summaryrefslogtreecommitdiff
path: root/src/vm/securitydescriptorassembly.cpp
blob: 715d95612320b8c5c27c84e9e276dafa87f9fe9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
// 

// 


#include "common.h"
#include "security.h"

#ifndef DACCESS_COMPILE
AssemblySecurityDescriptor::AssemblySecurityDescriptor(AppDomain *pDomain, DomainAssembly *pAssembly, LoaderAllocator *pLoaderAllocator) :
    SecurityDescriptorBase<IAssemblySecurityDescriptor>(pDomain, pAssembly, pAssembly->GetFile(), pLoaderAllocator),
    m_dwNumPassedDemands(0),
    m_pSignature(NULL),
    m_pSharedSecDesc(NULL),
#ifdef FEATURE_CAS_POLICY
    m_hRequiredPermissionSet(NULL),
    m_hOptionalPermissionSet(NULL),
    m_hDeniedPermissionSet(NULL),
    m_fAdditionalEvidence(FALSE),
    m_fIsSignatureLoaded(FALSE),
    m_fAssemblyRequestsComputed(FALSE),
#endif
    m_fMicrosoftPlatform(FALSE),
    m_fAllowSkipVerificationInFullTrust(TRUE)
{
    CONTRACTL 
    {
        MODE_ANY;
        GC_NOTRIGGER;
        NOTHROW;
    } CONTRACTL_END;
}

//
// This method will return TRUE if this assembly is allowed to skip verification.
//

BOOL AssemblySecurityDescriptor::CanSkipVerification()
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        MODE_ANY;
        PRECONDITION(IsResolved());
    }
    CONTRACTL_END;


    // Assemblies loaded into the verification domain never get to skip verification
    // unless they are coming from the GAC.
    if (m_pAppDomain->IsVerificationDomain()) 
    {
        if (!m_pAssem->GetFile()->IsSourceGAC() && m_pAssem->IsIntrospectionOnly())
        {
            return FALSE;
        }
    }

    return CheckSpecialFlag(1 << SECURITY_SKIP_VER);
}

BOOL AssemblySecurityDescriptor::AllowSkipVerificationInFullTrust()
{
    LIMITED_METHOD_CONTRACT;
    return m_fAllowSkipVerificationInFullTrust;
}

//
// This method will return TRUE if this assembly has assertion permission.
//

BOOL AssemblySecurityDescriptor::CanAssert()
{
    CONTRACTL {
        NOTHROW;
        GC_NOTRIGGER;
        MODE_ANY;
        PRECONDITION(IsResolved());
    } CONTRACTL_END;

    return CheckSpecialFlag(1 << SECURITY_ASSERT);
}

//
// This method will return TRUE if this assembly has unrestricted UI permissions.
//

BOOL AssemblySecurityDescriptor::HasUnrestrictedUIPermission()
{
    CONTRACTL {
        NOTHROW;
        GC_NOTRIGGER;
        MODE_ANY;
        PRECONDITION(IsResolved());
    } CONTRACTL_END;

    return CheckSpecialFlag(1 << UI_PERMISSION);
}

//
// Assembly transparency access methods.  These methods what the default transparency level are for methods
// and types introduced by the assembly.
//

BOOL AssemblySecurityDescriptor::IsAllCritical()
{
    STANDARD_VM_CONTRACT;

    ModuleSecurityDescriptor *pMsd = ModuleSecurityDescriptor::GetModuleSecurityDescriptor(GetAssembly());
    return pMsd->IsAllCritical();
}

BOOL AssemblySecurityDescriptor::IsAllSafeCritical()
{
    STANDARD_VM_CONTRACT;

    ModuleSecurityDescriptor *pMsd = ModuleSecurityDescriptor::GetModuleSecurityDescriptor(GetAssembly());
    return pMsd->IsAllCritical() && pMsd->IsTreatAsSafe();
}

BOOL AssemblySecurityDescriptor::IsAllPublicAreaSafeCritical()
{
    STANDARD_VM_CONTRACT;

    ModuleSecurityDescriptor *pMsd = ModuleSecurityDescriptor::GetModuleSecurityDescriptor(GetAssembly());

    bool fIsPublicAreaSafeCritical = SecurityTransparencyBehavior::GetTransparencyBehavior(pMsd->GetSecurityRuleSet())->DoesPublicImplyTreatAsSafe();

    return pMsd->IsAllCritical() && (pMsd->IsTreatAsSafe() || fIsPublicAreaSafeCritical);
}

BOOL AssemblySecurityDescriptor::IsAllTransparent()
{
    STANDARD_VM_CONTRACT;

    ModuleSecurityDescriptor *pMsd = ModuleSecurityDescriptor::GetModuleSecurityDescriptor(GetAssembly());
    return pMsd->IsAllTransparent();
}

BOOL AssemblySecurityDescriptor::QuickIsFullyTrusted()
{
    CONTRACTL {
        THROWS;
        GC_TRIGGERS;
        MODE_ANY;
    } CONTRACTL_END;

    if (IsSystem())
        return TRUE;
#ifdef FEATURE_CAS_POLICY

    // NGEN is always done in full trust
    if (m_pAppDomain->IsCompilationDomain())
    {
        return TRUE;
    }

    // If the assembly is in the GAC then it gets FullTrust.
    if (m_pAssem->GetFile()->IsSourceGAC())
        return TRUE;

    // quickly detect if we've got a request refused or a request optional.
    if (m_pAppDomain->GetSecurityDescriptor()->IsLegacyCasPolicyEnabled())
    {
        ReleaseHolder<IMDInternalImport> pImport(m_pAssem->GetFile()->GetMDImportWithRef());
        if (SecurityAttributes::RestrictiveRequestsInAssembly(pImport))
            return FALSE;
    }

    // Check if we need to call the HostSecurityManager.
    ApplicationSecurityDescriptor* pAppSecDesc = static_cast<ApplicationSecurityDescriptor*>(m_pAppDomain->GetSecurityDescriptor());
    if (pAppSecDesc->CallHostSecurityManagerForAssemblies())
        return FALSE;

    // - If the AppDomain is homogeneous, we currently simply detect the FT case
    // - Not having CAS on implies full trust.  We can get here if we're still in the process of setting up
    //   the AppDomain and the CLR hasn't yet setup the homogenous flag.
    // - Otherwise, check the quick cache
    if (pAppSecDesc->IsHomogeneous())
    {
        return m_pAppDomain->GetSecurityDescriptor()->IsFullyTrusted();
    }
    else if (!m_pAppDomain->GetSecurityDescriptor()->IsLegacyCasPolicyEnabled())
    {
        return TRUE;
    }
    else if (CheckQuickCache(SecurityConfig::FullTrustAll, GetZone()))
    {
        return TRUE;
    }
#endif

    // See if we've already determined that the assembly is FT
    // in another AppDomain, in case this is a shared assembly.
    SharedSecurityDescriptor* pSharedSecDesc = GetSharedSecDesc();
    if (pSharedSecDesc && pSharedSecDesc->IsResolved() && pSharedSecDesc->IsFullyTrusted())
        return TRUE;

    return FALSE;
}

#ifndef DACCESS_COMPILE

void AssemblySecurityDescriptor::PropagatePermissionSet(OBJECTREF GrantedPermissionSet, OBJECTREF DeniedPermissionSet, DWORD dwSpecialFlags)
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        MODE_ANY;
    }
    CONTRACTL_END;

    // If we're propagating a permission set, then we don't want to allow an assembly to skip verificaiton in
    // full trust.  This prevents people leapfrogging from the fully trusted anonymously hosted dynamic methods
    // assembly into running unverifiable code.  (Note that we already enforce that transaprent code must only load
    // other transparent code - so this restriction simply enforces that it is truly transparent.)    It would
    // be nicer to throw an exception in this case, however that would be a breaking change.  Instead, since the
    // SkipVerificationInFullTrust feature has always been described as a performance optimization and nothing more,
    // we can simply turn off the optimization in these cases.
    m_fAllowSkipVerificationInFullTrust = FALSE;

    SetGrantedPermissionSet(GrantedPermissionSet, DeniedPermissionSet, dwSpecialFlags);

    // make sure the shared security descriptor is updated in case this 
    // is a security descriptor for a shared assembly.
    Resolve();
}

#ifdef FEATURE_CAS_POLICY
//-----------------------------------------------------------------------------------------------------------
//
// Use the evidence already generated for this assembly's PEFile as the evidence for the assembly
//
// Arguments:
//    pPEFileSecDesc - PEFile security descriptor contining the already generated evidence
//
void AssemblySecurityDescriptor::SetEvidenceFromPEFile(IPEFileSecurityDescriptor *pPEFileSecDesc)
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
        PRECONDITION(CheckPointer(pPEFileSecDesc));
        PRECONDITION(GetPEFile()->Equals(static_cast<PEFileSecurityDescriptor*>(pPEFileSecDesc)->GetPEFile()));
    }
    CONTRACTL_END;

    // If we couldn't determine the assembly was fully trusted without first generating evidence for it,
    // then we cannot reuse the PEFile's evidence.  In that case we'll just use what we've generated for the
    // assembly, and discard the PEFile's version.
    if (!IsEvidenceComputed())
    {
        struct
        {
            OBJECTREF objPEFileEvidence;
            OBJECTREF objEvidence;
        }
        gc;
        ZeroMemory(&gc, sizeof(gc));

        GCPROTECT_BEGIN(gc);

        gc.objPEFileEvidence = pPEFileSecDesc->GetEvidence();
        gc.objEvidence = UpgradePEFileEvidenceToAssemblyEvidence(gc.objPEFileEvidence);
        SetEvidence(gc.objEvidence);

        GCPROTECT_END();
    }
}

//---------------------------------------------------------------------------------------
//
// Get the evidence collection for this Assembly
//
//
OBJECTREF AssemblySecurityDescriptor::GetEvidence()
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
        PRECONDITION(m_pAppDomain == GetAppDomain());
        INJECT_FAULT(COMPlusThrowOM(););
    }
    CONTRACTL_END;

    // If we already have evidence, then just return that
    if (IsEvidenceComputed())
        return ObjectFromLazyHandle(m_hAdditionalEvidence, m_pLoaderAllocator);

    struct
    {
        OBJECTREF objHostProvidedEvidence;
        OBJECTREF objPEFileEvidence;
        OBJECTREF objEvidence;
    }
    gc;
    ZeroMemory(&gc, sizeof(gc));

    GCPROTECT_BEGIN(gc);
    BEGIN_SO_INTOLERANT_CODE(GetThread());

    gc.objHostProvidedEvidence = ObjectFromLazyHandle(m_hAdditionalEvidence, m_pLoaderAllocator);

#if CHECK_APP_DOMAIN_LEAKS
    if (g_pConfig->AppDomainLeaks())
    {
        _ASSERTE(gc.objPEFileEvidence == NULL || GetAppDomain() == gc.objPEFileEvidence->GetAppDomain());
        _ASSERTE(gc.objHostProvidedEvidence == NULL || GetAppDomain() == gc.objHostProvidedEvidence->GetAppDomain());
    }
#endif  // CHECK_APP_DOMAIN_LEAKS

    //
    // First get an evidence collection which targets our PEFile, then upgrade it to use this assembly as a
    // target.  We create a new Evidence for the PEFile here, which means that any evidence that PEFile may
    // have already had is not used in this upgrade.  If an existing PEFileSecurityDescriptor exists for the
    // PEFile, then that should be upgraded directly, rather than going through this code path.
    // 
    
    gc.objPEFileEvidence = PEFileSecurityDescriptor::BuildEvidence(m_pPEFile, gc.objHostProvidedEvidence);
    gc.objEvidence = UpgradePEFileEvidenceToAssemblyEvidence(gc.objPEFileEvidence);
    SetEvidence(gc.objEvidence);

#if CHECK_APP_DOMAIN_LEAKS
    if (g_pConfig->AppDomainLeaks())
        _ASSERTE(gc.objEvidence == NULL || GetAppDomain() == gc.objEvidence->GetAppDomain());
#endif // CHECK_APP_DOMAIN_LEAKS

    END_SO_INTOLERANT_CODE;

    GCPROTECT_END();

    return gc.objEvidence;
}
#endif // FEATURE_CAS_POLICY
#endif // !DACCESS_COMPILE

BOOL AssemblySecurityDescriptor::IsSystem()
{
    WRAPPER_NO_CONTRACT;
    return m_pAssem->GetFile()->IsSystem();
}

void AssemblySecurityDescriptor::Resolve()
{
    CONTRACTL {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
        PRECONDITION(m_pAssem != NULL);
        INJECT_FAULT(COMPlusThrowOM(););
        SO_TOLERANT;
    } CONTRACTL_END;

    // Always resolve the assembly security descriptor in the new AppDomain
    if (!IsResolved())
        ResolveWorker();

    // Update the info in the shared security descriptor
    SharedSecurityDescriptor* pSharedSecDesc = GetSharedSecDesc();
    if (pSharedSecDesc)
        pSharedSecDesc->Resolve(this);
}

#ifdef FEATURE_CAS_POLICY
// This routine is called when we have determined that it that there is no SECURITY reason
// to verify an image, but we may want to do so anyway to insure that 3rd parties don't 
// accidentally ship delay signed dlls because the application happens to be full trust.  
//
static bool DontNeedToFlagAccidentalDelaySigning(PEAssembly* assem)
{
    WRAPPER_NO_CONTRACT;

    // If the file has a native image, then either it is strongly named and can be considered
    // fully signed (see additional comments in code:PEAssembly::IsFullySigned), or it is not
    // strong named and thus can't be delay signed. Either way no check is needed.
    // If the file fully signed, then people did not accidentally forget, so no check is needed
    if (assem->HasNativeImage() || assem->IsFullySigned())
        return true;

    // If mscorlib itself is not signed, this is not an offical CLR, you don't need to 
    // to do the checking in this case either because 3rd parties should not be running this way.
    // This is useful because otherwise when we run perf runs on normal CLR lab builds we don't
    // measure the performance that we get for a offical runtime (since official runtimes will
    // be signed).   
    PEAssembly* mscorlib = SystemDomain::SystemFile();
    if (!mscorlib->HasNativeImage())
        return false;
    if ((mscorlib->GetLoadedNative()->GetNativeHeader()->COR20Flags & COMIMAGE_FLAGS_STRONGNAMESIGNED) == 0)
        return true;

    return false;
}
#endif // FEATURE_CAS_POLICY

void AssemblySecurityDescriptor::ResolveWorker()
{
    CONTRACTL {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
        INJECT_FAULT(COMPlusThrowOM(););
    } CONTRACTL_END;

    SetGrantedPermissionSet(NULL, NULL, 0xFFFFFFFF);
}

void AssemblySecurityDescriptor::ResolvePolicy(ISharedSecurityDescriptor *pSharedSecDesc, BOOL fShouldSkipPolicyResolution)
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
        INJECT_FAULT(COMPlusThrowOM(););
        PRECONDITION(CheckPointer(pSharedSecDesc));
    } CONTRACTL_END;

    OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOADED);

    m_pSharedSecDesc = static_cast<SharedSecurityDescriptor*>(pSharedSecDesc);

    ETWOnStartup (SecurityCatchCall_V1, SecurityCatchCallEnd_V1);
    //
    // In V1.x, we used to check whether execution checking is enabled in caspol.exe
    // or whether the assembly has assembly requests before resolving the assembly.
    // This leads to several unnecessary complications in the code and the way assembly
    // resolution is tracked throughout the lifetime of the AssemblySecurityDescriptor.
    //
    // In Whidbey, we will always resolve the policy eagerly while the assembly is being
    // loaded. The perf concern is less of an issue in Whidbey as GAC assemblies are now
    // automatically granted FullTrust.
    //

    // Push this frame around resolving the assembly for security to ensure the
    // debugger can properly recognize any managed code that gets run
    // as "class initializaion" code.
    FrameWithCookie<DebuggerClassInitMarkFrame> __dcimf;

    Resolve();

    if (!fShouldSkipPolicyResolution)
    {
        // update the PLS with the grant/denied sets of the loaded assembly
        ApplicationSecurityDescriptor* pAppDomainSecDesc = static_cast<ApplicationSecurityDescriptor*>(GetDomain()->GetSecurityDescriptor());
        pAppDomainSecDesc->AddNewSecDescToPLS(this);

        // Make sure that module transparency information is calculated so that we can verify that if the assembly
        // is being loaded in partial trust it is transparent.  This check is done in the ModuleSecurityDescriptor,
        // so we just need to force it to calculate here.
        ModuleSecurityDescriptor *pMSD = ModuleSecurityDescriptor::GetModuleSecurityDescriptor(GetAssembly());
        pMSD->VerifyDataComputed();
        _ASSERTE(IsFullyTrusted() || pMSD->IsAllTransparent());
    }

    __dcimf.Pop();
}

#ifdef FEATURE_CAS_POLICY
DWORD AssemblySecurityDescriptor::GetZone()
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        MODE_ANY;
        INJECT_FAULT(COMPlusThrowOM(););
        PRECONDITION(m_pAppDomain->GetSecurityDescriptor()->IsLegacyCasPolicyEnabled());
    } CONTRACTL_END;

    StackSString    codebase;
    SecZone         dwZone = NoZone;
    BYTE            rbUniqueID[MAX_SIZE_SECURITY_ID];
    DWORD           cbUniqueID = sizeof(rbUniqueID);

    m_pAssem->GetSecurityIdentity(codebase, &dwZone, 0, rbUniqueID, &cbUniqueID);
    return dwZone;
}
#endif // FEATURE_CAS_POLICY

Assembly* AssemblySecurityDescriptor::GetAssembly()
{
    return m_pAssem->GetAssembly();
}

BOOL AssemblySecurityDescriptor::CanSkipPolicyResolution()
{
    WRAPPER_NO_CONTRACT;
    Assembly* pAssembly = GetAssembly();
    return pAssembly && pAssembly->CanSkipPolicyResolution();
}


#ifdef FEATURE_CAS_POLICY
//-----------------------------------------------------------------------------------------------------------
//
// Upgrade the evidence used for resolving a PEFile to be targeted at the Assembly the PEFile represents
//
// Arguments:
//    objPEFileEvidence - 
//    
// Notes:
//    During CLR startup we may need to resolve policy against a PEFile before we have the associated
//    Assembly.  Once we have the Assembly we don't want to recompute potenially expensive evidence, so this
//    method can be used to upgrade the evidence who's target was the PEFile to target the assembly instead.
//    
//    Will call into System.Reflection.Assembly.UpgradeSecurityIdentity
//

OBJECTREF AssemblySecurityDescriptor::UpgradePEFileEvidenceToAssemblyEvidence(const OBJECTREF& objPEFileEvidence)
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
        PRECONDITION(objPEFileEvidence != NULL);
    }
    CONTRACTL_END;

    struct
    {
        OBJECTREF objAssembly;
        OBJECTREF objEvidence;
        OBJECTREF objUpgradedEvidence;
    }
    gc;
    ZeroMemory(&gc, sizeof(gc));

    GCPROTECT_BEGIN(gc);

    gc.objAssembly = m_pAssem->GetExposedAssemblyObject();
    gc.objEvidence = objPEFileEvidence;

    MethodDescCallSite upgradeSecurityIdentity(METHOD__ASSEMBLY_EVIDENCE_FACTORY__UPGRADE_SECURITY_IDENTITY);

    ARG_SLOT args[] = 
    {
        ObjToArgSlot(gc.objEvidence),
        ObjToArgSlot(gc.objAssembly)
    };

    gc.objUpgradedEvidence = upgradeSecurityIdentity.Call_RetOBJECTREF(args);

    GCPROTECT_END();

    return gc.objUpgradedEvidence;
}

HRESULT AssemblySecurityDescriptor::LoadSignature(COR_TRUST **ppSignature)
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        MODE_ANY;
    } CONTRACTL_END;

    if (IsSignatureLoaded())
    {
        if (ppSignature)
        {
            *ppSignature = m_pSignature;
        }

        return S_OK;
    }

    GCX_PREEMP();
    m_pSignature = m_pAssem->GetFile()->GetAuthenticodeSignature();

    SetSignatureLoaded();

    if (ppSignature)
    {
        *ppSignature = m_pSignature;
    }

    return S_OK;
}

void AssemblySecurityDescriptor::SetAdditionalEvidence(OBJECTREF evidence)
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
    }
    CONTRACTL_END;

    StoreObjectInLazyHandle(m_hAdditionalEvidence, evidence, m_pLoaderAllocator);
    m_fAdditionalEvidence = TRUE;
}

BOOL AssemblySecurityDescriptor::HasAdditionalEvidence()
{
    LIMITED_METHOD_CONTRACT;
    return m_fAdditionalEvidence;
}

OBJECTREF AssemblySecurityDescriptor::GetAdditionalEvidence()
{
    WRAPPER_NO_CONTRACT;
    return ObjectFromLazyHandle(m_hAdditionalEvidence, m_pLoaderAllocator);
}
#endif // FEATURE_CAS_POLICY

#ifndef FEATURE_CORECLR 
BOOL AssemblySecurityDescriptor::AllowApplicationSpecifiedAppDomainManager()
{
    WRAPPER_NO_CONTRACT;

    // Only fully trusted assemblies are allowed to specify their AppDomainManager in a config file
    return this->IsFullyTrusted();
}
#endif // FEATURE_CORECLR

// Check to make sure that security will allow this assembly to load.  Throw an exception if the assembly
// should be forbidden from loading for security related purposes
void AssemblySecurityDescriptor::CheckAllowAssemblyLoad()
{
    STANDARD_VM_CONTRACT;
    
    if (m_pAssem->IsSystem())
    {
        return;
    }

    // If we're running PEVerify, then we need to allow the assembly to load in to be verified
    if (m_pAppDomain->IsVerificationDomain())
    {
        return;
    }

    // Similarly, in the NGEN domain we don't want to force policy resolution, and we want
    // to allow all assemblies to load
    if (m_pAppDomain->IsCompilationDomain())
    {
        return;
    }

    // Reflection only loads are also always allowed
    if (m_pAssem->IsIntrospectionOnly())
    {
        return;
    }

    if (!IsResolved())
    {
        GCX_COOP();
        Resolve();
    }

    if (!IsFullyTrusted() && (!m_pAppDomain->IsCompilationDomain() || !NingenEnabled()))
    {
        // Only fully trusted assemblies are allowed to be loaded when 
        // the AppDomain is in the initialization phase.
        if (m_pAppDomain->GetSecurityDescriptor()->IsInitializationInProgress())
        {
            COMPlusThrow(kApplicationException, W("Policy_CannotLoadSemiTrustAssembliesDuringInit"));
        }

#ifdef FEATURE_COMINTEROP
        // WinRT is not supported in partial trust, so block it by throwing if a partially trusted winmd is loaded
        if (IsAfContentType_WindowsRuntime(m_pAssem->GetFile()->GetFlags()))
        {
            COMPlusThrow(kNotSupportedException, W("NotSupported_WinRT_PartialTrust"));
        }
#endif // FEATURE_COMINTEROP
    }
}

SharedSecurityDescriptor::SharedSecurityDescriptor(Assembly *pAssembly) :
    m_pAssembly(pAssembly),
    m_fResolved(FALSE),
    m_fFullyTrusted(FALSE),
    m_fCanCallUnmanagedCode(FALSE),
    m_fCanAssert(FALSE),
    m_fMicrosoftPlatform(FALSE)
{
    LIMITED_METHOD_CONTRACT;
}

void SharedSecurityDescriptor::Resolve(IAssemblySecurityDescriptor *pSecDesc)
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
        PRECONDITION(pSecDesc->IsResolved());
    }
    CONTRACTL_END;

    if (!m_fResolved)
    {
        m_fFullyTrusted = pSecDesc->IsFullyTrusted();
        m_fCanCallUnmanagedCode = pSecDesc->CanCallUnmanagedCode();
        m_fCanAssert = pSecDesc->CanAssert();

        m_fResolved = TRUE;
    }

    _ASSERTE(!!m_fFullyTrusted == !!pSecDesc->IsFullyTrusted());
    _ASSERTE(!!m_fCanCallUnmanagedCode == !!pSecDesc->CanCallUnmanagedCode());
    _ASSERTE(!!m_fCanAssert == !!pSecDesc->CanAssert());
}

BOOL SharedSecurityDescriptor::IsFullyTrusted()
{
    CONTRACTL {
        NOTHROW;
        GC_NOTRIGGER;
        MODE_ANY;
        PRECONDITION(IsResolved());
    } CONTRACTL_END;

    return m_fFullyTrusted;
}

BOOL SharedSecurityDescriptor::CanCallUnmanagedCode() const
{
    CONTRACTL {
        NOTHROW;
        GC_NOTRIGGER;
        MODE_ANY;
        PRECONDITION(IsResolved());
    } CONTRACTL_END;

    return m_fCanCallUnmanagedCode;
}

BOOL SharedSecurityDescriptor::IsResolved() const
{
    LIMITED_METHOD_CONTRACT;
    return m_fResolved;
}

BOOL SharedSecurityDescriptor::CanAssert()
{
    CONTRACTL {
        NOTHROW;
        GC_NOTRIGGER;
        MODE_ANY;
        PRECONDITION(IsResolved());
    } CONTRACTL_END;

    return m_fCanAssert;
}

BOOL SharedSecurityDescriptor::IsSystem()
{ 
    WRAPPER_NO_CONTRACT;
    return m_pAssembly->IsSystem();
}

Assembly* SharedSecurityDescriptor::GetAssembly()
{ 
    LIMITED_METHOD_CONTRACT;
    return m_pAssembly;
}

SharedSecurityDescriptor *AssemblySecurityDescriptor::GetSharedSecDesc()
{ 
    LIMITED_METHOD_CONTRACT;
    return m_pSharedSecDesc; 
}
#endif // #ifndef DACCESS_COMPILE