summaryrefslogtreecommitdiff
path: root/src/vm/securitydescriptorappdomain.cpp
blob: fecb6a5d3fc47bc250131b2f244aa654860ffac4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
// 

//


#include "common.h"
#include "security.h"
#ifdef FEATURE_REMOTING
#include "crossdomaincalls.h"
#else
#include "callhelpers.h"
#endif

#ifndef DACCESS_COMPILE

void ApplicationSecurityDescriptor::Resolve()
{
    CONTRACTL {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
        INJECT_FAULT(COMPlusThrowOM(););
        SO_TOLERANT;
    } CONTRACTL_END;

    if (IsResolved())
        return;

    SetGrantedPermissionSet(NULL, NULL, 0xFFFFFFFF);
}

#ifndef CROSSGEN_COMPILE
//---------------------------------------------------------------------------------------
//
// Determine the security state of an AppDomain before the domain is fully configured.
// This method is used to detect the input configuration of a domain - specifically, if it
// is homogenous and fully trusted before domain setup is completed.
// 
// Note that this state may not reflect the final state of the AppDomain when it is
// configured, since components like the AppDomainManager can modify these bits during execution.
// 

void ApplicationSecurityDescriptor::PreResolve(BOOL *pfIsFullyTrusted, BOOL *pfIsHomogeneous)
{
    CONTRACTL
    {
        GC_TRIGGERS;
        THROWS;
        MODE_ANY;
        PRECONDITION(CheckPointer(pfIsFullyTrusted));
        PRECONDITION(CheckPointer(pfIsHomogeneous));
        PRECONDITION(IsInitializationInProgress()); // We shouldn't be looking at the pre-resolved state if we've already done real resolution
    }
    CONTRACTL_END;

    if (m_fIsPreResolved)
    {
        *pfIsFullyTrusted = m_fPreResolutionFullTrust;
        *pfIsHomogeneous = m_fPreResolutionHomogeneous;
        return;
    }

    GCX_COOP();

    // On CoreCLR all domains are partial trust homogenous
    m_fPreResolutionFullTrust = FALSE;
    m_fPreResolutionHomogeneous = TRUE;

    *pfIsFullyTrusted = m_fPreResolutionFullTrust;
    *pfIsHomogeneous = m_fPreResolutionHomogeneous;
    m_fIsPreResolved = TRUE;
}
#endif // CROSSGEN_COMPILE


//
// PLS (PermissionListSet) optimization Implementation
//   The idea of the PLS optimization is to maintain the intersection
//   of the grant sets of all assemblies loaded into the AppDomain (plus
//   the grant set of the AppDomain itself) and the union of all denied
//   sets. When a demand is evaluated, we first check the permission
//   that is being demanded against the combined grant and denied set
//   and if that check succeeds, then we know the demand is satisfied
//   in the AppDomain without having to perform an entire stack walk.
//

// Creates the PermissionListSet which holds the AppDomain level intersection of
// granted and denied permission sets of all assemblies in the domain and updates
// the granted and denied set with those of the AppDomain.
void ApplicationSecurityDescriptor::InitializePLS()
{
    CONTRACTL {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
        PRECONDITION(IsResolved());
        INJECT_FAULT(COMPlusThrowOM(););
    } CONTRACTL_END;

#ifdef FEATURE_PLS
    struct _gc {
        OBJECTREF refGrantedSet;
        OBJECTREF refDeniedSet;
        OBJECTREF refPermListSet;
        OBJECTREF refRetVal;
    } gc;
    ZeroMemory(&gc, sizeof(gc));

    if (!IsFullyTrusted()) {
        GCPROTECT_BEGIN(gc);

        gc.refPermListSet = ObjectFromLazyHandle(m_hDomainPermissionListSet, m_pLoaderAllocator);
        gc.refGrantedSet = GetGrantedPermissionSet(&gc.refDeniedSet);

        MethodDescCallSite updateAppDomainPLS(METHOD__SECURITY_ENGINE__UPDATE_APPDOMAIN_PLS);
        ARG_SLOT args[] = {
            ObjToArgSlot(gc.refPermListSet),
            ObjToArgSlot(gc.refGrantedSet),
            ObjToArgSlot(gc.refDeniedSet),
        };
        gc.refRetVal = updateAppDomainPLS.Call_RetOBJECTREF(args);

        GCPROTECT_END();
    }

    StoreObjectInLazyHandle(m_hDomainPermissionListSet, gc.refRetVal, m_pLoaderAllocator);
#endif // FEATURE_PLS
    m_dwDomainWideSpecialFlags = m_dwSpecialFlags;
}

// Whenever a new assembly is added to the domain, we need to update the PermissionListSet
void ApplicationSecurityDescriptor::AddNewSecDescToPLS(AssemblySecurityDescriptor *pNewSecDescriptor)
{
    CONTRACTL {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
        PRECONDITION(pNewSecDescriptor->IsResolved());
        INJECT_FAULT(COMPlusThrowOM(););
    } CONTRACTL_END;

    //
    // If the assembly is fully trusted, this should be a no-op as the PLS is unaffected.
    // Note it's Ok to call this method before the AppDomain is fully initialized (and so
    // before the PLS is created for the AppDomain) because we enforce that all assemblies
    // loaded during that phase are fully trusted.
    //

    if (!pNewSecDescriptor->IsFullyTrusted()) {
#ifdef FEATURE_PLS
        struct _gc {
            OBJECTREF refGrantedSet;
            OBJECTREF refDeniedSet;
            OBJECTREF refPermListSet;
            OBJECTREF refRetVal;
        } gc;
        ZeroMemory(&gc, sizeof(gc));

        GCPROTECT_BEGIN(gc);

        gc.refGrantedSet = pNewSecDescriptor->GetGrantedPermissionSet(&gc.refDeniedSet);
        if (gc.refDeniedSet != NULL)
            m_fContainsAnyRefusedPermissions = TRUE;

        // Ensure that the handle is created so that the compare exchange below will work correctly
        if (m_hDomainPermissionListSet == NULL)
        {
              LOADERHANDLE tmpHandle = m_pLoaderAllocator->AllocateHandle(NULL);

              // Races where this fails should be sufficiently rare that leaking this handle 
              // until LoaderAllocator destruction is acceptable.
              FastInterlockCompareExchangePointer(&m_hDomainPermissionListSet, tmpHandle, static_cast<LOADERHANDLE>(NULL));
        }

        // we have to synchronize the update to the PLS across concurring threads.
        // we don't care if another thread is checking the existing PLS while this
        // update is in progress as the loaded assembly won't be on the stack for such
        // a demand and so will not affect the result of the existing PLS optimization.
        do {
            gc.refPermListSet = ObjectFromLazyHandle(m_hDomainPermissionListSet, m_pLoaderAllocator);

            MethodDescCallSite updateAppDomainPLS(METHOD__SECURITY_ENGINE__UPDATE_APPDOMAIN_PLS);
            ARG_SLOT args[] = {
                ObjToArgSlot(gc.refPermListSet),
                ObjToArgSlot(gc.refGrantedSet),
                ObjToArgSlot(gc.refDeniedSet),
            };
            // This returns a new copy of the PermissionListSet
            gc.refRetVal = updateAppDomainPLS.Call_RetOBJECTREF(args);
        }
        // If some other thread beat us to the PLS object handle, just try updating the PLS again
        // This race should be rare enough that recomputing the PLS is acceptable.
        while (m_pLoaderAllocator->CompareExchangeValueInHandle(m_hDomainPermissionListSet, gc.refRetVal, gc.refPermListSet) != gc.refPermListSet);

        GCPROTECT_END();
#endif // FEATURE_PLS

        LONG dwNewDomainWideSpecialFlags = 0;
        LONG dwOldDomainWideSpecialFlags = 0;
        do {
            dwOldDomainWideSpecialFlags = m_dwDomainWideSpecialFlags;
            dwNewDomainWideSpecialFlags = (dwOldDomainWideSpecialFlags & pNewSecDescriptor->GetSpecialFlags());
        }
        while (InterlockedCompareExchange((LONG*)&m_dwDomainWideSpecialFlags, dwNewDomainWideSpecialFlags, dwOldDomainWideSpecialFlags) != dwOldDomainWideSpecialFlags);
    }
}

#ifdef FEATURE_PLS
BOOL ApplicationSecurityDescriptor::CheckPLS (OBJECTREF* orDemand, DWORD dwDemandSpecialFlags, BOOL fDemandSet)
{
    CONTRACTL {
        THROWS;
        GC_TRIGGERS;
        MODE_COOPERATIVE;
        INJECT_FAULT(COMPlusThrowOM(););
    } CONTRACTL_END;

    // Check if all assemblies so far have full trust.
    if (CheckDomainWideSpecialFlag(1 << SECURITY_FULL_TRUST))
        return TRUE;

    // Check if this is a one of the well-known permissions tracked in the special flags.
    if (CheckDomainWideSpecialFlag(dwDemandSpecialFlags))
        return TRUE;

    CLR_BOOL fResult = FALSE;
    //
    // only evaluate the PLS if we don't need to marshal the demand across AppDomains
    // This means we would perform a stack walk when there are multiple semi-trust
    // AppDomains on the stack, which is acceptable.
    // In homogeneous cases, the stack walk could potentially detect the situation
    // and avoid the expensive walk of the assemblies if the permission demand is a 
    // subset of the homogeneous grant set applied to the AppDomain.
    //
    if (m_pAppDomain == GetThread()->GetDomain()) {
        OBJECTREF refDomainPLS = NULL;

        GCPROTECT_BEGIN(refDomainPLS);
        refDomainPLS = ObjectFromLazyHandle(m_hDomainPermissionListSet, m_pLoaderAllocator);

        EX_TRY
        {
            if (fDemandSet) {
                PREPARE_NONVIRTUAL_CALLSITE(METHOD__PERMISSION_LIST_SET__CHECK_SET_DEMAND_NO_THROW);
                DECLARE_ARGHOLDER_ARRAY(args, 2);
                args[ARGNUM_0]  = OBJECTREF_TO_ARGHOLDER(refDomainPLS);    // arg 0
                args[ARGNUM_1]  = OBJECTREF_TO_ARGHOLDER(*orDemand);       // arg 1 
                CATCH_HANDLER_FOUND_NOTIFICATION_CALLSITE;
                CALL_MANAGED_METHOD(fResult, CLR_BOOL, args);
            }
            else {
                PREPARE_NONVIRTUAL_CALLSITE(METHOD__PERMISSION_LIST_SET__CHECK_DEMAND_NO_THROW);
                DECLARE_ARGHOLDER_ARRAY(args, 2);
                args[ARGNUM_0]  = OBJECTREF_TO_ARGHOLDER(refDomainPLS);    // arg 0
                args[ARGNUM_1]  = OBJECTREF_TO_ARGHOLDER(*orDemand);       // arg 1 
                CATCH_HANDLER_FOUND_NOTIFICATION_CALLSITE;
                CALL_MANAGED_METHOD(fResult, CLR_BOOL, args);
            }
        }
        EX_SWALLOW_NONTRANSIENT;

        GCPROTECT_END();
    }

    return fResult;
}
#endif // FEATURE_PLS

DWORD ApplicationSecurityDescriptor::GetDomainWideSpecialFlag() const
{
    LIMITED_METHOD_CONTRACT;
    return m_dwDomainWideSpecialFlags;
}

void ApplicationSecurityDescriptor::FinishInitialization()
{
    WRAPPER_NO_CONTRACT;
    // Resolve the AppDomain security descriptor.
    this->Resolve();

    // Reset the initialization in-progress flag.
    this->ResetInitializationInProgress();

    // Initialize the PLS with the grant set of the AppDomain
    this->InitializePLS();
}

void ApplicationSecurityDescriptor::SetHostSecurityManagerFlags(DWORD dwFlags)
{
    LIMITED_METHOD_CONTRACT;
    m_dwHostSecurityManagerFlags |= dwFlags;
}

void ApplicationSecurityDescriptor::SetPolicyLevelFlag()
{
    LIMITED_METHOD_CONTRACT;
    m_dwHostSecurityManagerFlags |= HOST_POLICY_LEVEL;
}

BOOL ApplicationSecurityDescriptor::IsHomogeneous() const
{
    LIMITED_METHOD_CONTRACT;
    return m_fHomogeneous;
}

// Should the HSM be consulted for security decisions in this AppDomain.
BOOL ApplicationSecurityDescriptor::CallHostSecurityManager()
{
    LIMITED_METHOD_CONTRACT;
    return (m_dwHostSecurityManagerFlags & HOST_APP_DOMAIN_EVIDENCE ||
            m_dwHostSecurityManagerFlags & HOST_POLICY_LEVEL ||
            m_dwHostSecurityManagerFlags & HOST_ASM_EVIDENCE ||
            m_dwHostSecurityManagerFlags & HOST_RESOLVE_POLICY);
}

// The AppDomain is considered a default one (FT) if the property is set and it's not a homogeneous AppDomain
BOOL ApplicationSecurityDescriptor::IsDefaultAppDomain() const
{
    LIMITED_METHOD_CONTRACT;
    return  m_fIsDefaultAppdomain
#ifndef FEATURE_CORECLR
            && !m_fHomogeneous
#endif // FEATURE_CORECLR
            ;
}

BOOL ApplicationSecurityDescriptor::IsDefaultAppDomainEvidence()
{
    LIMITED_METHOD_CONTRACT;
    return m_fIsDefaultAppdomainEvidence;// This need not be a default AD, but has no evidence. So we'll use the default AD evidence
}

// Indicates whether the initialization phase is in progress.
BOOL ApplicationSecurityDescriptor::IsInitializationInProgress()
{
    LIMITED_METHOD_CONTRACT;
    return m_fIsInitializationInProgress;
}

BOOL ApplicationSecurityDescriptor::ContainsAnyRefusedPermissions()
{
    LIMITED_METHOD_CONTRACT;
    return m_fContainsAnyRefusedPermissions;
}

// Is it possible for the AppDomain to contain partial trust code.  This method may return true even if the
// domain does not currently have partial trust code in it - a true value simply means that it is possible
// for partial trust code to eventually end up in the domain.
BOOL ApplicationSecurityDescriptor::DomainMayContainPartialTrustCode()
{
    WRAPPER_NO_CONTRACT;
    return !m_fHomogeneous || !IsFullyTrusted();
}

#ifdef FEATURE_APTCA
ConditionalAptcaCache *ApplicationSecurityDescriptor::GetConditionalAptcaCache()
{
    LIMITED_METHOD_CONTRACT;
    return m_pConditionalAptcaCache;
}

void ApplicationSecurityDescriptor::SetCanonicalConditionalAptcaList(LPCWSTR wszCanonicalConditionalAptcaList)
{
    WRAPPER_NO_CONTRACT;
    return this->GetConditionalAptcaCache()->SetCanonicalConditionalAptcaList(wszCanonicalConditionalAptcaList);
}
#endif // FEATURE_APTCA

#endif // !DACCESS_COMPILE