m_Sections;

        enum SavePhase
        {
            Initial,
            Shrinking,
            Growing,
            Done
        };

        vector<byte> m_Buffer;
        int m_iteration;
        SavePhase m_phase; // Current save phase
        int m_offsetAdjustment; // Cumulative offset adjustment compared to previous iteration
        int m_paddingSize; // How much padding was used

    public:
        NativeWriter()
        {
            m_iteration = 0;
            m_phase = Initial;
        }

        NativeSection * NewSection()
        {
            NativeSection * pSection = new NativeSection();
            m_Sections.push_back(pSection);
            return pSection;
        }

        void WriteByte(byte b)
        {
            m_Buffer.push_back(b);
        }

        void WriteUInt16(UInt16 value)
        {
            WriteByte((byte)value);
            WriteByte((byte)(value>>8));
        }

        void WriteUInt32(UInt32 value)
        {
            WriteByte((byte)value);
            WriteByte((byte)(value>>8));
            WriteByte((byte)(value>>16));
            WriteByte((byte)(value>>24));
        }

        void WritePad(unsigned size)
        {
            while (size > 0)
            {
                WriteByte(0);
                size--;
            }
        }

        bool IsGrowing()
        {
            return m_phase == Growing;
        }

        void UpdateOffsetAdjustment(int offsetDelta)
        {
            switch (m_phase)
            {
            case Shrinking:
                m_offsetAdjustment = min(m_offsetAdjustment, offsetDelta);
                break;
            case Growing:
                m_offsetAdjustment = max(m_offsetAdjustment, offsetDelta);
                break;
            default:
                break;
            }
        }

        void RollbackTo(int offset)
        {
            m_Buffer.erase(m_Buffer.begin() + offset, m_Buffer.end());
        }

        void RollbackTo(int offset, int offsetAdjustment)
        {
            m_offsetAdjustment = offsetAdjustment;
            RollbackTo(offset);
        }

        void PatchByteAt(int offset, byte value)
        {
            m_Buffer[offset] = value;
        }

        //
        // Same encoding as what's used by CTL
        //
        void WriteUnsigned(unsigned d);
        static unsigned GetUnsignedEncodingSize(unsigned d);

        template <typename T>
        void WriteUnsigned(T d)
        {
            WriteUnsigned((unsigned)d);
        }

        void WriteSigned(int i);

        void WriteRelativeOffset(Vertex * pVal);

        int GetExpectedOffset(Vertex * pVal);

        int GetCurrentOffset(Vertex * pVal)
        {
            if (pVal->m_iteration != m_iteration)
                return -1;
            return pVal->m_offset;
        }

        void SetCurrentOffset(Vertex * pVal)
        {
            pVal->m_iteration = m_iteration;
            pVal->m_offset = GetCurrentOffset();
        }

        int GetCurrentOffset()
        {
            return (int)m_Buffer.size();
        }

        int GetNumberOfIterations()
        {
            return m_iteration;
        }

        int GetPaddingSize()
        {
            return m_paddingSize;
        }

        vector<byte>& Save();
    };


    //
    // Data structure building blocks
    //

    class UnsignedConstant : public Vertex
    {
        unsigned m_value;

    public:
        UnsignedConstant(unsigned value)
            : m_value(value)
        {
        }

        virtual void Save(NativeWriter * pWriter)
        {
            pWriter->WriteUnsigned(m_value);
        }
    };

    //
    // Sparse array. Good for random access based on index
    //
    class VertexArray : public Vertex
    {
        vector<Vertex *> m_Entries;

        NativeSection * m_pSection;
        vector<Vertex *> m_Blocks;

        static const int _blockSize = 16;

        // Current size of index entry
        int m_entryIndexSize; // 0 - uint8, 1 - uint16, 2 - uint32

        class VertexLeaf : public Vertex
        {
        public:
            Vertex * m_pVertex;
            size_t m_leafIndex;

            virtual void Save(NativeWriter * pWriter);
        };

        class VertexTree : public Vertex
        {
        public:
            Vertex * m_pFirst;
            Vertex * m_pSecond;

            virtual void Save(NativeWriter * pWriter);
        };

        Vertex * ExpandBlock(size_t index, int depth, bool place, bool * pLeaf);

    public:
        VertexArray(NativeSection * pSection)
            : m_pSection(pSection)
        {
        }

        void Set(int index, Vertex * pElement)
        {
            while ((size_t)index >= m_Entries.size())
                m_Entries.push_back(nullptr);

            m_Entries[index] = pElement;
        }

        void ExpandLayout();

        virtual void Save(NativeWriter * pWriter);
    };

    //
    // Hashtable. Good for random access based on hashcode + key
    //
    class VertexHashtable : public Vertex
    {
        struct Entry
        {
            Entry()
                : offset(-1), hashcode(0), pVertex(NULL)
            {
            }

            Entry(unsigned hashcode, Vertex * pVertex)
                : offset(0), hashcode(hashcode), pVertex(pVertex)
            {
            }

            int offset;

            unsigned hashcode;
            Vertex * pVertex;
        };

        vector<Entry> m_Entries;

        // How many entries to target per bucket. Higher fill factor means smaller size, but worse runtime perf.
        int m_nFillFactor;

        // Number of buckets choosen for the table. Must be power of two. 0 means that the table is still open for mutation.
        int m_nBuckets;

        // Current size of index entry
        int m_entryIndexSize; // 0 - uint8, 1 - uint16, 2 - uint32

        void ComputeLayout();

    public:
        static const int DefaultFillFactor = 13;

        VertexHashtable(int fillFactor = DefaultFillFactor)
        {
            m_nBuckets = 0;

            m_nFillFactor = fillFactor;
        }

        void Append(unsigned hashcode, Vertex * pElement)
        {
            // The table needs to be open for mutation
            assert(m_nBuckets == 0);

            m_Entries.push_back(Entry(hashcode, pElement));
        }

        virtual void Save(NativeWriter * pWriter);
    };
};