summaryrefslogtreecommitdiff
path: root/src/vm/tieredcompilation.cpp
blob: 6515188701cf907c54c5c6e579008a7f4449e82d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
// ===========================================================================
// File: TieredCompilation.CPP
//
// ===========================================================================



#include "common.h"
#include "excep.h"
#include "log.h"
#include "win32threadpool.h"
#include "threadsuspend.h"
#include "tieredcompilation.h"

// TieredCompilationManager determines which methods should be recompiled and
// how they should be recompiled to best optimize the running code. It then
// handles logistics of getting new code created and installed.
//
//
// # Important entrypoints in this code:
//
// 
// a) .ctor and Init(...) -  called once during AppDomain initialization
// b) OnMethodCalled(...) -  called when a method is being invoked. When a method
//                           has been called enough times this is currently the only
//                           trigger that initiates re-compilation.
// c) Shutdown() -           called during AppDomain::Exit() to begin the process
//                           of stopping tiered compilation. After this point no more
//                           background optimization work will be initiated but in-progress
//                           work still needs to complete.
// d) ShutdownAllDomains() - Called from EEShutdownHelper to block until all async work is
//                           complete. We must do this before we shutdown the JIT.
//
// # Overall workflow
//
// Methods initially call into OnMethodCalled() and once the call count exceeds
// a fixed limit we queue work on to our internal list of methods needing to
// be recompiled (m_methodsToOptimize). If there is currently no thread
// servicing our queue asynchronously then we use the runtime threadpool
// QueueUserWorkItem to recruit one. During the callback for each threadpool work
// item we handle as many methods as possible in a fixed period of time, then
// queue another threadpool work item if m_methodsToOptimize hasn't been drained.
//
// The background thread enters at StaticOptimizeMethodsCallback(), enters the
// appdomain, and then begins calling OptimizeMethod on each method in the
// queue. For each method we jit it, then update the precode so that future
// entrypoint callers will run the new code.
// 
// # Error handling
//
// The overall principle is don't swallow terminal failures that may have corrupted the
// process (AV for example), but otherwise for any transient issue or functional limitation
// that prevents us from optimizing log it for diagnostics and then back out gracefully,
// continuing to run the less optimal code. The feature should be constructed so that
// errors are limited to OS resource exhaustion or poorly behaved managed code
// (for example within an AssemblyResolve event or static constructor triggered by the JIT).

#if defined(FEATURE_TIERED_COMPILATION) && !defined(DACCESS_COMPILE)

// Called at AppDomain construction
TieredCompilationManager::TieredCompilationManager() :
    m_lock(CrstTieredCompilation),
    m_countOfMethodsToOptimize(0),
    m_isAppDomainShuttingDown(FALSE),
    m_countOptimizationThreadsRunning(0),
    m_methodsPendingCountingForTier1(nullptr),
    m_tieringDelayTimerHandle(nullptr),
    m_tier1CallCountingCandidateMethodRecentlyRecorded(false)
{
    WRAPPER_NO_CONTRACT;
    // On Unix, we can reach here before EEConfig is initialized, so defer config-based initialization to Init()
}

// Called at AppDomain Init
void TieredCompilationManager::Init()
{
    CONTRACTL
    {
        GC_NOTRIGGER;
        CAN_TAKE_LOCK;
        MODE_PREEMPTIVE;
    }
    CONTRACTL_END;
}

#endif // FEATURE_TIERED_COMPILATION && !DACCESS_COMPILE

NativeCodeVersion::OptimizationTier TieredCompilationManager::GetInitialOptimizationTier(PTR_MethodDesc pMethodDesc)
{
    WRAPPER_NO_CONTRACT;
    _ASSERTE(pMethodDesc != NULL);

#ifdef FEATURE_TIERED_COMPILATION
    if (!pMethodDesc->IsEligibleForTieredCompilation())
    {
        // The optimization tier is not used
        return NativeCodeVersion::OptimizationTier0;
    }

    if (pMethodDesc->RequestedAggressiveOptimization())
    {
        // Methods flagged with MethodImplOptions.AggressiveOptimization start with and stay at tier 1
        return NativeCodeVersion::OptimizationTier1;
    }

    if (!g_pConfig->TieredCompilation_CallCounting())
    {
        // Call counting is disabled altogether through config, the intention is to remain at the initial tier
        return NativeCodeVersion::OptimizationTier0;
    }

    if (!pMethodDesc->GetCallCounter()->IsCallCountingEnabled(pMethodDesc))
    {
        // Tier 0 call counting may have been disabled for several reasons, the intention is to start with and stay at an
        // optimized tier
        return NativeCodeVersion::OptimizationTierOptimized;
    }
#endif

    return NativeCodeVersion::OptimizationTier0;
}

#if defined(FEATURE_TIERED_COMPILATION) && !defined(DACCESS_COMPILE)

// Called each time code in this AppDomain has been run. This is our sole entrypoint to begin
// tiered compilation for now. Returns TRUE if no more notifications are necessary, but
// more notifications may come anyways.
//
// currentCallCountLimit is pre-decremented, that is to say the value is <= 0 when the
//      threshold for promoting to tier 1 is reached.
void TieredCompilationManager::OnMethodCalled(
    MethodDesc* pMethodDesc,
    bool isFirstCall,
    int currentCallCountLimit,
    BOOL* shouldStopCountingCallsRef,
    BOOL* wasPromotedToNextTierRef)
{
    WRAPPER_NO_CONTRACT;
    _ASSERTE(pMethodDesc->IsEligibleForTieredCompilation());
    _ASSERTE(shouldStopCountingCallsRef != nullptr);
    _ASSERTE(wasPromotedToNextTierRef != nullptr);

    *shouldStopCountingCallsRef =
        // Stop call counting when the delay is in effect
        IsTieringDelayActive() ||
        // Initiate the delay on tier 0 activity (when a new eligible method is called the first time)
        (isFirstCall && g_pConfig->TieredCompilation_CallCountingDelayMs() != 0) ||
        // Stop call counting when ready for tier 1 promotion
        currentCallCountLimit <= 0;

    *wasPromotedToNextTierRef = currentCallCountLimit <= 0;

    if (currentCallCountLimit == 0)
    {
        AsyncPromoteMethodToTier1(pMethodDesc);
    }
}

void TieredCompilationManager::OnMethodCallCountingStoppedWithoutTierPromotion(MethodDesc* pMethodDesc)
{
    WRAPPER_NO_CONTRACT;
    _ASSERTE(pMethodDesc != nullptr);
    _ASSERTE(pMethodDesc->IsEligibleForTieredCompilation());

    if (g_pConfig->TieredCompilation_CallCountingDelayMs() == 0 ||
        !pMethodDesc->GetCallCounter()->IsCallCountingEnabled(pMethodDesc))
    {
        return;
    }

    while (true)
    {
        bool attemptedToInitiateDelay = false;
        if (!IsTieringDelayActive())
        {
            if (!TryInitiateTieringDelay())
            {
                break;
            }
            attemptedToInitiateDelay = true;
        }

        {
            CrstHolder holder(&m_lock);

            SArray<MethodDesc*>* methodsPendingCountingForTier1 = m_methodsPendingCountingForTier1;
            if (methodsPendingCountingForTier1 == nullptr)
            {
                // Timer tick callback race, try again
                continue;
            }

            // Record the method to resume counting later (see Tier1DelayTimerCallback)
            bool success = false;
            EX_TRY
            {
                methodsPendingCountingForTier1->Append(pMethodDesc);
                success = true;
            }
            EX_CATCH
            {
            }
            EX_END_CATCH(RethrowTerminalExceptions);
            if (!success)
            {
                break;
            }

            if (!attemptedToInitiateDelay)
            {
                // Delay call counting for currently recoded methods further
                m_tier1CallCountingCandidateMethodRecentlyRecorded = true;
            }
        }
        return;
    }

    ResumeCountingCalls(pMethodDesc);
}

void TieredCompilationManager::AsyncPromoteMethodToTier1(MethodDesc* pMethodDesc)
{
    STANDARD_VM_CONTRACT;

    NativeCodeVersion t1NativeCodeVersion;

    // Add an inactive native code entry in the versioning table to track the tier1 
    // compilation we are going to create. This entry binds the compilation to a
    // particular version of the IL code regardless of any changes that may
    // occur between now and when jitting completes. If the IL does change in that
    // interval the new code entry won't be activated.
    {
        CodeVersionManager* pCodeVersionManager = pMethodDesc->GetCodeVersionManager();
        CodeVersionManager::TableLockHolder lock(pCodeVersionManager);
        ILCodeVersion ilVersion = pCodeVersionManager->GetActiveILCodeVersion(pMethodDesc);
        NativeCodeVersionCollection nativeVersions = ilVersion.GetNativeCodeVersions(pMethodDesc);
        for (NativeCodeVersionIterator cur = nativeVersions.Begin(), end = nativeVersions.End(); cur != end; cur++)
        {
            NativeCodeVersion::OptimizationTier optimizationTier = cur->GetOptimizationTier();
            if (optimizationTier == NativeCodeVersion::OptimizationTier1 ||
                optimizationTier == NativeCodeVersion::OptimizationTierOptimized)
            {
                // we've already promoted
                LOG((LF_TIEREDCOMPILATION, LL_INFO100000, "TieredCompilationManager::AsyncPromoteMethodToTier1 Method=0x%pM (%s::%s) ignoring already promoted method\n",
                    pMethodDesc, pMethodDesc->m_pszDebugClassName, pMethodDesc->m_pszDebugMethodName));
                return;
            }
        }

        HRESULT hr = S_OK;
        if (FAILED(hr = ilVersion.AddNativeCodeVersion(pMethodDesc, NativeCodeVersion::OptimizationTier1, &t1NativeCodeVersion)))
        {
            // optimization didn't work for some reason (presumably OOM)
            // just give up and continue on
            STRESS_LOG2(LF_TIEREDCOMPILATION, LL_WARNING, "TieredCompilationManager::AsyncPromoteMethodToTier1: "
                "AddNativeCodeVersion failed hr=0x%x, method=%pM\n",
                hr, pMethodDesc);
            return;
        }
    }

    // Insert the method into the optimization queue and trigger a thread to service
    // the queue if needed.
    //
    // Note an error here could affect concurrent threads running this
    // code. Those threads will observe m_countOptimizationThreadsRunning > 0 and return,
    // then QueueUserWorkItem fails on this thread lowering the count and leaves them 
    // unserviced. Synchronous retries appear unlikely to offer any material improvement 
    // and complicating the code to narrow an already rare error case isn't desirable.
    {
        SListElem<NativeCodeVersion>* pMethodListItem = new (nothrow) SListElem<NativeCodeVersion>(t1NativeCodeVersion);
        CrstHolder holder(&m_lock);
        if (pMethodListItem != NULL)
        {
            m_methodsToOptimize.InsertTail(pMethodListItem);
            ++m_countOfMethodsToOptimize;
        }

        LOG((LF_TIEREDCOMPILATION, LL_INFO10000, "TieredCompilationManager::AsyncPromoteMethodToTier1 Method=0x%pM (%s::%s), code version id=0x%x queued\n",
            pMethodDesc, pMethodDesc->m_pszDebugClassName, pMethodDesc->m_pszDebugMethodName,
            t1NativeCodeVersion.GetVersionId()));

        if (!IncrementWorkerThreadCountIfNeeded())
        {
            return;
        }
    }

    if (!TryAsyncOptimizeMethods())
    {
        CrstHolder holder(&m_lock);
        DecrementWorkerThreadCount();
    }
}

void TieredCompilationManager::Shutdown()
{
    STANDARD_VM_CONTRACT;

    CrstHolder holder(&m_lock);
    m_isAppDomainShuttingDown = TRUE;
}

bool TieredCompilationManager::IsTieringDelayActive()
{
    LIMITED_METHOD_CONTRACT;
    return m_methodsPendingCountingForTier1 != nullptr;
}

bool TieredCompilationManager::TryInitiateTieringDelay()
{
    WRAPPER_NO_CONTRACT;
    _ASSERTE(g_pConfig->TieredCompilation());
    _ASSERTE(g_pConfig->TieredCompilation_CallCountingDelayMs() != 0);

    NewHolder<SArray<MethodDesc*>> methodsPendingCountingHolder = new(nothrow) SArray<MethodDesc*>();
    if (methodsPendingCountingHolder == nullptr)
    {
        return false;
    }

    bool success = false;
    EX_TRY
    {
        methodsPendingCountingHolder->Preallocate(64);
        success = true;
    }
    EX_CATCH
    {
    }
    EX_END_CATCH(RethrowTerminalExceptions);
    if (!success)
    {
        return false;
    }

    NewHolder<ThreadpoolMgr::TimerInfoContext> timerContextHolder = new(nothrow) ThreadpoolMgr::TimerInfoContext();
    if (timerContextHolder == nullptr)
    {
        return false;
    }
    timerContextHolder->TimerId = 0;

    {
        CrstHolder holder(&m_lock);

        if (IsTieringDelayActive())
        {
            return true;
        }

        // The timer is created inside the lock to avoid some unnecessary additional complexity that would otherwise arise from
        // there being a failure point after the timer is successfully created. For instance, if the timer is created outside
        // the lock and then inside the lock it is found that another thread beat us to it, there would be two active timers
        // that may tick before the extra timer is deleted, along with additional concurrency issues.
        _ASSERTE(m_tieringDelayTimerHandle == nullptr);
        success = false;
        EX_TRY
        {
            if (ThreadpoolMgr::CreateTimerQueueTimer(
                    &m_tieringDelayTimerHandle,
                    TieringDelayTimerCallback,
                    timerContextHolder,
                    g_pConfig->TieredCompilation_CallCountingDelayMs(),
                    (DWORD)-1 /* Period, non-repeating */,
                    0 /* flags */))
            {
                success = true;
            }
        }
        EX_CATCH
        {
        }
        EX_END_CATCH(RethrowTerminalExceptions);
        if (!success)
        {
            _ASSERTE(m_tieringDelayTimerHandle == nullptr);
            return false;
        }

        m_methodsPendingCountingForTier1 = methodsPendingCountingHolder.Extract();
        _ASSERTE(IsTieringDelayActive());
    }

    timerContextHolder.SuppressRelease(); // the timer context is automatically deleted by the timer infrastructure
    if (ETW::CompilationLog::TieredCompilation::Runtime::IsEnabled())
    {
        ETW::CompilationLog::TieredCompilation::Runtime::SendPause();
    }
    return true;
}

void WINAPI TieredCompilationManager::TieringDelayTimerCallback(PVOID parameter, BOOLEAN timerFired)
{
    WRAPPER_NO_CONTRACT;
    _ASSERTE(timerFired);

    ThreadpoolMgr::TimerInfoContext* timerContext = (ThreadpoolMgr::TimerInfoContext*)parameter;
    EX_TRY
    {
        GCX_COOP();
        ManagedThreadBase::ThreadPool(TieringDelayTimerCallbackInAppDomain, nullptr);
    }
    EX_CATCH
    {
        STRESS_LOG1(LF_TIEREDCOMPILATION, LL_ERROR, "TieredCompilationManager::Tier1DelayTimerCallback: "
            "Unhandled exception, hr=0x%x\n",
            GET_EXCEPTION()->GetHR());
    }
    EX_END_CATCH(RethrowTerminalExceptions);
}

void TieredCompilationManager::TieringDelayTimerCallbackInAppDomain(LPVOID parameter)
{
    WRAPPER_NO_CONTRACT;

    GCX_PREEMP();
    GetAppDomain()->GetTieredCompilationManager()->TieringDelayTimerCallbackWorker();
}

void TieredCompilationManager::TieringDelayTimerCallbackWorker()
{
    WRAPPER_NO_CONTRACT;

    HANDLE tieringDelayTimerHandle;
    bool tier1CallCountingCandidateMethodRecentlyRecorded;
    {
        // It's possible for the timer to tick before it is recorded that the delay is in effect. This lock guarantees that the
        // delay is in effect.
        CrstHolder holder(&m_lock);
        _ASSERTE(IsTieringDelayActive());

        tieringDelayTimerHandle = m_tieringDelayTimerHandle;
        _ASSERTE(tieringDelayTimerHandle != nullptr);

        tier1CallCountingCandidateMethodRecentlyRecorded = m_tier1CallCountingCandidateMethodRecentlyRecorded;
        if (tier1CallCountingCandidateMethodRecentlyRecorded)
        {
            m_tier1CallCountingCandidateMethodRecentlyRecorded = false;
        }
    }

    // Reschedule the timer if there has been recent tier 0 activity (when a new eligible method is called the first time) to
    // further delay call counting
    if (tier1CallCountingCandidateMethodRecentlyRecorded)
    {
        bool success = false;
        EX_TRY
        {
            if (ThreadpoolMgr::ChangeTimerQueueTimer(
                    tieringDelayTimerHandle,
                    g_pConfig->TieredCompilation_CallCountingDelayMs(),
                    (DWORD)-1 /* Period, non-repeating */))
            {
                success = true;
            }
        }
        EX_CATCH
        {
        }
        EX_END_CATCH(RethrowTerminalExceptions);
        if (success)
        {
            return;
        }
    }

    // Exchange information into locals inside the lock
    SArray<MethodDesc*>* methodsPendingCountingForTier1;
    bool optimizeMethods;
    {
        CrstHolder holder(&m_lock);

        methodsPendingCountingForTier1 = m_methodsPendingCountingForTier1;
        _ASSERTE(methodsPendingCountingForTier1 != nullptr);
        m_methodsPendingCountingForTier1 = nullptr;

        _ASSERTE(tieringDelayTimerHandle == m_tieringDelayTimerHandle);
        m_tieringDelayTimerHandle = nullptr;

        _ASSERTE(!IsTieringDelayActive());
        optimizeMethods = IncrementWorkerThreadCountIfNeeded();
    }

    MethodDesc** methods = methodsPendingCountingForTier1->GetElements();
    COUNT_T methodCount = methodsPendingCountingForTier1->GetCount();

    if (ETW::CompilationLog::TieredCompilation::Runtime::IsEnabled())
    {
        // TODO: Avoid scanning the list in the future
        UINT32 newMethodCount = 0;
        for (COUNT_T i = 0; i < methodCount; ++i)
        {
            MethodDesc *methodDesc = methods[i];
            if (methodDesc->GetCallCounter()->WasCalledAtMostOnce(methodDesc))
            {
                ++newMethodCount;
            }
        }
        ETW::CompilationLog::TieredCompilation::Runtime::SendResume(newMethodCount);
    }

    // Install call counters
    for (COUNT_T i = 0; i < methodCount; ++i)
    {
        ResumeCountingCalls(methods[i]);
    }
    delete methodsPendingCountingForTier1;

    ThreadpoolMgr::DeleteTimerQueueTimer(tieringDelayTimerHandle, nullptr);

    if (optimizeMethods)
    {
        OptimizeMethods();
    }
}

void TieredCompilationManager::ResumeCountingCalls(MethodDesc* pMethodDesc)
{
    WRAPPER_NO_CONTRACT;
    _ASSERTE(pMethodDesc != nullptr);

    bool mayHaveEntryPointSlotsToBackpatch = pMethodDesc->MayHaveEntryPointSlotsToBackpatch();
    if (mayHaveEntryPointSlotsToBackpatch)
    {
        MethodDescBackpatchInfoTracker::PollForDebuggerSuspension();
    }
    MethodDescBackpatchInfoTracker::ConditionalLockHolder lockHolder(mayHaveEntryPointSlotsToBackpatch);

    EX_TRY
    {
        pMethodDesc->ResetCodeEntryPoint();
    }
    EX_CATCH
    {
    }
    EX_END_CATCH(RethrowTerminalExceptions);
}

bool TieredCompilationManager::TryAsyncOptimizeMethods()
{
    WRAPPER_NO_CONTRACT;
    _ASSERTE(DebugGetWorkerThreadCount() != 0);

    // Terminal exceptions escape as exceptions, but all other errors should gracefully
    // return to the caller. Non-terminal error conditions should be rare (ie OOM,
    // OS failure to create thread) and we consider it reasonable for some methods
    // to go unoptimized or have their optimization arbitrarily delayed under these
    // circumstances.
    bool success = false;
    EX_TRY
    {
        if (ThreadpoolMgr::QueueUserWorkItem(StaticOptimizeMethodsCallback, this, QUEUE_ONLY, TRUE))
        {
            success = true;
        }
        else
        {
            STRESS_LOG0(LF_TIEREDCOMPILATION, LL_WARNING, "TieredCompilationManager::OnMethodCalled: "
                "ThreadpoolMgr::QueueUserWorkItem returned FALSE (no thread will run)\n");
        }
    }
    EX_CATCH
    {
        STRESS_LOG1(LF_TIEREDCOMPILATION, LL_WARNING, "TieredCompilationManager::OnMethodCalled: "
            "Exception queuing work item to threadpool, hr=0x%x\n",
            GET_EXCEPTION()->GetHR());
    }
    EX_END_CATCH(RethrowTerminalExceptions);
    return success;
}

// This is the initial entrypoint for the background thread, called by
// the threadpool.
DWORD WINAPI TieredCompilationManager::StaticOptimizeMethodsCallback(void *args)
{
    STANDARD_VM_CONTRACT;

    TieredCompilationManager * pTieredCompilationManager = (TieredCompilationManager *)args;
    pTieredCompilationManager->OptimizeMethodsCallback();

    return 0;
}

void TieredCompilationManager::OptimizeMethodsCallback()
{
    STANDARD_VM_CONTRACT;
    _ASSERTE(DebugGetWorkerThreadCount() != 0);

    // This app domain shutdown check isn't required for correctness
    // but it should reduce some unneeded exceptions trying
    // to enter a closed AppDomain
    {
        CrstHolder holder(&m_lock);
        if (m_isAppDomainShuttingDown)
        {
            DecrementWorkerThreadCount();
            return;
        }
    }

    EX_TRY
    {
        GCX_COOP();
        OptimizeMethods();
    }
    EX_CATCH
    {
        STRESS_LOG1(LF_TIEREDCOMPILATION, LL_ERROR, "TieredCompilationManager::OptimizeMethodsCallback: "
            "Unhandled exception on domain transition, hr=0x%x\n",
            GET_EXCEPTION()->GetHR());
    }
    EX_END_CATCH(RethrowTerminalExceptions);
}

//This method will process one or more methods from optimization queue
// on a background thread. Each such method will be jitted with code
// optimizations enabled and then installed as the active implementation
// of the method entrypoint.
void TieredCompilationManager::OptimizeMethods()
{
    WRAPPER_NO_CONTRACT;
    _ASSERTE(DebugGetWorkerThreadCount() != 0);

    // We need to be careful not to work for too long in a single invocation of this method or we could starve the thread pool
    // and force it to create unnecessary additional threads. We will JIT for a minimum of this quantum, then schedule another
    // work item to the thread pool and return this thread back to the pool.
    const DWORD OptimizationQuantumMs = 50;

    if (ETW::CompilationLog::TieredCompilation::Runtime::IsEnabled())
    {
        ETW::CompilationLog::TieredCompilation::Runtime::SendBackgroundJitStart(m_countOfMethodsToOptimize);
    }

    UINT32 jittedMethodCount = 0;
    DWORD startTickCount = GetTickCount();
    NativeCodeVersion nativeCodeVersion;
    EX_TRY
    {
        GCX_PREEMP();
        while (true)
        {
            {
                CrstHolder holder(&m_lock);

                if (IsTieringDelayActive() || m_isAppDomainShuttingDown)
                {
                    DecrementWorkerThreadCount();
                    break;
                }

                nativeCodeVersion = GetNextMethodToOptimize();
                if (nativeCodeVersion.IsNull())
                {
                    DecrementWorkerThreadCount();
                    break;
                }
            }

            OptimizeMethod(nativeCodeVersion);
            ++jittedMethodCount;

            // If we have been running for too long return the thread to the threadpool and queue another event
            // This gives the threadpool a chance to service other requests on this thread before returning to
            // this work.
            DWORD currentTickCount = GetTickCount();
            if (currentTickCount - startTickCount >= OptimizationQuantumMs)
            {
                if (!TryAsyncOptimizeMethods())
                {
                    CrstHolder holder(&m_lock);
                    DecrementWorkerThreadCount();
                }
                break;
            }
        }
    }
    EX_CATCH
    {
        {
            CrstHolder holder(&m_lock);
            DecrementWorkerThreadCount();
        }
        STRESS_LOG2(LF_TIEREDCOMPILATION, LL_ERROR, "TieredCompilationManager::OptimizeMethods: "
            "Unhandled exception during method optimization, hr=0x%x, last method=%p\n",
            GET_EXCEPTION()->GetHR(), nativeCodeVersion.GetMethodDesc());
    }
    EX_END_CATCH(RethrowTerminalExceptions);

    if (ETW::CompilationLog::TieredCompilation::Runtime::IsEnabled())
    {
        ETW::CompilationLog::TieredCompilation::Runtime::SendBackgroundJitStop(m_countOfMethodsToOptimize, jittedMethodCount);
    }
}

// Jit compiles and installs new optimized code for a method.
// Called on a background thread.
void TieredCompilationManager::OptimizeMethod(NativeCodeVersion nativeCodeVersion)
{
    STANDARD_VM_CONTRACT;

    _ASSERTE(nativeCodeVersion.GetMethodDesc()->IsEligibleForTieredCompilation());
    if (CompileCodeVersion(nativeCodeVersion))
    {
        ActivateCodeVersion(nativeCodeVersion);
    }
}

// Compiles new optimized code for a method.
// Called on a background thread.
BOOL TieredCompilationManager::CompileCodeVersion(NativeCodeVersion nativeCodeVersion)
{
    STANDARD_VM_CONTRACT;

    PCODE pCode = NULL;
    MethodDesc* pMethod = nativeCodeVersion.GetMethodDesc();
    EX_TRY
    {
        pCode = pMethod->PrepareCode(nativeCodeVersion);
        LOG((LF_TIEREDCOMPILATION, LL_INFO10000, "TieredCompilationManager::CompileCodeVersion Method=0x%pM (%s::%s), code version id=0x%x, code ptr=0x%p\n",
            pMethod, pMethod->m_pszDebugClassName, pMethod->m_pszDebugMethodName,
            nativeCodeVersion.GetVersionId(),
            pCode));
    }
    EX_CATCH
    {
        // Failing to jit should be rare but acceptable. We will leave whatever code already exists in place.
        STRESS_LOG2(LF_TIEREDCOMPILATION, LL_INFO10, "TieredCompilationManager::CompileCodeVersion: Method %pM failed to jit, hr=0x%x\n", 
            pMethod, GET_EXCEPTION()->GetHR());
    }
    EX_END_CATCH(RethrowTerminalExceptions)

    return pCode != NULL;
}

// Updates the MethodDesc and precode so that future invocations of a method will
// execute the native code pointed to by pCode.
// Called on a background thread.
void TieredCompilationManager::ActivateCodeVersion(NativeCodeVersion nativeCodeVersion)
{
    STANDARD_VM_CONTRACT;

    MethodDesc* pMethod = nativeCodeVersion.GetMethodDesc();
    CodeVersionManager* pCodeVersionManager = pMethod->GetCodeVersionManager();

    // If the ilParent version is active this will activate the native code version now.
    // Otherwise if the ilParent version becomes active again in the future the native
    // code version will activate then.
    ILCodeVersion ilParent;
    HRESULT hr = S_OK;
    bool mayHaveEntryPointSlotsToBackpatch = pMethod->MayHaveEntryPointSlotsToBackpatch();
    if (mayHaveEntryPointSlotsToBackpatch)
    {
        MethodDescBackpatchInfoTracker::PollForDebuggerSuspension();
    }
    MethodDescBackpatchInfoTracker::ConditionalLockHolder lockHolder(mayHaveEntryPointSlotsToBackpatch);

    {
        // Backpatching entry point slots requires cooperative GC mode, see
        // MethodDescBackpatchInfoTracker::Backpatch_Locked(). The code version manager's table lock is an unsafe lock that
        // may be taken in any GC mode. The lock is taken in cooperative GC mode on some other paths, so the same ordering
        // must be used here to prevent deadlock.
        GCX_MAYBE_COOP(mayHaveEntryPointSlotsToBackpatch);
        CodeVersionManager::TableLockHolder lock(pCodeVersionManager);

        // As long as we are exclusively using any non-JumpStamp publishing for tiered compilation
        // methods this first attempt should succeed
        ilParent = nativeCodeVersion.GetILCodeVersion();
        hr = ilParent.SetActiveNativeCodeVersion(nativeCodeVersion, FALSE);
        LOG((LF_TIEREDCOMPILATION, LL_INFO10000, "TieredCompilationManager::ActivateCodeVersion Method=0x%pM (%s::%s), code version id=0x%x. SetActiveNativeCodeVersion ret=0x%x\n",
            pMethod, pMethod->m_pszDebugClassName, pMethod->m_pszDebugMethodName,
            nativeCodeVersion.GetVersionId(),
            hr));
    }
    if (hr == CORPROF_E_RUNTIME_SUSPEND_REQUIRED)
    {
        // if we start using jump-stamp publishing for tiered compilation, the first attempt
        // without the runtime suspended will fail and then this second attempt will
        // succeed.
        // Even though this works performance is likely to be quite bad. Realistically
        // we are going to need batched updates to makes tiered-compilation + jump-stamp
        // viable. This fallback path is just here as a proof-of-concept.
        ThreadSuspend::SuspendEE(ThreadSuspend::SUSPEND_FOR_REJIT);
        {
            // Backpatching entry point slots requires cooperative GC mode, see
            // MethodDescBackpatchInfoTracker::Backpatch_Locked(). The code version manager's table lock is an unsafe lock that
            // may be taken in any GC mode. The lock is taken in cooperative GC mode on some other paths, so the same ordering
            // must be used here to prevent deadlock.
            GCX_MAYBE_COOP(mayHaveEntryPointSlotsToBackpatch);
            CodeVersionManager::TableLockHolder lock(pCodeVersionManager);

            hr = ilParent.SetActiveNativeCodeVersion(nativeCodeVersion, TRUE);
            LOG((LF_TIEREDCOMPILATION, LL_INFO10000, "TieredCompilationManager::ActivateCodeVersion Method=0x%pM (%s::%s), code version id=0x%x. [Suspended] SetActiveNativeCodeVersion ret=0x%x\n",
                pMethod, pMethod->m_pszDebugClassName, pMethod->m_pszDebugMethodName,
                nativeCodeVersion.GetVersionId(),
                hr));
        }
        ThreadSuspend::RestartEE(FALSE, TRUE);
    }
    if (FAILED(hr))
    {
        STRESS_LOG2(LF_TIEREDCOMPILATION, LL_INFO10, "TieredCompilationManager::ActivateCodeVersion: Method %pM failed to publish native code for native code version %d\n",
            pMethod, nativeCodeVersion.GetVersionId());
    }
}

// Dequeues the next method in the optmization queue.
// This should be called with m_lock already held and runs
// on the background thread.
NativeCodeVersion TieredCompilationManager::GetNextMethodToOptimize()
{
    STANDARD_VM_CONTRACT;

    SListElem<NativeCodeVersion>* pElem = m_methodsToOptimize.RemoveHead();
    if (pElem != NULL)
    {
        NativeCodeVersion nativeCodeVersion = pElem->GetValue();
        delete pElem;
        --m_countOfMethodsToOptimize;
        return nativeCodeVersion;
    }
    return NativeCodeVersion();
}

bool TieredCompilationManager::IncrementWorkerThreadCountIfNeeded()
{
    WRAPPER_NO_CONTRACT;
    // m_lock should be held

    if (0 == m_countOptimizationThreadsRunning &&
        !m_isAppDomainShuttingDown &&
        !m_methodsToOptimize.IsEmpty() &&
        !IsTieringDelayActive())
    {
        // Our current policy throttles at 1 thread, but in the future we
        // could experiment with more parallelism.
        m_countOptimizationThreadsRunning++;
        return true;
    }
    return false;
}

void TieredCompilationManager::DecrementWorkerThreadCount()
{
    STANDARD_VM_CONTRACT;
    // m_lock should be held
    _ASSERTE(m_countOptimizationThreadsRunning != 0);
    
    m_countOptimizationThreadsRunning--;
}

#ifdef _DEBUG
DWORD TieredCompilationManager::DebugGetWorkerThreadCount()
{
    WRAPPER_NO_CONTRACT;

    CrstHolder holder(&m_lock);
    return m_countOptimizationThreadsRunning;
}
#endif

//static
CORJIT_FLAGS TieredCompilationManager::GetJitFlags(NativeCodeVersion nativeCodeVersion)
{
    LIMITED_METHOD_CONTRACT;

    CORJIT_FLAGS flags;
    if (!nativeCodeVersion.GetMethodDesc()->IsEligibleForTieredCompilation())
    {
#ifdef FEATURE_INTERPRETER
        flags.Set(CORJIT_FLAGS::CORJIT_FLAG_MAKEFINALCODE);
#endif
        return flags;
    }

    switch (nativeCodeVersion.GetOptimizationTier())
    {
        case NativeCodeVersion::OptimizationTier0:
            flags.Set(CORJIT_FLAGS::CORJIT_FLAG_TIER0);
            break;

        case NativeCodeVersion::OptimizationTier1:
            flags.Set(CORJIT_FLAGS::CORJIT_FLAG_TIER1);
            // fall through

        case NativeCodeVersion::OptimizationTierOptimized:
#ifdef FEATURE_INTERPRETER
            flags.Set(CORJIT_FLAGS::CORJIT_FLAG_MAKEFINALCODE);
#endif
            break;

        default:
            UNREACHABLE();
    }
    return flags;
}

#endif // FEATURE_TIERED_COMPILATION && !DACCESS_COMPILE