summaryrefslogtreecommitdiff
path: root/src/vm/methodtablebuilder.cpp
blob: f9a28fb9a405a86daf768ea4fba17caa8ce69ccd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
//
// File: METHODTABLEBUILDER.CPP
//


//

//
// ============================================================================

#include "common.h"

#include "methodtablebuilder.h"

#include "sigbuilder.h"
#include "dllimport.h"
#include "fieldmarshaler.h"
#include "encee.h"
#include "mdaassistants.h"
#include "ecmakey.h"
#include "customattribute.h"
#include "typestring.h"

//*******************************************************************************
// Helper functions to sort GCdescs by offset (decending order)
int __cdecl compareCGCDescSeries(const void *arg1, const void *arg2)
{
    STATIC_CONTRACT_NOTHROW;
    STATIC_CONTRACT_GC_NOTRIGGER;
    STATIC_CONTRACT_FORBID_FAULT;

    CGCDescSeries* gcInfo1 = (CGCDescSeries*) arg1;
    CGCDescSeries* gcInfo2 = (CGCDescSeries*) arg2;

    return (int)(gcInfo2->GetSeriesOffset() - gcInfo1->GetSeriesOffset());
}

//*******************************************************************************

const char* FormatSig(MethodDesc* pMD, LoaderHeap *pHeap, AllocMemTracker *pamTracker);

#ifdef _DEBUG 
unsigned g_dupMethods = 0;
#endif // _DEBUG

//==========================================================================
// This function is very specific about how it constructs a EEClass.  It first
// determines the necessary size of the vtable and the number of statics that
// this class requires.  The necessary memory is then allocated for a EEClass
// and its vtable and statics.  The class members are then initialized and
// the memory is then returned to the caller
//
// LPEEClass CreateClass()
//
// Parameters :
//      [in] scope - scope of the current class not the one requested to be opened
//      [in] cl - class token of the class to be created.
//      [out] ppEEClass - pointer to pointer to hold the address of the EEClass
//                        allocated in this function.
// Return : returns an HRESULT indicating the success of this function.
//
// This parameter has been removed but might need to be reinstated if the
// global for the metadata loader is removed.
//      [in] pIMLoad - MetaDataLoader class/object for the current scope.


//==========================================================================
/*static*/ EEClass *
MethodTableBuilder::CreateClass( Module *pModule,
                                mdTypeDef cl,
                                BOOL fHasLayout,
                                BOOL fDelegate,
                                BOOL fIsEnum,
                                const MethodTableBuilder::bmtGenericsInfo *bmtGenericsInfo,
                                LoaderAllocator * pAllocator,
                                AllocMemTracker *pamTracker)
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(!(fHasLayout && fDelegate));
        PRECONDITION(!(fHasLayout && fIsEnum));
        PRECONDITION(CheckPointer(bmtGenericsInfo));
    }
    CONTRACTL_END;

    EEClass *pEEClass = NULL;
    IMDInternalImport *pInternalImport;

    //<TODO>============================================================================
    // vtabsize and static size need to be converted from pointer sizes to #'s
    // of bytes this will be very important for 64 bit NT!
    // We will need to call on IMetaDataLoad to get these sizes and fill out the
    // tables

    // From the classref call on metadata to resolve the classref and check scope
    // to make sure that this class is in the same scope otherwise we need to open
    // a new scope and possibly file.

    // if the scopes are different call the code to load a new file and get the new scope

    // scopes are the same so we can use the existing scope to get the class info

    // This method needs to be fleshed out.more it currently just returns enough
    // space for the defined EEClass and the vtable and statics are not set.
    //=============================================================================</TODO>

    if (fHasLayout)
    {
        pEEClass = new (pAllocator->GetLowFrequencyHeap(), pamTracker) LayoutEEClass();
    }
    else if (fDelegate)
    {
        pEEClass = new (pAllocator->GetLowFrequencyHeap(), pamTracker) DelegateEEClass();
    }
    else
    {
        pEEClass = new (pAllocator->GetLowFrequencyHeap(), pamTracker) EEClass(sizeof(EEClass));
    }

    DWORD dwAttrClass = 0;
    mdToken tkExtends = mdTokenNil;

    // Set up variance info
    if (bmtGenericsInfo->pVarianceInfo)
    {
        // Variance info is an optional field on EEClass, so ensure the optional field descriptor has been
        // allocated.
        EnsureOptionalFieldsAreAllocated(pEEClass, pamTracker, pAllocator->GetLowFrequencyHeap());
        pEEClass->SetVarianceInfo((BYTE*) pamTracker->Track(
            pAllocator->GetHighFrequencyHeap()->AllocMem(S_SIZE_T(bmtGenericsInfo->GetNumGenericArgs()))));

        memcpy(pEEClass->GetVarianceInfo(), bmtGenericsInfo->pVarianceInfo, bmtGenericsInfo->GetNumGenericArgs());
    }

    pInternalImport = pModule->GetMDImport();

    if (pInternalImport == NULL)
        COMPlusThrowHR(COR_E_TYPELOAD);
    
    IfFailThrow(pInternalImport->GetTypeDefProps(
        cl, 
        &dwAttrClass, 
        &tkExtends));
    
    pEEClass->m_dwAttrClass = dwAttrClass;

    // MDVal check: can't be both tdSequentialLayout and tdExplicitLayout
    if((dwAttrClass & tdLayoutMask) == tdLayoutMask)
        COMPlusThrowHR(COR_E_TYPELOAD);

    if (IsTdInterface(dwAttrClass))
    {
        // MDVal check: must have nil tkExtends and must be tdAbstract
        if((tkExtends & 0x00FFFFFF)||(!IsTdAbstract(dwAttrClass)))
            COMPlusThrowHR(COR_E_TYPELOAD);
    }

    if (fHasLayout)
        pEEClass->SetHasLayout();
    
#ifdef FEATURE_COMINTEROP
    if (IsTdWindowsRuntime(dwAttrClass))
    {
        Assembly *pAssembly = pModule->GetAssembly();

        // On the desktop CLR, we do not allow non-FX assemblies to use/define WindowsRuntimeImport attribute.
        //
        // On CoreCLR, however, we do allow non-FX assemblies to have this attribute. This enables scenarios where we can
        // activate 3rd-party WinRT components outside AppContainer - 1st party WinRT components are already allowed
        // to be activated outside AppContainer (on both Desktop and CoreCLR).

        pEEClass->SetProjectedFromWinRT();
    }

    if (pEEClass->IsProjectedFromWinRT())
    {
        if (IsTdInterface(dwAttrClass))
        {
            //
            // Check for GuidAttribute
            //
            BOOL bHasGuid = FALSE;
        
            GUID guid;
            HRESULT hr = pModule->GetMDImport()->GetItemGuid(cl, &guid);
            IfFailThrow(hr);
            
            if (IsEqualGUID(guid, GUID_NULL))
            {
                // A WinRT interface should have a GUID
                pModule->GetAssembly()->ThrowTypeLoadException(pModule->GetMDImport(), cl, IDS_EE_WINRT_INTERFACE_WITHOUT_GUID);            
            }
        }
    }

    WinMDAdapter::RedirectedTypeIndex redirectedTypeIndex;
    redirectedTypeIndex = WinRTTypeNameConverter::GetRedirectedTypeIndexByName(pModule, cl);
    if (redirectedTypeIndex != WinMDAdapter::RedirectedTypeIndex_Invalid)
    {
        EnsureOptionalFieldsAreAllocated(pEEClass, pamTracker, pAllocator->GetLowFrequencyHeap());
        pEEClass->SetWinRTRedirectedTypeIndex(redirectedTypeIndex);
    }
#endif // FEAUTRE_COMINTEROP

#ifdef _DEBUG 
    pModule->GetClassLoader()->m_dwDebugClasses++;
#endif

    return pEEClass;
}

//*******************************************************************************
//
// Create a hash of all methods in this class.  The hash is from method name to MethodDesc.
//
MethodTableBuilder::MethodNameHash *
MethodTableBuilder::CreateMethodChainHash(
    MethodTable *pMT)
{
    STANDARD_VM_CONTRACT;

    MethodNameHash *pHash = new (GetStackingAllocator()) MethodNameHash();
    pHash->Init(pMT->GetNumVirtuals(), GetStackingAllocator());

    unsigned numVirtuals = GetParentMethodTable()->GetNumVirtuals();
    for (unsigned i = 0; i < numVirtuals; ++i)
    {
        bmtMethodSlot &slot = (*bmtParent->pSlotTable)[i];
        bmtRTMethod * pMethod = slot.Decl().AsRTMethod();
        const MethodSignature &sig = pMethod->GetMethodSignature();
        pHash->Insert(sig.GetName(), pMethod);
    }

    // Success
    return pHash;
}

//*******************************************************************************
//
// Find a method in this class hierarchy - used ONLY by the loader during layout.  Do not use at runtime.
//
// *ppMemberSignature must be NULL on entry - it and *pcMemberSignature may or may not be filled out
//
// ppMethodDesc will be filled out with NULL if no matching method in the hierarchy is found.
//
// Returns FALSE if there was an error of some kind.
//
// pMethodConstraintsMatch receives the result of comparing the method constraints.
MethodTableBuilder::bmtRTMethod *
MethodTableBuilder::LoaderFindMethodInParentClass(
    const MethodSignature & methodSig,
    BOOL *                  pMethodConstraintsMatch)
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(this));
        PRECONDITION(CheckPointer(bmtParent));
        PRECONDITION(CheckPointer(methodSig.GetModule()));
        PRECONDITION(CheckPointer(methodSig.GetSignature()));
        PRECONDITION(HasParent());
        PRECONDITION(methodSig.GetSignatureLength() != 0);
    }
    CONTRACTL_END;

//#if 0
    MethodNameHash::HashEntry * pEntry;

    // Have we created a hash of all the methods in the class chain?
    if (bmtParent->pParentMethodHash == NULL)
    {
        // There may be such a method, so we will now create a hash table to reduce the pain for
        // further lookups

        // <TODO> Are we really sure that this is worth doing? </TODO>
        bmtParent->pParentMethodHash = CreateMethodChainHash(GetParentMethodTable());
    }

    // We have a hash table, so use it
    pEntry = bmtParent->pParentMethodHash->Lookup(methodSig.GetName());

    // Traverse the chain of all methods with this name
    while (pEntry != NULL)
    {
        bmtRTMethod * pEntryMethod = pEntry->m_data;
        const MethodSignature & entrySig = pEntryMethod->GetMethodSignature();

        // Note instantiation info
        {
            if (methodSig.Equivalent(entrySig))
            {
                if (pMethodConstraintsMatch != NULL)
                {
                    // Check the constraints are consistent,
                    // and return the result to the caller.
                    // We do this here to avoid recalculating pSubst.
                    *pMethodConstraintsMatch = MetaSig::CompareMethodConstraints(
                        &methodSig.GetSubstitution(), methodSig.GetModule(), methodSig.GetToken(),
                        &entrySig.GetSubstitution(),  entrySig.GetModule(),  entrySig.GetToken());
                }

                return pEntryMethod;
            }
        }

        // Advance to next item in the hash chain which has the same name
        pEntry = bmtParent->pParentMethodHash->FindNext(pEntry);
    }
//#endif

//@TODO: Move to this code, as the use of a HashTable is broken; overriding semantics
//@TODO: require matching against the most-derived slot of a given name and signature,
//@TODO: (which deals specifically with newslot methods with identical name and sig), but
//@TODO: HashTables are by definition unordered and so we've only been getting by with the
//@TODO: implementation being compatible with the order in which methods were added to
//@TODO: the HashTable in CreateMethodChainHash.
#if 0 
    bmtParentInfo::Iterator it(bmtParent->IterateSlots());
    it.MoveTo(static_cast<size_t>(GetParentMethodTable()->GetNumVirtuals()));
    while (it.Prev())
    {
        bmtMethodHandle decl(it->Decl());
        const MethodSignature &declSig(decl.GetMethodSignature());
        if (declSig == methodSig)
        {
            if (pMethodConstraintsMatch != NULL)
            {
                // Check the constraints are consistent,
                // and return the result to the caller.
                // We do this here to avoid recalculating pSubst.
                *pMethodConstraintsMatch = MetaSig::CompareMethodConstraints(
                    &methodSig.GetSubstitution(), methodSig.GetModule(), methodSig.GetToken(),
                    &declSig.GetSubstitution(),  declSig.GetModule(),  declSig.GetToken());
            }

            return decl.AsRTMethod();
        }
    }
#endif // 0

    return NULL;
}

//*******************************************************************************
//
// Given an interface map to fill out, expand pNewInterface (and its sub-interfaces) into it, increasing
// pdwInterfaceListSize as appropriate, and avoiding duplicates.
//
void
MethodTableBuilder::ExpandApproxInterface(
    bmtInterfaceInfo *          bmtInterface,  // out parameter, various parts cumulatively written to.
    const Substitution *        pNewInterfaceSubstChain, 
    MethodTable *               pNewInterface, 
    InterfaceDeclarationScope   declScope 
    COMMA_INDEBUG(MethodTable * dbg_pClassMT))
{
    STANDARD_VM_CONTRACT;
    
    //#ExpandingInterfaces
    // We expand the tree of inherited interfaces into a set by adding the
    // current node BEFORE expanding the parents of the current node.
    // ****** This must be consistent with code:ExpandExactInterface *******
    // ****** This must be consistent with code:ClassCompat::MethodTableBuilder::BuildInteropVTable_ExpandInterface *******

    // The interface list contains the fully expanded set of interfaces from the parent then
    // we start adding all the interfaces we declare. We need to know which interfaces
    // we declare but do not need duplicates of the ones we declare. This means we can
    // duplicate our parent entries.

    // Is it already present in the list?
    for (DWORD i = 0; i < bmtInterface->dwInterfaceMapSize; i++)
    {
        bmtInterfaceEntry * pItfEntry = &bmtInterface->pInterfaceMap[i];
        bmtRTType * pItfType = pItfEntry->GetInterfaceType();

        // Type Equivalence is not respected for this comparision as you can have multiple type equivalent interfaces on a class
        TokenPairList newVisited = TokenPairList::AdjustForTypeEquivalenceForbiddenScope(NULL);
        if (MetaSig::CompareTypeDefsUnderSubstitutions(pItfType->GetMethodTable(),
                                                       pNewInterface,
                                                       &pItfType->GetSubstitution(),
                                                       pNewInterfaceSubstChain,
                                                       &newVisited))
        {
            if (declScope.fIsInterfaceDeclaredOnType)
            {
                pItfEntry->IsDeclaredOnType() = true;
            }
#ifdef _DEBUG
            //#InjectInterfaceDuplicates_ApproxInterfaces
            // We can inject duplicate interfaces in check builds.
            // Has to be in sync with code:#InjectInterfaceDuplicates_Main
            if (((dbg_pClassMT == NULL) && bmtInterface->dbg_fShouldInjectInterfaceDuplicates) || 
                ((dbg_pClassMT != NULL) && dbg_pClassMT->Debug_HasInjectedInterfaceDuplicates()))
            {   
                // The injected duplicate interface should have the same status 'ImplementedByParent' as 
                // the original interface (can be false if the interface is implemented indirectly twice)
                declScope.fIsInterfaceDeclaredOnParent = pItfEntry->IsImplementedByParent();
                // Just pretend we didn't find this match, but mark all duplicates as 'DeclaredOnType' if 
                // needed
                continue;
            }
#endif //_DEBUG
            return; // found it, don't add it again
        }
    }

    bmtRTType * pNewItfType =
        new (GetStackingAllocator()) bmtRTType(*pNewInterfaceSubstChain, pNewInterface);

    if (bmtInterface->dwInterfaceMapSize >= bmtInterface->dwInterfaceMapAllocated)
    {
        //
        // Grow the array of interfaces
        //
        S_UINT32 dwNewAllocated = S_UINT32(2) * S_UINT32(bmtInterface->dwInterfaceMapAllocated) + S_UINT32(5);

        if (dwNewAllocated.IsOverflow())
        {
            BuildMethodTableThrowException(COR_E_OVERFLOW);
        }

        S_SIZE_T safeSize = S_SIZE_T(sizeof(bmtInterfaceEntry)) *
                            S_SIZE_T(dwNewAllocated.Value());

        if (safeSize.IsOverflow())
        {
            BuildMethodTableThrowException(COR_E_OVERFLOW);
        }

        bmtInterfaceEntry * pNewMap = (bmtInterfaceEntry *)new (GetStackingAllocator()) BYTE[safeSize.Value()];
        memcpy(pNewMap, bmtInterface->pInterfaceMap, sizeof(bmtInterfaceEntry) * bmtInterface->dwInterfaceMapAllocated);

        bmtInterface->pInterfaceMap = pNewMap;
        bmtInterface->dwInterfaceMapAllocated = dwNewAllocated.Value();
    }

    // The interface map memory was just allocated as an array of bytes, so we use
    // in place new to init the new map entry. No need to do anything with the result,
    // so just chuck it.
    CONSISTENCY_CHECK(bmtInterface->dwInterfaceMapSize < bmtInterface->dwInterfaceMapAllocated);
    new ((void *)&bmtInterface->pInterfaceMap[bmtInterface->dwInterfaceMapSize])
        bmtInterfaceEntry(pNewItfType, declScope);

    bmtInterface->dwInterfaceMapSize++;

    // Make sure to pass in the substitution from the new itf type created above as
    // these methods assume that substitutions are allocated in the stacking heap,
    // not the stack.
    InterfaceDeclarationScope declaredItfScope(declScope.fIsInterfaceDeclaredOnParent, false);
    ExpandApproxDeclaredInterfaces(
        bmtInterface,
        bmtTypeHandle(pNewItfType),
        declaredItfScope 
        COMMA_INDEBUG(dbg_pClassMT));
} // MethodTableBuilder::ExpandApproxInterface

//*******************************************************************************
// Arguments:
//   dbg_pClassMT - Class on which the interfaces are declared (either explicitly or implicitly).
//                  It will never be an interface. It may be NULL (if it is the type being built).
void 
MethodTableBuilder::ExpandApproxDeclaredInterfaces(
    bmtInterfaceInfo *          bmtInterface,  // out parameter, various parts cumulatively written to.
    bmtTypeHandle               thType, 
    InterfaceDeclarationScope   declScope 
    COMMA_INDEBUG(MethodTable * dbg_pClassMT))
{
    STANDARD_VM_CONTRACT;

    _ASSERTE((dbg_pClassMT == NULL) || !dbg_pClassMT->IsInterface());

    HRESULT hr;
    // Iterate the list of interfaces declared by thType and add them to the map.
    InterfaceImplEnum ie(thType.GetModule(), thType.GetTypeDefToken(), &thType.GetSubstitution());
    while ((hr = ie.Next()) == S_OK)
    {
        MethodTable *pGenericIntf = ClassLoader::LoadApproxTypeThrowing(
            thType.GetModule(), ie.CurrentToken(), NULL, NULL).GetMethodTable();
        CONSISTENCY_CHECK(pGenericIntf->IsInterface());

        ExpandApproxInterface(bmtInterface,
                              ie.CurrentSubst(),
                              pGenericIntf,
                              declScope 
                              COMMA_INDEBUG(dbg_pClassMT));
    }
    if (FAILED(hr))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
    }
} // MethodTableBuilder::ExpandApproxDeclaredInterfaces

//*******************************************************************************
void
MethodTableBuilder::ExpandApproxInheritedInterfaces(
    bmtInterfaceInfo *      bmtInterface,
    bmtRTType *             pParentType)
{
    STANDARD_VM_CONTRACT;

    INTERIOR_STACK_PROBE(GetThread());

    // Expand interfaces in superclasses first.  Interfaces inherited from parents
    // must have identical indexes as in the parent.
    bmtRTType * pParentOfParent = pParentType->GetParentType();
    
    //#InterfaceMap_SupersetOfParent
    // We have to load parent's interface map the same way the parent did it (as open type).
    // Further code depends on this:
    //    code:#InterfaceMap_UseParentInterfaceImplementations
    // We check that it is truth:
    //    code:#ApproxInterfaceMap_SupersetOfParent
    //    code:#ExactInterfaceMap_SupersetOfParent
    // 
    //#InterfaceMap_CanonicalSupersetOfParent
    // Note that canonical instantiation of parent can have different interface instantiations in the 
    // interface map than derived type:
    //    class MyClass<T> : MyBase<string, T>, I<T>
    //    class MyBase<U, V> : I<U>
    // Type MyClass<_Canon> has MyBase<_Canon,_Canon> as parent. The interface maps are:
    //    MyBase<_Canon,_Canon> ... I<_Canon>
    //    MyClass<_Canon> ... I<string> (#1)
    //                        I<_Canon> (#2)
    // The I's instantiation I<string> (#1) in MyClass and I<_Canon> from MyBase are not the same 
    // instantiations.
    
    // Backup parent substitution
    Substitution parentSubstitution = pParentType->GetSubstitution();
    // Make parent an open type
    pParentType->SetSubstitution(Substitution());
    
    if (pParentOfParent != NULL)
    {
        ExpandApproxInheritedInterfaces(bmtInterface, pParentOfParent);
    }

    InterfaceDeclarationScope declScope(true, false);
    ExpandApproxDeclaredInterfaces(
        bmtInterface, 
        bmtTypeHandle(pParentType), 
        declScope 
        COMMA_INDEBUG(pParentType->GetMethodTable()));
    
    // Make sure we loaded the same number of interfaces as the parent type itself
    CONSISTENCY_CHECK(pParentType->GetMethodTable()->GetNumInterfaces() == bmtInterface->dwInterfaceMapSize);
    
    // Restore parent's substitution
    pParentType->SetSubstitution(parentSubstitution);
    
    END_INTERIOR_STACK_PROBE;
} // MethodTableBuilder::ExpandApproxInheritedInterfaces

//*******************************************************************************
// Fill out a fully expanded interface map, such that if we are declared to
// implement I3, and I3 extends I1,I2, then I1,I2 are added to our list if
// they are not already present.
void
MethodTableBuilder::LoadApproxInterfaceMap()
{
    STANDARD_VM_CONTRACT;

    bmtInterface->dwInterfaceMapSize = 0;

#ifdef _DEBUG
    //#InjectInterfaceDuplicates_Main
    // We will inject duplicate interfaces in check builds if env. var. 
    // COMPLUS_INTERNAL_TypeLoader_InjectInterfaceDuplicates is set to TRUE for all types (incl. non-generic 
    // types).
    // This should allow us better test coverage of duplicates in interface map.
    // 
    // The duplicates are legal for some types:
    //     A<T> : I<T>
    //     B<U,V> : A<U>, I<V>
    //     C : B<int,int>
    //   where the interface maps are:
    //     A<T>             ... 1 item:  I<T>
    //     A<int>           ... 1 item:  I<int>
    //     B<U,V>           ... 2 items: I<U>, I<V>
    //     B<int,int>       ... 2 items: I<int>, I<int>
    //     B<_Canon,_Canon> ... 2 items: I<_Canon>, I<_Canon>
    //     B<string,string> ... 2 items: I<string>, I<string>
    //     C                ... 2 items: I<int>, I<int>
    //     Note: C had only 1 item (I<int>) in CLR 2.0 RTM/SP1/SP2 and early in CLR 4.0.
    // 
    // We will create duplicate from every re-implemented interface (incl. non-generic):
    //   code:#InjectInterfaceDuplicates_ApproxInterfaces
    //   code:#InjectInterfaceDuplicates_LoadExactInterfaceMap
    //   code:#InjectInterfaceDuplicates_ExactInterfaces
    // 
    // Note that we don't have to do anything for COM, because COM has its own interface map 
    // (code:InteropMethodTableData)which is independent on type's interface map and is created only from 
    // non-generic interfaces (see code:ClassCompat::MethodTableBuilder::BuildInteropVTable_InterfaceList)
    
    // We need to keep track which interface duplicates were injected. Right now its either all interfaces 
    // (declared on the type being built, not inheritted) or none. In the future we could inject duplicates 
    // just for some of them.
    bmtInterface->dbg_fShouldInjectInterfaceDuplicates = 
        (CLRConfig::GetConfigValue(CLRConfig::INTERNAL_TypeLoader_InjectInterfaceDuplicates) != 0);
    if (bmtGenerics->Debug_GetTypicalMethodTable() != NULL)
    {   // It's safer to require that all instantiations have the same injected interface duplicates.
        // In future we could inject different duplicates for various non-shared instantiations.
        
        // Use the same injection status as typical instantiation
        bmtInterface->dbg_fShouldInjectInterfaceDuplicates = 
            bmtGenerics->Debug_GetTypicalMethodTable()->Debug_HasInjectedInterfaceDuplicates();
        
        if (GetModule() == g_pObjectClass->GetModule())
        {   // mscorlib has some weird hardcoded information about interfaces (e.g. 
            // code:CEEPreloader::ApplyTypeDependencyForSZArrayHelper), so we don't inject duplicates into 
            // mscorlib types
            bmtInterface->dbg_fShouldInjectInterfaceDuplicates = FALSE;
        }
    }
#endif //_DEBUG

    // First inherit all the parent's interfaces.  This is important, because our interface map must
    // list the interfaces in identical order to our parent.
    //
    // <NICE> we should document the reasons why.  One reason is that DispatchMapTypeIDs can be indexes
    // into the list </NICE>
    if (HasParent())
    {
        ExpandApproxInheritedInterfaces(bmtInterface, GetParentType());
#ifdef _DEBUG
        //#ApproxInterfaceMap_SupersetOfParent
        // Check that parent's interface map is the same as what we just computed
        // See code:#InterfaceMap_SupersetOfParent
        {
            MethodTable * pParentMT = GetParentMethodTable();
            _ASSERTE(pParentMT->GetNumInterfaces() == bmtInterface->dwInterfaceMapSize);
            
            MethodTable::InterfaceMapIterator parentInterfacesIterator = pParentMT->IterateInterfaceMap();
            UINT32 nInterfaceIndex = 0;
            while (parentInterfacesIterator.Next())
            {
                // Compare TypeDefs of the parent's interface and this interface (full MT comparison is in 
                // code:#ExactInterfaceMap_SupersetOfParent)
                OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOAD_APPROXPARENTS);
                _ASSERTE(parentInterfacesIterator.GetInterfaceInfo()->GetApproxMethodTable(pParentMT->GetLoaderModule())->HasSameTypeDefAs(
                    bmtInterface->pInterfaceMap[nInterfaceIndex].GetInterfaceType()->GetMethodTable()));
                nInterfaceIndex++;
            }
            _ASSERTE(nInterfaceIndex == bmtInterface->dwInterfaceMapSize);
        }
#endif //_DEBUG
    }

    // Now add in any freshly declared interfaces, possibly augmenting the flags
    InterfaceDeclarationScope declScope(false, true);
    ExpandApproxDeclaredInterfaces(
        bmtInterface, 
        bmtInternal->pType, 
        declScope 
        COMMA_INDEBUG(NULL));
} // MethodTableBuilder::LoadApproxInterfaceMap

//*******************************************************************************
// Fills array of TypeIDs with all duplicate occurences of pDeclIntfMT in the interface map.
// 
// Arguments:
//    rg/c DispatchMapTypeIDs - Array of TypeIDs and its count of elements.
//    pcIfaceDuplicates - Number of duplicate occurences of the interface in the interface map (ideally <= 
//         count of elements TypeIDs.
// 
// Note: If the passed rgDispatchMapTypeIDs array is smaller than the number of duplicates, fills it 
// with the duplicates that fit and returns number of all existing duplicates (not just those fileld in the 
// array) in pcIfaceDuplicates.
// 
void 
MethodTableBuilder::ComputeDispatchMapTypeIDs(
    MethodTable *        pDeclInftMT, 
    const Substitution * pDeclIntfSubst, 
    DispatchMapTypeID *  rgDispatchMapTypeIDs, 
    UINT32               cDispatchMapTypeIDs, 
    UINT32 *             pcIfaceDuplicates)
{
    STANDARD_VM_CONTRACT;
    
    _ASSERTE(pDeclInftMT->IsInterface());
    
    // Count of interface duplicates (also used as index into TypeIDs array)
    *pcIfaceDuplicates = 0;
    for (DWORD idx = 0; idx < bmtInterface->dwInterfaceMapSize; idx++)
    {
        bmtInterfaceEntry * pItfEntry = &bmtInterface->pInterfaceMap[idx];
        bmtRTType * pItfType = pItfEntry->GetInterfaceType();
        // Type Equivalence is forbidden in interface type ids.
        TokenPairList newVisited = TokenPairList::AdjustForTypeEquivalenceForbiddenScope(NULL);
        if (MetaSig::CompareTypeDefsUnderSubstitutions(pItfType->GetMethodTable(),
                                                       pDeclInftMT,
                                                       &pItfType->GetSubstitution(),
                                                       pDeclIntfSubst,
                                                       &newVisited))
        {   // We found another occurence of this interface
            // Can we fit it into the TypeID array?
            if (*pcIfaceDuplicates < cDispatchMapTypeIDs)
            {
                rgDispatchMapTypeIDs[*pcIfaceDuplicates] = DispatchMapTypeID::InterfaceClassID(idx);
            }
            // Increase number of duplicate interfaces
            (*pcIfaceDuplicates)++;
        }
    }
} // MethodTableBuilder::ComputeDispatchMapTypeIDs

//*******************************************************************************
/*static*/
VOID DECLSPEC_NORETURN
MethodTableBuilder::BuildMethodTableThrowException(
    HRESULT hr,
    const bmtErrorInfo & bmtError)
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        INJECT_FAULT(COMPlusThrowOM(););
    }
    CONTRACTL_END

    LPCUTF8 pszClassName, pszNameSpace;
    if (FAILED(bmtError.pModule->GetMDImport()->GetNameOfTypeDef(bmtError.cl, &pszClassName, &pszNameSpace)))
    {
        pszClassName = pszNameSpace = "Invalid TypeDef record";
    }
    
    if (IsNilToken(bmtError.dMethodDefInError) && (bmtError.szMethodNameForError == NULL))
    {
        if (hr == E_OUTOFMEMORY)
        {
            COMPlusThrowOM();
        }
        else
            bmtError.pModule->GetAssembly()->ThrowTypeLoadException(
                pszNameSpace, pszClassName, bmtError.resIDWhy);
    }
    else
    {
        LPCUTF8 szMethodName;
        if (bmtError.szMethodNameForError == NULL)
        {
            if (FAILED((bmtError.pModule->GetMDImport())->GetNameOfMethodDef(bmtError.dMethodDefInError, &szMethodName)))
            {
                szMethodName = "Invalid MethodDef record";
            }
        }
        else
        {
            szMethodName = bmtError.szMethodNameForError;
        }

        bmtError.pModule->GetAssembly()->ThrowTypeLoadException(
            pszNameSpace, pszClassName, szMethodName, bmtError.resIDWhy);
    }
} // MethodTableBuilder::BuildMethodTableThrowException

//*******************************************************************************
void MethodTableBuilder::SetBMTData(
    LoaderAllocator *bmtAllocator,
    bmtErrorInfo *bmtError,
    bmtProperties *bmtProp,
    bmtVtable *bmtVT,
    bmtParentInfo *bmtParent,
    bmtInterfaceInfo *bmtInterface,
    bmtMetaDataInfo *bmtMetaData,
    bmtMethodInfo *bmtMethod,
    bmtMethAndFieldDescs *bmtMFDescs,
    bmtFieldPlacement *bmtFP,
    bmtInternalInfo *bmtInternal,
    bmtGCSeriesInfo *bmtGCSeries,
    bmtMethodImplInfo *bmtMethodImpl,
    const bmtGenericsInfo *bmtGenerics,
    bmtEnumFieldInfo *bmtEnumFields)
{
    LIMITED_METHOD_CONTRACT;
    this->bmtAllocator = bmtAllocator;
    this->bmtError = bmtError;
    this->bmtProp = bmtProp;
    this->bmtVT = bmtVT;
    this->bmtParent = bmtParent;
    this->bmtInterface = bmtInterface;
    this->bmtMetaData = bmtMetaData;
    this->bmtMethod = bmtMethod;
    this->bmtMFDescs = bmtMFDescs;
    this->bmtFP = bmtFP;
    this->bmtInternal = bmtInternal;
    this->bmtGCSeries = bmtGCSeries;
    this->bmtMethodImpl = bmtMethodImpl;
    this->bmtGenerics = bmtGenerics;
    this->bmtEnumFields = bmtEnumFields;
}

//*******************************************************************************
// Used by MethodTableBuilder

MethodTableBuilder::bmtRTType *
MethodTableBuilder::CreateTypeChain(
    MethodTable *        pMT,
    const Substitution & subst)
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        INSTANCE_CHECK;
        PRECONDITION(CheckPointer(GetStackingAllocator()));
        PRECONDITION(CheckPointer(pMT));
    } CONTRACTL_END;

    pMT = pMT->GetCanonicalMethodTable();

    bmtRTType * pType = new (GetStackingAllocator())
        bmtRTType(subst, pMT);

    MethodTable * pMTParent = pMT->GetParentMethodTable();
    if (pMTParent != NULL)
    {
        pType->SetParentType(
            CreateTypeChain(
                pMTParent,
                pMT->GetSubstitutionForParent(&pType->GetSubstitution())));
    }

    return pType;
}

//*******************************************************************************
/* static */
MethodTableBuilder::bmtRTType *
MethodTableBuilder::bmtRTType::FindType(
    bmtRTType *          pType,
    MethodTable *        pTargetMT)
{
    CONTRACTL {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(pType));
        PRECONDITION(CheckPointer(pTargetMT));
    } CONTRACTL_END;

    pTargetMT = pTargetMT->GetCanonicalMethodTable();
    while (pType != NULL &&
           pType->GetMethodTable()->GetCanonicalMethodTable() != pTargetMT)
    {
        pType = pType->GetParentType();
    }

    return pType;
}

//*******************************************************************************
mdTypeDef
MethodTableBuilder::bmtRTType::GetEnclosingTypeToken() const
{
    STANDARD_VM_CONTRACT;

    mdTypeDef tok = mdTypeDefNil;

    if (IsNested())
    {   // This is guaranteed to succeed because the EEClass would not have been
        // set as nested unless a valid token was stored in metadata.
        if (FAILED(GetModule()->GetMDImport()->GetNestedClassProps(
            GetTypeDefToken(), &tok)))
        {
            return mdTypeDefNil;
        }
    }
    
    return tok;
}

//*******************************************************************************
/*static*/ bool
MethodTableBuilder::MethodSignature::NamesEqual(
    const MethodSignature & sig1,
    const MethodSignature & sig2)
{
    STANDARD_VM_CONTRACT;

    if (sig1.GetNameHash() != sig2.GetNameHash())
    {
        return false;
    }

    if (strcmp(sig1.GetName(), sig2.GetName()) != 0)
    {
        return false;
    }

    return true;
}

//*******************************************************************************
/*static*/ bool
MethodTableBuilder::MethodSignature::SignaturesEquivalent(
    const MethodSignature & sig1, 
    const MethodSignature & sig2)
{
    STANDARD_VM_CONTRACT;

    return !!MetaSig::CompareMethodSigs(
        sig1.GetSignature(), static_cast<DWORD>(sig1.GetSignatureLength()), sig1.GetModule(), &sig1.GetSubstitution(), 
        sig2.GetSignature(), static_cast<DWORD>(sig2.GetSignatureLength()), sig2.GetModule(), &sig2.GetSubstitution());
}

//*******************************************************************************
/*static*/ bool
MethodTableBuilder::MethodSignature::SignaturesExactlyEqual(
    const MethodSignature & sig1, 
    const MethodSignature & sig2)
{
    STANDARD_VM_CONTRACT;

    TokenPairList newVisited = TokenPairList::AdjustForTypeEquivalenceForbiddenScope(NULL);
    return !!MetaSig::CompareMethodSigs(
        sig1.GetSignature(), static_cast<DWORD>(sig1.GetSignatureLength()), sig1.GetModule(), &sig1.GetSubstitution(), 
        sig2.GetSignature(), static_cast<DWORD>(sig2.GetSignatureLength()), sig2.GetModule(), &sig2.GetSubstitution(),
        &newVisited);
}

//*******************************************************************************
bool
MethodTableBuilder::MethodSignature::Equivalent(
    const MethodSignature &rhs) const
{
    STANDARD_VM_CONTRACT;

    return NamesEqual(*this, rhs) && SignaturesEquivalent(*this, rhs);
}

//*******************************************************************************
bool
MethodTableBuilder::MethodSignature::ExactlyEqual(
    const MethodSignature &rhs) const
{
    STANDARD_VM_CONTRACT;

    return NamesEqual(*this, rhs) && SignaturesExactlyEqual(*this, rhs);
}

//*******************************************************************************
void
MethodTableBuilder::MethodSignature::GetMethodAttributes() const
{
    STANDARD_VM_CONTRACT;

    IMDInternalImport * pIMD = GetModule()->GetMDImport();
    if (TypeFromToken(GetToken()) == mdtMethodDef)
    {
        DWORD cSig;
        if (FAILED(pIMD->GetNameAndSigOfMethodDef(GetToken(), &m_pSig, &cSig, &m_szName)))
        {   // We have empty name or signature on error, do nothing
        }
        m_cSig = static_cast<size_t>(cSig);
    }
    else
    {
        CONSISTENCY_CHECK(TypeFromToken(m_tok) == mdtMemberRef);
        DWORD cSig;
        if (FAILED(pIMD->GetNameAndSigOfMemberRef(GetToken(), &m_pSig, &cSig, &m_szName)))
        {   // We have empty name or signature on error, do nothing
        }
        m_cSig = static_cast<size_t>(cSig);
    }
}

//*******************************************************************************
UINT32
MethodTableBuilder::MethodSignature::GetNameHash() const
{
    STANDARD_VM_CONTRACT;

    CheckGetMethodAttributes();

    if (m_nameHash == INVALID_NAME_HASH)
    {
        ULONG nameHash = HashStringA(GetName());
        if (nameHash == INVALID_NAME_HASH)
        {
            nameHash /= 2;
        }
        m_nameHash = nameHash;
    }

    return m_nameHash;
}

//*******************************************************************************
MethodTableBuilder::bmtMDType::bmtMDType(
    bmtRTType *             pParentType,
    Module *                pModule,
    mdTypeDef               tok,
    const SigTypeContext &  sigContext)
    : m_pParentType(pParentType),
      m_pModule(pModule),
      m_tok(tok),
      m_enclTok(mdTypeDefNil),
      m_sigContext(sigContext),
      m_subst(),
      m_dwAttrs(0),
      m_pMT(NULL)
{
    STANDARD_VM_CONTRACT;

    IfFailThrow(m_pModule->GetMDImport()->GetTypeDefProps(m_tok, &m_dwAttrs, NULL));

    HRESULT hr = m_pModule->GetMDImport()->GetNestedClassProps(m_tok, &m_enclTok);
    if (FAILED(hr))
    {
        if (hr != CLDB_E_RECORD_NOTFOUND)
        {
            ThrowHR(hr);
        }
        // Just in case GetNestedClassProps sets the out param to some other value
        m_enclTok = mdTypeDefNil;
    }
}

//*******************************************************************************
MethodTableBuilder::bmtRTMethod::bmtRTMethod(
    bmtRTType *     pOwningType,
    MethodDesc *    pMD)
    : m_pOwningType(pOwningType),
      m_pMD(pMD),
      m_methodSig(pMD->GetModule(),
                  pMD->GetMemberDef(),
                  &pOwningType->GetSubstitution())
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
        MODE_ANY;
    }
    CONTRACTL_END;
}

//*******************************************************************************
MethodTableBuilder::bmtMDMethod::bmtMDMethod(
    bmtMDType * pOwningType,
    mdMethodDef tok,
    DWORD dwDeclAttrs,
    DWORD dwImplAttrs,
    DWORD dwRVA,
    METHOD_TYPE type,
    METHOD_IMPL_TYPE implType)
    : m_pOwningType(pOwningType),
      m_dwDeclAttrs(dwDeclAttrs),
      m_dwImplAttrs(dwImplAttrs),
      m_dwRVA(dwRVA),
      m_type(type),
      m_implType(implType),
      m_methodSig(pOwningType->GetModule(),
                  tok,
                  &pOwningType->GetSubstitution()),
      m_pMD(NULL),
      m_pUnboxedMD(NULL),
      m_slotIndex(INVALID_SLOT_INDEX),
      m_unboxedSlotIndex(INVALID_SLOT_INDEX)
    {
        CONTRACTL
        {
            THROWS;
            GC_TRIGGERS;
            MODE_ANY;
        }
        CONTRACTL_END;
    }
//*******************************************************************************
void
MethodTableBuilder::ImportParentMethods()
{
    STANDARD_VM_CONTRACT;

    if (!HasParent())
    {   // If there's no parent, there's no methods to import
        return;
    }

    SLOT_INDEX numMethods = static_cast<SLOT_INDEX>
        (GetParentMethodTable()->GetNumMethods());

    bmtParent->pSlotTable = new (GetStackingAllocator())
        bmtMethodSlotTable(numMethods, GetStackingAllocator());

    MethodTable::MethodIterator it(GetParentMethodTable());
    for (;it.IsValid(); it.Next())
    {
        MethodDesc *  pDeclDesc = NULL;
        MethodTable * pDeclMT   = NULL;
        MethodDesc *  pImplDesc = NULL;
        MethodTable * pImplMT   = NULL;

        if (it.IsVirtual())
        {
            pDeclDesc = it.GetDeclMethodDesc();
            pDeclMT = pDeclDesc->GetMethodTable();
            pImplDesc = it.GetMethodDesc();
            pImplMT = pImplDesc->GetMethodTable();
        }
        else
        {
            pDeclDesc = pImplDesc = it.GetMethodDesc();
            pDeclMT = pImplMT = it.GetMethodDesc()->GetMethodTable();
        }

        CONSISTENCY_CHECK(CheckPointer(pDeclDesc));
        CONSISTENCY_CHECK(CheckPointer(pImplDesc));

        // Create and assign to each slot
        bmtMethodSlot newSlot;
        newSlot.Decl() = new (GetStackingAllocator())
            bmtRTMethod(bmtRTType::FindType(GetParentType(), pDeclMT), pDeclDesc);
        if (pDeclDesc == pImplDesc)
        {
            newSlot.Impl() = newSlot.Decl();
        }
        else
        {
            newSlot.Impl() = new (GetStackingAllocator())
                bmtRTMethod(bmtRTType::FindType(GetParentType(), pImplMT), pImplDesc);
        }

        if (!bmtParent->pSlotTable->AddMethodSlot(newSlot))
            BuildMethodTableThrowException(IDS_CLASSLOAD_TOO_MANY_METHODS);
    }
}

//*******************************************************************************
void
MethodTableBuilder::CopyParentVtable()
{
    STANDARD_VM_CONTRACT;

    if (!HasParent())
    {
        return;
    }

    for (bmtParentInfo::Iterator it = bmtParent->IterateSlots();
         !it.AtEnd() && it.CurrentIndex() < GetParentMethodTable()->GetNumVirtuals();
         ++it)
     {
        if (!bmtVT->pSlotTable->AddMethodSlot(*it))
            BuildMethodTableThrowException(IDS_CLASSLOAD_TOO_MANY_METHODS);
        ++bmtVT->cVirtualSlots;
        ++bmtVT->cTotalSlots;
     }
}

//*******************************************************************************
// Determine if this is the special SIMD type System.Numerics.Vector<T>, whose
// size is determined dynamically based on the hardware and the presence of JIT
// support.
// If so:
//   - Update the NumInstanceFieldBytes on the bmtFieldPlacement.
//   - Update the m_cbNativeSize and m_cbManagedSize if HasLayout() is true.
// Return a BOOL result to indicate whether the size has been updated.
//
// Will throw IDS_EE_SIMD_NGEN_DISALLOWED if the type is System.Numerics.Vector`1
// and this is an ngen compilation process.
//
BOOL MethodTableBuilder::CheckIfSIMDAndUpdateSize()
{
    STANDARD_VM_CONTRACT;

#if defined(_TARGET_X86_) || defined(_TARGET_AMD64_)
    if (!(GetAssembly()->IsSIMDVectorAssembly() || bmtProp->fIsIntrinsicType))
        return false;

    if (bmtFP->NumInstanceFieldBytes != 16)
        return false;

    LPCUTF8 className;
    LPCUTF8 nameSpace;
    if (FAILED(GetMDImport()->GetNameOfTypeDef(bmtInternal->pType->GetTypeDefToken(), &className, &nameSpace)))
        return false;

    if (strcmp(className, "Vector`1") != 0 || strcmp(nameSpace, "System.Numerics") != 0)
        return false;

    if (IsCompilationProcess())
    {
        COMPlusThrow(kTypeLoadException, IDS_EE_SIMD_NGEN_DISALLOWED);
    }

#ifndef CROSSGEN_COMPILE
    if (!TargetHasAVXSupport())
        return false;

    EEJitManager *jitMgr = ExecutionManager::GetEEJitManager();
    if (jitMgr->LoadJIT())
    {
        CORJIT_FLAGS cpuCompileFlags = jitMgr->GetCPUCompileFlags();
        if (cpuCompileFlags.IsSet(CORJIT_FLAGS::CORJIT_FLAG_FEATURE_SIMD))
        {
            unsigned intrinsicSIMDVectorLength = jitMgr->m_jit->getMaxIntrinsicSIMDVectorLength(cpuCompileFlags);
            if (intrinsicSIMDVectorLength != 0)
            {
                bmtFP->NumInstanceFieldBytes     = intrinsicSIMDVectorLength;
                if (HasLayout())
                {
                    GetLayoutInfo()->m_cbNativeSize = intrinsicSIMDVectorLength;
                    GetLayoutInfo()->m_cbManagedSize = intrinsicSIMDVectorLength;
                }
                return true;
            }
        }
    }
#endif // !CROSSGEN_COMPILE
#endif // defined(_TARGET_X86_) || defined(_TARGET_AMD64_)
    return false;
}

//*******************************************************************************
void
MethodTableBuilder::bmtInterfaceEntry::CreateSlotTable(
    StackingAllocator * pStackingAllocator)
{
    STANDARD_VM_CONTRACT;

    CONSISTENCY_CHECK(m_pImplTable == NULL);

    SLOT_INDEX cSlots = (SLOT_INDEX)GetInterfaceType()->GetMethodTable()->GetNumVirtuals();
    bmtInterfaceSlotImpl * pST = new (pStackingAllocator) bmtInterfaceSlotImpl[cSlots];

    MethodTable::MethodIterator it(GetInterfaceType()->GetMethodTable());
    for (; it.IsValid(); it.Next())
    {
        if (!it.IsVirtual())
        {
            break;
        }

        bmtRTMethod * pCurMethod = new (pStackingAllocator)
            bmtRTMethod(GetInterfaceType(), it.GetDeclMethodDesc());

        CONSISTENCY_CHECK(m_cImplTable == it.GetSlotNumber());
        pST[m_cImplTable++] = bmtInterfaceSlotImpl(pCurMethod, INVALID_SLOT_INDEX);
    }

    m_pImplTable = pST;
}

#ifdef _PREFAST_ 
#pragma warning(push)
#pragma warning(disable:21000) // Suppress PREFast warning about overly large function
#endif // _PREFAST_
//---------------------------------------------------------------------------------------
// 
// Builds the method table, allocates MethodDesc, handles overloaded members, attempts to compress
// interface storage.  All dependent classes must already be resolved!
// 
MethodTable *
MethodTableBuilder::BuildMethodTableThrowing(
    LoaderAllocator *          pAllocator, 
    Module *                   pLoaderModule, 
    Module *                   pModule, 
    mdToken                    cl, 
    BuildingInterfaceInfo_t *  pBuildingInterfaceList, 
    const LayoutRawFieldInfo * pLayoutRawFieldInfos, 
    MethodTable *              pParentMethodTable, 
    const bmtGenericsInfo *    bmtGenericsInfo, 
    SigPointer                 parentInst, 
    WORD                       cBuildingInterfaceList)
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(GetHalfBakedClass()));
        PRECONDITION(CheckPointer(bmtGenericsInfo));
    }
    CONTRACTL_END;

    pModule->EnsureLibraryLoaded();

    // The following structs, defined as private members of MethodTableBuilder, contain the necessary local
    // parameters needed for BuildMethodTable Look at the struct definitions for a detailed list of all
    // parameters available to BuildMethodTableThrowing.

    SetBMTData(
        pAllocator,
        new (GetStackingAllocator()) bmtErrorInfo(),
        new (GetStackingAllocator()) bmtProperties(),
        new (GetStackingAllocator()) bmtVtable(),
        new (GetStackingAllocator()) bmtParentInfo(),
        new (GetStackingAllocator()) bmtInterfaceInfo(),
        new (GetStackingAllocator()) bmtMetaDataInfo(),
        new (GetStackingAllocator()) bmtMethodInfo(),
        new (GetStackingAllocator()) bmtMethAndFieldDescs(),
        new (GetStackingAllocator()) bmtFieldPlacement(),
        new (GetStackingAllocator()) bmtInternalInfo(),
        new (GetStackingAllocator()) bmtGCSeriesInfo(),
        new (GetStackingAllocator()) bmtMethodImplInfo(),
        bmtGenericsInfo,
        new (GetStackingAllocator()) bmtEnumFieldInfo(pModule->GetMDImport()));

    //Initialize structs

    bmtError->resIDWhy = IDS_CLASSLOAD_GENERAL;          // Set the reason and the offending method def. If the method information
    bmtError->pThrowable = NULL;
    bmtError->pModule  = pModule;
    bmtError->cl       = cl;

    bmtInternal->pInternalImport = pModule->GetMDImport();
    bmtInternal->pModule = pModule;

    bmtInternal->pParentMT = pParentMethodTable;

    // Create the chain of bmtRTType for the parent types. This allows all imported
    // parent methods to be associated with their declaring types, and as such it is
    // easy to access the appropriate Substitution when comparing signatures.
    bmtRTType * pParent = NULL;
    if (pParentMethodTable != NULL)
    {
        Substitution * pParentSubst =
            new (GetStackingAllocator()) Substitution(pModule, parentInst, NULL);
        pParent = CreateTypeChain(pParentMethodTable, *pParentSubst);
    }

    // Now create the bmtMDType for the type being built.
    bmtInternal->pType = new (GetStackingAllocator())
        bmtMDType(pParent, pModule, cl, bmtGenericsInfo->typeContext);

    // put the interior stack probe after all the stack-allocted goop above.  We check compare our this pointer to the SP on
    // the dtor to determine if we are being called on an EH path or not.
    INTERIOR_STACK_PROBE_FOR(GetThread(), 8);

    // If not NULL, it means there are some by-value fields, and this contains an entry for each inst

#ifdef _DEBUG 
    // Set debug class name string for easier debugging.
    LPCUTF8 className;
    LPCUTF8 nameSpace;
    if (FAILED(GetMDImport()->GetNameOfTypeDef(bmtInternal->pType->GetTypeDefToken(), &className, &nameSpace)))
    {
        className = nameSpace = "Invalid TypeDef record";
    }
    
    {
        S_SIZE_T safeLen = S_SIZE_T(sizeof(char))*(S_SIZE_T(strlen(className)) + S_SIZE_T(strlen(nameSpace)) + S_SIZE_T(2));
        if(safeLen.IsOverflow()) COMPlusThrowHR(COR_E_OVERFLOW);

        size_t len = safeLen.Value();
        char *name = (char*) AllocateFromHighFrequencyHeap(safeLen);
        strcpy_s(name, len, nameSpace);
        if (strlen(nameSpace) > 0) {
            name[strlen(nameSpace)] = '.';
            name[strlen(nameSpace) + 1] = '\0';
        }
        strcat_s(name, len, className);

        GetHalfBakedClass()->SetDebugClassName(name);
    }

    if (g_pConfig->ShouldBreakOnClassBuild(className))
    {
        CONSISTENCY_CHECK_MSGF(false, ("BreakOnClassBuild: typename '%s' ", className));
        GetHalfBakedClass()->m_fDebuggingClass = TRUE;
    }

    LPCUTF8 pszDebugName,pszDebugNamespace;
    if (FAILED(pModule->GetMDImport()->GetNameOfTypeDef(bmtInternal->pType->GetTypeDefToken(), &pszDebugName, &pszDebugNamespace)))
    {
        pszDebugName = pszDebugNamespace = "Invalid TypeDef record";
    }

    StackSString debugName(SString::Utf8, pszDebugName);

    // If there is an instantiation, update the debug name to include instantiation type names.
    if (bmtGenerics->HasInstantiation())
    {
        StackSString debugName(SString::Utf8, GetDebugClassName());
        TypeString::AppendInst(debugName, bmtGenerics->GetInstantiation(), TypeString::FormatBasic);
        StackScratchBuffer buff;
        const char* pDebugNameUTF8 = debugName.GetUTF8(buff);
        S_SIZE_T safeLen = S_SIZE_T(strlen(pDebugNameUTF8)) + S_SIZE_T(1);
        if(safeLen.IsOverflow())
            COMPlusThrowHR(COR_E_OVERFLOW);

        size_t len = safeLen.Value();
        char *name = (char*) AllocateFromLowFrequencyHeap(safeLen);
        strcpy_s(name, len, pDebugNameUTF8);
        GetHalfBakedClass()->SetDebugClassName(name);
        pszDebugName = (LPCUTF8)name;
    }

    LOG((LF_CLASSLOADER, LL_INFO1000, "Loading class \"%s%s%S\" from module \"%ws\" in domain 0x%p %s\n",
        *pszDebugNamespace ? pszDebugNamespace : "",
        *pszDebugNamespace ? NAMESPACE_SEPARATOR_STR : "",
        debugName.GetUnicode(),
        pModule->GetDebugName(),
        pModule->GetDomain(),
        (pModule->IsSystem()) ? "System Domain" : ""
    ));
#endif // _DEBUG

    // If this is mscorlib, then don't perform some sanity checks on the layout
    bmtProp->fNoSanityChecks = ((g_pObjectClass == NULL) || pModule == g_pObjectClass->GetModule()) ||
#ifdef FEATURE_READYTORUN
        // No sanity checks for ready-to-run compiled images if possible
        (pModule->IsReadyToRun() && pModule->GetReadyToRunInfo()->SkipTypeValidation()) ||
#endif
        // No sanity checks for real generic instantiations
        !bmtGenerics->IsTypicalTypeDefinition();

    // Interfaces have a parent class of Object, but we don't really want to inherit all of
    // Object's virtual methods, so pretend we don't have a parent class - at the bottom of this
    // function we reset the parent class
    if (IsInterface())
    {
        bmtInternal->pType->SetParentType(NULL);
        bmtInternal->pParentMT = NULL;
    }

    unsigned totalDeclaredFieldSize=0;

    // Check to see if the class is a valuetype; but we don't want to mark System.Enum
    // as a ValueType. To accomplish this, the check takes advantage of the fact
    // that System.ValueType and System.Enum are loaded one immediately after the
    // other in that order, and so if the parent MethodTable is System.ValueType and
    // the System.Enum MethodTable is unset, then we must be building System.Enum and
    // so we don't mark it as a ValueType.
    if(HasParent() &&
       ((g_pEnumClass != NULL && GetParentMethodTable() == g_pValueTypeClass) ||
        GetParentMethodTable() == g_pEnumClass))
    {
        bmtProp->fIsValueClass = true;

        HRESULT hr = GetMDImport()->GetCustomAttributeByName(bmtInternal->pType->GetTypeDefToken(),
                                                                g_CompilerServicesUnsafeValueTypeAttribute,
                                                                NULL, NULL);
        IfFailThrow(hr);
        if (hr == S_OK)
        {
            SetUnsafeValueClass();
        }

        hr = GetMDImport()->GetCustomAttributeByName(bmtInternal->pType->GetTypeDefToken(),
            g_CompilerServicesIsByRefLikeAttribute,
            NULL, NULL);
        IfFailThrow(hr);
        if (hr == S_OK)
        {
            bmtFP->fIsByRefLikeType = true;
        }
    }

    // Check to see if the class is an enumeration. No fancy checks like the one immediately
    // above for value types are necessary here.
    if(HasParent() && GetParentMethodTable() == g_pEnumClass)
    {
        bmtProp->fIsEnum = true;

        // Ensure we don't have generic enums, or at least enums that have a
        // different number of type parameters from their enclosing class.
        // The goal is to ensure that the enum's values can't depend on the
        // type parameters in any way.  And we don't see any need for an
        // enum to have additional type parameters.
        if (bmtGenerics->GetNumGenericArgs() != 0)
        {
            // Nested enums can have generic type parameters from their enclosing class.
            // CLS rules require type parameters to be propogated to nested types.
            // Note that class G<T> { enum E { } } will produce "G`1+E<T>".
            // We want to disallow class G<T> { enum E<T, U> { } }
            // Perhaps the IL equivalent of class G<T> { enum E { } } should be legal.
            if (!IsNested())
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_ENUM_EXTRA_GENERIC_TYPE_PARAM);
            }

            mdTypeDef tdEnclosing = mdTypeDefNil;
            HRESULT hr = GetMDImport()->GetNestedClassProps(GetCl(), &tdEnclosing);
            if (FAILED(hr))
                ThrowHR(hr, BFA_UNABLE_TO_GET_NESTED_PROPS);

            HENUMInternalHolder   hEnumGenericPars(GetMDImport());
            if (FAILED(hEnumGenericPars.EnumInitNoThrow(mdtGenericParam, tdEnclosing)))
            {
                GetAssembly()->ThrowTypeLoadException(GetMDImport(), tdEnclosing, IDS_CLASSLOAD_BADFORMAT);
            }

            if (hEnumGenericPars.EnumGetCount() != bmtGenerics->GetNumGenericArgs())
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_ENUM_EXTRA_GENERIC_TYPE_PARAM);
            }
        }
    }

    // If this type is marked by [Intrinsic] attribute, it may be specially treated by the runtime/compiler
    // SIMD types have [Intrinsic] attribute, for example
    //
    // We check this here fairly early to ensure other downstream checks on these types can be slightly more efficient.
    if (GetModule()->IsSystem() || GetAssembly()->IsSIMDVectorAssembly())
    {
        HRESULT hr = GetMDImport()->GetCustomAttributeByName(bmtInternal->pType->GetTypeDefToken(),
            g_CompilerServicesIntrinsicAttribute,
            NULL,
            NULL);

        if (hr == S_OK)
        {
            bmtProp->fIsIntrinsicType = true;
        }
    }

#if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)
    if (bmtProp->fIsIntrinsicType && !bmtGenerics->HasInstantiation())
    {
        LPCUTF8 className;
        LPCUTF8 nameSpace;
        HRESULT hr = GetMDImport()->GetNameOfTypeDef(bmtInternal->pType->GetTypeDefToken(), &className, &nameSpace);

#if defined(_TARGET_ARM64_)
        // All the funtions in System.Runtime.Intrinsics.Arm.Arm64 are hardware intrinsics.
        if (hr == S_OK && strcmp(nameSpace, "System.Runtime.Intrinsics.Arm.Arm64") == 0)
#else
        // All the funtions in System.Runtime.Intrinsics.X86 are hardware intrinsics.
        if (bmtInternal->pType->IsNested())
        {
            IfFailThrow(GetMDImport()->GetNameOfTypeDef(bmtInternal->pType->GetEnclosingTypeToken(), NULL, &nameSpace));
        }
        
        if (hr == S_OK && (strcmp(nameSpace, "System.Runtime.Intrinsics.X86") == 0))
#endif
        {
            if (IsCompilationProcess())
            {
                // Disable AOT compiling for managed implementation of hardware intrinsics in mscorlib.
                // We specially treat them here to ensure correct ISA features are set during compilation
                COMPlusThrow(kTypeLoadException, IDS_EE_HWINTRINSIC_NGEN_DISALLOWED);
            }
            bmtProp->fIsHardwareIntrinsic = true;
        }
    }
#endif

    // Com Import classes are special. These types must derive from System.Object,
    // and we then substitute the parent with System._ComObject.
    if (IsComImport() && !IsEnum() && !IsInterface() && !IsValueClass() && !IsDelegate())
    {
#ifdef FEATURE_COMINTEROP        
        // ComImport classes must either extend from Object or be a WinRT class
        // that extends from another WinRT class (and so form a chain of WinRT classes
        // that ultimately extend from object).
        MethodTable* pMTParent = GetParentMethodTable();
        if ((pMTParent == NULL) || !(
                // is the parent valid?
                (pMTParent == g_pObjectClass) ||
                (GetHalfBakedClass()->IsProjectedFromWinRT() && pMTParent->IsProjectedFromWinRT())
                ))
        {
            BuildMethodTableThrowException(IDS_CLASSLOAD_CANTEXTEND);
        }

        if (HasLayout())
        {
            // ComImport classes cannot have layout information.
            BuildMethodTableThrowException(IDS_CLASSLOAD_COMIMPCANNOTHAVELAYOUT);
        }

        if (pMTParent == g_pObjectClass)
        {                
            // ComImport classes ultimately extend from our __ComObject or RuntimeClass class
            MethodTable *pCOMMT = NULL;
            if (GetHalfBakedClass()->IsProjectedFromWinRT())
                pCOMMT = g_pBaseRuntimeClass;
            else
                pCOMMT = g_pBaseCOMObject;
            
            _ASSERTE(pCOMMT);

            // We could have had COM interop classes derive from System._ComObject,
            // but instead we have them derive from System.Object, have them set the
            // ComImport bit in the type attributes, and then we swap out the parent
            // type under the covers.
            bmtInternal->pType->SetParentType(CreateTypeChain(pCOMMT, Substitution()));
            bmtInternal->pParentMT = pCOMMT;
        }
#endif
        // if the current class is imported
        bmtProp->fIsComObjectType = true;
    }

#ifdef FEATURE_COMINTEROP
    if (GetHalfBakedClass()->IsProjectedFromWinRT() && IsValueClass() && !IsEnum())
    {
        // WinRT structures must have sequential layout
        if (!GetHalfBakedClass()->HasSequentialLayout())
        {
            BuildMethodTableThrowException(IDS_EE_STRUCTLAYOUT_WINRT);
        }
    }

    // Check for special COM interop types.
    CheckForSpecialTypes();

    CheckForTypeEquivalence(cBuildingInterfaceList, pBuildingInterfaceList);

    if (HasParent())
    {   // Types that inherit from com object types are themselves com object types.
        if (GetParentMethodTable()->IsComObjectType())
        {
            // if the parent class is of ComObjectType
            // so is the child
            bmtProp->fIsComObjectType = true;
        }

#ifdef FEATURE_TYPEEQUIVALENCE
        // If your parent is type equivalent then so are you
        if (GetParentMethodTable()->HasTypeEquivalence())
        {
            bmtProp->fHasTypeEquivalence = true;
        }
#endif
    }

#endif // FEATURE_COMINTEROP

    if (!HasParent() && !IsInterface())
    {
        if(g_pObjectClass != NULL)
        {
            if(!IsGlobalClass())
            {
                // Non object derived types that are not the global class are prohibited by spec
                BuildMethodTableThrowException(IDS_CLASSLOAD_PARENTNULL);
            }
        }
    }

    // NOTE: This appears to be the earliest point during class loading that other classes MUST be loaded
    // resolve unresolved interfaces, determine an upper bound on the size of the interface map,
    // and determine the size of the largest interface (in # slots)
    ResolveInterfaces(cBuildingInterfaceList, pBuildingInterfaceList);

    // Enumerate this class's methodImpls
    EnumerateMethodImpls();

    // Enumerate this class's methods and fields
    EnumerateClassMethods();
    ValidateMethods();

    EnumerateClassFields();

    // Import the slots of the parent for use in placing this type's methods.
    ImportParentMethods();

    // This will allocate the working versions of the VTable and NonVTable in bmtVT
    AllocateWorkingSlotTables();

    // Allocate a MethodDesc* for each method (needed later when doing interfaces), and a FieldDesc* for each field
    AllocateFieldDescs();

    // Copy the parent's vtable into the current type's vtable
    CopyParentVtable();

    bmtVT->pDispatchMapBuilder = new (GetStackingAllocator()) DispatchMapBuilder(GetStackingAllocator());

    // Determine vtable placement for each member in this class
    PlaceVirtualMethods();
    PlaceNonVirtualMethods();

    // Allocate MethodDescs (expects methods placed methods)
    AllocAndInitMethodDescs();

    if (IsInterface())
    {
        //
        // We need to process/place method impls for default interface method overrides.
        // We won't build dispatch map for interfaces, though.
        //
        ProcessMethodImpls();
        PlaceMethodImpls();
    }
    else
    {
        //
        // If we are a class, then there may be some unplaced vtable methods (which are by definition
        // interface methods, otherwise they'd already have been placed).  Place as many unplaced methods
        // as possible, in the order preferred by interfaces.  However, do not allow any duplicates - once
        // a method has been placed, it cannot be placed again - if we are unable to neatly place an interface,
        // create duplicate slots for it starting at dwCurrentDuplicateVtableSlot.  Fill out the interface
        // map for all interfaces as they are placed.
        //
        // If we are an interface, then all methods are already placed.  Fill out the interface map for
        // interfaces as they are placed.
        //
        ComputeInterfaceMapEquivalenceSet();

        PlaceInterfaceMethods();

        ProcessMethodImpls();
        ProcessInexactMethodImpls();
        PlaceMethodImpls();

        if (!bmtProp->fNoSanityChecks)
        {
            // Now that interface method implementation have been fully resolved,
            // we need to make sure that type constraints are also met.
            ValidateInterfaceMethodConstraints();
        }
    }

    // Verify that we have not overflowed the number of slots.
    if (!FitsInU2((UINT64)bmtVT->pSlotTable->GetSlotCount()))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_TOO_MANY_METHODS);
    }

    // ensure we didn't overflow the temporary vtable
    _ASSERTE(bmtVT->pSlotTable->GetSlotCount() <= bmtVT->dwMaxVtableSize);

    // Allocate and initialize the dictionary for the type. This will be filled out later
    // with the final values.
    AllocAndInitDictionary();

    ////////////////////////////////////////////////////////////////////////////////////////////////
    // Fields
    //

    // We decide here if we need a dynamic entry for our statics. We need it here because
    // the offsets of our fields will depend on this. For the dynamic case (which requires
    // an extra indirection (indirect depending of methodtable) we'll allocate the slot
    // in setupmethodtable
    if (((pAllocator->IsCollectible() ||  pModule->IsReflection() || bmtGenerics->HasInstantiation() || !pModule->IsStaticStoragePrepared(cl)) &&
        (bmtVT->GetClassCtorSlotIndex() != INVALID_SLOT_INDEX || bmtEnumFields->dwNumStaticFields !=0))
#ifdef EnC_SUPPORTED 
        // Classes in modules that have been edited (would do on class level if there were a
        // way to tell if the class had been edited) also have dynamic statics as the number
        // of statics might have changed, so can't use the static module-wide storage
        || (pModule->IsEditAndContinueEnabled() &&
                ((EditAndContinueModule*)pModule)->GetApplyChangesCount() > CorDB_DEFAULT_ENC_FUNCTION_VERSION)
#endif // EnC_SUPPORTED
        )
    {
        // We will need a dynamic id
        bmtProp->fDynamicStatics = true;

        if (bmtGenerics->HasInstantiation())
        {
            bmtProp->fGenericsStatics = true;
        }
    }

    // If not NULL, it means there are some by-value fields, and this contains an entry for each instance or static field,
    // which is NULL if not a by value field, and points to the EEClass of the field if a by value field.  Instance fields
    // come first, statics come second.
    MethodTable ** pByValueClassCache = NULL;

    // Go thru all fields and initialize their FieldDescs.
    InitializeFieldDescs(GetApproxFieldDescListRaw(), pLayoutRawFieldInfos, bmtInternal, bmtGenerics,
        bmtMetaData, bmtEnumFields, bmtError,
        &pByValueClassCache, bmtMFDescs, bmtFP,
        &totalDeclaredFieldSize);

    // Place regular static fields
    PlaceRegularStaticFields();

    // Place thread static fields
    PlaceThreadStaticFields();

    LOG((LF_CODESHARING,
            LL_INFO10000,
            "Placing %d statics (%d handles) for class %s.\n",
            GetNumStaticFields(), GetNumHandleRegularStatics() + GetNumHandleThreadStatics(),
            pszDebugName));

    if (IsBlittable() || IsManagedSequential())
    {
        bmtFP->NumGCPointerSeries = 0;
        bmtFP->NumInstanceGCPointerFields = 0;

        _ASSERTE(HasLayout());

        bmtFP->NumInstanceFieldBytes = IsBlittable() ? GetLayoutInfo()->m_cbNativeSize
                                                     : GetLayoutInfo()->m_cbManagedSize;

        // For simple Blittable types we still need to check if they have any overlapping 
        // fields and call the method SetHasOverLayedFields() when they are detected.
        //
        if (HasExplicitFieldOffsetLayout())
        {
            _ASSERTE(!bmtGenerics->fContainsGenericVariables);   // A simple Blittable type can't ever be an open generic type.
            HandleExplicitLayout(pByValueClassCache);
        }
    }
    else
    {
        _ASSERTE(!IsBlittable());
        // HandleExplicitLayout fails for the GenericTypeDefinition when
        // it will succeed for some particular instantiations.
        // Thus we only do explicit layout for real instantiations, e.g. C<int>, not
        // the open types such as the GenericTypeDefinition C<!0> or any
        // of the "fake" types involving generic type variables which are
        // used for reflection and verification, e.g. C<List<!0>>.
        // 
        if (!bmtGenerics->fContainsGenericVariables && HasExplicitFieldOffsetLayout())
        {
            HandleExplicitLayout(pByValueClassCache);
        }
        else
        {
            // Place instance fields
            PlaceInstanceFields(pByValueClassCache);
        }
    }

    if (CheckIfSIMDAndUpdateSize())
    {
        totalDeclaredFieldSize = bmtFP->NumInstanceFieldBytes;
    }

    // We enforce that all value classes have non-zero size
    if (IsValueClass() && bmtFP->NumInstanceFieldBytes == 0)
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_ZEROSIZE);
    }
    
    if (bmtFP->fHasSelfReferencingStaticValueTypeField_WithRVA)
    {   // Verify self-referencing statics with RVA (now when the ValueType size is known)
        VerifySelfReferencingStaticValueTypeFields_WithRVA(pByValueClassCache);
    }
    

    // Now setup the method table

#ifdef FEATURE_PREJIT
    Module *pComputedPZM = pLoaderModule;

    if (bmtGenerics->GetNumGenericArgs() > 0)
    {
        pComputedPZM = Module::ComputePreferredZapModule(pModule, bmtGenerics->GetInstantiation());
    }

    SetupMethodTable2(pLoaderModule, pComputedPZM);
#else // FEATURE_PREJIT
    SetupMethodTable2(pLoaderModule);
#endif // FEATURE_PREJIT

    MethodTable * pMT = GetHalfBakedMethodTable();

#ifdef FEATURE_64BIT_ALIGNMENT
    if (GetHalfBakedClass()->IsAlign8Candidate())
        pMT->SetRequiresAlign8();
#endif

    if (bmtGenerics->pVarianceInfo != NULL)
    {
        pMT->SetHasVariance();
    }

    if (bmtFP->NumRegularStaticGCBoxedFields != 0)
    {
        pMT->SetHasBoxedRegularStatics();
    }

    if (bmtFP->fIsByRefLikeType)
    {
        pMT->SetIsByRefLike();
    }

    if (IsValueClass())
    {
        if (bmtFP->NumInstanceFieldBytes != totalDeclaredFieldSize || HasOverLayedField())
            GetHalfBakedClass()->SetIsNotTightlyPacked();

#ifdef FEATURE_HFA
        GetHalfBakedClass()->CheckForHFA(pByValueClassCache);
#endif
#ifdef UNIX_AMD64_ABI
#ifdef FEATURE_HFA
#error Can't have FEATURE_HFA and UNIX_AMD64_ABI defined at the same time.
#endif // FEATURE_HFA
        SystemVAmd64CheckForPassStructInRegister();
#endif // UNIX_AMD64_ABI
    }

#ifdef UNIX_AMD64_ABI
#ifdef FEATURE_HFA
#error Can't have FEATURE_HFA and UNIX_AMD64_ABI defined at the same time.
#endif // FEATURE_HFA
    if (HasLayout())
    {
        SystemVAmd64CheckForPassNativeStructInRegister();
    }
#endif // UNIX_AMD64_ABI
#ifdef FEATURE_HFA
    if (HasLayout())
    {
        GetHalfBakedClass()->CheckForNativeHFA();
    }
#endif

#ifdef _DEBUG 
    pMT->SetDebugClassName(GetDebugClassName());
#endif

#ifdef FEATURE_COMINTEROP 
    if (IsInterface())
    {
        GetCoClassAttribInfo();
    }
#endif // FEATURE_COMINTEROP

    if (HasExplicitFieldOffsetLayout())
        // Perform relevant GC calculations for tdexplicit
        HandleGCForExplicitLayout();
    else
        // Perform relevant GC calculations for value classes
        HandleGCForValueClasses(pByValueClassCache);

        // GC reqires the series to be sorted.
        // TODO: fix it so that we emit them in the correct order in the first place.
    if (pMT->ContainsPointers())
    {
        CGCDesc* gcDesc = CGCDesc::GetCGCDescFromMT(pMT);
        qsort(gcDesc->GetLowestSeries(), (int)gcDesc->GetNumSeries(), sizeof(CGCDescSeries), compareCGCDescSeries);
    }

    SetFinalizationSemantics();

    // Allocate dynamic slot if necessary
    if (bmtProp->fDynamicStatics)
    {
        if (bmtProp->fGenericsStatics)
        {
            FieldDesc* pStaticFieldDescs = NULL;

            if (bmtEnumFields->dwNumStaticFields != 0)
            {
                pStaticFieldDescs = pMT->GetApproxFieldDescListRaw() + bmtEnumFields->dwNumInstanceFields;
            }

            pMT->SetupGenericsStaticsInfo(pStaticFieldDescs);
        }
        else
        {
            // Get an id for the dynamic class. We store it in the class because
            // no class that is persisted in ngen should have it (ie, if the class is ngened
            // The id is stored in an optional field so we need to ensure an optional field descriptor has
            // been allocated for this EEClass instance.
            EnsureOptionalFieldsAreAllocated(GetHalfBakedClass(), m_pAllocMemTracker, pAllocator->GetLowFrequencyHeap());
            SetModuleDynamicID(GetModule()->AllocateDynamicEntry(pMT));
        }
    }

    //
    // if there are context or thread static set the info in the method table optional members
    //

    // Check for the RemotingProxy Attribute
    // structs with GC pointers MUST be pointer sized aligned because the GC assumes it
    if (IsValueClass() && pMT->ContainsPointers() && (bmtFP->NumInstanceFieldBytes % TARGET_POINTER_SIZE != 0))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
    }

    if (IsInterface())
    {
        // Reset parent class
        pMT->SetParentMethodTable (g_pObjectClass);
    }

#ifdef _DEBUG 
    // Reset the debug method names for BoxedEntryPointStubs
    // so they reflect the very best debug information for the methods
    {
        DeclaredMethodIterator methIt(*this);
        while (methIt.Next())
        {
            if (methIt->GetUnboxedMethodDesc() != NULL)
            {
                {
                    MethodDesc *pMD = methIt->GetUnboxedMethodDesc();
                    StackSString name(SString::Utf8);
                    TypeString::AppendMethodDebug(name, pMD);
                    StackScratchBuffer buff;
                    const char* pDebugNameUTF8 = name.GetUTF8(buff);
                    S_SIZE_T safeLen = S_SIZE_T(strlen(pDebugNameUTF8)) + S_SIZE_T(1);
                    if(safeLen.IsOverflow()) COMPlusThrowHR(COR_E_OVERFLOW);
                    size_t len = safeLen.Value();
                    pMD->m_pszDebugMethodName = (char*) AllocateFromLowFrequencyHeap(safeLen);
                    _ASSERTE(pMD->m_pszDebugMethodName);
                    strcpy_s((char *) pMD->m_pszDebugMethodName, len, pDebugNameUTF8);
                }

                {
                    MethodDesc *pMD = methIt->GetMethodDesc();

                    StackSString name(SString::Utf8);
                    TypeString::AppendMethodDebug(name, pMD);
                    StackScratchBuffer buff;
                    const char* pDebugNameUTF8 = name.GetUTF8(buff);
                    S_SIZE_T safeLen = S_SIZE_T(strlen(pDebugNameUTF8))+S_SIZE_T(1);
                    if(safeLen.IsOverflow()) COMPlusThrowHR(COR_E_OVERFLOW);
                    size_t len = safeLen.Value();
                    pMD->m_pszDebugMethodName = (char*) AllocateFromLowFrequencyHeap(safeLen);
                    _ASSERTE(pMD->m_pszDebugMethodName);
                    strcpy_s((char *) pMD->m_pszDebugMethodName, len, pDebugNameUTF8);
                }
            }
        }
    }
#endif // _DEBUG


    //If this is a value type, then propagate the UnsafeValueTypeAttribute from
    //its instance members to this type.
    if (IsValueClass() && !IsUnsafeValueClass())
    {
        ApproxFieldDescIterator fields(GetHalfBakedMethodTable(),
                                       ApproxFieldDescIterator::INSTANCE_FIELDS );
        FieldDesc * current;
        while (NULL != (current = fields.Next()))
        {
            CONSISTENCY_CHECK(!current->IsStatic());
            if (current->GetFieldType() == ELEMENT_TYPE_VALUETYPE)
            {
                TypeHandle th = current->LookupApproxFieldTypeHandle();
                CONSISTENCY_CHECK(!th.IsNull());
                if (th.AsMethodTable()->GetClass()->IsUnsafeValueClass())
                {
                    SetUnsafeValueClass();
                    break;
                }
            }
        }
    }

#ifdef FEATURE_ICASTABLE
    if (!IsValueClass() && g_pICastableInterface != NULL && pMT->CanCastToInterface(g_pICastableInterface))
    {
        pMT->SetICastable();
    }
#endif // FEATURE_ICASTABLE       

    // Grow the typedef ridmap in advance as we can't afford to
    // fail once we set the resolve bit
    pModule->EnsureTypeDefCanBeStored(bmtInternal->pType->GetTypeDefToken());

    // Grow the tables in advance so that RID map filling cannot fail
    // once we're past the commit point.
    EnsureRIDMapsCanBeFilled();

    {
        // NOTE. NOTE!! the EEclass can now be accessed by other threads.
        // Do NOT place any initialization after this point.
        // You may NOT fail the call after this point.
        FAULT_FORBID();
        CANNOTTHROWCOMPLUSEXCEPTION();

        /*
        GetMemTracker()->SuppressRelease();
        */
    }
    
#ifdef _DEBUG 
    if (g_pConfig->ShouldDumpOnClassLoad(pszDebugName))
    {
        LOG((LF_ALWAYS, LL_ALWAYS, "Method table summary for '%s':\n", pszDebugName));
        LOG((LF_ALWAYS, LL_ALWAYS, "Number of static fields: %d\n", bmtEnumFields->dwNumStaticFields));
        LOG((LF_ALWAYS, LL_ALWAYS, "Number of instance fields: %d\n", bmtEnumFields->dwNumInstanceFields));
        LOG((LF_ALWAYS, LL_ALWAYS, "Number of static obj ref fields: %d\n", bmtEnumFields->dwNumStaticObjRefFields));
        LOG((LF_ALWAYS, LL_ALWAYS, "Number of static boxed fields: %d\n", bmtEnumFields->dwNumStaticBoxedFields));
        LOG((LF_ALWAYS, LL_ALWAYS, "Number of declared fields: %d\n", NumDeclaredFields()));
        LOG((LF_ALWAYS, LL_ALWAYS, "Number of declared methods: %d\n", NumDeclaredMethods()));
        LOG((LF_ALWAYS, LL_ALWAYS, "Number of declared non-abstract methods: %d\n", bmtMethod->dwNumDeclaredNonAbstractMethods));
        pMT->Debug_DumpInterfaceMap("Approximate");
        pMT->DebugDumpVtable(pszDebugName, FALSE);
        pMT->DebugDumpFieldLayout(pszDebugName, FALSE);
        pMT->DebugDumpGCDesc(pszDebugName, FALSE);
        pMT->Debug_DumpDispatchMap();
    }
#endif //_DEBUG
    
    STRESS_LOG3(LF_CLASSLOADER,  LL_INFO1000, "MethodTableBuilder: finished method table for module %p token %x = %pT \n",
        pModule,
        GetCl(),
        GetHalfBakedMethodTable());

#ifdef MDA_SUPPORTED
    MdaMarshaling* mda = MDA_GET_ASSISTANT(Marshaling);
    if (mda && HasLayout())
    {
        FieldMarshaler *pFieldMarshaler = (FieldMarshaler*)GetLayoutInfo()->GetFieldMarshalers();
        UINT  numReferenceFields        = GetLayoutInfo()->GetNumCTMFields();

        while (numReferenceFields--)
        {
            mda->ReportFieldMarshal(pFieldMarshaler);

            ((BYTE*&)pFieldMarshaler) += MAXFIELDMARSHALERSIZE;
        }
    }
#endif // MDA_SUPPORTED

#ifdef FEATURE_PREJIT
    _ASSERTE(pComputedPZM == Module::GetPreferredZapModuleForMethodTable(pMT));
#endif // FEATURE_PREJIT

    END_INTERIOR_STACK_PROBE;

    return GetHalfBakedMethodTable();
} // MethodTableBuilder::BuildMethodTableThrowing
#ifdef _PREFAST_ 
#pragma warning(pop)
#endif


//---------------------------------------------------------------------------------------
// 
// Resolve unresolved interfaces, determine an upper bound on the size of the interface map.
// 
VOID 
MethodTableBuilder::ResolveInterfaces(
    WORD                      cBuildingInterfaceList, 
    BuildingInterfaceInfo_t * pBuildingInterfaceList)
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(this));
        PRECONDITION(CheckPointer(bmtAllocator));
        PRECONDITION(CheckPointer(bmtInterface));
        PRECONDITION(CheckPointer(bmtVT));
        PRECONDITION(CheckPointer(bmtParent));
    }
    CONTRACTL_END;

    // resolve unresolved interfaces and determine the size of the largest interface (in # slots)


    LoadApproxInterfaceMap();

    // Inherit parental slot counts
    //@TODO: This doesn't belong here.
    if (HasParent())
    {
        MethodTable * pParentClass = GetParentMethodTable();
        PREFIX_ASSUME(pParentClass != NULL);

        bmtParent->NumParentPointerSeries  = pParentClass->ContainsPointers() ?
            (DWORD)CGCDesc::GetCGCDescFromMT(pParentClass)->GetNumSeries() : 0;

        if (pParentClass->HasFieldsWhichMustBeInited())
        {
            SetHasFieldsWhichMustBeInited();
        }
#ifdef FEATURE_READYTORUN
        if (!(IsValueClass() || (pParentClass == g_pObjectClass)))
        {
            CheckLayoutDependsOnOtherModules(pParentClass);
        }
#endif
    }
    else
    {
        bmtParent->NumParentPointerSeries  = 0;
    }
} // MethodTableBuilder::ResolveInterfaces

//*******************************************************************************
/* static */
int __cdecl MethodTableBuilder::bmtMetaDataInfo::MethodImplTokenPair::Compare(
        const void *elem1,
        const void *elem2)
{
    STATIC_CONTRACT_LEAF;
    MethodImplTokenPair *e1 = (MethodImplTokenPair *)elem1;
    MethodImplTokenPair *e2 = (MethodImplTokenPair *)elem2;
    if (e1->methodBody < e2->methodBody) return -1;
    else if (e1->methodBody > e2->methodBody) return 1;
    else if (e1->methodDecl < e2->methodDecl) return -1;
    else if (e1->methodDecl > e2->methodDecl) return 1;
    else return 0;
}

//*******************************************************************************
/* static */
BOOL MethodTableBuilder::bmtMetaDataInfo::MethodImplTokenPair::Equal(
        const MethodImplTokenPair *elem1,
        const MethodImplTokenPair *elem2)
{
    STATIC_CONTRACT_LEAF;
    return ((elem1->methodBody == elem2->methodBody) &&
            (elem1->methodDecl == elem2->methodDecl));
}

//*******************************************************************************
VOID
MethodTableBuilder::EnumerateMethodImpls()
{
    STANDARD_VM_CONTRACT;

    HRESULT hr = S_OK;
    IMDInternalImport * pMDInternalImport = GetMDImport();
    DWORD rid, maxRidMD, maxRidMR;
    HENUMInternalMethodImplHolder hEnumMethodImpl(pMDInternalImport);
    hr = hEnumMethodImpl.EnumMethodImplInitNoThrow(GetCl());
    
    if (FAILED(hr))
    {
        BuildMethodTableThrowException(hr, *bmtError);
    }
    
    // This gets the count out of the metadata interface.
    bmtMethod->dwNumberMethodImpls = hEnumMethodImpl.EnumMethodImplGetCount();
    bmtMethod->dwNumberInexactMethodImplCandidates = 0;

    // This is the first pass. In this we will simply enumerate the token pairs and fill in
    // the data structures. In addition, we'll sort the list and eliminate duplicates.
    if (bmtMethod->dwNumberMethodImpls > 0)
    {
        //
        // Allocate the structures to keep track of the token pairs
        //
        bmtMetaData->rgMethodImplTokens = new (GetStackingAllocator())
            bmtMetaDataInfo::MethodImplTokenPair[bmtMethod->dwNumberMethodImpls];

        // Iterate through each MethodImpl declared on this class
        for (DWORD i = 0; i < bmtMethod->dwNumberMethodImpls; i++)
        {
            hr = hEnumMethodImpl.EnumMethodImplNext(
                &bmtMetaData->rgMethodImplTokens[i].methodBody,
                &bmtMetaData->rgMethodImplTokens[i].methodDecl);
            bmtMetaData->rgMethodImplTokens[i].fConsiderDuringInexactMethodImplProcessing = false;
            bmtMetaData->rgMethodImplTokens[i].fThrowIfUnmatchedDuringInexactMethodImplProcessing = false;
            bmtMetaData->rgMethodImplTokens[i].interfaceEquivalenceSet = 0;

            if (FAILED(hr))
            {
                BuildMethodTableThrowException(hr, *bmtError);
            }
            // Grab the next set of body/decl tokens
            if (hr == S_FALSE)
            {
                // In the odd case that the enumerator fails before we've reached the total reported
                // entries, let's reset the count and just break out. (Should we throw?)
                bmtMethod->dwNumberMethodImpls = i;
                break;
            }
        }

        // No need to do any sorting or duplicate elimination if there's not two or more methodImpls
        if (bmtMethod->dwNumberMethodImpls > 1)
        {
            // Now sort
            qsort(bmtMetaData->rgMethodImplTokens,
                  bmtMethod->dwNumberMethodImpls,
                  sizeof(bmtMetaDataInfo::MethodImplTokenPair),
                  &bmtMetaDataInfo::MethodImplTokenPair::Compare);

            // Now eliminate duplicates
            for (DWORD i = 0; i < bmtMethod->dwNumberMethodImpls - 1; i++)
            {
                CONSISTENCY_CHECK((i + 1) < bmtMethod->dwNumberMethodImpls);

                bmtMetaDataInfo::MethodImplTokenPair *e1 = &bmtMetaData->rgMethodImplTokens[i];
                bmtMetaDataInfo::MethodImplTokenPair *e2 = &bmtMetaData->rgMethodImplTokens[i + 1];

                // If the pair are equal, eliminate the first one, and reduce the total count by one.
                if (bmtMetaDataInfo::MethodImplTokenPair::Equal(e1, e2))
                {
                    DWORD dwCopyNum = bmtMethod->dwNumberMethodImpls - (i + 1);
                    memcpy(e1, e2, dwCopyNum * sizeof(bmtMetaDataInfo::MethodImplTokenPair));
                    bmtMethod->dwNumberMethodImpls--;
                    CONSISTENCY_CHECK(bmtMethod->dwNumberMethodImpls > 0);
                }
            }
        }
    }

    if (bmtMethod->dwNumberMethodImpls != 0)
    {
        //
        // Allocate the structures to keep track of the impl matches
        //
        bmtMetaData->pMethodDeclSubsts = new (GetStackingAllocator())
            Substitution[bmtMethod->dwNumberMethodImpls];

        // These are used for verification
        maxRidMD = pMDInternalImport->GetCountWithTokenKind(mdtMethodDef);
        maxRidMR = pMDInternalImport->GetCountWithTokenKind(mdtMemberRef);

        // Iterate through each MethodImpl declared on this class
        for (DWORD i = 0; i < bmtMethod->dwNumberMethodImpls; i++)
        {
            PCCOR_SIGNATURE pSigDecl = NULL;
            PCCOR_SIGNATURE pSigBody = NULL;
            ULONG           cbSigDecl;
            ULONG           cbSigBody;
            mdToken tkParent;

            mdToken theBody, theDecl;
            Substitution theDeclSubst(GetModule(), SigPointer(), NULL); // this can get updated later below.

            theBody = bmtMetaData->rgMethodImplTokens[i].methodBody;
            theDecl = bmtMetaData->rgMethodImplTokens[i].methodDecl;

            // IMPLEMENTATION LIMITATION: currently, we require that the body of a methodImpl
            // belong to the current type. This is because we need to allocate a different
            // type of MethodDesc for bodies that are part of methodImpls.
            if (TypeFromToken(theBody) != mdtMethodDef)
            {
                hr = FindMethodDeclarationForMethodImpl(
                    theBody, 
                    &theBody, 
                    TRUE);
                if (FAILED(hr))
                {
                    BuildMethodTableThrowException(hr, IDS_CLASSLOAD_MI_ILLEGAL_BODY, mdMethodDefNil);
                }

                // Make sure to update the stored token with the resolved token.
                bmtMetaData->rgMethodImplTokens[i].methodBody = theBody;
            }

            if (TypeFromToken(theBody) != mdtMethodDef)
            {
                BuildMethodTableThrowException(BFA_METHODDECL_NOT_A_METHODDEF);
            }
            CONSISTENCY_CHECK(theBody == bmtMetaData->rgMethodImplTokens[i].methodBody);

            //
            // Now that the tokens of Decl and Body are obtained, do the MD validation
            //

            rid = RidFromToken(theDecl);

            // Perform initial rudimentary validation of the token. Full token verification
            // will be done in TestMethodImpl when placing the methodImpls.
            if (TypeFromToken(theDecl) == mdtMethodDef)
            {
                // Decl must be valid token
                if ((rid == 0) || (rid > maxRidMD))
                {
                    BuildMethodTableThrowException(IDS_CLASSLOAD_MI_ILLEGAL_TOKEN_DECL);
                }
                // Get signature and length
                if (FAILED(pMDInternalImport->GetSigOfMethodDef(theDecl, &cbSigDecl, &pSigDecl)))
                {
                    BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
                }
            }

            // The token is not a MethodDef (likely a MemberRef)
            else
            {
                // Decl must be valid token
                if ((TypeFromToken(theDecl) != mdtMemberRef) || (rid == 0) || (rid > maxRidMR))
                {
                    bmtError->resIDWhy = IDS_CLASSLOAD_MI_ILLEGAL_TOKEN_DECL;
                    BuildMethodTableThrowException(IDS_CLASSLOAD_MI_ILLEGAL_TOKEN_DECL);
                }

                // Get signature and length
                LPCSTR szDeclName;
                if (FAILED(pMDInternalImport->GetNameAndSigOfMemberRef(theDecl, &pSigDecl, &cbSigDecl, &szDeclName)))
                {
                    BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
                }

                // Get parent
                hr = pMDInternalImport->GetParentToken(theDecl,&tkParent);
                if (FAILED(hr))
                    BuildMethodTableThrowException(hr, *bmtError);

                theDeclSubst = Substitution(tkParent, GetModule(), NULL);
            }

            // Perform initial rudimentary validation of the token. Full token verification
            // will be done in TestMethodImpl when placing the methodImpls.
            {
                // Body must be valid token
                rid = RidFromToken(theBody);
                if ((rid == 0)||(rid > maxRidMD))
                {
                    BuildMethodTableThrowException(IDS_CLASSLOAD_MI_ILLEGAL_TOKEN_BODY);
                }
                // Body's parent must be this class
                hr = pMDInternalImport->GetParentToken(theBody,&tkParent);
                if (FAILED(hr))
                    BuildMethodTableThrowException(hr, *bmtError);
                if(tkParent != GetCl())
                {
                    BuildMethodTableThrowException(IDS_CLASSLOAD_MI_ILLEGAL_BODY);
                }
            }
            // Decl's and Body's signatures must match
            if(pSigDecl && cbSigDecl)
            {
                if (FAILED(pMDInternalImport->GetSigOfMethodDef(theBody, &cbSigBody, &pSigBody)) || 
                    (pSigBody == NULL) || 
                    (cbSigBody == 0))
                {
                    BuildMethodTableThrowException(IDS_CLASSLOAD_MI_MISSING_SIG_BODY);
                }
                // Can't use memcmp because there may be two AssemblyRefs
                // in this scope, pointing to the same assembly, etc.).
                if (!MetaSig::CompareMethodSigs(
                        pSigDecl,
                        cbSigDecl,
                        GetModule(),
                        &theDeclSubst,
                        pSigBody,
                        cbSigBody,
                        GetModule(),
                        NULL))
                {
                    BuildMethodTableThrowException(IDS_CLASSLOAD_MI_BODY_DECL_MISMATCH);
                }
            }
            else
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_MI_MISSING_SIG_DECL);
            }

            bmtMetaData->pMethodDeclSubsts[i] = theDeclSubst;
        }
    }
} // MethodTableBuilder::EnumerateMethodImpls

//*******************************************************************************
//
// Find a method declaration that must reside in the scope passed in. This method cannot be called if
// the reference travels to another scope.
//
// Protect against finding a declaration that lives within
// us (the type being created)
//
HRESULT MethodTableBuilder::FindMethodDeclarationForMethodImpl(
            mdToken  pToken,       // Token that is being located (MemberRef or MemberDef)
            mdToken* pDeclaration, // [OUT] Method definition for Member
            BOOL fSameClass)       // Does the declaration need to be in this class
{
    STANDARD_VM_CONTRACT;

    HRESULT hr = S_OK;

    IMDInternalImport *pMDInternalImport = GetMDImport();

    PCCOR_SIGNATURE pSig;  // Signature of Member
    DWORD           cSig;
    LPCUTF8         szMember = NULL;

    // The token should be a member ref or def. If it is a ref then we need to travel
    // back to us hopefully.
    if(TypeFromToken(pToken) == mdtMemberRef)
    {
        // Get the parent
        mdToken typeref;
        if (FAILED(pMDInternalImport->GetParentOfMemberRef(pToken, &typeref)))
        {
            BAD_FORMAT_NOTHROW_ASSERT(!"Invalid MemberRef record");
            IfFailRet(COR_E_TYPELOAD);
        }
        GOTPARENT:
        if (TypeFromToken(typeref) == mdtMethodDef)
        {   // If parent is a method def then this is a varags method
            mdTypeDef typeDef;
            hr = pMDInternalImport->GetParentToken(typeref, &typeDef);

            if (TypeFromToken(typeDef) != mdtTypeDef)
            {   // A mdtMethodDef must be parented by a mdtTypeDef
                BAD_FORMAT_NOTHROW_ASSERT(!"MethodDef without TypeDef as Parent");
                IfFailRet(COR_E_TYPELOAD);
            }

            BAD_FORMAT_NOTHROW_ASSERT(typeDef == GetCl());

            // This is the real method we are overriding
            *pDeclaration = typeref;
        }
        else if (TypeFromToken(typeref) == mdtTypeSpec)
        {   // Added so that method impls can refer to instantiated interfaces or classes
            if (FAILED(pMDInternalImport->GetSigFromToken(typeref, &cSig, &pSig)))
            {
                BAD_FORMAT_NOTHROW_ASSERT(!"Invalid TypeSpec record");
                IfFailRet(COR_E_TYPELOAD);
            }
            CorElementType elemType = (CorElementType) *pSig++;

            if (elemType == ELEMENT_TYPE_GENERICINST)
            {   // If this is a generic inst, we expect that the next elem is ELEMENT_TYPE_CLASS,
                // which is handled in the case below.
                elemType = (CorElementType) *pSig++;
                BAD_FORMAT_NOTHROW_ASSERT(elemType == ELEMENT_TYPE_CLASS);
            }

            if (elemType == ELEMENT_TYPE_CLASS)
            {   // This covers E_T_GENERICINST and E_T_CLASS typespec formats. We don't expect
                // any other kinds to come through here.
                CorSigUncompressToken(pSig, &typeref);
            }
            else
            {   // This is an unrecognized signature format.
                BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT,
                                               IDS_CLASSLOAD_MI_BAD_SIG,
                                               mdMethodDefNil);
            }
            goto GOTPARENT;
        }
        else
        {   // Verify that the ref points back to us
            mdToken tkDef = mdTokenNil;

            if (TypeFromToken(typeref) == mdtTypeRef)
            {   // We only get here when we know the token does not reference a type in a different scope.
                LPCUTF8 pszNameSpace;
                LPCUTF8 pszClassName;

                if (FAILED(pMDInternalImport->GetNameOfTypeRef(typeref, &pszNameSpace, &pszClassName)))
                {
                    IfFailRet(COR_E_TYPELOAD);
                }
                mdToken tkRes;
                if (FAILED(pMDInternalImport->GetResolutionScopeOfTypeRef(typeref, &tkRes)))
                {
                    IfFailRet(COR_E_TYPELOAD);
                }
                hr = pMDInternalImport->FindTypeDef(pszNameSpace,
                                                    pszClassName,
                                                    (TypeFromToken(tkRes) == mdtTypeRef) ? tkRes : mdTokenNil,
                                                    &tkDef);
                if (FAILED(hr))
                {
                    IfFailRet(COR_E_TYPELOAD);
                }
            }
            else if (TypeFromToken(typeref) == mdtTypeDef)
            {   // We get a typedef when the parent of the token is a typespec to the type.
                tkDef = typeref;
            }
            else
            {
                CONSISTENCY_CHECK_MSGF(FALSE, ("Invalid methodimpl signature in class %s.", GetDebugClassName()));
                BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT,
                                               IDS_CLASSLOAD_MI_BAD_SIG,
                                               mdMethodDefNil);
            }

            if (fSameClass && tkDef != GetCl())
            {   // If we required that the typedef be the same type as the current class,
                // and it doesn't match, we need to return a failure result.
                IfFailRet(COR_E_TYPELOAD);
            }

            IfFailRet(pMDInternalImport->GetNameAndSigOfMemberRef(pToken, &pSig, &cSig, &szMember));
            
            if (isCallConv(
                MetaSig::GetCallingConvention(GetModule(), Signature(pSig, cSig)),
                IMAGE_CEE_CS_CALLCONV_FIELD))
            {
                return VLDTR_E_MR_BADCALLINGCONV;
            }
            
            hr = pMDInternalImport->FindMethodDef(
                tkDef, szMember, pSig, cSig, pDeclaration);

            IfFailRet(hr);
        }
    }
    else if (TypeFromToken(pToken) == mdtMethodDef)
    {
        mdTypeDef typeDef;

        // Verify that we are the parent
        hr = pMDInternalImport->GetParentToken(pToken, &typeDef);
        IfFailRet(hr);

        if(typeDef != GetCl())
        {
            IfFailRet(COR_E_TYPELOAD);
        }

        *pDeclaration = pToken;
    }
    else
    {
        IfFailRet(COR_E_TYPELOAD);
    }
    return hr;
}

#ifdef _PREFAST_ 
#pragma warning(push)
#pragma warning(disable:21000) // Suppress PREFast warning about overly large function
#endif // _PREFAST_
//---------------------------------------------------------------------------------------
//
// Used by BuildMethodTable
// 
// Enumerate this class's members
// 
VOID
MethodTableBuilder::EnumerateClassMethods()
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(bmtInternal));
        PRECONDITION(CheckPointer(bmtEnumFields));
        PRECONDITION(CheckPointer(bmtMFDescs));
        PRECONDITION(CheckPointer(bmtProp));
        PRECONDITION(CheckPointer(bmtMetaData));
        PRECONDITION(CheckPointer(bmtVT));
        PRECONDITION(CheckPointer(bmtError));
    }
    CONTRACTL_END;

    HRESULT hr = S_OK;
    DWORD i;
    IMDInternalImport *pMDInternalImport = GetMDImport();
    mdToken tok;
    DWORD dwMemberAttrs;
    BOOL fIsClassEnum = IsEnum();
    BOOL fIsClassInterface = IsInterface();
    BOOL fIsClassValueType = IsValueClass();
    BOOL fIsClassComImport = IsComImport();
    BOOL fIsClassNotAbstract = (IsTdAbstract(GetAttrClass()) == 0);
    PCCOR_SIGNATURE pMemberSignature;
    ULONG           cMemberSignature;

    //
    // Run through the method list and calculate the following:
    // # methods.
    // # "other" methods (i.e. static or private)
    // # non-other methods
    //

    HENUMInternalHolder hEnumMethod(pMDInternalImport);
    hr = hEnumMethod.EnumInitNoThrow(mdtMethodDef, GetCl());
    if (FAILED(hr))
    {
        BuildMethodTableThrowException(hr, *bmtError);
    }

    // Allocate an array to contain the method tokens as well as information about the methods.
    DWORD cMethAndGaps = hEnumMethod.EnumGetCount();

    if ((DWORD)MAX_SLOT_INDEX <= cMethAndGaps)
        BuildMethodTableThrowException(IDS_CLASSLOAD_TOO_MANY_METHODS);

    bmtMethod->m_cMaxDeclaredMethods = (SLOT_INDEX)cMethAndGaps;
    bmtMethod->m_cDeclaredMethods = 0;
    bmtMethod->m_rgDeclaredMethods = new (GetStackingAllocator())
        bmtMDMethod *[bmtMethod->m_cMaxDeclaredMethods];

    enum { SeenCtor = 1, SeenInvoke = 2, SeenBeginInvoke = 4, SeenEndInvoke = 8};
    unsigned delegateMethodsSeen = 0;

    for (i = 0; i < cMethAndGaps; i++)
    {
        ULONG dwMethodRVA;
        DWORD dwImplFlags;
        METHOD_TYPE type;
        METHOD_IMPL_TYPE implType;
        LPSTR strMethodName;

#ifdef FEATURE_TYPEEQUIVALENCE
        // TypeEquivalent structs must not have methods
        if (bmtProp->fIsTypeEquivalent && fIsClassValueType)
        {
            BuildMethodTableThrowException(IDS_CLASSLOAD_EQUIVALENTSTRUCTMETHODS);
        }
#endif

        //
        // Go to the next method and retrieve its attributes.
        //

        hEnumMethod.EnumNext(&tok);
        DWORD   rid = RidFromToken(tok);
        if ((rid == 0)||(rid > pMDInternalImport->GetCountWithTokenKind(mdtMethodDef)))
        {
            BuildMethodTableThrowException(BFA_METHOD_TOKEN_OUT_OF_RANGE);
        }

        if (FAILED(pMDInternalImport->GetMethodDefProps(tok, &dwMemberAttrs)))
        {
            BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
        }
        if (IsMdRTSpecialName(dwMemberAttrs) || IsMdVirtual(dwMemberAttrs) || IsDelegate())
        {
            if (FAILED(pMDInternalImport->GetNameOfMethodDef(tok, (LPCSTR *)&strMethodName)))
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
            }
            if(IsStrLongerThan(strMethodName,MAX_CLASS_NAME))
            {
                BuildMethodTableThrowException(BFA_METHOD_NAME_TOO_LONG);
            }
        }
        else
        {
            strMethodName = NULL;
        }

        DWORD numGenericMethodArgs = 0;

        {
            HENUMInternalHolder hEnumTyPars(pMDInternalImport);
            hr = hEnumTyPars.EnumInitNoThrow(mdtGenericParam, tok);
            if (FAILED(hr))
            {
                BuildMethodTableThrowException(hr, *bmtError);
            }

            numGenericMethodArgs = hEnumTyPars.EnumGetCount();

            // We do not want to support context-bound objects with generic methods.

            if (numGenericMethodArgs != 0)
            {
                HENUMInternalHolder hEnumGenericPars(pMDInternalImport);

                hEnumGenericPars.EnumInit(mdtGenericParam, tok);

                for (unsigned methIdx = 0; methIdx < numGenericMethodArgs; methIdx++)
                {
                    mdGenericParam tkTyPar;
                    pMDInternalImport->EnumNext(&hEnumGenericPars, &tkTyPar);
                    DWORD flags;
                    if (FAILED(pMDInternalImport->GetGenericParamProps(tkTyPar, NULL, &flags, NULL, NULL, NULL)))
                    {
                        BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
                    }
                    
                    if (0 != (flags & ~(gpVarianceMask | gpSpecialConstraintMask)))
                    {
                        BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
                    }
                    switch (flags & gpVarianceMask)
                    {
                        case gpNonVariant:
                            break;

                        case gpCovariant: // intentional fallthru
                        case gpContravariant:
                            BuildMethodTableThrowException(VLDTR_E_GP_ILLEGAL_VARIANT_MVAR);
                            break;

                        default:
                            BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
                    }

                }
            }
        }

        //
        // We need to check if there are any gaps in the vtable. These are
        // represented by methods with the mdSpecial flag and a name of the form
        // _VTblGap_nnn (to represent nnn empty slots) or _VTblGap (to represent a
        // single empty slot).
        //

        if (IsMdRTSpecialName(dwMemberAttrs))
        {
            PREFIX_ASSUME(strMethodName != NULL); // if we've gotten here we've called GetNameOfMethodDef

            // The slot is special, but it might not be a vtable spacer. To
            // determine that we must look at the name.
            if (strncmp(strMethodName, "_VtblGap", 8) == 0)
            {
                                //
                // This slot doesn't really exist, don't add it to the method
                // table. Instead it represents one or more empty slots, encoded
                // in the method name. Locate the beginning of the count in the
                // name. There are these points to consider:
                //   There may be no count present at all (in which case the
                //   count is taken as one).
                //   There may be an additional count just after Gap but before
                //   the '_'. We ignore this.
                                //

                LPCSTR pos = strMethodName + 8;

                // Skip optional number.
                while (IS_DIGIT(*pos))
                    pos++;

                WORD n = 0;

                // Check for presence of count.
                if (*pos == '\0')
                    n = 1;
                else
                {
                    if (*pos != '_')
                    {
                        BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT,
                                                       IDS_CLASSLOAD_BADSPECIALMETHOD,
                                                       tok);
                    }

                    // Skip '_'.
                    pos++;

                    // Read count.
                    bool fReadAtLeastOneDigit = false;
                    while (IS_DIGIT(*pos))
                    {
                        _ASSERTE(n < 6552);
                        n *= 10;
                        n += DIGIT_TO_INT(*pos);
                        pos++;
                        fReadAtLeastOneDigit = true;
                    }

                    // Check for end of name.
                    if (*pos != '\0' || !fReadAtLeastOneDigit)
                    {
                        BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT,
                                                       IDS_CLASSLOAD_BADSPECIALMETHOD,
                                                       tok);
                    }
                }

#ifdef FEATURE_COMINTEROP 
                // Record vtable gap in mapping list. The map is an optional field, so ensure we've allocated
                // these fields first.
                EnsureOptionalFieldsAreAllocated(GetHalfBakedClass(), m_pAllocMemTracker, GetLoaderAllocator()->GetLowFrequencyHeap());
                if (GetHalfBakedClass()->GetSparseCOMInteropVTableMap() == NULL)
                    GetHalfBakedClass()->SetSparseCOMInteropVTableMap(new SparseVTableMap());

                GetHalfBakedClass()->GetSparseCOMInteropVTableMap()->RecordGap((WORD)NumDeclaredMethods(), n);

                bmtProp->fSparse = true;
#endif // FEATURE_COMINTEROP
                continue;
            }

        }


        //
        // This is a real method so add it to the enumeration of methods. We now need to retrieve
        // information on the method and store it for later use.
        //
        if (FAILED(pMDInternalImport->GetMethodImplProps(tok, &dwMethodRVA, &dwImplFlags)))
        {
            BuildMethodTableThrowException(
                COR_E_BADIMAGEFORMAT, 
                IDS_CLASSLOAD_BADSPECIALMETHOD, 
                tok);
        }
        //
        // But first - minimal flags validity checks
        //
        // No methods in Enums!
        if (fIsClassEnum)
        {
            BuildMethodTableThrowException(BFA_METHOD_IN_A_ENUM);
        }
        // RVA : 0
        if (dwMethodRVA != 0)
        {
            if(fIsClassComImport)
            {
                BuildMethodTableThrowException(BFA_METHOD_WITH_NONZERO_RVA);
            }
            if(IsMdAbstract(dwMemberAttrs))
            {
                BuildMethodTableThrowException(BFA_ABSTRACT_METHOD_WITH_RVA);
            }
            if(IsMiRuntime(dwImplFlags))
            {
                BuildMethodTableThrowException(BFA_RUNTIME_METHOD_WITH_RVA);
            }
            if(IsMiInternalCall(dwImplFlags))
            {
                BuildMethodTableThrowException(BFA_INTERNAL_METHOD_WITH_RVA);
            }
        }

        // Abstract / not abstract
        if(IsMdAbstract(dwMemberAttrs))
        {
            if(fIsClassNotAbstract)
            {
                BuildMethodTableThrowException(BFA_AB_METHOD_IN_AB_CLASS);
            }
            if(!IsMdVirtual(dwMemberAttrs))
            {
                BuildMethodTableThrowException(BFA_NONVIRT_AB_METHOD);
            }
        }
        else if(fIsClassInterface)
        {
            if (IsMdRTSpecialName(dwMemberAttrs))
            {
                CONSISTENCY_CHECK(CheckPointer(strMethodName));
                if (strcmp(strMethodName, COR_CCTOR_METHOD_NAME))
                {
                    BuildMethodTableThrowException(BFA_NONAB_NONCCTOR_METHOD_ON_INT);
                }
            }
        }

        // Virtual / not virtual
        if(IsMdVirtual(dwMemberAttrs))
        {
            if(IsMdPinvokeImpl(dwMemberAttrs))
            {
                BuildMethodTableThrowException(BFA_VIRTUAL_PINVOKE_METHOD);
            }
            if(IsMdStatic(dwMemberAttrs))
            {
                BuildMethodTableThrowException(BFA_VIRTUAL_STATIC_METHOD);
            }
            if(strMethodName && (0==strcmp(strMethodName, COR_CTOR_METHOD_NAME)))
            {
                BuildMethodTableThrowException(BFA_VIRTUAL_INSTANCE_CTOR);
            }
        }

#ifndef FEATURE_DEFAULT_INTERFACES
        // Some interface checks.
        if (fIsClassInterface)
        {
            if (IsMdVirtual(dwMemberAttrs))
            {
                if (!IsMdAbstract(dwMemberAttrs))
                {
                    BuildMethodTableThrowException(BFA_VIRTUAL_NONAB_INT_METHOD);
                }
            }
            else
            {
                // Instance field/method
                if (!IsMdStatic(dwMemberAttrs))
                {
                    BuildMethodTableThrowException(BFA_NONVIRT_INST_INT_METHOD);
                }
            }
        }
#endif

        // No synchronized methods in ValueTypes
        if(fIsClassValueType && IsMiSynchronized(dwImplFlags))
        {
            BuildMethodTableThrowException(BFA_SYNC_METHOD_IN_VT);
        }

        // Global methods:
        if(IsGlobalClass())
        {
            if(!IsMdStatic(dwMemberAttrs))
            {
                BuildMethodTableThrowException(BFA_NONSTATIC_GLOBAL_METHOD);
            }
            if (strMethodName)  //<TODO>@todo: investigate mc++ generating null name</TODO>
            {
                if(0==strcmp(strMethodName, COR_CTOR_METHOD_NAME))
                {
                    BuildMethodTableThrowException(BFA_GLOBAL_INST_CTOR);
                }
            }
        }
        //@GENERICS:
        // Generic methods or methods in generic classes
        // may not be part of a COM Import class (except for WinRT), PInvoke, internal call outside mscorlib.
        if ((bmtGenerics->GetNumGenericArgs() != 0 || numGenericMethodArgs != 0) &&
            (
#ifdef FEATURE_COMINTEROP 
             fIsClassComImport ||
             bmtProp->fComEventItfType ||
#endif // FEATURE_COMINTEROP
             IsMdPinvokeImpl(dwMemberAttrs) ||
             (IsMiInternalCall(dwImplFlags) && !GetModule()->IsSystem())))
        {
#ifdef FEATURE_COMINTEROP
            if (!GetHalfBakedClass()->IsProjectedFromWinRT())
#endif // FEATURE_COMINTEROP
            {
                BuildMethodTableThrowException(BFA_BAD_PLACE_FOR_GENERIC_METHOD);
            }
        }

        // Generic methods may not be marked "runtime".  However note that
        // methods in generic delegate classes are, hence we don't apply this to
        // methods in generic classes in general.
        if (numGenericMethodArgs != 0 && IsMiRuntime(dwImplFlags))
        {
            BuildMethodTableThrowException(BFA_GENERIC_METHOD_RUNTIME_IMPL);
        }


        // Signature validation
        if (FAILED(pMDInternalImport->GetSigOfMethodDef(tok, &cMemberSignature, &pMemberSignature)))
        {
            BuildMethodTableThrowException(hr, BFA_BAD_SIGNATURE, mdMethodDefNil);
        }
        hr = validateTokenSig(tok,pMemberSignature,cMemberSignature,dwMemberAttrs,pMDInternalImport);
        if (FAILED(hr))
        {
            BuildMethodTableThrowException(hr, BFA_BAD_SIGNATURE, mdMethodDefNil);
        }

        // Check the appearance of covariant and contravariant in the method signature
        // Note that variance is only supported for interfaces
        if (bmtGenerics->pVarianceInfo != NULL)
        {
            SigPointer sp(pMemberSignature, cMemberSignature);
            ULONG callConv;
            IfFailThrow(sp.GetCallingConvInfo(&callConv));

            if (callConv & IMAGE_CEE_CS_CALLCONV_GENERIC)
                IfFailThrow(sp.GetData(NULL));

            DWORD numArgs;
            IfFailThrow(sp.GetData(&numArgs));

            // Return type behaves covariantly
            if (!EEClass::CheckVarianceInSig(
                    bmtGenerics->GetNumGenericArgs(), 
                    bmtGenerics->pVarianceInfo, 
                    GetModule(), 
                    sp, 
                    gpCovariant))
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_VARIANCE_IN_METHOD_RESULT, tok);
            }
            IfFailThrow(sp.SkipExactlyOne());
            for (DWORD j = 0; j < numArgs; j++)
            {
                // Argument types behave contravariantly
                if (!EEClass::CheckVarianceInSig(bmtGenerics->GetNumGenericArgs(),
                                                 bmtGenerics->pVarianceInfo,
                                                 GetModule(),
                                                 sp,
                                                 gpContravariant))
                {
                    BuildMethodTableThrowException(IDS_CLASSLOAD_VARIANCE_IN_METHOD_ARG, tok);
                }
                IfFailThrow(sp.SkipExactlyOne());
            }
        }

        //
        // Determine the method's type
        //

        if (IsReallyMdPinvokeImpl(dwMemberAttrs) || IsMiInternalCall(dwImplFlags))
        {
            hr = NDirect::HasNAT_LAttribute(pMDInternalImport, tok, dwMemberAttrs);

            // There was a problem querying for the attribute
            if (FAILED(hr))
            {
                BuildMethodTableThrowException(hr, IDS_CLASSLOAD_BADPINVOKE, tok);
            }

            // The attribute is not present
            if (hr == S_FALSE)
            {
#ifdef FEATURE_COMINTEROP
                if (fIsClassComImport
                    || GetHalfBakedClass()->IsProjectedFromWinRT()
                    || bmtProp->fComEventItfType
                    )
                {
                    // ComImport classes have methods which are just used
                    // for implementing all interfaces the class supports
                    type = METHOD_TYPE_COMINTEROP;

                    // constructor is special
                    if (IsMdRTSpecialName(dwMemberAttrs))
                    {
                        // Note: Method name (.ctor) will be checked in code:ValidateMethods
                        
                        // WinRT ctors are interop calls via stubs
                        if (!GetHalfBakedClass()->IsProjectedFromWinRT())
                        {
                            // Ctor on a non-WinRT class
                            type = METHOD_TYPE_FCALL;
                        }
                    }
                }
                else 
#endif //FEATURE_COMINTEROP
                if (dwMethodRVA == 0)
                {
                    type = METHOD_TYPE_FCALL;
                }
                else
                {
                    type = METHOD_TYPE_NDIRECT;
                }
            }
            // The NAT_L attribute is present, marking this method as NDirect
            else
            {
                CONSISTENCY_CHECK(hr == S_OK);
                type = METHOD_TYPE_NDIRECT;
            }
        }
        else if (IsMiRuntime(dwImplFlags))
        {
                // currently the only runtime implemented functions are delegate instance methods
            if (!IsDelegate() || IsMdStatic(dwMemberAttrs) || IsMdAbstract(dwMemberAttrs))
            {
                BuildMethodTableThrowException(BFA_BAD_RUNTIME_IMPL);
            }

            unsigned newDelegateMethodSeen = 0;

            if (IsMdRTSpecialName(dwMemberAttrs))   // .ctor
            {
                if (strcmp(strMethodName, COR_CTOR_METHOD_NAME) != 0 || IsMdVirtual(dwMemberAttrs))
                {
                    BuildMethodTableThrowException(BFA_BAD_FLAGS_ON_DELEGATE);
                }
                newDelegateMethodSeen = SeenCtor;
                type = METHOD_TYPE_FCALL;
            }
            else
            {
                if (strcmp(strMethodName, "Invoke") == 0)
                    newDelegateMethodSeen = SeenInvoke;
                else if (strcmp(strMethodName, "BeginInvoke") == 0)
                    newDelegateMethodSeen = SeenBeginInvoke;
                else if (strcmp(strMethodName, "EndInvoke") == 0)
                    newDelegateMethodSeen = SeenEndInvoke;
                else
                {
                    BuildMethodTableThrowException(BFA_UNKNOWN_DELEGATE_METHOD);
                }
                type = METHOD_TYPE_EEIMPL;
            }

            // If we get here we have either set newDelegateMethodSeen or we have thrown a BMT exception
            _ASSERTE(newDelegateMethodSeen != 0);

            if ((delegateMethodsSeen & newDelegateMethodSeen) != 0)
            {
                BuildMethodTableThrowException(BFA_DUPLICATE_DELEGATE_METHOD);
            }

            delegateMethodsSeen |= newDelegateMethodSeen;
        }
        else if (numGenericMethodArgs != 0)
        {
            //We use an instantiated method desc to represent a generic method
            type = METHOD_TYPE_INSTANTIATED;
        }
        else if (fIsClassInterface)
        {
#ifdef FEATURE_COMINTEROP 
            if (IsMdStatic(dwMemberAttrs))
            {
                // Static methods in interfaces need nothing special.
                type = METHOD_TYPE_NORMAL;
            }
            else if (bmtGenerics->GetNumGenericArgs() != 0 &&
                (bmtGenerics->fSharedByGenericInstantiations || (!bmtProp->fIsRedirectedInterface && !GetHalfBakedClass()->IsProjectedFromWinRT())))
            {
                // Methods in instantiated interfaces need nothing special - they are not visible from COM etc.
                // mcComInterop is only useful for unshared instantiated WinRT interfaces. If the interface is
                // shared by multiple instantiations, the MD would be useless for interop anyway.
                type = METHOD_TYPE_NORMAL;
            }
            else if (bmtProp->fIsMngStandardItf)
            {
                // If the interface is a standard managed interface then allocate space for an FCall method desc.
                type = METHOD_TYPE_FCALL;
            }
            else if (IsMdAbstract(dwMemberAttrs))
            {
                // If COM interop is supported then all other interface MDs may be
                // accessed via COM interop. mcComInterop MDs have an additional
                // pointer-sized field pointing to COM interop data which are
                // allocated lazily when/if the MD actually gets used for interop.
                type = METHOD_TYPE_COMINTEROP;
            }
            else
#endif // !FEATURE_COMINTEROP
            {
                // This codepath is used by remoting
                type = METHOD_TYPE_NORMAL;
            }
        }
        else
        {
            type = METHOD_TYPE_NORMAL;
        }

        // Generic methods should always be METHOD_TYPE_INSTANTIATED
        if ((numGenericMethodArgs != 0) && (type != METHOD_TYPE_INSTANTIATED))
        {
            BuildMethodTableThrowException(BFA_GENERIC_METHODS_INST);
        }

        // count how many overrides this method does All methods bodies are defined
        // on this type so we can just compare the tok with the body token found
        // from the overrides.
        implType = METHOD_IMPL_NOT;
        for (DWORD impls = 0; impls < bmtMethod->dwNumberMethodImpls; impls++)
        {
            if (bmtMetaData->rgMethodImplTokens[impls].methodBody == tok)
            {
                implType = METHOD_IMPL;
                break;
            }
        }

        // For delegates we don't allow any non-runtime implemented bodies
        // for any of the four special methods
        if (IsDelegate() && !IsMiRuntime(dwImplFlags))
        {
            if ((strcmp(strMethodName, COR_CTOR_METHOD_NAME) == 0) ||
                (strcmp(strMethodName, "Invoke")             == 0) ||
                (strcmp(strMethodName, "BeginInvoke")        == 0) ||
                (strcmp(strMethodName, "EndInvoke")          == 0)   )
            {
                BuildMethodTableThrowException(BFA_ILLEGAL_DELEGATE_METHOD);
            }
        }

        //
        // Create a new bmtMDMethod representing this method and add it to the
        // declared method list.
        //

        bmtMDMethod * pNewMethod = new (GetStackingAllocator()) bmtMDMethod(
            bmtInternal->pType,
            tok,
            dwMemberAttrs,
            dwImplFlags,
            dwMethodRVA,
            type,
            implType);

        bmtMethod->AddDeclaredMethod(pNewMethod);

        //
        // Update the count of the various types of methods.
        //

        bmtVT->dwMaxVtableSize++;

        // Increment the number of non-abstract declared methods
        if (!IsMdAbstract(dwMemberAttrs))
        {
            bmtMethod->dwNumDeclaredNonAbstractMethods++;
        }
    }

    // Check to see that we have all of the required delegate methods (ECMA 13.6 Delegates)
    if (IsDelegate())
    {
        // Do we have all four special delegate methods
        // or just the two special delegate methods
        if ((delegateMethodsSeen != (SeenCtor | SeenInvoke | SeenBeginInvoke | SeenEndInvoke)) &&
            (delegateMethodsSeen != (SeenCtor | SeenInvoke)) )
        {
            BuildMethodTableThrowException(BFA_MISSING_DELEGATE_METHOD);
        }
    }

    if (i != cMethAndGaps)
    {
        BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT, IDS_CLASSLOAD_BAD_METHOD_COUNT, mdTokenNil);
    }

#ifdef FEATURE_COMINTEROP 
    //
    // If the interface is sparse, we need to finalize the mapping list by
    // telling it how many real methods we found.
    //

    if (bmtProp->fSparse)
    {
        GetHalfBakedClass()->GetSparseCOMInteropVTableMap()->FinalizeMapping(NumDeclaredMethods());
    }
#endif // FEATURE_COMINTEROP
} // MethodTableBuilder::EnumerateClassMethods
#ifdef _PREFAST_ 
#pragma warning(pop)
#endif

//*******************************************************************************
//
// Run through the field list and calculate the following:
// # static fields
// # static fields that contain object refs.
// # instance fields
//
VOID
MethodTableBuilder::EnumerateClassFields()
{
    STANDARD_VM_CONTRACT;

    HRESULT hr = S_OK;
    DWORD i;
    IMDInternalImport *pMDInternalImport = GetMDImport();
    mdToken tok;
    DWORD dwMemberAttrs;

    bmtEnumFields->dwNumStaticFields        = 0;
    bmtEnumFields->dwNumStaticObjRefFields  = 0;
    bmtEnumFields->dwNumStaticBoxedFields   = 0;

    bmtEnumFields->dwNumThreadStaticFields  = 0;
    bmtEnumFields->dwNumThreadStaticObjRefFields  = 0;
    bmtEnumFields->dwNumThreadStaticBoxedFields   = 0;

    bmtEnumFields->dwNumInstanceFields      = 0;

    HENUMInternalHolder hEnumField(pMDInternalImport);
    hr = hEnumField.EnumInitNoThrow(mdtFieldDef, GetCl());
    if (FAILED(hr))
    {
        BuildMethodTableThrowException(hr, *bmtError);
    }

    bmtMetaData->cFields = hEnumField.EnumGetCount();

    // Retrieve the fields and store them in a temp array.
    bmtMetaData->pFields = new (GetStackingAllocator()) mdToken[bmtMetaData->cFields];
    bmtMetaData->pFieldAttrs = new (GetStackingAllocator()) DWORD[bmtMetaData->cFields];

    DWORD   dwFieldLiteralInitOnly = fdLiteral | fdInitOnly;
    DWORD   dwMaxFieldDefRid = pMDInternalImport->GetCountWithTokenKind(mdtFieldDef);

    for (i = 0; hEnumField.EnumNext(&tok); i++)
    {
        //
        // Retrieve the attributes of the field.
        //
        DWORD rid = RidFromToken(tok);
        if ((rid == 0)||(rid > dwMaxFieldDefRid))
        {
            BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT, BFA_BAD_FIELD_TOKEN, mdTokenNil);
        }
        
        if (FAILED(pMDInternalImport->GetFieldDefProps(tok, &dwMemberAttrs)))
        {
            BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT, BFA_BAD_FIELD_TOKEN, tok);
        }
        
        //
        // Store the field and its attributes in the bmtMetaData structure for later use.
        //

        bmtMetaData->pFields[i] = tok;
        bmtMetaData->pFieldAttrs[i] = dwMemberAttrs;

        if((dwMemberAttrs & fdFieldAccessMask)==fdFieldAccessMask)
        {
            BuildMethodTableThrowException(BFA_INVALID_FIELD_ACC_FLAGS);
        }
        if((dwMemberAttrs & dwFieldLiteralInitOnly)==dwFieldLiteralInitOnly)
        {
            BuildMethodTableThrowException(BFA_FIELD_LITERAL_AND_INIT);
        }

        // can only have static global fields
        if(IsGlobalClass())
        {
            if(!IsFdStatic(dwMemberAttrs))
            {
                BuildMethodTableThrowException(BFA_NONSTATIC_GLOBAL_FIELD);
            }
        }

        //
        // Update the count of the various types of fields.
        //

        if (IsFdStatic(dwMemberAttrs))
        {
            if (!IsFdLiteral(dwMemberAttrs))
            {
#ifdef FEATURE_TYPEEQUIVALENCE
                if (bmtProp->fIsTypeEquivalent)
                {
                    BuildMethodTableThrowException(IDS_CLASSLOAD_EQUIVALENTSTRUCTFIELDS);
                }
#endif

                bmtEnumFields->dwNumStaticFields++;

                // If this static field is thread static, then we need
                // to increment bmtEnumFields->dwNumThreadStaticFields
                hr = pMDInternalImport->GetCustomAttributeByName(tok,
                                                                 g_ThreadStaticAttributeClassName,
                                                                 NULL, NULL);
                IfFailThrow(hr);
                if (hr == S_OK)
                {
                    // It's a thread static, so increment the count
                    bmtEnumFields->dwNumThreadStaticFields++;
                }
            }
        }
        else
        {
#ifdef FEATURE_TYPEEQUIVALENCE
            if (!IsFdPublic(dwMemberAttrs) && bmtProp->fIsTypeEquivalent)
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_EQUIVALENTSTRUCTFIELDS);
            }
#endif

            if (!IsFdLiteral(dwMemberAttrs))
            {
                bmtEnumFields->dwNumInstanceFields++;
            }
            if(IsInterface())
            {
                BuildMethodTableThrowException(BFA_INSTANCE_FIELD_IN_INT);
            }
        }
    }

    if (i != bmtMetaData->cFields)
    {
        BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT, IDS_CLASSLOAD_BAD_FIELD_COUNT, mdTokenNil);
    }

    if(IsEnum() && (bmtEnumFields->dwNumInstanceFields==0))
    {
        BuildMethodTableThrowException(BFA_INSTANCE_FIELD_IN_ENUM);
    }

    bmtEnumFields->dwNumDeclaredFields = bmtEnumFields->dwNumStaticFields + bmtEnumFields->dwNumInstanceFields;
}

//*******************************************************************************
//
// Used by BuildMethodTable
//
// Determines the maximum size of the vtable and allocates the temporary storage arrays
// Also copies the parent's vtable into the working vtable.
//
VOID    MethodTableBuilder::AllocateWorkingSlotTables()
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(this));
        PRECONDITION(CheckPointer(bmtAllocator));
        PRECONDITION(CheckPointer(bmtMFDescs));
        PRECONDITION(CheckPointer(bmtMetaData));
        PRECONDITION(CheckPointer(bmtVT));
        PRECONDITION(CheckPointer(bmtEnumFields));
        PRECONDITION(CheckPointer(bmtInterface));
        PRECONDITION(CheckPointer(bmtFP));
        PRECONDITION(CheckPointer(bmtParent));

    }
    CONTRACTL_END;

    // Allocate a FieldDesc* for each field
    bmtMFDescs->ppFieldDescList = new (GetStackingAllocator()) FieldDesc*[bmtMetaData->cFields];
    ZeroMemory(bmtMFDescs->ppFieldDescList, bmtMetaData->cFields * sizeof(FieldDesc *));

    // Create a temporary function table (we don't know how large the vtable will be until the very end,
    // since we don't yet know how many declared methods are overrides vs. newslots).

    if (IsValueClass())
    {   // ValueClass virtuals are converted into non-virtual methods and the virtual slots
        // become unboxing stubs that forward to these new non-virtual methods. This has the
        // side effect of doubling the number of slots introduced by newslot virtuals.
        bmtVT->dwMaxVtableSize += NumDeclaredMethods();
    }

    _ASSERTE(!HasParent() || (bmtInterface->dwInterfaceMapSize - GetParentMethodTable()->GetNumInterfaces()) >= 0);

    if (HasParent())
    {   // Add parent vtable size. <TODO> This should actually be the parent's virtual method count. </TODO>
        bmtVT->dwMaxVtableSize += bmtParent->pSlotTable->GetSlotCount();
    }

    S_SLOT_INDEX cMaxSlots = AsClrSafeInt(bmtVT->dwMaxVtableSize) + AsClrSafeInt(NumDeclaredMethods());

    if (cMaxSlots.IsOverflow() || MAX_SLOT_INDEX < cMaxSlots.Value())
        cMaxSlots = S_SLOT_INDEX(MAX_SLOT_INDEX);

    // Allocate the temporary vtable
    bmtVT->pSlotTable = new (GetStackingAllocator())
        bmtMethodSlotTable(cMaxSlots.Value(), GetStackingAllocator());

    if (HasParent())
    {
#if 0 
        // @<TODO>todo: Figure out the right way to override Equals for value
        // types only.
        //
        // This is broken because
        // (a) g_pObjectClass->FindMethod("Equals", &gsig_IM_Obj_RetBool); will return
        //      the EqualsValue method
        // (b) When mscorlib has been preloaded (and thus the munge already done
        //      ahead of time), we cannot easily find both methods
        //      to compute EqualsAddr & EqualsSlot
        //
        // For now, the Equals method has a runtime check to see if it's
        // comparing value types.
        //</TODO>

        // If it is a value type, over ride a few of the base class methods.
        if (IsValueClass())
        {
            static WORD EqualsSlot;

            // If we haven't been through here yet, get some stuff from the Object class definition.
            if (EqualsSlot == NULL)
            {
                // Get the slot of the Equals method.
                MethodDesc *pEqualsMD = g_pObjectClass->FindMethod("Equals", &gsig_IM_Obj_RetBool);
                THROW_BAD_FORMAT_MAYBE(pEqualsMD != NULL, 0, this);
                EqualsSlot = pEqualsMD->GetSlot();

                // Get the address of the EqualsValue method.
                MethodDesc *pEqualsValueMD = g_pObjectClass->FindMethod("EqualsValue", &gsig_IM_Obj_RetBool);
                THROW_BAD_FORMAT_MAYBE(pEqualsValueMD != NULL, 0, this);

                // Patch the EqualsValue method desc in a dangerous way to
                // look like the Equals method desc.
                pEqualsValueMD->SetSlot(EqualsSlot);
                pEqualsValueMD->SetMemberDef(pEqualsMD->GetMemberDef());
            }

            // Override the valuetype "Equals" with "EqualsValue".
            bmtVT->SetMethodDescForSlot(EqualsSlot, EqualsSlot);
        }
#endif // 0
    }

    S_UINT32 cEntries = S_UINT32(2) * S_UINT32(NumDeclaredMethods());
    if (cEntries.IsOverflow())
    {
        ThrowHR(COR_E_OVERFLOW);
    }
}

//*******************************************************************************
//
// Used by BuildMethodTable
//
// Allocate a MethodDesc* for each method (needed later when doing interfaces), and a FieldDesc* for each field
//
VOID MethodTableBuilder::AllocateFieldDescs()
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(this));
        PRECONDITION(CheckPointer(bmtAllocator));
        PRECONDITION(CheckPointer(bmtMFDescs));
        PRECONDITION(CheckPointer(bmtMetaData));
        PRECONDITION(CheckPointer(bmtVT));
        PRECONDITION(CheckPointer(bmtEnumFields));
        PRECONDITION(CheckPointer(bmtFP));
        PRECONDITION(CheckPointer(bmtParent));

    }
    CONTRACTL_END;

    // We'll be counting the # fields of each size as we go along
    for (DWORD i = 0; i <= MAX_LOG2_PRIMITIVE_FIELD_SIZE; i++)
    {
        bmtFP->NumRegularStaticFieldsOfSize[i]    = 0;
        bmtFP->NumThreadStaticFieldsOfSize[i]    = 0;
        bmtFP->NumInstanceFieldsOfSize[i]  = 0;
    }

    //
    // Allocate blocks of MethodDescs and FieldDescs for all declared methods and fields
    //
    // In order to avoid allocating a field pointing back to the method
    // table in every single method desc, we allocate memory in the
    // following manner:
    //   o  Field descs get a single contiguous block.
    //   o  Method descs of different sizes (normal vs NDirect) are
    //      allocated in different MethodDescChunks.
    //   o  Each method desc chunk starts with a header, and has
    //      at most MAX_ method descs (if there are more
    //      method descs of a given size, multiple chunks are allocated).
    // This way method descs can use an 8-bit offset field to locate the
    // pointer to their method table.
    //

    /////////////////////////////////////////////////////////////////
    // Allocate fields
    if (NumDeclaredFields() > 0)
    {
        GetHalfBakedClass()->SetFieldDescList((FieldDesc *)
            AllocateFromHighFrequencyHeap(S_SIZE_T(NumDeclaredFields()) * S_SIZE_T(sizeof(FieldDesc))));
        INDEBUG(GetClassLoader()->m_dwDebugFieldDescs += NumDeclaredFields();)
        INDEBUG(GetClassLoader()->m_dwFieldDescData += (NumDeclaredFields() * sizeof(FieldDesc));)
    }
}

#ifdef FEATURE_DOUBLE_ALIGNMENT_HINT
//*******************************************************************************
//
// Heuristic to determine if we should have instances of this class 8 byte aligned
//
BOOL MethodTableBuilder::ShouldAlign8(DWORD dwR8Fields, DWORD dwTotalFields)
{
    LIMITED_METHOD_CONTRACT;

    return dwR8Fields*2>dwTotalFields && dwR8Fields>=2;
}
#endif

//*******************************************************************************
BOOL MethodTableBuilder::IsSelfReferencingStaticValueTypeField(mdToken     dwByValueClassToken,
                                                               bmtInternalInfo* bmtInternal,
                                                               const bmtGenericsInfo *bmtGenerics,
                                                               PCCOR_SIGNATURE pMemberSignature,
                                                               DWORD       cMemberSignature)
{
    STANDARD_VM_CONTRACT;

    if (dwByValueClassToken != this->GetCl())
    {
        return FALSE;
    }

    if (!bmtGenerics->HasInstantiation())
    {
        return TRUE;
    }

    // The value class is generic.  Check that the signature of the field
    // is _exactly_ equivalent to VC<!0, !1, !2, ...>.  Do this by consing up a fake
    // signature.
    DWORD nGenericArgs = bmtGenerics->GetNumGenericArgs();
    CONSISTENCY_CHECK(nGenericArgs != 0);

    SigBuilder sigBuilder;

    sigBuilder.AppendElementType(ELEMENT_TYPE_GENERICINST);
    sigBuilder.AppendElementType(ELEMENT_TYPE_VALUETYPE);
    sigBuilder.AppendToken(dwByValueClassToken);
    sigBuilder.AppendData(nGenericArgs);
    for (unsigned int typearg = 0; typearg < nGenericArgs; typearg++)
    {
        sigBuilder.AppendElementType(ELEMENT_TYPE_VAR);
        sigBuilder.AppendData(typearg);
    }

    DWORD cFakeSig;
    PCCOR_SIGNATURE pFakeSig = (PCCOR_SIGNATURE)sigBuilder.GetSignature(&cFakeSig);

    PCCOR_SIGNATURE pFieldSig = pMemberSignature + 1; // skip the CALLCONV_FIELD

    return MetaSig::CompareElementType(pFakeSig,             pFieldSig,
                                       pFakeSig + cFakeSig,  pMemberSignature + cMemberSignature,
                                       GetModule(), GetModule(),
                                       NULL,                 NULL);

}

//*******************************************************************************
//
// Used pByValueClass cache to mark self-references
//
static BOOL IsSelfRef(MethodTable * pMT)
{
    return pMT == (MethodTable *)-1;
}

//*******************************************************************************
//
// Used by BuildMethodTable
//
// Go thru all fields and initialize their FieldDescs.
//
#ifdef _PREFAST_ 
#pragma warning(push)
#pragma warning(disable:21000) // Suppress PREFast warning about overly large function
#endif // _PREFAST_

VOID    MethodTableBuilder::InitializeFieldDescs(FieldDesc *pFieldDescList,
                                                 const LayoutRawFieldInfo* pLayoutRawFieldInfos,
                                                 bmtInternalInfo* bmtInternal,
                                                 const bmtGenericsInfo* bmtGenerics,
                                                 bmtMetaDataInfo* bmtMetaData,
                                                 bmtEnumFieldInfo* bmtEnumFields,
                                                 bmtErrorInfo* bmtError,
                                                 MethodTable *** pByValueClassCache,
                                                 bmtMethAndFieldDescs* bmtMFDescs,
                                                 bmtFieldPlacement* bmtFP,
                                                 unsigned* totalDeclaredSize)
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(this));
        PRECONDITION(CheckPointer(bmtInternal));
        PRECONDITION(CheckPointer(bmtGenerics));
        PRECONDITION(CheckPointer(bmtMetaData));
        PRECONDITION(CheckPointer(bmtEnumFields));
        PRECONDITION(CheckPointer(bmtError));
        PRECONDITION(CheckPointer(pByValueClassCache));
        PRECONDITION(CheckPointer(bmtMFDescs));
        PRECONDITION(CheckPointer(bmtFP));
        PRECONDITION(CheckPointer(totalDeclaredSize));
    }
    CONTRACTL_END;

    DWORD i;
    IMDInternalImport * pInternalImport = GetMDImport(); // to avoid multiple dereferencings

    FieldMarshaler * pNextFieldMarshaler = NULL;
    if (HasLayout())
    {
        pNextFieldMarshaler = (FieldMarshaler*)(GetLayoutInfo()->GetFieldMarshalers());
    }


//========================================================================
// BEGIN:
//    Go thru all fields and initialize their FieldDescs.
//========================================================================

    DWORD   dwCurrentDeclaredField = 0;
    DWORD   dwCurrentStaticField   = 0;
    DWORD   dwCurrentThreadStaticField = 0;


    DWORD   dwR8Fields              = 0;        // Number of R8's the class has

#ifdef FEATURE_64BIT_ALIGNMENT
    // Track whether any field in this type requires 8-byte alignment
    BOOL    fFieldRequiresAlign8 = HasParent() ? GetParentMethodTable()->RequiresAlign8() : FALSE;
#endif

    for (i = 0; i < bmtMetaData->cFields; i++)
    {
        PCCOR_SIGNATURE pMemberSignature;
        DWORD       cMemberSignature;
        DWORD       dwMemberAttrs;

        dwMemberAttrs = bmtMetaData->pFieldAttrs[i];

        BOOL fIsStatic = IsFdStatic(dwMemberAttrs);

        // We don't store static final primitive fields in the class layout
        if (IsFdLiteral(dwMemberAttrs))
            continue;

        if (!IsFdPublic(dwMemberAttrs))
            SetHasNonPublicFields();

        if (IsFdNotSerialized(dwMemberAttrs))
            SetCannotBeBlittedByObjectCloner();

        IfFailThrow(pInternalImport->GetSigOfFieldDef(bmtMetaData->pFields[i], &cMemberSignature, &pMemberSignature));
        // Signature validation
        IfFailThrow(validateTokenSig(bmtMetaData->pFields[i],pMemberSignature,cMemberSignature,dwMemberAttrs,pInternalImport));

        FieldDesc * pFD;
        DWORD       dwLog2FieldSize = 0;
        BOOL        bCurrentFieldIsGCPointer = FALSE;
        mdToken     dwByValueClassToken = 0;
        MethodTable * pByValueClass = NULL;
        BOOL        fIsByValue = FALSE;
        BOOL        fIsThreadStatic = FALSE;
        BOOL        fHasRVA = FALSE;

        MetaSig fsig(pMemberSignature,
                     cMemberSignature,
                     GetModule(),
                     &bmtGenerics->typeContext,
                     MetaSig::sigField);
        CorElementType ElementType = fsig.NextArg();


        // Get type
        if (!isCallConv(fsig.GetCallingConvention(), IMAGE_CEE_CS_CALLCONV_FIELD))
        {
            IfFailThrow(COR_E_TYPELOAD);
        }

        // Determine if a static field is special i.e. RVA based, local to
        // a thread or a context
        if (fIsStatic)
        {
            if (IsFdHasFieldRVA(dwMemberAttrs))
            {
                fHasRVA = TRUE;
            }

            HRESULT hr;
 
            hr = pInternalImport->GetCustomAttributeByName(bmtMetaData->pFields[i],
                                                           g_ThreadStaticAttributeClassName,
                                                           NULL, NULL);
            IfFailThrow(hr);
            if (hr == S_OK)
            {
                fIsThreadStatic = TRUE;
            }


            if (ElementType == ELEMENT_TYPE_VALUETYPE)
            {
                hr = pInternalImport->GetCustomAttributeByName(bmtMetaData->pFields[i],
                                                               g_CompilerServicesFixedAddressValueTypeAttribute,
                                                               NULL, NULL);
                IfFailThrow(hr);
                if (hr == S_OK)
                {
                    bmtFP->fHasFixedAddressValueTypes = true;
                }
            }


            // Do some sanity checks that we are not mixing context and thread
            // relative statics.
            if (fHasRVA && fIsThreadStatic)
            {
                IfFailThrow(COR_E_TYPELOAD);
            }

            if (bmtFP->fHasFixedAddressValueTypes && GetAssembly()->IsCollectible())
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_COLLECTIBLEFIXEDVTATTR);
            }
        }


    GOT_ELEMENT_TYPE:
        // Type to store in FieldDesc - we don't want to have extra case statements for
        // ELEMENT_TYPE_STRING, SDARRAY etc., so we convert all object types to CLASS.
        // Also, BOOLEAN, CHAR are converted to U1, I2.
        CorElementType FieldDescElementType = ElementType;

        switch (ElementType)
        {
        case ELEMENT_TYPE_I1:
        case ELEMENT_TYPE_U1:
            {
                dwLog2FieldSize = 0;
                break;
            }

        case ELEMENT_TYPE_I2:
        case ELEMENT_TYPE_U2:
            {
                dwLog2FieldSize = 1;
                break;
            }

        case ELEMENT_TYPE_I4:
        case ELEMENT_TYPE_U4:
        IN_TARGET_32BIT(case ELEMENT_TYPE_I:)
        IN_TARGET_32BIT(case ELEMENT_TYPE_U:)
        case ELEMENT_TYPE_R4:
            {
                dwLog2FieldSize = 2;
                break;
            }

        case ELEMENT_TYPE_BOOLEAN:
            {
                //                FieldDescElementType = ELEMENT_TYPE_U1;
                dwLog2FieldSize = 0;
                break;
            }

        case ELEMENT_TYPE_CHAR:
            {
                //                FieldDescElementType = ELEMENT_TYPE_U2;
                dwLog2FieldSize = 1;
                break;
            }

        case ELEMENT_TYPE_R8:
            {
                dwR8Fields++;

                // Deliberate fall through...
            }
       
        case ELEMENT_TYPE_I8:
        case ELEMENT_TYPE_U8:
        IN_TARGET_64BIT(case ELEMENT_TYPE_I:)
        IN_TARGET_64BIT(case ELEMENT_TYPE_U:)
            {
#ifdef FEATURE_64BIT_ALIGNMENT
                // Record that this field requires alignment for Int64/UInt64.
                if(!fIsStatic)
                    fFieldRequiresAlign8 = true;
#endif                
                dwLog2FieldSize = 3;
                break;
            }

        case ELEMENT_TYPE_FNPTR:
        case ELEMENT_TYPE_PTR:   // ptrs are unmanaged scalars, for layout
            {
                dwLog2FieldSize = LOG2_PTRSIZE;
                break;
            }

        // Class type variable (method type variables aren't allowed in fields)
        // These only occur in open types used for verification/reflection.
        case ELEMENT_TYPE_VAR:
        case ELEMENT_TYPE_MVAR:
           // deliberate drop through - do fake field layout
        case ELEMENT_TYPE_STRING:
        case ELEMENT_TYPE_SZARRAY:      // single dim, zero
        case ELEMENT_TYPE_ARRAY:        // all other arrays
        case ELEMENT_TYPE_CLASS: // objectrefs
        case ELEMENT_TYPE_OBJECT:
            {
                dwLog2FieldSize = LOG2_PTRSIZE;
                bCurrentFieldIsGCPointer = TRUE;
                FieldDescElementType = ELEMENT_TYPE_CLASS;

                if (!fIsStatic)
                {
                    SetHasFieldsWhichMustBeInited();
                    if (ElementType != ELEMENT_TYPE_STRING)
                        SetCannotBeBlittedByObjectCloner();
                }
                else
                {   // EnumerateFieldDescs already counted the total number of static vs. instance
                    // fields, now we're further subdividing the static field count by GC and non-GC.
                    bmtEnumFields->dwNumStaticObjRefFields++;
                    if (fIsThreadStatic)
                        bmtEnumFields->dwNumThreadStaticObjRefFields++;
                }
                break;
            }

        case ELEMENT_TYPE_VALUETYPE: // a byvalue class field
            {
                Module * pTokenModule;
                dwByValueClassToken = fsig.GetArgProps().PeekValueTypeTokenClosed(GetModule(), &bmtGenerics->typeContext, &pTokenModule);
                fIsByValue = TRUE;

                // By-value class
                BAD_FORMAT_NOTHROW_ASSERT(dwByValueClassToken != 0);
                
                if (this->IsValueClass() && (pTokenModule == GetModule()))
                {
                    if (TypeFromToken(dwByValueClassToken) == mdtTypeRef)
                    {
                        // It's a typeref - check if it's a class that has a static field of itself
                        LPCUTF8 pszNameSpace;
                        LPCUTF8 pszClassName;
                        if (FAILED(pInternalImport->GetNameOfTypeRef(dwByValueClassToken, &pszNameSpace, &pszClassName)))
                        {
                            BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
                        }
                        
                        if (IsStrLongerThan((char *)pszClassName, MAX_CLASS_NAME)
                            || IsStrLongerThan((char *)pszNameSpace, MAX_CLASS_NAME)
                            || (strlen(pszClassName) + strlen(pszNameSpace) + 1 >= MAX_CLASS_NAME))
                        {
                            BuildMethodTableThrowException(BFA_TYPEREG_NAME_TOO_LONG, mdMethodDefNil);
                        }

                        mdToken tkRes;
                        if (FAILED(pInternalImport->GetResolutionScopeOfTypeRef(dwByValueClassToken, &tkRes)))
                        {
                            BuildMethodTableThrowException(BFA_BAD_TYPEREF_TOKEN, dwByValueClassToken);
                        }
                        
                        if (TypeFromToken(tkRes) == mdtTypeRef)
                        {
                            if (!pInternalImport->IsValidToken(tkRes))
                            {
                                BuildMethodTableThrowException(BFA_BAD_TYPEREF_TOKEN, mdMethodDefNil);
                            }
                        }
                        else
                        {
                            tkRes = mdTokenNil;
                        }
                        
                        if (FAILED(pInternalImport->FindTypeDef(pszNameSpace,
                                                                pszClassName,
                                                                tkRes,
                                                                &dwByValueClassToken)))
                        {
                            dwByValueClassToken = mdTokenNil;
                        }
                    } // If field is static typeref

                    BOOL selfref = IsSelfReferencingStaticValueTypeField(dwByValueClassToken,
                                                                    bmtInternal,
                                                                    bmtGenerics,
                                                                    pMemberSignature,
                                                                    cMemberSignature);

                    if (selfref)
                    {   // immediately self-referential fields must be static.
                        if (!fIsStatic)
                        {
                            BuildMethodTableThrowException(IDS_CLASSLOAD_VALUEINSTANCEFIELD, mdMethodDefNil);
                        }

                        if (!IsValueClass())
                        {
                            BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT, IDS_CLASSLOAD_MUST_BE_BYVAL, mdTokenNil);
                        }

                        pByValueClass = (MethodTable *)-1;
                    }
                } // If 'this' is a value class

                // It's not self-referential so try to load it
                if (pByValueClass == NULL)
                {
                    // Loading a non-self-ref valuetype field.
                    OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOAD_APPROXPARENTS);
                    // We load the approximate type of the field to avoid recursion problems.
                    // MethodTable::DoFullyLoad() will later load it fully
                    pByValueClass = fsig.GetArgProps().GetTypeHandleThrowing(GetModule(),
                                                                            &bmtGenerics->typeContext,
                                                                             ClassLoader::LoadTypes,
                                                                             CLASS_LOAD_APPROXPARENTS,
                                                                             TRUE
                                                                             ).GetMethodTable();
                }
                
                // #FieldDescTypeMorph  IF it is an enum, strip it down to its underlying type
                if (IsSelfRef(pByValueClass) ? IsEnum() : pByValueClass->IsEnum())
                {
                    if (IsSelfRef(pByValueClass))
                    {   // It is self-referencing enum (ValueType) static field - it is forbidden in the ECMA spec, but supported by CLR since v1
                        // Note: literal static fields are skipped early in this loop
                        if (bmtMFDescs->ppFieldDescList[0] == NULL)
                        {   // The field is defined before (the only) instance field
                            // AppCompat with 3.5 SP1 and 4.0 RTM behavior
                            BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT, IDS_CLASSLOAD_BAD_FIELD, mdTokenNil);
                        }
                        // We will treat the field type as if it was its underlying type (we know its size and will check correctly RVA with the size 
                        // later in this method)
                        // Therefore we do not have to run code:VerifySelfReferencingStaticValueTypeFields_WithRVA or code:#SelfReferencingStaticValueTypeField_Checks
                    }
                    BAD_FORMAT_NOTHROW_ASSERT((IsSelfRef(pByValueClass) ? 
                            bmtEnumFields->dwNumInstanceFields : pByValueClass->GetNumInstanceFields())
                                == 1); // enums must have exactly one field
                    FieldDesc * enumField = IsSelfRef(pByValueClass) ?
                            bmtMFDescs->ppFieldDescList[0] : pByValueClass->GetApproxFieldDescListRaw();
                    BAD_FORMAT_NOTHROW_ASSERT(!enumField->IsStatic());   // no real static fields on enums
                    ElementType = enumField->GetFieldType();
                    BAD_FORMAT_NOTHROW_ASSERT(ElementType != ELEMENT_TYPE_VALUETYPE);
                    fIsByValue = FALSE; // we're going to treat it as the underlying type now
                    goto GOT_ELEMENT_TYPE;
                }
                
                // Check ByRefLike fields
                if (!IsSelfRef(pByValueClass) && pByValueClass->IsByRefLike())
                {
                    if (fIsStatic)
                    {
                        // Byref-like types cannot be used for static fields
                        BuildMethodTableThrowException(IDS_CLASSLOAD_BYREFLIKE_STATICFIELD);
                    }
                    if (!bmtFP->fIsByRefLikeType)
                    {
                        // Non-byref-like types cannot contain byref-like instance fields
                        BuildMethodTableThrowException(IDS_CLASSLOAD_BYREFLIKE_INSTANCEFIELD);
                    }
                }

                if (!IsSelfRef(pByValueClass) && pByValueClass->GetClass()->HasNonPublicFields())
                {   // If a class has a field of type ValueType with non-public fields in it,
                    // the class must "inherit" this characteristic
                    SetHasNonPublicFields();
                }

                if (!fHasRVA)
                {
                    if (!fIsStatic)
                    {
                        // Inherit instance attributes
                        EEClass * pFieldClass = pByValueClass->GetClass();

#ifdef FEATURE_64BIT_ALIGNMENT
                        // If a value type requires 8-byte alignment this requirement must be inherited by any
                        // class/struct that embeds it as a field.
                        if (pFieldClass->IsAlign8Candidate())
                            fFieldRequiresAlign8 = true;
#endif
                        if (pFieldClass->HasNonPublicFields())
                            SetHasNonPublicFields();
                        if (pFieldClass->HasFieldsWhichMustBeInited())
                            SetHasFieldsWhichMustBeInited();

#ifdef FEATURE_READYTORUN
                        if (!(pByValueClass->IsTruePrimitive() || pByValueClass->IsEnum()))
                        {
                            CheckLayoutDependsOnOtherModules(pByValueClass);
                        }
#endif
                    }
                    else
                    {   // Increment the number of static fields that contain object references.
                        bmtEnumFields->dwNumStaticBoxedFields++;
                        if (fIsThreadStatic)
                            bmtEnumFields->dwNumThreadStaticBoxedFields++;
                    }
                }
                
                if (*pByValueClassCache == NULL)
                {
                    DWORD dwNumFields = bmtEnumFields->dwNumInstanceFields + bmtEnumFields->dwNumStaticFields;
                    
                    *pByValueClassCache = new (GetStackingAllocator()) MethodTable * [dwNumFields];
                    memset (*pByValueClassCache, 0, dwNumFields * sizeof(MethodTable **));
                }
                
                // Thread static fields come after instance fields and regular static fields in this list
                if (fIsThreadStatic)
                {
                    (*pByValueClassCache)[bmtEnumFields->dwNumInstanceFields + bmtEnumFields->dwNumStaticFields - bmtEnumFields->dwNumThreadStaticFields + dwCurrentThreadStaticField] = pByValueClass;
                    // make sure to record the correct size for static field
                    // layout
                    dwLog2FieldSize = LOG2_PTRSIZE; // handle
                }
                // Regular static fields come after instance fields in this list
                else if (fIsStatic)
                {
                    (*pByValueClassCache)[bmtEnumFields->dwNumInstanceFields + dwCurrentStaticField] = pByValueClass;
                    // make sure to record the correct size for static field
                    // layout
                    dwLog2FieldSize = LOG2_PTRSIZE; // handle
                }
                else
                {
                    (*pByValueClassCache)[dwCurrentDeclaredField] = pByValueClass;
                    dwLog2FieldSize = 0; // unused
                }
                
                break;
            }
        default:
            {
                BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT, IDS_CLASSLOAD_BAD_FIELD, mdTokenNil);
            }
        }

        if (!fIsStatic)
        {
            pFD = &pFieldDescList[dwCurrentDeclaredField];
            *totalDeclaredSize += (1 << dwLog2FieldSize);
        }
        else /* (dwMemberAttrs & mdStatic) */
        {
            if (fIsThreadStatic)
            {
                pFD = &pFieldDescList[bmtEnumFields->dwNumInstanceFields + bmtEnumFields->dwNumStaticFields - bmtEnumFields->dwNumThreadStaticFields + dwCurrentThreadStaticField];
            }
            else
            {
                pFD = &pFieldDescList[bmtEnumFields->dwNumInstanceFields + dwCurrentStaticField];
            }
        }

        bmtMFDescs->ppFieldDescList[i] = pFD;

        const LayoutRawFieldInfo *pLayoutFieldInfo = NULL;

        if (HasLayout())
        {
            const LayoutRawFieldInfo *pwalk = pLayoutRawFieldInfos;
            while (pwalk->m_MD != mdFieldDefNil)
            {
                if (pwalk->m_MD == bmtMetaData->pFields[i])
                {
                    pLayoutFieldInfo = pwalk;

                    const FieldMarshaler *pSrcFieldMarshaler = (const FieldMarshaler *) &pwalk->m_FieldMarshaler;

                    pSrcFieldMarshaler->CopyTo(pNextFieldMarshaler, MAXFIELDMARSHALERSIZE);

                    pNextFieldMarshaler->SetFieldDesc(pFD);
                    pNextFieldMarshaler->SetExternalOffset(pwalk->m_offset);

                    ((BYTE*&)pNextFieldMarshaler) += MAXFIELDMARSHALERSIZE;
                    break;
                }
                pwalk++;
            }
        }

        LPCSTR pszFieldName = NULL;
#ifdef _DEBUG 
        if (FAILED(pInternalImport->GetNameOfFieldDef(bmtMetaData->pFields[i], &pszFieldName)))
        {
            pszFieldName = "Invalid FieldDef record";
        }
#endif
        // #InitCall Initialize contents of the field descriptor called from 
        pFD->Init(
                  bmtMetaData->pFields[i],
                  FieldDescElementType,
                  dwMemberAttrs,
                  fIsStatic,
                  fHasRVA,
                  fIsThreadStatic,
                  pszFieldName
                  );

        // We're using FieldDesc::m_pMTOfEnclosingClass to temporarily store the field's size.
        // 
        if (fIsByValue)
        {
            if (!fIsStatic &&
                (IsBlittable() || HasExplicitFieldOffsetLayout()))
            {
                (DWORD_PTR &)pFD->m_pMTOfEnclosingClass =
                    (*pByValueClassCache)[dwCurrentDeclaredField]->GetNumInstanceFieldBytes();

                if (pLayoutFieldInfo)
                    IfFailThrow(pFD->SetOffset(pLayoutFieldInfo->m_offset));
                else
                    pFD->SetOffset(FIELD_OFFSET_VALUE_CLASS);
            }
            else if (!fIsStatic && IsManagedSequential())
            {
                (DWORD_PTR &)pFD->m_pMTOfEnclosingClass =
                    (*pByValueClassCache)[dwCurrentDeclaredField]->GetNumInstanceFieldBytes();

                IfFailThrow(pFD->SetOffset(pLayoutFieldInfo->m_managedOffset));
            }
            else
            {
                // static value class fields hold a handle, which is ptr sized
                // (instance field layout ignores this value)
                (DWORD_PTR&)(pFD->m_pMTOfEnclosingClass) = LOG2_PTRSIZE;
                pFD->SetOffset(FIELD_OFFSET_VALUE_CLASS);
            }
        }
        else
        {
            (DWORD_PTR &)(pFD->m_pMTOfEnclosingClass) = (size_t)dwLog2FieldSize;

            // -1 (FIELD_OFFSET_UNPLACED) means that this is a non-GC field that has not yet been placed
            // -2 (FIELD_OFFSET_UNPLACED_GC_PTR) means that this is a GC pointer field that has not yet been placed

            // If there is any kind of explicit layout information for this field, use it. If not, then
            // mark it as either GC or non-GC and as unplaced; it will get placed later on in an optimized way.

            if ((IsBlittable() || HasExplicitFieldOffsetLayout()) && !fIsStatic)
                IfFailThrow(pFD->SetOffset(pLayoutFieldInfo->m_offset));
            else if (IsManagedSequential() && !fIsStatic)
                IfFailThrow(pFD->SetOffset(pLayoutFieldInfo->m_managedOffset));
            else if (bCurrentFieldIsGCPointer)
                pFD->SetOffset(FIELD_OFFSET_UNPLACED_GC_PTR);
            else
                pFD->SetOffset(FIELD_OFFSET_UNPLACED);
        }

        if (!fIsStatic)
        {
            if (!fIsByValue)
            {
                if (++bmtFP->NumInstanceFieldsOfSize[dwLog2FieldSize] == 1)
                    bmtFP->FirstInstanceFieldOfSize[dwLog2FieldSize] = dwCurrentDeclaredField;
            }

            dwCurrentDeclaredField++;

            if (bCurrentFieldIsGCPointer)
            {
                bmtFP->NumInstanceGCPointerFields++;
            }
        }
        else /* static fields */
        {
            // Static fields are stored in the vtable after the vtable and interface slots.  We don't
            // know how large the vtable will be, so we will have to fixup the slot number by
            // <vtable + interface size> later.

            if (fIsThreadStatic)
            {
                dwCurrentThreadStaticField++;
            }
            else
            {
                dwCurrentStaticField++;
            }

            if (fHasRVA)
            {
                if (FieldDescElementType == ELEMENT_TYPE_CLASS)
                {   // RVA fields are not allowed to have GC pointers.
                    BAD_FORMAT_NOTHROW_ASSERT(!"ObjectRef in an RVA field");
                    BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT, IDS_CLASSLOAD_BAD_FIELD, mdTokenNil);
                }
                if (FieldDescElementType == ELEMENT_TYPE_VALUETYPE)
                {
                    if (IsSelfRef(pByValueClass))
                    {   // We will verify self-referencing statics after the loop through all fields - see code:#SelfReferencingStaticValueTypeField_Checks
                        bmtFP->fHasSelfReferencingStaticValueTypeField_WithRVA = TRUE;
                    }
                    else
                    {
                        if (pByValueClass->GetClass()->HasFieldsWhichMustBeInited())
                        {   // RVA fields are not allowed to have GC pointers.
                            BAD_FORMAT_NOTHROW_ASSERT(!"ObjectRef in an RVA field");
                            BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT, IDS_CLASSLOAD_BAD_FIELD, mdTokenNil);
                        }
                    }
                }
                
                // Set the field offset
                DWORD rva;
                IfFailThrow(pInternalImport->GetFieldRVA(pFD->GetMemberDef(), &rva));
                
                // Ensure that the IL image is loaded. Note that this assembly may
                // have an ngen image, but this type may have failed to load during ngen.
                GetModule()->GetFile()->LoadLibrary(FALSE);
                
                DWORD fldSize;
                if (FieldDescElementType == ELEMENT_TYPE_VALUETYPE)
                {
                    if (IsSelfRef(pByValueClass))
                    {
                        _ASSERTE(bmtFP->fHasSelfReferencingStaticValueTypeField_WithRVA);
                        
                        // We do not known the size yet
                        _ASSERTE(bmtFP->NumInstanceFieldBytes == 0);
                        // We will check just the RVA with size 0 now, the full size verification will happen in code:VerifySelfReferencingStaticValueTypeFields_WithRVA
                        fldSize = 0;
                    }
                    else
                    {
                        fldSize = pByValueClass->GetNumInstanceFieldBytes();
                    }
                }
                else
                {
                    fldSize = GetSizeForCorElementType(FieldDescElementType);
                }
                
                pFD->SetOffsetRVA(rva);
            }
            else if (fIsThreadStatic)
            {
                bmtFP->NumThreadStaticFieldsOfSize[dwLog2FieldSize]++;

                if (bCurrentFieldIsGCPointer)
                    bmtFP->NumThreadStaticGCPointerFields++;

                if (fIsByValue)
                    bmtFP->NumThreadStaticGCBoxedFields++;
            }
            else
            {
                bmtFP->NumRegularStaticFieldsOfSize[dwLog2FieldSize]++;

                if (bCurrentFieldIsGCPointer)
                    bmtFP->NumRegularStaticGCPointerFields++;

                if (fIsByValue)
                    bmtFP->NumRegularStaticGCBoxedFields++;
            }
        }
    }
    // We processed all fields
    
    //#SelfReferencingStaticValueTypeField_Checks
    if (bmtFP->fHasSelfReferencingStaticValueTypeField_WithRVA)
    {   // The type has self-referencing static ValueType field with RVA, do more checks now that depend on all fields being processed
        
        // For enums we already checked its underlying type, we should not get here
        _ASSERTE(!IsEnum());
        
        if (HasFieldsWhichMustBeInited())
        {   // RVA fields are not allowed to have GC pointers.
            BAD_FORMAT_NOTHROW_ASSERT(!"ObjectRef in an RVA self-referencing static field");
            BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT, IDS_CLASSLOAD_BAD_FIELD, mdTokenNil);
        }
    }
    
    DWORD dwNumInstanceFields = dwCurrentDeclaredField + (HasParent() ? GetParentMethodTable()->GetNumInstanceFields() : 0);
    DWORD dwNumStaticFields = bmtEnumFields->dwNumStaticFields;
    DWORD dwNumThreadStaticFields = bmtEnumFields->dwNumThreadStaticFields;

    if (!FitsIn<WORD>(dwNumInstanceFields) ||
        !FitsIn<WORD>(dwNumStaticFields))
    {   // An implementation limitation means that it's an error if there are greater that MAX_WORD fields.
        BuildMethodTableThrowException(IDS_EE_TOOMANYFIELDS);
    }

    GetHalfBakedClass()->SetNumInstanceFields((WORD)dwNumInstanceFields);
    GetHalfBakedClass()->SetNumStaticFields((WORD)dwNumStaticFields);
    GetHalfBakedClass()->SetNumThreadStaticFields((WORD)dwNumThreadStaticFields);

    if (bmtFP->fHasFixedAddressValueTypes)
    {
        // To make things simpler, if the class has any field with this requirement, we'll set
        // all the statics to have this property. This allows us to only need to persist one bit
        // for the ngen case.
        GetHalfBakedClass()->SetHasFixedAddressVTStatics();
    }

#ifdef FEATURE_64BIT_ALIGNMENT
    // For types with layout we drop any 64-bit alignment requirement if the packing size was less than 8
    // bytes (this mimics what the native compiler does and ensures we match up calling conventions during
    // interop).
    if (HasLayout() && GetLayoutInfo()->GetPackingSize() < 8)
    {
        fFieldRequiresAlign8 = false;
    }

    if (fFieldRequiresAlign8)
    {
        SetAlign8Candidate();
    }
#endif // FEATURE_64BIT_ALIGNMENT

#ifdef FEATURE_DOUBLE_ALIGNMENT_HINT
    if (ShouldAlign8(dwR8Fields, dwNumInstanceFields))
    {
        SetAlign8Candidate();
    }
#endif // FEATURE_DOUBLE_ALIGNMENT_HINT


    //========================================================================
    // END:
    //    Go thru all fields and initialize their FieldDescs.
    //========================================================================

    return;
} // MethodTableBuilder::InitializeFieldDescs

#ifdef _PREFAST_ 
#pragma warning(pop)
#endif

//*******************************************************************************
// Verify self-referencing static ValueType fields with RVA (when the size of the ValueType is known).
void 
MethodTableBuilder::VerifySelfReferencingStaticValueTypeFields_WithRVA(
    MethodTable ** pByValueClassCache)
{
    STANDARD_VM_CONTRACT;
    
    _ASSERTE(bmtFP->fHasSelfReferencingStaticValueTypeField_WithRVA);
    // Enum's static self-referencing fields have been verified as the underlying type of the enum, we should not get here for them
    _ASSERTE(!IsEnum());
    // The size of the ValueType should be known at this point (the caller throws if it is 0)
    _ASSERTE(bmtFP->NumInstanceFieldBytes != 0);
    
    FieldDesc * pFieldDescList = GetApproxFieldDescListRaw();
    DWORD nFirstThreadStaticFieldIndex = bmtEnumFields->dwNumInstanceFields + bmtEnumFields->dwNumStaticFields - bmtEnumFields->dwNumThreadStaticFields;
    for (DWORD i = bmtEnumFields->dwNumInstanceFields; i < nFirstThreadStaticFieldIndex; i++)
    {
        FieldDesc * pFD = &pFieldDescList[i];
        _ASSERTE(pFD->IsStatic());
        
        if (pFD->IsRVA() && pFD->IsByValue())
        {
            _ASSERTE(pByValueClassCache[i] != NULL);
            
            if (IsSelfRef(pByValueClassCache[i]))
            {
                DWORD rva;
                IfFailThrow(GetMDImport()->GetFieldRVA(pFD->GetMemberDef(), &rva));
            }
        }
    }
} // MethodTableBuilder::VerifySelfReferencingStaticValueTypeFields_WithRVA

//*******************************************************************************
// Returns true if hEnclosingTypeCandidate encloses, at any arbitrary depth,
// hNestedTypeCandidate; returns false otherwise.

bool MethodTableBuilder::IsEnclosingNestedTypePair(
    bmtTypeHandle hEnclosingTypeCandidate,
    bmtTypeHandle hNestedTypeCandidate)
{
    STANDARD_VM_CONTRACT;

    CONSISTENCY_CHECK(!hEnclosingTypeCandidate.IsNull());
    CONSISTENCY_CHECK(!hNestedTypeCandidate.IsNull());
    CONSISTENCY_CHECK(!bmtTypeHandle::Equal(hEnclosingTypeCandidate, hNestedTypeCandidate));

    Module * pModule = hEnclosingTypeCandidate.GetModule();

    if (pModule != hNestedTypeCandidate.GetModule())
    {   // If the modules aren't the same, then there's no way
        // hBase could be an enclosing type of hChild. We make
        // this check early so that the code can deal with only
        // one Module and IMDInternalImport instance and can avoid
        // extra checks.
        return false;
    }

    IMDInternalImport * pMDImport = pModule->GetMDImport();

    mdTypeDef tkEncl = hEnclosingTypeCandidate.GetTypeDefToken();
    mdTypeDef tkNest = hNestedTypeCandidate.GetTypeDefToken();

    while (tkEncl != tkNest)
    {   // Do this using the metadata APIs because MethodTableBuilder does
        // not construct type representations for enclosing type chains.
        if (FAILED(pMDImport->GetNestedClassProps(tkNest, &tkNest)))
        {   // tokNest is not a nested type.
            return false;
        }
    }

    // tkNest's enclosing type is tkEncl, so we've shown that
    // hEnclosingTypeCandidate encloses hNestedTypeCandidate
    return true;
}

//*******************************************************************************
// Given an arbitrary nesting+subclassing pattern like this:
//
// class C1 {
//     private virtual void Foo() { ... }
//     class C2 : C1 {
//       ...
//         class CN : CN-1 {
//             private override void Foo() { ... }
//         }
//       ...
//     }
// }
//
// this method will return true, where hChild == N and hBase == C1
//
// Note that there is no requirement that a type derive from its immediately
// enclosing type, but can skip a level, such as this example:
//
// class A
// {
//     private virtual void Foo() { }
//     public class B
//     {
//         public class C : A
//         {
//             private override void Foo() { }
//         }
//     }
// }
//
// NOTE: IMPORTANT: This code assumes that hBase is indeed a base type of hChild,
//                  and behaviour is undefined if this is not the case.

bool MethodTableBuilder::IsBaseTypeAlsoEnclosingType(
    bmtTypeHandle hBase,
    bmtTypeHandle hChild)
{
    STANDARD_VM_CONTRACT;

    CONSISTENCY_CHECK(!hBase.IsNull());
    CONSISTENCY_CHECK(!hChild.IsNull());
    CONSISTENCY_CHECK(!bmtTypeHandle::Equal(hBase, hChild));

    // The idea of this algorithm is that if we climb the inheritance chain
    // starting at hChild then we'll eventually hit hBase. If we check that
    // for every (hParent, hChild) pair in the chain that hParent encloses
    // hChild, then we've shown that hBase encloses hChild.

    while (!bmtTypeHandle::Equal(hBase, hChild))
    {
        CONSISTENCY_CHECK(!hChild.GetParentType().IsNull());
        bmtTypeHandle hParent(hChild.GetParentType());

        if (!IsEnclosingNestedTypePair(hParent, hChild))
        {   // First, the parent type must enclose the child type.
            // If this is not the case we fail immediately.
            return false;
        }

        // Move up one in the inheritance chain, and try again.
        hChild = hParent;
    }

    // If the loop worked itself from the original hChild all the way
    // up to hBase, then we know that for every (hParent, hChild)
    // pair in the chain that hParent enclosed hChild, and so we know
    // that hBase encloses the original hChild
    return true;
}

//*******************************************************************************
BOOL MethodTableBuilder::TestOverrideForAccessibility(
    bmtMethodHandle hParentMethod,
    bmtTypeHandle   hChildType)
{
    STANDARD_VM_CONTRACT;

    bmtTypeHandle hParentType(hParentMethod.GetOwningType());

    Module * pParentModule = hParentType.GetModule();
    Module * pChildModule = hChildType.GetModule();

    Assembly * pParentAssembly = pParentModule->GetAssembly();
    Assembly * pChildAssembly = pChildModule->GetAssembly();

    BOOL isSameAssembly = (pChildAssembly == pParentAssembly);

    DWORD dwParentAttrs = hParentMethod.GetDeclAttrs();

    // AKA "strict bit". This means that overridability is tightly bound to accessibility.
    if (IsMdCheckAccessOnOverride(dwParentAttrs))
    {
        // Same Assembly
        if (isSameAssembly || pParentAssembly->GrantsFriendAccessTo(pChildAssembly, hParentMethod.GetMethodDesc())
            || pChildAssembly->IgnoresAccessChecksTo(pParentAssembly))
        {
            // Can always override any method that has accessibility greater than mdPrivate
            if ((dwParentAttrs & mdMemberAccessMask) > mdPrivate)
            {   // Fall through
            }
            // Generally, types cannot override inherited mdPrivate methods, except:
            // Types can access enclosing type's private members, so it can
            // override them if the nested type extends its enclosing type.
            else if ((dwParentAttrs & mdMemberAccessMask) == mdPrivate &&
                     IsBaseTypeAlsoEnclosingType(hParentType, hChildType))
            {   // Fall through
            }
            else
            {
                return FALSE;
            }
        }
        // Cross-Assembly
        else
        {
            // If the method marks itself as check visibility the the method must be
            // public, FamORAssem, or family
            if((dwParentAttrs & mdMemberAccessMask) <= mdAssem)
            {
                return FALSE;
            }
        }
    }
    return TRUE;
}

//*******************************************************************************
VOID MethodTableBuilder::TestOverRide(bmtMethodHandle hParentMethod,
                                      bmtMethodHandle hChildMethod)
{
    CONTRACTL {
        STANDARD_VM_CHECK;
        PRECONDITION(IsMdVirtual(hParentMethod.GetDeclAttrs()));
        PRECONDITION(IsMdVirtual(hChildMethod.GetDeclAttrs()));
    } CONTRACTL_END;

    DWORD dwAttrs = hChildMethod.GetDeclAttrs();
    DWORD dwParentAttrs = hParentMethod.GetDeclAttrs();

    Module *pModule = hChildMethod.GetOwningType().GetModule();
    Module *pParentModule = hParentMethod.GetOwningType().GetModule();

    Assembly *pAssembly = pModule->GetAssembly();
    Assembly *pParentAssembly = pParentModule->GetAssembly();

    BOOL isSameModule = (pModule == pParentModule);
    BOOL isSameAssembly = (pAssembly == pParentAssembly);

    if (!TestOverrideForAccessibility(hParentMethod, hChildMethod.GetOwningType()))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_MI_ACCESS_FAILURE, hChildMethod.GetMethodSignature().GetToken());
    }

    //
    // Refer to Partition II, 9.3.3 for more information on what is permitted.
    //

    enum WIDENING_STATUS
    {
        e_NO,       // NO
        e_YES,      // YES
        e_SA,       // YES, but only when same assembly
        e_NSA,      // YES, but only when NOT same assembly
        e_SM,       // YES, but only when same module
    };

    static_assert_no_msg(mdPrivateScope == 0x00);
    static_assert_no_msg(mdPrivate      == 0x01);
    static_assert_no_msg(mdFamANDAssem  == 0x02);
    static_assert_no_msg(mdAssem        == 0x03);
    static_assert_no_msg(mdFamily       == 0x04);
    static_assert_no_msg(mdFamORAssem   == 0x05);
    static_assert_no_msg(mdPublic       == 0x06);

    static const DWORD dwCount = mdPublic - mdPrivateScope + 1;
    static const WIDENING_STATUS rgWideningTable[dwCount][dwCount] =

    //               |        Base type
    // Subtype       |        mdPrivateScope  mdPrivate   mdFamANDAssem   mdAssem     mdFamily    mdFamORAssem    mdPublic
    // --------------+-------------------------------------------------------------------------------------------------------
    /*mdPrivateScope | */ { { e_SM,           e_NO,       e_NO,           e_NO,       e_NO,       e_NO,           e_NO    },
    /*mdPrivate      | */   { e_SM,           e_YES,      e_NO,           e_NO,       e_NO,       e_NO,           e_NO    },
    /*mdFamANDAssem  | */   { e_SM,           e_YES,      e_SA,           e_NO,       e_NO,       e_NO,           e_NO    },
    /*mdAssem        | */   { e_SM,           e_YES,      e_SA,           e_SA,       e_NO,       e_NO,           e_NO    },
    /*mdFamily       | */   { e_SM,           e_YES,      e_YES,          e_NO,       e_YES,      e_NSA,          e_NO    },
    /*mdFamORAssem   | */   { e_SM,           e_YES,      e_YES,          e_SA,       e_YES,      e_YES,          e_NO    },
    /*mdPublic       | */   { e_SM,           e_YES,      e_YES,          e_YES,      e_YES,      e_YES,          e_YES   } };

    DWORD idxParent = (dwParentAttrs & mdMemberAccessMask) - mdPrivateScope;
    DWORD idxMember = (dwAttrs & mdMemberAccessMask) - mdPrivateScope;
    CONSISTENCY_CHECK(idxParent < dwCount);
    CONSISTENCY_CHECK(idxMember < dwCount);

    WIDENING_STATUS entry = rgWideningTable[idxMember][idxParent];

    if (entry == e_NO ||
        (entry == e_SA && !isSameAssembly && !pParentAssembly->GrantsFriendAccessTo(pAssembly, hParentMethod.GetMethodDesc())
         && !pAssembly->IgnoresAccessChecksTo(pParentAssembly)) ||
        (entry == e_NSA && isSameAssembly) ||
        (entry == e_SM && !isSameModule)
       )
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_REDUCEACCESS, hChildMethod.GetMethodSignature().GetToken());
    }

    return;
}

//*******************************************************************************
VOID MethodTableBuilder::TestMethodImpl(
    bmtMethodHandle hDeclMethod,
    bmtMethodHandle hImplMethod)
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(!hDeclMethod.IsNull());
        PRECONDITION(!hImplMethod.IsNull());
    }
    CONTRACTL_END

    Module * pDeclModule = hDeclMethod.GetOwningType().GetModule();
    Module * pImplModule = hImplMethod.GetOwningType().GetModule();

    mdTypeDef tokDecl = hDeclMethod.GetMethodSignature().GetToken();
    mdTypeDef tokImpl = hImplMethod.GetMethodSignature().GetToken();

    BOOL isSameModule = pDeclModule->Equals(pImplModule);

    IMDInternalImport *pIMDDecl = pDeclModule->GetMDImport();
    IMDInternalImport *pIMDImpl = pImplModule->GetMDImport();

    DWORD dwDeclAttrs;
    if (FAILED(pIMDDecl->GetMethodDefProps(tokDecl, &dwDeclAttrs)))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
    }
    DWORD dwImplAttrs;
    if (FAILED(pIMDImpl->GetMethodDefProps(tokImpl, &dwImplAttrs)))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
    }
    
    HRESULT hr = COR_E_TYPELOAD;

    if (!IsMdVirtual(dwDeclAttrs))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_MI_NONVIRTUAL_DECL);
    }
    if (!IsMdVirtual(dwImplAttrs))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_MI_MUSTBEVIRTUAL);
    }
    // Virtual methods cannot be static
    if (IsMdStatic(dwDeclAttrs))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_STATICVIRTUAL);
    }
    if (IsMdStatic(dwImplAttrs))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_STATICVIRTUAL);
    }
    if (IsMdFinal(dwDeclAttrs))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_MI_FINAL_DECL);
    }

    // Interface method body that has methodimpl should always be final
    if (IsInterface() && !IsMdFinal(dwImplAttrs))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_MI_FINAL_IMPL);
    }

    // Since MethodImpl's do not affect the visibility of the Decl method, there's
    // no need to check.

    // If Decl's parent is other than this class, Decl must not be private
    mdTypeDef tkImplParent = mdTypeDefNil;
    mdTypeDef tkDeclParent = mdTypeDefNil;

    if (FAILED(hr = pIMDDecl->GetParentToken(tokDecl, &tkDeclParent)))
    {
        BuildMethodTableThrowException(hr, *bmtError);
    }
    if (FAILED(hr = pIMDImpl->GetParentToken(tokImpl, &tkImplParent)))
    {
        BuildMethodTableThrowException(hr, *bmtError);
    }

    // Make sure that we test for accessibility restrictions only if the decl is
    // not within our own type, as we are allowed to methodImpl a private with the
    // strict bit set if it is in our own type.
    if (!isSameModule || tkDeclParent != tkImplParent)
    {
        if (!TestOverrideForAccessibility(hDeclMethod, hImplMethod.GetOwningType()))
        {
            BuildMethodTableThrowException(IDS_CLASSLOAD_MI_ACCESS_FAILURE, tokImpl);
        }

        // Decl's parent must not be tdSealed
        mdToken tkGrandParentDummyVar;
        DWORD dwDeclTypeAttrs;
        if (FAILED(hr = pIMDDecl->GetTypeDefProps(tkDeclParent, &dwDeclTypeAttrs, &tkGrandParentDummyVar)))
        {
            BuildMethodTableThrowException(hr, *bmtError);
        }
        if (IsTdSealed(dwDeclTypeAttrs))
        {
            BuildMethodTableThrowException(IDS_CLASSLOAD_MI_SEALED_DECL);
        }
    }
    
    return;
}


//*******************************************************************************
//
// Used by BuildMethodTable
//
VOID
MethodTableBuilder::ValidateMethods()
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;

        PRECONDITION(CheckPointer(this));
        PRECONDITION(CheckPointer(bmtInternal));
        PRECONDITION(CheckPointer(bmtMetaData));
        PRECONDITION(CheckPointer(bmtError));
        PRECONDITION(CheckPointer(bmtProp));
        PRECONDITION(CheckPointer(bmtInterface));
        PRECONDITION(CheckPointer(bmtParent));
        PRECONDITION(CheckPointer(bmtMFDescs));
        PRECONDITION(CheckPointer(bmtEnumFields));
        PRECONDITION(CheckPointer(bmtMethodImpl));
        PRECONDITION(CheckPointer(bmtVT));
    }
    CONTRACTL_END;

    // Used to keep track of located default and type constructors.
    CONSISTENCY_CHECK(bmtVT->pCCtor == NULL);
    CONSISTENCY_CHECK(bmtVT->pDefaultCtor == NULL);

    // Fetch the hard-coded signatures for the type constructor and the
    // default constructor and create MethodSignature objects for both at
    // the method level so this does not happen for every specialname
    // method.

    Signature sig;
    
    sig = MscorlibBinder::GetSignature(&gsig_SM_RetVoid);

    MethodSignature cctorSig(MscorlibBinder::GetModule(),
                             COR_CCTOR_METHOD_NAME,
                             sig.GetRawSig(), sig.GetRawSigLen());

    sig = MscorlibBinder::GetSignature(&gsig_IM_RetVoid);

    MethodSignature defaultCtorSig(MscorlibBinder::GetModule(),
                                   COR_CTOR_METHOD_NAME,
                                   sig.GetRawSig(), sig.GetRawSigLen());

    Module * pModule = GetModule();
    DeclaredMethodIterator it(*this);
    while (it.Next())
    {
        // The RVA is only valid/testable if it has not been overwritten
        // for something like edit-and-continue
        // Complete validation of non-zero RVAs is done later inside MethodDesc::GetILHeader.
        if ((it.RVA() == 0) && (pModule->GetDynamicIL(it.Token(), FALSE) == NULL))
        {
            // for IL code that is implemented here must have a valid code RVA
            // this came up due to a linker bug where the ImplFlags/DescrOffset were
            // being set to null and we weren't coping with it
            if((IsMiIL(it.ImplFlags()) || IsMiOPTIL(it.ImplFlags())) &&
                   !IsMdAbstract(it.Attrs()) &&
                   !IsReallyMdPinvokeImpl(it.Attrs()) &&
                !IsMiInternalCall(it.ImplFlags()))
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_MISSINGMETHODRVA, it.Token());
            }
        }

        if (IsMdRTSpecialName(it.Attrs()))
        {
            if (IsMdVirtual(it.Attrs()))
            {   // Virtual specialname methods are illegal
                BuildMethodTableThrowException(IDS_CLASSLOAD_GENERAL);
            }

            // Constructors (.ctor) and class initialisers (.cctor) are special
            const MethodSignature &curSig(it->GetMethodSignature());

            if (IsMdStatic(it.Attrs()))
            {   // The only rtSpecialName static method allowed is the .cctor
                if (!curSig.ExactlyEqual(cctorSig))
                {   // Bad method
                    BuildMethodTableThrowException(IDS_CLASSLOAD_GENERAL);
                }

                // Remember it for later
                bmtVT->pCCtor = *it;
            }
            else
            {
                if(!MethodSignature::NamesEqual(curSig, defaultCtorSig))
                {   // The only rtSpecialName instance methods allowed are .ctors
                    BuildMethodTableThrowException(IDS_CLASSLOAD_GENERAL);
                }

                // .ctor must return void
                MetaSig methodMetaSig(curSig.GetSignature(),
                                        static_cast<DWORD>(curSig.GetSignatureLength()),
                                        curSig.GetModule(),
                                        NULL);

                if (methodMetaSig.GetReturnType() != ELEMENT_TYPE_VOID)
                {   // All constructors must have a void return type
                    BuildMethodTableThrowException(IDS_CLASSLOAD_GENERAL);
                }

                // See if this is a default constructor.  If so, remember it for later.
                if (curSig.ExactlyEqual(defaultCtorSig))
                {
                    bmtVT->pDefaultCtor = *it;
                }
            }
        }

        // Make sure that fcalls have a 0 rva.  This is assumed by the prejit fixup logic
        if (it.MethodType() == METHOD_TYPE_FCALL && it.RVA() != 0)
        {
            BuildMethodTableThrowException(BFA_ECALLS_MUST_HAVE_ZERO_RVA, it.Token());
        }

        // check for proper use of the Managed and native flags
        if (IsMiManaged(it.ImplFlags()))
        {
            if (IsMiIL(it.ImplFlags()) || IsMiRuntime(it.ImplFlags())) // IsMiOPTIL(it.ImplFlags()) no longer supported
            {
                // No need to set code address, pre stub used automatically.
            }
            else
            {
                if (IsMiNative(it.ImplFlags()))
                {
                    // For now simply disallow managed native code if you turn this on you have to at least
                    // insure that we have SkipVerificationPermission or equivalent
                    BuildMethodTableThrowException(BFA_MANAGED_NATIVE_NYI, it.Token());
                }
                else
                {
                    BuildMethodTableThrowException(BFA_BAD_IMPL_FLAGS, it.Token());
                }
            }
        }
        else
        {
            if (IsMiNative(it.ImplFlags()) && IsGlobalClass())
            {
                // global function unmanaged entrypoint via IJW thunk was handled
                // above.
            }
            else
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_BAD_UNMANAGED_RVA, it.Token());
            }
            if (it.MethodType() != METHOD_TYPE_NDIRECT)
            {
                BuildMethodTableThrowException(BFA_BAD_UNMANAGED_ENTRY_POINT);
            }
        }

        // Vararg methods are not allowed inside generic classes
        // and nor can they be generic methods.
        if (bmtGenerics->GetNumGenericArgs() > 0 || (it.MethodType() == METHOD_TYPE_INSTANTIATED) )
        {
            DWORD cMemberSignature;
            PCCOR_SIGNATURE pMemberSignature = it.GetSig(&cMemberSignature);
            // We've been trying to avoid asking for the signature - now we need it
            if (pMemberSignature == NULL)
            {
                pMemberSignature = it.GetSig(&cMemberSignature);
            }

            if (MetaSig::IsVarArg(pModule, Signature(pMemberSignature, cMemberSignature)))
            {
                BuildMethodTableThrowException(BFA_GENCODE_NOT_BE_VARARG);
            }
        }

        if (IsMdVirtual(it.Attrs()) && IsMdPublic(it.Attrs()) && it.Name() == NULL)
        {
            BuildMethodTableThrowException(IDS_CLASSLOAD_NOMETHOD_NAME);
        }

        if (it.IsMethodImpl())
        {
            if (!IsMdVirtual(it.Attrs()))
            {   // Non-virtual methods cannot participate in a methodImpl pair.
                BuildMethodTableThrowException(IDS_CLASSLOAD_MI_MUSTBEVIRTUAL, it.Token());
            }
        }

        // Virtual static methods are not allowed.
        if (IsMdStatic(it.Attrs()) && IsMdVirtual(it.Attrs()))
        {
            BuildMethodTableThrowException(IDS_CLASSLOAD_STATICVIRTUAL, it.Token());
        }
    }
}

//*******************************************************************************
// Essentially, this is a helper method that combines calls to InitMethodDesc and 
// SetSecurityFlagsOnMethod. It then assigns the newly initialized MethodDesc to 
// the bmtMDMethod.
VOID
MethodTableBuilder::InitNewMethodDesc(
    bmtMDMethod * pMethod,
    MethodDesc * pNewMD)
{
    STANDARD_VM_CONTRACT;

    //
    // First, set all flags that control layout of optional slots
    //
    pNewMD->SetClassification(GetMethodClassification(pMethod->GetMethodType()));

    if (pMethod->GetMethodImplType() == METHOD_IMPL)
        pNewMD->SetHasMethodImplSlot();

    if (pMethod->GetSlotIndex() >= bmtVT->cVtableSlots)
        pNewMD->SetHasNonVtableSlot();

    if (NeedsNativeCodeSlot(pMethod))
        pNewMD->SetHasNativeCodeSlot();

    // Now we know the classification we can allocate the correct type of
    // method desc and perform any classification specific initialization.

    LPCSTR pName = pMethod->GetMethodSignature().GetName();
    if (pName == NULL)
    {
        if (FAILED(GetMDImport()->GetNameOfMethodDef(pMethod->GetMethodSignature().GetToken(), &pName)))
        {
            BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
        }
    }
    
#ifdef _DEBUG 
    LPCUTF8 pszDebugMethodName;
    if (FAILED(GetMDImport()->GetNameOfMethodDef(pMethod->GetMethodSignature().GetToken(), &pszDebugMethodName)))
    {
        pszDebugMethodName = "Invalid MethodDef record";
    }
    S_SIZE_T safeLen = S_SIZE_T(strlen(pszDebugMethodName)) + S_SIZE_T(1);
    if(safeLen.IsOverflow())
        COMPlusThrowHR(COR_E_OVERFLOW);

    size_t len = safeLen.Value();
    LPCUTF8 pszDebugMethodNameCopy = (char*) AllocateFromLowFrequencyHeap(safeLen);
    strcpy_s((char *) pszDebugMethodNameCopy, len, pszDebugMethodName);
#endif // _DEBUG

    // Do the init specific to each classification of MethodDesc & assign some common fields
    InitMethodDesc(pNewMD,
                   GetMethodClassification(pMethod->GetMethodType()),
                   pMethod->GetMethodSignature().GetToken(),
                   pMethod->GetImplAttrs(),
                   pMethod->GetDeclAttrs(),
                   FALSE,
                   pMethod->GetRVA(),
                   GetMDImport(),
                   pName
                   COMMA_INDEBUG(pszDebugMethodNameCopy)
                   COMMA_INDEBUG(GetDebugClassName())
                   COMMA_INDEBUG("") // FIX this happens on global methods, give better info
                  );

    pMethod->SetMethodDesc(pNewMD);

    bmtRTMethod * pParentMethod = NULL;

    if (HasParent())
    {
        SLOT_INDEX idx = pMethod->GetSlotIndex();
        CONSISTENCY_CHECK(idx != INVALID_SLOT_INDEX);

        if (idx < GetParentMethodTable()->GetNumVirtuals())
        {
            pParentMethod = (*bmtParent->pSlotTable)[idx].Decl().AsRTMethod();
        }
    }

    // Turn off inlining for any calls
    // that are marked in the metadata as not being inlineable.
    if(IsMiNoInlining(pMethod->GetImplAttrs()))
    {
        pNewMD->SetNotInline(true);
    }

    // Check for methods marked as [Intrinsic]
    if (GetModule()->IsSystem() || GetAssembly()->IsSIMDVectorAssembly())
    {
        HRESULT hr = GetMDImport()->GetCustomAttributeByName(pMethod->GetMethodSignature().GetToken(),
            g_CompilerServicesIntrinsicAttribute,
            NULL,
            NULL);

        if (hr == S_OK || bmtProp->fIsHardwareIntrinsic)
        {
            pNewMD->SetIsJitIntrinsic();
        }

    }

    pNewMD->SetSlot(pMethod->GetSlotIndex());
}

//*******************************************************************************
// Determine vtable placement for each non-virtual in the class, while also
// looking for default and type constructors.
VOID
MethodTableBuilder::PlaceNonVirtualMethods()
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;

        PRECONDITION(CheckPointer(this));
        PRECONDITION(CheckPointer(bmtInternal));
        PRECONDITION(CheckPointer(bmtMetaData));
        PRECONDITION(CheckPointer(bmtError));
        PRECONDITION(CheckPointer(bmtProp));
        PRECONDITION(CheckPointer(bmtInterface));
        PRECONDITION(CheckPointer(bmtParent));
        PRECONDITION(CheckPointer(bmtMFDescs));
        PRECONDITION(CheckPointer(bmtEnumFields));
        PRECONDITION(CheckPointer(bmtMethodImpl));
        PRECONDITION(CheckPointer(bmtVT));
    }
    CONTRACTL_END;

    INDEBUG(bmtVT->SealVirtualSlotSection();)

    //
    // For each non-virtual method, place the method in the next available non-virtual method slot.
    //

    // Place the cctor and default ctor first. code::MethodTableGetCCtorSlot and code:MethodTable::GetDefaultCtorSlot 
    // depends on this.
    if (bmtVT->pCCtor != NULL)
    {
        if (!bmtVT->AddNonVirtualMethod(bmtVT->pCCtor))
            BuildMethodTableThrowException(IDS_CLASSLOAD_TOO_MANY_METHODS);
    }

    if (bmtVT->pDefaultCtor != NULL)
    {
        if (!bmtVT->AddNonVirtualMethod(bmtVT->pDefaultCtor))
            BuildMethodTableThrowException(IDS_CLASSLOAD_TOO_MANY_METHODS);
    }

    // We use slot during remoting and to map methods between generic instantiations
    // (see MethodTable::GetParallelMethodDesc). The current implementation
    // of this mechanism requires real slots.
    BOOL fCanHaveNonVtableSlots = (bmtGenerics->GetNumGenericArgs() == 0) && !IsInterface();

    // Flag to avoid second pass when possible
    BOOL fHasNonVtableSlots = FALSE;

    //
    // Place all methods that require real vtable slot first. This is necessary so
    // that they get consequitive slot numbers right after virtual slots.
    //

    DeclaredMethodIterator it(*this);
    while (it.Next())
    {
        // Skip methods that are placed already
        if (it->GetSlotIndex() != INVALID_SLOT_INDEX)
            continue;

#ifdef _DEBUG 
        if(GetHalfBakedClass()->m_fDebuggingClass && g_pConfig->ShouldBreakOnMethod(it.Name()))
            CONSISTENCY_CHECK_MSGF(false, ("BreakOnMethodName: '%s' ", it.Name()));
#endif // _DEBUG

        if (!fCanHaveNonVtableSlots ||
            it->GetMethodType() == METHOD_TYPE_INSTANTIATED)
        {
            // We use slot during remoting and to map methods between generic instantiations
            // (see MethodTable::GetParallelMethodDesc). The current implementation
            // of this mechanism requires real slots.
        }
        else
        {
            // This method does not need real vtable slot
            fHasNonVtableSlots = TRUE;
            continue;
        }

        // This will update slot index in bmtMDMethod
        if (!bmtVT->AddNonVirtualMethod(*it))
            BuildMethodTableThrowException(IDS_CLASSLOAD_TOO_MANY_METHODS);
    }

    // Remeber last real vtable slot
    bmtVT->cVtableSlots = bmtVT->cTotalSlots;

    // Are there any Non-vtable slots to place?
    if (!fHasNonVtableSlots)
        return;

    //
    // Now, place the remaining methods. They will get non-vtable slot.
    //

    DeclaredMethodIterator it2(*this);
    while (it2.Next())
    {
        // Skip methods that are placed already
        if (it2->GetSlotIndex() != INVALID_SLOT_INDEX)
            continue;

        if (!bmtVT->AddNonVirtualMethod(*it2))
            BuildMethodTableThrowException(IDS_CLASSLOAD_TOO_MANY_METHODS);
    }

}

//*******************************************************************************
// Determine vtable placement for each virtual member in this class.
VOID
MethodTableBuilder::PlaceVirtualMethods()
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;

        PRECONDITION(CheckPointer(this));
        PRECONDITION(CheckPointer(bmtInternal));
        PRECONDITION(CheckPointer(bmtMetaData));
        PRECONDITION(CheckPointer(bmtError));
        PRECONDITION(CheckPointer(bmtProp));
        PRECONDITION(CheckPointer(bmtInterface));
        PRECONDITION(CheckPointer(bmtParent));
        PRECONDITION(CheckPointer(bmtMFDescs));
        PRECONDITION(CheckPointer(bmtEnumFields));
        PRECONDITION(CheckPointer(bmtMethodImpl));
        PRECONDITION(CheckPointer(bmtVT));
    }
    CONTRACTL_END;

#ifdef _DEBUG 
    LPCUTF8 pszDebugName, pszDebugNamespace;
    if (FAILED(GetMDImport()->GetNameOfTypeDef(GetCl(), &pszDebugName, &pszDebugNamespace)))
    {
        pszDebugName = pszDebugNamespace = "Invalid TypeDef record";
    }
#endif // _DEBUG

    //
    // For each virtual method
    //  - If the method is not declared as newslot, search all virtual methods in the parent
    //    type for an override candidate.
    //      - If such a candidate is found, test to see if the override is valid. If
    //        the override is not valid, throw TypeLoadException
    //  - If a candidate is found above, place the method in the inherited slot as both
    //    the Decl and the Impl.
    //  - Else, place the method in the next available empty vtable slot.
    //

    DeclaredMethodIterator it(*this);
    while (it.Next())
    {
        if (!IsMdVirtual(it.Attrs()))
        {   // Only processing declared virtual methods
            continue;
        }

#ifdef _DEBUG 
        if(GetHalfBakedClass()->m_fDebuggingClass && g_pConfig->ShouldBreakOnMethod(it.Name()))
            CONSISTENCY_CHECK_MSGF(false, ("BreakOnMethodName: '%s' ", it.Name()));
#endif // _DEBUG

        // If this member is a method which overrides a parent method, it will be set to non-NULL
        bmtRTMethod * pParentMethod = NULL;

        // Hash that a method with this name exists in this class
        // Note that ctors and static ctors are not added to the table
        BOOL fMethodConstraintsMatch = FALSE;

        // If the member is marked with a new slot we do not need to find it in the parent
        if (HasParent() && !IsMdNewSlot(it.Attrs()))
        {
            // Attempt to find the method with this name and signature in the parent class.
            // This method may or may not create pParentMethodHash (if it does not already exist).
            // It also may or may not fill in pMemberSignature/cMemberSignature.
            // An error is only returned when we can not create the hash.
            // NOTE: This operation touches metadata
            pParentMethod = LoaderFindMethodInParentClass(
                it->GetMethodSignature(), bmtProp->fNoSanityChecks ? NULL : &fMethodConstraintsMatch);

            if (pParentMethod != NULL)
            {   // Found an override candidate
                DWORD dwParentAttrs = pParentMethod->GetDeclAttrs();

                if (!IsMdVirtual(dwParentAttrs))
                {   // Can't override a non-virtual methods
                    BuildMethodTableThrowException(BFA_NONVIRT_NO_SEARCH, it.Token());
                }

                if(IsMdFinal(dwParentAttrs))
                {   // Can't override a final methods
                    BuildMethodTableThrowException(IDS_CLASSLOAD_MI_FINAL_DECL, it.Token());
                }

                if(!bmtProp->fNoSanityChecks)
                {
                    TestOverRide(bmtMethodHandle(pParentMethod),
                                 bmtMethodHandle(*it));

                    if (!fMethodConstraintsMatch)
                    {
                        BuildMethodTableThrowException(
                                IDS_CLASSLOAD_CONSTRAINT_MISMATCH_ON_IMPLICIT_OVERRIDE,
                                it.Token());
                    }
                }
            }
        }

        // vtable method
        if (IsInterface())
        {
            CONSISTENCY_CHECK(pParentMethod == NULL);
            // Also sets new slot number on bmtRTMethod and MethodDesc
            if (!bmtVT->AddVirtualMethod(*it))
                BuildMethodTableThrowException(IDS_CLASSLOAD_TOO_MANY_METHODS);
        }
        else if (pParentMethod != NULL)
        {
            bmtVT->SetVirtualMethodOverride(pParentMethod->GetSlotIndex(), *it);
        }
        else
        {
            if (!bmtVT->AddVirtualMethod(*it))
                BuildMethodTableThrowException(IDS_CLASSLOAD_TOO_MANY_METHODS);
        }
    }
}

// Given an interface map entry, and a name+signature, compute the method on the interface
// that the name+signature corresponds to. Used by ProcessMethodImpls and ProcessInexactMethodImpls
// Always returns the first match that it finds. Affects the ambiguities in code:#ProcessInexactMethodImpls_Ambiguities
MethodTableBuilder::bmtMethodHandle 
MethodTableBuilder::FindDeclMethodOnInterfaceEntry(bmtInterfaceEntry *pItfEntry, MethodSignature &declSig)
{
    STANDARD_VM_CONTRACT;

    bmtMethodHandle declMethod;

    bmtInterfaceEntry::InterfaceSlotIterator slotIt =
        pItfEntry->IterateInterfaceSlots(GetStackingAllocator());
    // Check for exact match
    for (; !slotIt.AtEnd(); slotIt.Next())
    {
        bmtRTMethod * pCurDeclMethod = slotIt->Decl().AsRTMethod();

        if (declSig.ExactlyEqual(pCurDeclMethod->GetMethodSignature()))
        {
            declMethod = slotIt->Decl();
            break;
        }
    }
    slotIt.ResetToStart();

    // Check for equivalent match if exact match wasn't found
    if (declMethod.IsNull())
    {
        for (; !slotIt.AtEnd(); slotIt.Next())
        {
            bmtRTMethod * pCurDeclMethod = slotIt->Decl().AsRTMethod();

            // Type Equivalence is forbidden in MethodImpl MemberRefs
            if (declSig.Equivalent(pCurDeclMethod->GetMethodSignature()))
            {
                declMethod = slotIt->Decl();
                break;
            }
        }
    }

    return declMethod;
}

//*******************************************************************************
//
// Used by BuildMethodTable
// Process the list of inexact method impls generated during ProcessMethodImpls.
// This list is used to cause a methodImpl to an interface to override
// methods on several equivalent interfaces in the interface map. This logic is necessary
// so that in the presence of an embedded interface the behavior appears to mimic
// the behavior if the interface was not embedded.
//
// In particular, the logic here is to handle cases such as
//
//  Assembly A
// [TypeIdentifier("x","y")]
// interface I'
// {  void Method(); }
// interface IOther : I' {}
//
//  Assembly B
// [TypeIdentifier("x","y")]
// interface I
// {  void Method(); }
// class Test : I, IOther
// {
//     void I.Method()
//     {}
// }
// 
// In this case, there is one method, and one methodimpl, but there are 2 interfaces on the class that both
// require an implementation of their method. The correct semantic for type equivalence, is that any
// methodimpl directly targeting a method on an interface must be respected, and if it also applies to a type
// equivalent interface method, then if that method was not methodimpl'd directly, then the methodimpl should apply
// there as well. The ProcessInexactMethodImpls function does this secondary MethodImpl mapping.
//
//#ProcessInexactMethodImpls_Ambiguities
// In the presence of ambiguities, such as there are 3 equivalent interfaces implemented on a class and 2 methodimpls,
// we will apply the 2 method impls exactly to appropriate interface methods, and arbitrarily pick one to apply to the
// other interface. This is clearly ambiguous, but tricky to detect in the type loader efficiently, and should hopefully
// not cause too many problems.
//
VOID
MethodTableBuilder::ProcessInexactMethodImpls()
{
    STANDARD_VM_CONTRACT;

    if (bmtMethod->dwNumberInexactMethodImplCandidates == 0)
        return;

    DeclaredMethodIterator it(*this);
    while (it.Next())
    {
        // Non-virtual methods cannot be classified as methodImpl - we should have thrown an
        // error before reaching this point.
        CONSISTENCY_CHECK(!(!IsMdVirtual(it.Attrs()) && it.IsMethodImpl()));

        if (!IsMdVirtual(it.Attrs()))
        {   // Only virtual methods can participate in methodImpls
            continue;
        }

        if(!it.IsMethodImpl())
        {
            // Skip methods which are not the bodies of MethodImpl specifications
            continue;
        }

        // If this method serves as the BODY of a MethodImpl specification, then
        // we should iterate all the MethodImpl's for this class and see just how many
        // of them this method participates in as the BODY.
        for(DWORD m = 0; m < bmtMethod->dwNumberMethodImpls; m++)
        {
            // Inexact matching logic only works on MethodImpls that have been opted into inexactness by ProcessMethodImpls.
            if (!bmtMetaData->rgMethodImplTokens[m].fConsiderDuringInexactMethodImplProcessing)
            {
                continue;
            }

            // If the methodimpl we are working with does not match this method, continue to next methodimpl
            if(it.Token() != bmtMetaData->rgMethodImplTokens[m].methodBody)
            {
                continue;
            }

            bool fMatchFound = false;

            LPCUTF8 szName = NULL;
            PCCOR_SIGNATURE pSig = NULL;
            ULONG cbSig;

            mdToken mdDecl = bmtMetaData->rgMethodImplTokens[m].methodDecl;
            
            if (TypeFromToken(mdDecl) == mdtMethodDef)
            {   // Different methods are aused to access MethodDef and MemberRef
                // names and signatures.
                if (FAILED(GetMDImport()->GetNameOfMethodDef(mdDecl, &szName)) || 
                    FAILED(GetMDImport()->GetSigOfMethodDef(mdDecl, &cbSig, &pSig)))
                {
                    BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
                }
            }
            else
            {
                if (FAILED(GetMDImport()->GetNameAndSigOfMemberRef(mdDecl, &pSig, &cbSig, &szName)))
                {
                    BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
                }
            }

            Substitution *pDeclSubst = &bmtMetaData->pMethodDeclSubsts[m];
            MethodSignature declSig(GetModule(), szName, pSig, cbSig, pDeclSubst);
            bmtInterfaceEntry * pItfEntry = NULL;

            for (DWORD i = 0; i < bmtInterface->dwInterfaceMapSize; i++)
            {
                if (bmtInterface->pInterfaceMap[i].GetInterfaceEquivalenceSet() != bmtMetaData->rgMethodImplTokens[m].interfaceEquivalenceSet)
                    continue;

                bmtMethodHandle declMethod;
                pItfEntry = &bmtInterface->pInterfaceMap[i];

                // Search for declmethod on this interface
                declMethod = FindDeclMethodOnInterfaceEntry(pItfEntry, declSig);

                // If we didn't find a match, continue on to next interface in the equivalence set
                if (declMethod.IsNull())
                    continue;

                if (!IsMdVirtual(declMethod.GetDeclAttrs()))
                {   // Make sure the decl is virtual
                    BuildMethodTableThrowException(IDS_CLASSLOAD_MI_MUSTBEVIRTUAL, it.Token());
                }

                fMatchFound = true;

                bool fPreexistingImplFound = false;

                // Check to ensure there isn't already a matching declMethod in the method impl list
                for (DWORD iMethodImpl = 0; iMethodImpl < bmtMethodImpl->pIndex; iMethodImpl++)
                {
                    if (bmtMethodImpl->GetDeclarationMethod(iMethodImpl) == declMethod)
                    {
                        fPreexistingImplFound = true;
                        break;
                    }
                }

                // Search for other matches
                if (fPreexistingImplFound)
                    continue;

                // Otherwise, record the method impl discovery if the match is 
                bmtMethodImpl->AddMethodImpl(*it, declMethod, bmtMetaData->rgMethodImplTokens[m].methodDecl, GetStackingAllocator());
            }

            if (!fMatchFound && bmtMetaData->rgMethodImplTokens[m].fThrowIfUnmatchedDuringInexactMethodImplProcessing)
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_MI_DECLARATIONNOTFOUND, it.Token());
            }
        }
    }
}

//*******************************************************************************
//
// Used by BuildMethodTable
//
VOID
MethodTableBuilder::ProcessMethodImpls()
{
    STANDARD_VM_CONTRACT;

    if (bmtMethod->dwNumberMethodImpls == 0)
        return;

    HRESULT hr = S_OK;

    DeclaredMethodIterator it(*this);
    while (it.Next())
    {
        // Non-virtual methods cannot be classified as methodImpl - we should have thrown an
        // error before reaching this point.
        CONSISTENCY_CHECK(!(!IsMdVirtual(it.Attrs()) && it.IsMethodImpl()));

        if (!IsMdVirtual(it.Attrs()))
        {   // Only virtual methods can participate in methodImpls
            continue;
        }

        // If this method serves as the BODY of a MethodImpl specification, then
        // we should iterate all the MethodImpl's for this class and see just how many
        // of them this method participates in as the BODY.
        if(it.IsMethodImpl())
        {
            for(DWORD m = 0; m < bmtMethod->dwNumberMethodImpls; m++)
            {
                if(it.Token() == bmtMetaData->rgMethodImplTokens[m].methodBody)
                {
                    mdToken mdDecl = bmtMetaData->rgMethodImplTokens[m].methodDecl;
                    bmtMethodHandle declMethod;

                    // Get the parent token for the decl method token
                    mdToken tkParent = mdTypeDefNil;
                    if (TypeFromToken(mdDecl) == mdtMethodDef || TypeFromToken(mdDecl) == mdtMemberRef)
                    {
                        if (FAILED(hr = GetMDImport()->GetParentToken(mdDecl,&tkParent)))
                        {
                            BuildMethodTableThrowException(hr, *bmtError);
                        }
                    }

                    if (GetCl() == tkParent)
                    {   // The DECL has been declared within the class that we're currently building.
                        hr = S_OK;

                        if(bmtError->pThrowable != NULL)
                        {
                            *(bmtError->pThrowable) = NULL;
                        }

                        if(TypeFromToken(mdDecl) != mdtMethodDef)
                        {
                            if (FAILED(hr = FindMethodDeclarationForMethodImpl(
                                                mdDecl, &mdDecl, TRUE)))
                            {
                                BuildMethodTableThrowException(hr, *bmtError);
                            }
                        }

                        CONSISTENCY_CHECK(TypeFromToken(mdDecl) == mdtMethodDef);
                        declMethod = bmtMethod->FindDeclaredMethodByToken(mdDecl);
                    }
                    else
                    {   // We can't call GetDescFromMemberDefOrRef here because this
                        // method depends on a fully-loaded type, including parent types,
                        // which is not always guaranteed. In particular, it requires that
                        // the instantiation dictionary be filled. The solution is the following:
                        //   1. Load the approximate type that the method belongs to.
                        //   2. Get or create the correct substitution for the type involved
                        //   3. Iterate the introduced methods on that type looking for a matching
                        //      method.

                        LPCUTF8 szName = NULL;
                        PCCOR_SIGNATURE pSig = NULL;
                        ULONG cbSig;
                        if (TypeFromToken(mdDecl) == mdtMethodDef)
                        {   // Different methods are aused to access MethodDef and MemberRef
                            // names and signatures.
                            if (FAILED(GetMDImport()->GetNameOfMethodDef(mdDecl, &szName)) || 
                                FAILED(GetMDImport()->GetSigOfMethodDef(mdDecl, &cbSig, &pSig)))
                            {
                                BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
                            }
                        }
                        else
                        {
                            if (FAILED(GetMDImport()->GetNameAndSigOfMemberRef(mdDecl, &pSig, &cbSig, &szName)))
                            {
                                BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
                            }
                        }
                        
                        Substitution *pDeclSubst = &bmtMetaData->pMethodDeclSubsts[m];
                        MethodTable * pDeclMT = NULL;
                        MethodSignature declSig(GetModule(), szName, pSig, cbSig, pDeclSubst);

                        {   // 1. Load the approximate type.
                            // Block for the LoadsTypeViolation.
                            CONTRACT_VIOLATION(LoadsTypeViolation);
                            pDeclMT = ClassLoader::LoadTypeDefOrRefOrSpecThrowing(
                                GetModule(),
                                tkParent,
                                &bmtGenerics->typeContext,
                                ClassLoader::ThrowIfNotFound,
                                ClassLoader::PermitUninstDefOrRef,
                                ClassLoader::LoadTypes,
                                CLASS_LOAD_APPROXPARENTS,
                                TRUE).GetMethodTable()->GetCanonicalMethodTable();
                        }

                        {   // 2. Get or create the correct substitution
                            bmtRTType * pDeclType = NULL;

                            if (pDeclMT->IsInterface())
                            {   // If the declaration method is a part of an interface, search through
                                // the interface map to find the matching interface so we can provide
                                // the correct substitution chain.
                                pDeclType = NULL;

                                bmtInterfaceEntry * pItfEntry = NULL;
                                for (DWORD i = 0; i < bmtInterface->dwInterfaceMapSize; i++)
                                {
                                    bmtRTType * pCurItf = bmtInterface->pInterfaceMap[i].GetInterfaceType();
                                    // Type Equivalence is not respected for this comparision as you can have multiple type equivalent interfaces on a class
                                    TokenPairList newVisited = TokenPairList::AdjustForTypeEquivalenceForbiddenScope(NULL);
                                    if (MetaSig::CompareTypeDefsUnderSubstitutions(
                                        pCurItf->GetMethodTable(),      pDeclMT,
                                        &pCurItf->GetSubstitution(),    pDeclSubst,
                                        &newVisited))
                                    {
                                        pItfEntry = &bmtInterface->pInterfaceMap[i];
                                        pDeclType = pCurItf;
                                        break;
                                    }
                                }

                                if (IsInterface())
                                {
                                    if (pDeclType == NULL)
                                    {
                                        // Interface is not implemented by this type.
                                        BuildMethodTableThrowException(IDS_CLASSLOAD_MI_NOTIMPLEMENTED, it.Token());
                                    }
                                }
                                else
                                {
                                    if (pDeclType == NULL)
                                    {
                                        DWORD equivalenceSet = 0;

                                        for (DWORD i = 0; i < bmtInterface->dwInterfaceMapSize; i++)
                                        {
                                            bmtRTType * pCurItf = bmtInterface->pInterfaceMap[i].GetInterfaceType();
                                            // Type Equivalence is respected for this comparision as we just need to find an 
                                            // equivalent interface, the particular interface is unimportant
                                            if (MetaSig::CompareTypeDefsUnderSubstitutions(
                                                pCurItf->GetMethodTable(), pDeclMT,
                                                &pCurItf->GetSubstitution(), pDeclSubst,
                                                NULL))
                                            {
                                                equivalenceSet = bmtInterface->pInterfaceMap[i].GetInterfaceEquivalenceSet();
                                                pItfEntry = &bmtInterface->pInterfaceMap[i];
                                                break;
                                            }
                                        }

                                        if (equivalenceSet == 0)
                                        {
                                            // Interface is not implemented by this type.
                                            BuildMethodTableThrowException(IDS_CLASSLOAD_MI_NOTIMPLEMENTED, it.Token());
                                        }

                                        // Interface is not implemented by this type exactly. We need to consider this MethodImpl on non exact interface matches,
                                        // as the only match may be one of the non-exact matches
                                        bmtMetaData->rgMethodImplTokens[m].fConsiderDuringInexactMethodImplProcessing = true;
                                        bmtMetaData->rgMethodImplTokens[m].fThrowIfUnmatchedDuringInexactMethodImplProcessing = true;
                                        bmtMetaData->rgMethodImplTokens[m].interfaceEquivalenceSet = equivalenceSet;
                                        bmtMethod->dwNumberInexactMethodImplCandidates++;
                                        continue; // Move on to other MethodImpls
                                    }
                                    else
                                    {
                                        // This method impl may need to match other methods during inexact processing
                                        if (pItfEntry->InEquivalenceSetWithMultipleEntries())
                                        {
                                            bmtMetaData->rgMethodImplTokens[m].fConsiderDuringInexactMethodImplProcessing = true;
                                            bmtMetaData->rgMethodImplTokens[m].fThrowIfUnmatchedDuringInexactMethodImplProcessing = false;
                                            bmtMetaData->rgMethodImplTokens[m].interfaceEquivalenceSet = pItfEntry->GetInterfaceEquivalenceSet();
                                            bmtMethod->dwNumberInexactMethodImplCandidates++;
                                        }
                                    }
                                }

                                // 3. Find the matching method.
                                declMethod = FindDeclMethodOnInterfaceEntry(pItfEntry, declSig);
                            }
                            else
                            {   // Assume the MethodTable is a parent of the current type,
                                // and create the substitution chain to match it.

                                pDeclType = NULL;

                                for (bmtRTType *pCur = GetParentType();
                                     pCur != NULL;
                                     pCur = pCur->GetParentType())
                                {
                                    if (pCur->GetMethodTable() == pDeclMT)
                                    {
                                        pDeclType = pCur;
                                        break;
                                    }
                                }

                                if (pDeclType == NULL)
                                {   // Method's type is not a parent.
                                    BuildMethodTableThrowException(IDS_CLASSLOAD_MI_DECLARATIONNOTFOUND, it.Token());
                                }

                                // 3. Find the matching method.
                                bmtRTType *pCurDeclType = pDeclType;
                                do
                                {
                                    // two pass algorithm. search for exact matches followed
                                    // by equivalent matches.
                                    for (int iPass = 0; (iPass < 2) && (declMethod.IsNull()); iPass++)
                                    {
                                        MethodTable *pCurDeclMT = pCurDeclType->GetMethodTable();
    
                                        MethodTable::IntroducedMethodIterator methIt(pCurDeclMT);
                                        for(; methIt.IsValid(); methIt.Next())
                                        {
                                            MethodDesc * pCurMD = methIt.GetMethodDesc();
    
                                            if (pCurDeclMT != pDeclMT)
                                            {
                                                // If the method isn't on the declaring type, then it must be virtual.
                                                if (!pCurMD->IsVirtual())
                                                    continue;
                                            }
                                            if (strcmp(szName, pCurMD->GetName()) == 0)
                                            {
                                                PCCOR_SIGNATURE pCurMDSig;
                                                DWORD cbCurMDSig;
                                                pCurMD->GetSig(&pCurMDSig, &cbCurMDSig);

                                                // First pass searches for declaration methods should not use type equivalence
                                                TokenPairList newVisited = TokenPairList::AdjustForTypeEquivalenceForbiddenScope(NULL);

                                                if (MetaSig::CompareMethodSigs(
                                                    declSig.GetSignature(),
                                                    static_cast<DWORD>(declSig.GetSignatureLength()),
                                                    declSig.GetModule(),
                                                    &declSig.GetSubstitution(),
                                                    pCurMDSig,
                                                    cbCurMDSig,
                                                    pCurMD->GetModule(),
                                                    &pCurDeclType->GetSubstitution(),
                                                    iPass == 0 ? &newVisited : NULL))
                                                {
                                                    declMethod = (*bmtParent->pSlotTable)[pCurMD->GetSlot()].Decl();
                                                    break;
                                                }
                                            }
                                        }
                                    }

                                    pCurDeclType = pCurDeclType->GetParentType();
                                } while ((pCurDeclType != NULL) && (declMethod.IsNull()));
                            }

                            if (declMethod.IsNull())
                            {   // Would prefer to let this fall out to the BuildMethodTableThrowException
                                // below, but due to v2.0 and earlier behaviour throwing a MissingMethodException,
                                // primarily because this code used to be a simple call to
                                // MemberLoader::GetDescFromMemberDefOrRef (see above for reason why),
                                // we must continue to do the same.
                                MemberLoader::ThrowMissingMethodException(
                                    pDeclMT,
                                    declSig.GetName(),
                                    declSig.GetModule(),
                                    declSig.GetSignature(),
                                    static_cast<DWORD>(declSig.GetSignatureLength()),
                                    &bmtGenerics->typeContext);
                            }
                        }
                    }

                    if (declMethod.IsNull())
                    {   // Method not found, throw.
                        BuildMethodTableThrowException(IDS_CLASSLOAD_MI_DECLARATIONNOTFOUND, it.Token());
                    }
                    
                    if (!IsMdVirtual(declMethod.GetDeclAttrs()))
                    {   // Make sure the decl is virtual
                        BuildMethodTableThrowException(IDS_CLASSLOAD_MI_MUSTBEVIRTUAL, it.Token());
                    }

                    bmtMethodImpl->AddMethodImpl(*it, declMethod, mdDecl, GetStackingAllocator());
                }
            }
        }
    } /* end ... for each member */
}

//*******************************************************************************
// InitMethodDesc takes a pointer to space that's already allocated for the
// particular type of MethodDesc, and initializes based on the other info.
// This factors logic between PlaceMembers (the regular code path) & AddMethod
// (Edit & Continue (EnC) code path) so we don't have to maintain separate copies.
VOID 
MethodTableBuilder::InitMethodDesc(
    MethodDesc *        pNewMD, // This is should actually be of the correct sub-type, based on Classification
    DWORD               Classification,
    mdToken             tok,
    DWORD               dwImplFlags,
    DWORD               dwMemberAttrs,
    BOOL                fEnC,
    DWORD               RVA,        // Only needed for NDirect case
    IMDInternalImport * pIMDII,     // Needed for NDirect, EEImpl(Delegate) cases
    LPCSTR              pMethodName // Only needed for mcEEImpl (Delegate) case
    COMMA_INDEBUG(LPCUTF8 pszDebugMethodName)
    COMMA_INDEBUG(LPCUTF8 pszDebugClassName)
    COMMA_INDEBUG(LPCUTF8 pszDebugMethodSignature)
    )
{
    CONTRACTL
    {
        THROWS;
        if (fEnC) { GC_NOTRIGGER; } else { GC_TRIGGERS; }
        MODE_ANY;
    }
    CONTRACTL_END;

    LOG((LF_CORDB, LL_EVERYTHING, "EEC::IMD: pNewMD:0x%x for tok:0x%x (%s::%s)\n",
        pNewMD, tok, pszDebugClassName, pszDebugMethodName));

    // Now we know the classification we can perform any classification specific initialization.

    // The method desc is zero inited by the caller.

    switch (Classification)
    {
    case mcNDirect:
        {
            // NDirect specific initialization.
            NDirectMethodDesc *pNewNMD = (NDirectMethodDesc*)pNewMD;

            // Allocate writeable data
            pNewNMD->ndirect.m_pWriteableData.SetValue((NDirectWriteableData*)
                AllocateFromHighFrequencyHeap(S_SIZE_T(sizeof(NDirectWriteableData))));

#ifdef HAS_NDIRECT_IMPORT_PRECODE 
            pNewNMD->ndirect.m_pImportThunkGlue.SetValue(Precode::Allocate(PRECODE_NDIRECT_IMPORT, pNewMD,
                GetLoaderAllocator(), GetMemTracker())->AsNDirectImportPrecode());
#else // !HAS_NDIRECT_IMPORT_PRECODE
            pNewNMD->GetNDirectImportThunkGlue()->Init(pNewNMD);
#endif // !HAS_NDIRECT_IMPORT_PRECODE

#if defined(_TARGET_X86_)
            pNewNMD->ndirect.m_cbStackArgumentSize = 0xFFFF;
#endif // defined(_TARGET_X86_)

            // If the RVA of a native method is set, this is an early-bound IJW call
            if (RVA != 0 && IsMiUnmanaged(dwImplFlags) && IsMiNative(dwImplFlags))
            {
                // Note that we cannot initialize the stub directly now in the general case,
                // as LoadLibrary may not have been performed yet.
                pNewNMD->SetIsEarlyBound();
            }

            pNewNMD->GetWriteableData()->m_pNDirectTarget = pNewNMD->GetNDirectImportThunkGlue()->GetEntrypoint();
        }
        break;

    case mcFCall:
        break;

    case mcEEImpl:
        // For the Invoke method we will set a standard invoke method.
        BAD_FORMAT_NOTHROW_ASSERT(IsDelegate());

        // For the asserts, either the pointer is NULL (since the class hasn't
        // been constructed yet), or we're in EnC mode, meaning that the class
        // does exist, but we may be re-assigning the field to point to an
        // updated MethodDesc

        // It is not allowed for EnC to replace one of the runtime builtin methods

        if (strcmp(pMethodName, "Invoke") == 0)
        {
            BAD_FORMAT_NOTHROW_ASSERT(((DelegateEEClass*)GetHalfBakedClass())->m_pInvokeMethod.IsNull());
            ((DelegateEEClass*)GetHalfBakedClass())->m_pInvokeMethod.SetValue(pNewMD);
        }
        else if (strcmp(pMethodName, "BeginInvoke") == 0)
        {
            BAD_FORMAT_NOTHROW_ASSERT(((DelegateEEClass*)GetHalfBakedClass())->m_pBeginInvokeMethod.IsNull());
            ((DelegateEEClass*)GetHalfBakedClass())->m_pBeginInvokeMethod.SetValue(pNewMD);
        }
        else if (strcmp(pMethodName, "EndInvoke") == 0)
        {
            BAD_FORMAT_NOTHROW_ASSERT(((DelegateEEClass*)GetHalfBakedClass())->m_pEndInvokeMethod.IsNull());
            ((DelegateEEClass*)GetHalfBakedClass())->m_pEndInvokeMethod.SetValue(pNewMD);
        }
        else
        {
            BuildMethodTableThrowException(IDS_CLASSLOAD_GENERAL);
        }

        // StoredSig specific intialization
        {
            StoredSigMethodDesc *pNewSMD = (StoredSigMethodDesc*) pNewMD;;
            DWORD cSig;
            PCCOR_SIGNATURE pSig;
            if (FAILED(pIMDII->GetSigOfMethodDef(tok, &cSig, &pSig)))
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
            }
            pNewSMD->SetStoredMethodSig(pSig, cSig);
        }
        break;

#ifdef FEATURE_COMINTEROP
    case mcComInterop:
#endif // FEATURE_COMINTEROP
    case mcIL:
        break;

    case mcInstantiated:
#ifdef EnC_SUPPORTED 
        if (fEnC)
        {
            // We reuse the instantiated methoddescs to get the slot
            InstantiatedMethodDesc* pNewIMD = (InstantiatedMethodDesc*) pNewMD;
            pNewIMD->SetupEnCAddedMethod();
        }
        else
#endif // EnC_SUPPORTED
        {
            // Initialize the typical instantiation.
            InstantiatedMethodDesc* pNewIMD = (InstantiatedMethodDesc*) pNewMD;
            //data has the same lifetime as method table, use our allocator
            pNewIMD->SetupGenericMethodDefinition(pIMDII, GetLoaderAllocator(), GetMemTracker(), GetModule(),
                                                  tok);
        }
        break;

    default:
        BAD_FORMAT_NOTHROW_ASSERT(!"Failed to set a method desc classification");
    }

    // Check the method desc's classification.
    _ASSERTE(pNewMD->GetClassification() == Classification);

    pNewMD->SetMemberDef(tok);

    if (IsMdStatic(dwMemberAttrs))
        pNewMD->SetStatic();

    // Set suppress unmanaged code access permission attribute

    if (pNewMD->IsNDirect())
        pNewMD->ComputeSuppressUnmanagedCodeAccessAttr(pIMDII);

#ifdef _DEBUG 
    // Mark as many methods as synchronized as possible.
    //
    // Note that this can easily cause programs to deadlock, and that
    // should not be treated as a bug in the program.

    static ConfigDWORD stressSynchronized;
    DWORD stressSynchronizedVal = stressSynchronized.val(CLRConfig::INTERNAL_stressSynchronized);

    bool isStressSynchronized =  stressSynchronizedVal &&
        pNewMD->IsIL() && // Synchronized is not supported on Ecalls, NDirect method, etc
        // IsValueClass() and IsEnum() do not work for System.ValueType and System.Enum themselves
        ((g_pValueTypeClass != NULL && g_pEnumClass != NULL &&
          !IsValueClass()) || // Can not synchronize on byref "this"
          IsMdStatic(dwMemberAttrs)) && // IsStatic() blows up in _DEBUG as pNewMD is not fully inited
        g_pObjectClass != NULL; // Ignore Object:* since "this" could be a boxed object

    // stressSynchronized=1 turns off the stress in the system domain to reduce
    // the chances of spurious deadlocks. Deadlocks in user code can still occur.
    // stressSynchronized=2 will probably cause more deadlocks, and is not recommended
    if (stressSynchronizedVal == 1 && GetAssembly()->IsSystem())
        isStressSynchronized = false;

    if (IsMiSynchronized(dwImplFlags) || isStressSynchronized)
#else // !_DEBUG
    if (IsMiSynchronized(dwImplFlags))
#endif // !_DEBUG
        pNewMD->SetSynchronized();

#ifdef _DEBUG 
    pNewMD->m_pszDebugMethodName = (LPUTF8)pszDebugMethodName;
    pNewMD->m_pszDebugClassName  = (LPUTF8)pszDebugClassName;
    pNewMD->m_pDebugMethodTable.SetValue(GetHalfBakedMethodTable());

    if (pszDebugMethodSignature == NULL)
        pNewMD->m_pszDebugMethodSignature = FormatSig(pNewMD,pNewMD->GetLoaderAllocator()->GetLowFrequencyHeap(),GetMemTracker());
    else
        pNewMD->m_pszDebugMethodSignature = pszDebugMethodSignature;
#endif // _DEBUG
} // MethodTableBuilder::InitMethodDesc

//*******************************************************************************
//
// Used by BuildMethodTable
//
VOID 
MethodTableBuilder::AddMethodImplDispatchMapping(
    DispatchMapTypeID typeID,
    SLOT_INDEX        slotNumber,
    bmtMDMethod *     pImplMethod)
{
    STANDARD_VM_CONTRACT;

    MethodDesc * pMDImpl = pImplMethod->GetMethodDesc();

    // Look for an existing entry in the map.
    DispatchMapBuilder::Iterator it(bmtVT->pDispatchMapBuilder);
    if (bmtVT->pDispatchMapBuilder->Find(typeID, slotNumber, it))
    {
        // Throw if this entry has already previously been MethodImpl'd.
        if (it.IsMethodImpl())
        {
            // NOTE: This is where we check for duplicate overrides. This is the easiest place to check
            //       because duplicate overrides could in fact have separate MemberRefs to the same
            //       member and so just comparing tokens at the very start would not be enough.
            if (it.GetTargetMD() != pMDImpl)
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_MI_MULTIPLEOVERRIDES, pMDImpl->GetMemberDef());
            }
        }
        // This is the first MethodImpl. That's ok.
        else
        {
            it.SetTarget(pMDImpl);
            it.SetIsMethodImpl();
        }
    }
    // A mapping for this interface method does not exist, so insert it.
    else
    {
        bmtVT->pDispatchMapBuilder->InsertMDMapping(
            typeID, 
            slotNumber, 
            pMDImpl, 
            TRUE);
    }

    // Save the entry into the vtable as well, if it isn't an interface methodImpl
    if (typeID == DispatchMapTypeID::ThisClassID())
    {
        bmtVT->SetVirtualMethodImpl(slotNumber, pImplMethod);
    }
} // MethodTableBuilder::AddMethodImplDispatchMapping

//*******************************************************************************
VOID
MethodTableBuilder::MethodImplCompareSignatures(
    bmtMethodHandle     hDecl,
    bmtMethodHandle     hImpl,
    DWORD               dwConstraintErrorCode)
{
    CONTRACTL {
        STANDARD_VM_CHECK;
        PRECONDITION(!hDecl.IsNull());
        PRECONDITION(!hImpl.IsNull());
        PRECONDITION(TypeFromToken(hDecl.GetMethodSignature().GetToken()) == mdtMethodDef);
        PRECONDITION(TypeFromToken(hImpl.GetMethodSignature().GetToken()) == mdtMethodDef);
    } CONTRACTL_END;

    const MethodSignature &declSig(hDecl.GetMethodSignature());
    const MethodSignature &implSig(hImpl.GetMethodSignature());

    if (!MethodSignature::SignaturesEquivalent(declSig, implSig))
    {
        LOG((LF_CLASSLOADER, LL_INFO1000, "BADSIG placing MethodImpl: %x\n", declSig.GetToken()));
        BuildMethodTableThrowException(COR_E_TYPELOAD, IDS_CLASSLOAD_MI_BADSIGNATURE, declSig.GetToken());
    }

    //now compare the method constraints
    if (!MetaSig::CompareMethodConstraints(&implSig.GetSubstitution(), implSig.GetModule(), implSig.GetToken(),
                                           &declSig.GetSubstitution(), declSig.GetModule(), declSig.GetToken()))
    {
        BuildMethodTableThrowException(dwConstraintErrorCode, implSig.GetToken());
    }
}

//*******************************************************************************
// We should have collected all the method impls. Cycle through them creating the method impl
// structure that holds the information about which slots are overridden.
VOID
MethodTableBuilder::PlaceMethodImpls()
{
    STANDARD_VM_CONTRACT;

    if(bmtMethodImpl->pIndex == 0)
    {
        return;
    }

    // Allocate some temporary storage. The number of overrides for a single method impl
    // cannot be greater then the number of vtable slots for classes. But for interfaces
    // it might contain overrides for other interface methods.
    DWORD dwMaxSlotSize = IsInterface() ? bmtMethod->dwNumberMethodImpls : bmtVT->cVirtualSlots;

    DWORD * slots = new (&GetThread()->m_MarshalAlloc) DWORD[dwMaxSlotSize];
    mdToken * tokens = new (&GetThread()->m_MarshalAlloc) mdToken[dwMaxSlotSize];
    RelativePointer<MethodDesc *> * replaced = new (&GetThread()->m_MarshalAlloc) RelativePointer<MethodDesc*>[dwMaxSlotSize];

    DWORD iEntry = 0;
    bmtMDMethod * pCurImplMethod = bmtMethodImpl->GetImplementationMethod(iEntry);

    DWORD slotIndex = 0;

    // The impls are sorted according to the method descs for the body of the method impl.
    // Loop through the impls until the next body is found. When a single body
    // has been done move the slots implemented and method descs replaced into the storage
    // found on the body method desc.
    while (true)
    {   // collect information until we reach the next body

        tokens[slotIndex] = bmtMethodImpl->GetDeclarationToken(iEntry);

        // Get the declaration part of the method impl. It will either be a token
        // (declaration is on this type) or a method desc.
        bmtMethodHandle hDeclMethod = bmtMethodImpl->GetDeclarationMethod(iEntry);
        if(hDeclMethod.IsMDMethod())
        {   
            // The declaration is on the type being built
            bmtMDMethod * pCurDeclMethod = hDeclMethod.AsMDMethod();

            mdToken mdef = pCurDeclMethod->GetMethodSignature().GetToken();
            if (bmtMethodImpl->IsBody(mdef))
            {   // A method declared on this class cannot be both a decl and an impl
                BuildMethodTableThrowException(IDS_CLASSLOAD_MI_MULTIPLEOVERRIDES, mdef);
            }

            if (IsInterface())
            {
                // Throws
                PlaceInterfaceDeclarationOnInterface(
                    hDeclMethod,
                    pCurImplMethod,
                    slots,              // Adds override to the slot and replaced arrays.
                    replaced,
                    &slotIndex,
                    dwMaxSlotSize);     // Increments count                
            }
            else
            {
                // Throws
                PlaceLocalDeclarationOnClass(
                    pCurDeclMethod,
                    pCurImplMethod,
                    slots,              // Adds override to the slot and replaced arrays.
                    replaced,
                    &slotIndex,
                    dwMaxSlotSize);     // Increments count
            }
        }
        else
        {
            bmtRTMethod * pCurDeclMethod = hDeclMethod.AsRTMethod();

            if (IsInterface())
            {
                // Throws
                PlaceInterfaceDeclarationOnInterface(
                    hDeclMethod,
                    pCurImplMethod,
                    slots,              // Adds override to the slot and replaced arrays.
                    replaced,
                    &slotIndex,
                    dwMaxSlotSize);     // Increments count     
            }
            else
            {
                // Do not use pDecl->IsInterface here as that asks the method table and the MT may not yet be set up.
                if (pCurDeclMethod->GetOwningType()->IsInterface())
                {
                    // Throws
                    PlaceInterfaceDeclarationOnClass(
                        pCurDeclMethod,
                        pCurImplMethod);
                }
                else
                {
                    // Throws
                    PlaceParentDeclarationOnClass(
                        pCurDeclMethod,
                        pCurImplMethod,
                        slots,
                        replaced,
                        &slotIndex,
                        dwMaxSlotSize);        // Increments count
                }
            }
        }

        iEntry++;

        if(iEntry == bmtMethodImpl->pIndex)
        {
            // We hit the end of the list so dump the current data and leave
            WriteMethodImplData(pCurImplMethod, slotIndex, slots, tokens, replaced);
            break;
        }
        else
        {
            bmtMDMethod * pNextImplMethod = bmtMethodImpl->GetImplementationMethod(iEntry);

            if (pNextImplMethod != pCurImplMethod)
            {
                // If we're moving on to a new body, dump the current data and reset the counter
                WriteMethodImplData(pCurImplMethod, slotIndex, slots, tokens, replaced);
                slotIndex = 0;
            }

            pCurImplMethod = pNextImplMethod;
        }
    }  // while(next != NULL)
} // MethodTableBuilder::PlaceMethodImpls

//*******************************************************************************
VOID
MethodTableBuilder::WriteMethodImplData(
    bmtMDMethod * pImplMethod, 
    DWORD         cSlots, 
    DWORD *       rgSlots, 
    mdToken *     rgTokens,
    RelativePointer<MethodDesc *> * rgDeclMD)
{
    STANDARD_VM_CONTRACT;
    
    // Use the number of overrides to
    // push information on to the method desc. We store the slots that
    // are overridden and the method desc that is replaced. That way
    // when derived classes need to determine if the method is to be
    // overridden then it can check the name against the replaced
    // method desc not the bodies name.
    if (cSlots == 0)
    {
        //@TODO:NEWVTWORK: Determine methodImpl status so that we don't need this workaround.
        //@TODO:NEWVTWORK: This occurs when only interface decls are involved, since
        //@TODO:NEWVTWORK: these are stored in the dispatch map and not on the methoddesc.
    }
    else
    {
        MethodImpl * pImpl = pImplMethod->GetMethodDesc()->GetMethodImpl();

        // Set the size of the info the MethodImpl needs to keep track of.
        pImpl->SetSize(GetLoaderAllocator()->GetHighFrequencyHeap(), GetMemTracker(), cSlots);

        if (!IsInterface())
        {
            // If we are currently builting an interface, the slots here has no meaning and we can skip it
            // Sort the two arrays in slot index order
            // This is required in MethodImpl::FindSlotIndex and MethodImpl::Iterator as we'll be using 
            // binary search later
            for (DWORD i = 0; i < cSlots; i++)
            {
                int min = i;
                for (DWORD j = i + 1; j < cSlots; j++)
                {
                    if (rgSlots[j] < rgSlots[min])
                    {
                        min = j;
                    }
                }

                if (min != i)
                {
                    MethodDesc * mTmp = rgDeclMD[i].GetValue();
                    rgDeclMD[i].SetValue(rgDeclMD[min].GetValue());
                    rgDeclMD[min].SetValue(mTmp);

                    DWORD sTmp = rgSlots[i];
                    rgSlots[i] = rgSlots[min];
                    rgSlots[min] = sTmp;

                    mdToken tTmp = rgTokens[i];
                    rgTokens[i] = rgTokens[min];
                    rgTokens[min] = tTmp;
                }
            }
        }

        // Go and set the method impl
        pImpl->SetData(rgSlots, rgTokens, rgDeclMD);

        GetHalfBakedClass()->SetContainsMethodImpls();
    }
} // MethodTableBuilder::WriteMethodImplData

//*******************************************************************************
VOID
MethodTableBuilder::PlaceLocalDeclarationOnClass(
    bmtMDMethod * pDecl, 
    bmtMDMethod * pImpl, 
    DWORD *       slots, 
    RelativePointer<MethodDesc *> * replaced,
    DWORD *       pSlotIndex,
    DWORD         dwMaxSlotSize)
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(bmtVT->pDispatchMapBuilder));
        PRECONDITION(CheckPointer(pDecl));
        PRECONDITION(CheckPointer(pImpl));
    }
    CONTRACTL_END

    if (!bmtProp->fNoSanityChecks)
    {
        ///////////////////////////////
        // Verify the signatures match

        MethodImplCompareSignatures(
            pDecl,
            pImpl,
            IDS_CLASSLOAD_CONSTRAINT_MISMATCH_ON_LOCAL_METHOD_IMPL);

        ///////////////////////////////
        // Validate the method impl.

        TestMethodImpl(
            bmtMethodHandle(pDecl),
            bmtMethodHandle(pImpl));
    }

    // Don't allow overrides for any of the four special runtime implemented delegate methods
    if (IsDelegate())
    {
        LPCUTF8 strMethodName = pDecl->GetMethodSignature().GetName();
        if ((strcmp(strMethodName, COR_CTOR_METHOD_NAME) == 0) || 
            (strcmp(strMethodName, "Invoke")             == 0) || 
            (strcmp(strMethodName, "BeginInvoke")        == 0) || 
            (strcmp(strMethodName, "EndInvoke")          == 0))
        {
            BuildMethodTableThrowException(
                IDS_CLASSLOAD_MI_CANNOT_OVERRIDE, 
                pDecl->GetMethodSignature().GetToken());
        }
    }

    ///////////////////
    // Add the mapping

    // Call helper to add it. Will throw if decl is already MethodImpl'd
    CONSISTENCY_CHECK(pDecl->GetSlotIndex() == static_cast<SLOT_INDEX>(pDecl->GetMethodDesc()->GetSlot()));
    AddMethodImplDispatchMapping(
        DispatchMapTypeID::ThisClassID(), 
        pDecl->GetSlotIndex(), 
        pImpl);

    // We implement this slot, record it
    ASSERT(*pSlotIndex < dwMaxSlotSize);
    slots[*pSlotIndex] = pDecl->GetSlotIndex();
    replaced[*pSlotIndex].SetValue(pDecl->GetMethodDesc());

    // increment the counter
    (*pSlotIndex)++;
} // MethodTableBuilder::PlaceLocalDeclarationOnClass

//*******************************************************************************
VOID MethodTableBuilder::PlaceInterfaceDeclarationOnClass(
    bmtRTMethod *     pDecl,
    bmtMDMethod *     pImpl)
{
    CONTRACTL {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(pDecl));
        PRECONDITION(CheckPointer(pImpl));
        PRECONDITION(pDecl->GetMethodDesc()->IsInterface());
        PRECONDITION(CheckPointer(bmtVT->pDispatchMapBuilder));
    } CONTRACTL_END;

    MethodDesc *  pDeclMD = pDecl->GetMethodDesc();
    MethodTable * pDeclMT = pDeclMD->GetMethodTable();

    // Note that the fact that pDecl is non-NULL means that we found the
    // declaration token to be owned by a declared interface for this type.

    if (!bmtProp->fNoSanityChecks)
    {
        ///////////////////////////////
        // Verify the signatures match

        MethodImplCompareSignatures(
            pDecl,
            pImpl,
            IDS_CLASSLOAD_CONSTRAINT_MISMATCH_ON_INTERFACE_METHOD_IMPL);

        ///////////////////////////////
        // Validate the method impl.

        TestMethodImpl(
            bmtMethodHandle(pDecl),
            bmtMethodHandle(pImpl));
    }

    ///////////////////
    // Add the mapping

    // Note that we need only one DispatchMapTypeID for this interface (though there might be more if there 
    // are duplicates). The first one is easy to get, but we could (in theory) use the last one or a random 
    // one.
    // Q: Why don't we have to place this method for all duplicate interfaces? Because VSD knows about 
    // duplicates and finds the right (latest) implementation for us - see 
    // code:MethodTable::MethodDataInterfaceImpl::PopulateNextLevel#ProcessAllDuplicates.
    UINT32 cInterfaceDuplicates;
    DispatchMapTypeID firstDispatchMapTypeID;
    ComputeDispatchMapTypeIDs(
        pDeclMT, 
        &pDecl->GetMethodSignature().GetSubstitution(), 
        &firstDispatchMapTypeID, 
        1, 
        &cInterfaceDuplicates);
    CONSISTENCY_CHECK(cInterfaceDuplicates >= 1);
    CONSISTENCY_CHECK(firstDispatchMapTypeID.IsImplementedInterface());

    // Call helper to add it. Will throw if decl is already MethodImpl'd
    CONSISTENCY_CHECK(pDecl->GetSlotIndex() == static_cast<SLOT_INDEX>(pDecl->GetMethodDesc()->GetSlot()));
    AddMethodImplDispatchMapping(
        firstDispatchMapTypeID, 
        pDecl->GetSlotIndex(), 
        pImpl);

#ifdef FEATURE_PREJIT
    if (IsCompilationProcess())
    {
        //
        // Mark this interface as overridable. It is used to skip generation of
        // CCWs stubs during NGen (see code:MethodNeedsReverseComStub)
        //
        if (!IsMdFinal(pImpl->GetDeclAttrs()))
        {
            pDeclMT->GetWriteableDataForWrite()->SetIsOverridingInterface();
        }
    }
#endif

#ifdef _DEBUG
    if (bmtInterface->dbg_fShouldInjectInterfaceDuplicates)
    {   // We injected interface duplicates
        
        // We have to MethodImpl all interface duplicates as all duplicates are 'declared on type' (see 
        // code:#InjectInterfaceDuplicates_ApproxInterfaces)
        DispatchMapTypeID * rgDispatchMapTypeIDs = (DispatchMapTypeID *)_alloca(sizeof(DispatchMapTypeID) * cInterfaceDuplicates);
        ComputeDispatchMapTypeIDs(
            pDeclMT, 
            &pDecl->GetMethodSignature().GetSubstitution(), 
            rgDispatchMapTypeIDs, 
            cInterfaceDuplicates, 
            &cInterfaceDuplicates);
        for (UINT32 nInterfaceDuplicate = 1; nInterfaceDuplicate < cInterfaceDuplicates; nInterfaceDuplicate++)
        {
            // Add MethodImpl record for each injected interface duplicate
            AddMethodImplDispatchMapping(
                rgDispatchMapTypeIDs[nInterfaceDuplicate], 
                pDecl->GetSlotIndex(), 
                pImpl);
        }
    }
#endif //_DEBUG
} // MethodTableBuilder::PlaceInterfaceDeclarationOnClass

//*******************************************************************************
VOID MethodTableBuilder::PlaceInterfaceDeclarationOnInterface(
    bmtMethodHandle hDecl, 
    bmtMDMethod   *pImpl, 
    DWORD *       slots, 
    RelativePointer<MethodDesc *> * replaced,
    DWORD *       pSlotIndex,
    DWORD         dwMaxSlotSize)
{
    CONTRACTL {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(pImpl));
        PRECONDITION(IsInterface());
        PRECONDITION(hDecl.GetMethodDesc()->IsInterface());
    } CONTRACTL_END;

    MethodDesc *  pDeclMD = hDecl.GetMethodDesc();

    if (!bmtProp->fNoSanityChecks)
    {
        ///////////////////////////////
        // Verify the signatures match

        MethodImplCompareSignatures(
            hDecl,
            bmtMethodHandle(pImpl),
            IDS_CLASSLOAD_CONSTRAINT_MISMATCH_ON_INTERFACE_METHOD_IMPL);

        ///////////////////////////////
        // Validate the method impl.

        TestMethodImpl(hDecl, bmtMethodHandle(pImpl));
    }

    // We implement this slot, record it
    ASSERT(*pSlotIndex < dwMaxSlotSize);
    slots[*pSlotIndex] = hDecl.GetSlotIndex();
    replaced[*pSlotIndex].SetValue(pDeclMD);

    // increment the counter
    (*pSlotIndex)++;
} // MethodTableBuilder::PlaceInterfaceDeclarationOnInterface

//*******************************************************************************
VOID
MethodTableBuilder::PlaceParentDeclarationOnClass(
    bmtRTMethod * pDecl, 
    bmtMDMethod * pImpl, 
    DWORD *       slots, 
    RelativePointer<MethodDesc *> * replaced,
    DWORD *       pSlotIndex,
    DWORD         dwMaxSlotSize)
{
    CONTRACTL {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(pDecl));
        PRECONDITION(CheckPointer(pImpl));
        PRECONDITION(CheckPointer(bmtVT->pDispatchMapBuilder));
        PRECONDITION(CheckPointer(GetParentMethodTable()));
    } CONTRACTL_END;

    MethodDesc * pDeclMD = pDecl->GetMethodDesc();

    // Note that the fact that pDecl is non-NULL means that we found the
    // declaration token to be owned by a parent type.

    if (!bmtProp->fNoSanityChecks)
    {
        /////////////////////////////////////////
        // Verify that the signatures match

        MethodImplCompareSignatures(
            pDecl,
            pImpl,
            IDS_CLASSLOAD_CONSTRAINT_MISMATCH_ON_PARENT_METHOD_IMPL);

        ////////////////////////////////
        // Verify rules of method impls

        TestMethodImpl(
            bmtMethodHandle(pDecl),
            bmtMethodHandle(pImpl));
    }

    ///////////////////
    // Add the mapping

    // Call helper to add it. Will throw if DECL is already MethodImpl'd
    AddMethodImplDispatchMapping(
        DispatchMapTypeID::ThisClassID(), 
        pDeclMD->GetSlot(), 
        pImpl);

    // We implement this slot, record it
    ASSERT(*pSlotIndex < dwMaxSlotSize);
    slots[*pSlotIndex] = pDeclMD->GetSlot();
    replaced[*pSlotIndex].SetValue(pDeclMD);

    // increment the counter
    (*pSlotIndex)++;
} // MethodTableBuilder::PlaceParentDeclarationOnClass

//*******************************************************************************
// This will validate that all interface methods that were matched during
// layout also validate against type constraints.

VOID MethodTableBuilder::ValidateInterfaceMethodConstraints()
{
    STANDARD_VM_CONTRACT;

    DispatchMapBuilder::Iterator it(bmtVT->pDispatchMapBuilder);
    for (; it.IsValid(); it.Next())
    {
        if (it.GetTypeID() != DispatchMapTypeID::ThisClassID())
        {
            bmtRTType * pItf = bmtInterface->pInterfaceMap[it.GetTypeID().GetInterfaceNum()].GetInterfaceType();

            // Grab the method token
            MethodTable * pMTItf = pItf->GetMethodTable();
            CONSISTENCY_CHECK(CheckPointer(pMTItf->GetMethodDescForSlot(it.GetSlotNumber())));
            mdMethodDef mdTok = pItf->GetMethodTable()->GetMethodDescForSlot(it.GetSlotNumber())->GetMemberDef();

            // Default to the current module. The code immediately below determines if this
            // assumption is incorrect.
            Module *          pTargetModule          = GetModule();

            // Get the module of the target method. Get it through the chunk to
            // avoid triggering the assert that MethodTable is non-NULL. It may
            // be null since it may belong to the type we're building right now.
            MethodDesc *      pTargetMD              = it.GetTargetMD();

            // If pTargetMT is null, this indicates that the target MethodDesc belongs
            // to the current type. Otherwise, the MethodDesc MUST be owned by a parent
            // of the type we're building.
            BOOL              fTargetIsOwnedByParent = !pTargetMD->GetMethodTablePtr()->IsNull();        
            
            // If the method is owned by a parent, we need to use the parent's module,
            // and we must construct the substitution chain all the way up to the parent.
            const Substitution *pSubstTgt = NULL;
            if (fTargetIsOwnedByParent)
            {
                CONSISTENCY_CHECK(CheckPointer(GetParentType()));
                bmtRTType *pTargetType = bmtRTType::FindType(GetParentType(), pTargetMD->GetMethodTable());
                pSubstTgt = &pTargetType->GetSubstitution();
                pTargetModule = pTargetType->GetModule();
            }

            // Now compare the method constraints.
            if (!MetaSig::CompareMethodConstraints(pSubstTgt,
                                                   pTargetModule,
                                                   pTargetMD->GetMemberDef(),
                                                   &pItf->GetSubstitution(),
                                                   pMTItf->GetModule(),
                                                   mdTok))
            {
                LOG((LF_CLASSLOADER, LL_INFO1000,
                     "BADCONSTRAINTS on interface method implementation: %x\n", pTargetMD));
                // This exception will be due to an implicit implementation, since explicit errors
                // will be detected in MethodImplCompareSignatures (for now, anyway).
                CONSISTENCY_CHECK(!it.IsMethodImpl());
                DWORD idsError = it.IsMethodImpl() ?
                                 IDS_CLASSLOAD_CONSTRAINT_MISMATCH_ON_INTERFACE_METHOD_IMPL :
                                 IDS_CLASSLOAD_CONSTRAINT_MISMATCH_ON_IMPLICIT_IMPLEMENTATION;
                if (fTargetIsOwnedByParent)
                {
                    DefineFullyQualifiedNameForClass();
                    LPCUTF8 szClassName = GetFullyQualifiedNameForClassNestedAware(pTargetMD->GetMethodTable());
                    LPCUTF8 szMethodName = pTargetMD->GetName();

                    CQuickBytes qb;
                    // allocate enough room for "<class>.<method>\0"
                    size_t cchFullName = strlen(szClassName) + 1 + strlen(szMethodName) + 1;
                    LPUTF8 szFullName = (LPUTF8) qb.AllocThrows(cchFullName);
                    strcpy_s(szFullName, cchFullName, szClassName);
                    strcat_s(szFullName, cchFullName, ".");
                    strcat_s(szFullName, cchFullName, szMethodName);

                    BuildMethodTableThrowException(idsError, szFullName);
                }
                else
                {
                    BuildMethodTableThrowException(idsError, pTargetMD->GetMemberDef());
                }
            }
        }
    }
} // MethodTableBuilder::ValidateInterfaceMethodConstraints

//*******************************************************************************
// Used to allocate and initialize MethodDescs (both the boxed and unboxed entrypoints)
VOID MethodTableBuilder::AllocAndInitMethodDescs()
{
    STANDARD_VM_CONTRACT;

    //
    // Go over all MethodDescs and create smallest number of MethodDescChunks possible.
    //
    // Iterate over all methods and start a new chunk only if:
    //  - Token range (upper 24 bits of the method token) has changed.
    //  - The maximum size of the chunk has been reached.
    //

    int currentTokenRange = -1; // current token range
    SIZE_T sizeOfMethodDescs = 0; // current running size of methodDesc chunk
    int startIndex = 0; // start of the current chunk (index into bmtMethod array)

    DeclaredMethodIterator it(*this);
    while (it.Next())
    {
        int tokenRange = GetTokenRange(it.Token());

        // This code assumes that iterator returns tokens in ascending order. If this assumption does not hold, 
        // the code will still work with small performance penalty (method desc chunk layout will be less efficient).
        _ASSERTE(tokenRange >= currentTokenRange);

        SIZE_T size = MethodDesc::GetBaseSize(GetMethodClassification(it->GetMethodType()));

        // Add size of optional slots

        if (it->GetMethodImplType() == METHOD_IMPL)
            size += sizeof(MethodImpl);

        if (it->GetSlotIndex() >= bmtVT->cVtableSlots)
            size += sizeof(MethodDesc::NonVtableSlot); // slot

        if (NeedsNativeCodeSlot(*it))
            size += sizeof(MethodDesc::NativeCodeSlot);

        // See comment in AllocAndInitMethodDescChunk
        if (NeedsTightlyBoundUnboxingStub(*it))
        {
            size *= 2;

            if (bmtGenerics->GetNumGenericArgs() == 0) {
                size += sizeof(MethodDesc::NonVtableSlot);
            }
            else {
                bmtVT->cVtableSlots++;
            }
        }

#ifndef CROSSGEN_COMPILE
        if (tokenRange != currentTokenRange ||
            sizeOfMethodDescs + size > MethodDescChunk::MaxSizeOfMethodDescs)
#endif // CROSSGEN_COMPILE
        {
            if (sizeOfMethodDescs != 0)
            {
                AllocAndInitMethodDescChunk(startIndex, it.CurrentIndex() - startIndex, sizeOfMethodDescs);
                startIndex = it.CurrentIndex();
            }

            currentTokenRange = tokenRange;
            sizeOfMethodDescs = 0;
        }

        sizeOfMethodDescs += size;
    }

    if (sizeOfMethodDescs != 0)
    {
        AllocAndInitMethodDescChunk(startIndex, NumDeclaredMethods() - startIndex, sizeOfMethodDescs);
    }
}

//*******************************************************************************
// Allocates and initializes one method desc chunk.
//
// Arguments:
//    startIndex - index of first method in bmtMethod array.
//    count - number of methods in this chunk (contiguous region from startIndex)
//    sizeOfMethodDescs - total expected size of MethodDescs in this chunk
//
// Used by AllocAndInitMethodDescs.
//
VOID MethodTableBuilder::AllocAndInitMethodDescChunk(COUNT_T startIndex, COUNT_T count, SIZE_T sizeOfMethodDescs)
{
    CONTRACTL {
        STANDARD_VM_CHECK;
        PRECONDITION(sizeOfMethodDescs <= MethodDescChunk::MaxSizeOfMethodDescs);
    } CONTRACTL_END;

    void * pMem = GetMemTracker()->Track(
        GetLoaderAllocator()->GetHighFrequencyHeap()->AllocMem(S_SIZE_T(sizeof(TADDR) + sizeof(MethodDescChunk) + sizeOfMethodDescs)));

    // Skip pointer to temporary entrypoints
    MethodDescChunk * pChunk = (MethodDescChunk *)((BYTE*)pMem + sizeof(TADDR));

    COUNT_T methodDescCount = 0;

    SIZE_T offset = sizeof(MethodDescChunk);

#ifdef _PREFAST_ 
#pragma warning(push)
#pragma warning(disable:22019) // Suppress PREFast warning about integer underflow
#endif // _PREFAST_
    for (COUNT_T i = 0; i < count; i++)
#ifdef _PREFAST_ 
#pragma warning(pop)
#endif // _PREFAST_

    {
        bmtMDMethod * pMDMethod = (*bmtMethod)[static_cast<SLOT_INDEX>(startIndex + i)];

        MethodDesc * pMD = (MethodDesc *)((BYTE *)pChunk + offset); 

        pMD->SetChunkIndex(pChunk);

        InitNewMethodDesc(pMDMethod, pMD);

#ifdef _PREFAST_ 
#pragma warning(push)
#pragma warning(disable:22018) // Suppress PREFast warning about integer underflow
#endif // _PREFAST_
        offset += pMD->SizeOf();
#ifdef _PREFAST_ 
#pragma warning(pop)
#endif // _PREFAST_

        methodDescCount++;

        // If we're a value class, we want to create duplicate slots
        // and MethodDescs for all methods in the vtable
        // section (i.e. not non-virtual instance methods or statics).
        // In the name of uniformity it would be much nicer
        // if we created _all_ value class BoxedEntryPointStubs at this point.
        // However, non-virtual instance methods only require unboxing
        // stubs in the rare case that we create a delegate to such a
        // method, and thus it would be inefficient to create them on
        // loading: after all typical structs will have many non-virtual
        // instance methods.
        //
        // Unboxing stubs for non-virtual instance methods are created
        // in code:MethodDesc::FindOrCreateAssociatedMethodDesc.

        if (NeedsTightlyBoundUnboxingStub(pMDMethod))
        {
            MethodDesc * pUnboxedMD = (MethodDesc *)((BYTE *)pChunk + offset); 

            //////////////////////////////////
            // Initialize the new MethodDesc

            // <NICE> memcpy operations on data structures like MethodDescs are extremely fragile
            // and should not be used.  We should go to the effort of having proper constructors
            // in the MethodDesc class. </NICE>

            memcpy(pUnboxedMD, pMD, pMD->SizeOf());

            // Reset the chunk index
            pUnboxedMD->SetChunkIndex(pChunk);

            if (bmtGenerics->GetNumGenericArgs() == 0) {
                pUnboxedMD->SetHasNonVtableSlot();
            }

            //////////////////////////////////////////////////////////
            // Modify the original MethodDesc to be an unboxing stub

            pMD->SetIsUnboxingStub();

            ////////////////////////////////////////////////////////////////////
            // Add the new MethodDesc to the non-virtual portion of the vtable

            if (!bmtVT->AddUnboxedMethod(pMDMethod))
                BuildMethodTableThrowException(IDS_CLASSLOAD_TOO_MANY_METHODS);

            pUnboxedMD->SetSlot(pMDMethod->GetUnboxedSlotIndex());
            pMDMethod->SetUnboxedMethodDesc(pUnboxedMD);

            offset += pUnboxedMD->SizeOf();
            methodDescCount++;
        }
    }
    _ASSERTE(offset == sizeof(MethodDescChunk) + sizeOfMethodDescs);

    pChunk->SetSizeAndCount((ULONG)sizeOfMethodDescs, methodDescCount);

    GetHalfBakedClass()->AddChunk(pChunk);
}

//*******************************************************************************
BOOL
MethodTableBuilder::NeedsTightlyBoundUnboxingStub(bmtMDMethod * pMDMethod)
{
    STANDARD_VM_CONTRACT;

    return IsValueClass() &&
           !IsMdStatic(pMDMethod->GetDeclAttrs()) &&
           IsMdVirtual(pMDMethod->GetDeclAttrs()) &&
           (pMDMethod->GetMethodType() != METHOD_TYPE_INSTANTIATED) &&
           !IsMdRTSpecialName(pMDMethod->GetDeclAttrs());
}

//*******************************************************************************
BOOL
MethodTableBuilder::NeedsNativeCodeSlot(bmtMDMethod * pMDMethod)
{
    LIMITED_METHOD_CONTRACT;


#ifdef FEATURE_TIERED_COMPILATION
    // Keep in-sync with MethodDesc::DetermineAndSetIsEligibleForTieredCompilation()
    if (g_pConfig->TieredCompilation() &&
        (pMDMethod->GetMethodType() == METHOD_TYPE_NORMAL || pMDMethod->GetMethodType() == METHOD_TYPE_INSTANTIATED))
    {
        return TRUE;
    }
#endif

#if defined(FEATURE_JIT_PITCHING)
    if ((CLRConfig::GetConfigValue(CLRConfig::INTERNAL_JitPitchEnabled) != 0) &&
        (CLRConfig::GetConfigValue(CLRConfig::INTERNAL_JitPitchMemThreshold) != 0))
        return TRUE;
#endif

    return GetModule()->IsEditAndContinueEnabled();
}

//*******************************************************************************
VOID
MethodTableBuilder::AllocAndInitDictionary()
{
    STANDARD_VM_CONTRACT;

    // Allocate dictionary layout used by all compatible instantiations

    if (bmtGenerics->fSharedByGenericInstantiations && !bmtGenerics->fContainsGenericVariables)
    {
        // We use the number of methods as a heuristic for the number of slots in the dictionary
        // attached to shared class method tables.
        // If there are no declared methods then we have no slots, and we will never do any token lookups
        //
        // Heuristics
        //  - Classes with a small number of methods (2-3) tend to be more likely to use new slots,
        //    i.e. further methods tend to reuse slots from previous methods.
        //      = treat all classes with only 2-3 methods as if they have an extra method.
        //  - Classes with more generic parameters tend to use more slots.
        //      = multiply by 1.5 for 2 params or more

        DWORD numMethodsAdjusted =
            (bmtMethod->dwNumDeclaredNonAbstractMethods == 0)
            ? 0
            : (bmtMethod->dwNumDeclaredNonAbstractMethods < 3)
            ? 3
            : bmtMethod->dwNumDeclaredNonAbstractMethods;

        _ASSERTE(bmtGenerics->GetNumGenericArgs() != 0);
        DWORD nTypeFactorBy2 = (bmtGenerics->GetNumGenericArgs() == 1)
                               ? 2
                               : 3;

        DWORD estNumTypeSlots = (numMethodsAdjusted * nTypeFactorBy2 + 2) / 3;
        // estNumTypeSlots should fit in a WORD as long as we maintain the current
        // limit on the number of methods in a type (approx 2^16).
        _ASSERTE(FitsIn<WORD>(estNumTypeSlots));
        WORD numTypeSlots = static_cast<WORD>(estNumTypeSlots);

        if (numTypeSlots > 0)
        {
            // Dictionary layout is an optional field on EEClass, so ensure the optional field descriptor has
            // been allocated.
            EnsureOptionalFieldsAreAllocated(GetHalfBakedClass(), m_pAllocMemTracker, GetLoaderAllocator()->GetLowFrequencyHeap());
            GetHalfBakedClass()->SetDictionaryLayout(DictionaryLayout::Allocate(numTypeSlots, bmtAllocator, m_pAllocMemTracker));
        }
    }

}

//*******************************************************************************
//
// Used by BuildMethodTable
//
// Compute the set of interfaces which are equivalent. Duplicates in the interface map
// will be placed into different equivalence sets unless they participate in type equivalence.
// This is a bit odd, but it turns out we only need to know about equivalence classes if
// there is type equivalence involved in the interface, and not detecting, or detecting equivalence
// in other cases does not result in differing behavior.
// 
// By restricting the reasons for having equivalence matches, we reduce the algorithm from one which
// is O(n*n) best case to an algorithm which will typically execute something more like O(m*n) best case time 
// where m is the number of generic interface (although still n*n in worst case). The assumption is that equivalent
// and generic interfaces are relatively rare.
VOID
MethodTableBuilder::ComputeInterfaceMapEquivalenceSet()
{
    STANDARD_VM_CONTRACT;

    UINT32 nextEquivalenceSet = 1;

    for (DWORD dwCurInterface = 0;
         dwCurInterface < bmtInterface->dwInterfaceMapSize;
         dwCurInterface++)
    {
        // Keep track of the current interface we are trying to calculate the equivalence set of
        bmtInterfaceEntry *     pCurItfEntry = &bmtInterface->pInterfaceMap[dwCurInterface];
        bmtRTType *             pCurItf      = pCurItfEntry->GetInterfaceType();
        MethodTable *           pCurItfMT    = pCurItf->GetMethodTable();
        const Substitution *    pCurItfSubst = &pCurItf->GetSubstitution();

        UINT32 currentEquivalenceSet = 0;

        // Only interfaces with type equivalence, or that are generic need to be compared for equivalence
        if (pCurItfMT->HasTypeEquivalence() || pCurItfMT->HasInstantiation())
        {
            for (DWORD dwCurInterfaceCompare = 0;
                 dwCurInterfaceCompare < dwCurInterface;
                 dwCurInterfaceCompare++)
            {
                // Keep track of the current interface we are trying to calculate the equivalence set of
                bmtInterfaceEntry *     pCompareItfEntry = &bmtInterface->pInterfaceMap[dwCurInterfaceCompare];
                bmtRTType *             pCompareItf      = pCompareItfEntry->GetInterfaceType();
                MethodTable *           pCompareItfMT    = pCompareItf->GetMethodTable();
                const Substitution *    pCompareItfSubst = &pCompareItf->GetSubstitution();

                // Only interfaces with type equivalence, or that are generic need to be compared for equivalence
                if (pCompareItfMT->HasTypeEquivalence() || pCompareItfMT->HasInstantiation())
                {
                    if (MetaSig::CompareTypeDefsUnderSubstitutions(pCurItfMT,
                                                                   pCompareItfMT,
                                                                   pCurItfSubst,
                                                                   pCompareItfSubst,
                                                                   NULL))
                    {
                        currentEquivalenceSet = pCompareItfEntry->GetInterfaceEquivalenceSet();
                        // Use the equivalence set of the interface map entry we just found
                        pCurItfEntry->SetInterfaceEquivalenceSet(currentEquivalenceSet, true);
                        // Update the interface map entry we just found to indicate that it is part of an equivalence
                        // set with multiple entries.
                        pCompareItfEntry->SetInterfaceEquivalenceSet(currentEquivalenceSet, true);
                        break;
                    }
                }
            }
        }

        // If we did not find an equivalent interface above, use the next available equivalence set indicator
        if (currentEquivalenceSet == 0)
        {
            pCurItfEntry->SetInterfaceEquivalenceSet(nextEquivalenceSet, false);
            nextEquivalenceSet++;
        }
    }
}

//*******************************************************************************
//
// Used by PlaceInterfaceMethods
//
// Given an interface in our interface map, and a particular method on that interface, place
// a method from the parent types implementation of an equivalent interface into that method 
// slot. Used by PlaceInterfaceMethods to make equivalent interface implementations have the 
// same behavior as if the parent interface was implemented on this type instead of an equivalent interface.
//
// This logic is used in situations such as below. I and I' are equivalent interfaces
//
//#
// class Base : I
// {void I.Method() { } }
// interface IOther : I' {}
// class Derived : IOther
// { virtual void Method() {}}
//
// We should Map I'.Method to Base.Method, not Derived.Method
// 
// Another example
// class Base : I
// { virtual void Method() }
// interface IOther : I' {}
// class Derived : IOther
// { virtual void Method() {}}
//
// We should map I'.Method to Base.Method, not Derived.Method
//
// class Base : I
// {void I.Method() { } }
// class Derived : I'
// {}
//
// We should Map I'.Method to Base.Method, and not throw TypeLoadException
//
#ifdef FEATURE_COMINTEROP
VOID 
MethodTableBuilder::PlaceMethodFromParentEquivalentInterfaceIntoInterfaceSlot(
    bmtInterfaceEntry::InterfaceSlotIterator & itfSlotIt, 
    bmtInterfaceEntry *                        pCurItfEntry, 
    DispatchMapTypeID **                       prgInterfaceDispatchMapTypeIDs, 
    DWORD                                      dwCurInterface)
{
    STANDARD_VM_CONTRACT;

    bmtRTMethod * pCurItfMethod = itfSlotIt->Decl().AsRTMethod();

    if (itfSlotIt->Impl() != INVALID_SLOT_INDEX)
    {
        return;
    }

    // For every equivalent interface entry that was actually implemented by parent, then look at equivalent method slot on that entry
    // and if it matches and has a slot implementation, then record and continue
    for (DWORD dwEquivalentInterface = 0;
         (dwEquivalentInterface < bmtInterface->dwInterfaceMapSize) && (itfSlotIt->Impl() == INVALID_SLOT_INDEX);
         dwEquivalentInterface++)
    {
        bmtInterfaceEntry *  pEquivItfEntry = &bmtInterface->pInterfaceMap[dwEquivalentInterface];
        bmtRTType *          pEquivItf      = pEquivItfEntry->GetInterfaceType();
        MethodTable *        pEquivItfMT    = pEquivItf->GetMethodTable();
        const Substitution * pEquivItfSubst = &pEquivItf->GetSubstitution();
        if (pEquivItfEntry->GetInterfaceEquivalenceSet() != pCurItfEntry->GetInterfaceEquivalenceSet())
        {
            // Not equivalent
            continue;
        }
        if (!pEquivItfEntry->IsImplementedByParent())
        {
            // Not implemented by parent
            continue;
        }
        
        WORD slot = static_cast<WORD>(itfSlotIt.CurrentIndex());
        BOOL fFound = FALSE;

        // Determine which slot on the equivalent interface would map to the slot we are attempting to fill
        // in with an implementation.
        WORD otherMTSlot = GetEquivalentMethodSlot(pCurItfEntry->GetInterfaceType()->GetMethodTable(), 
                                                   pEquivItfEntry->GetInterfaceType()->GetMethodTable(), 
                                                   slot, 
                                                   &fFound);

        if (fFound)
        {
            UINT32 cInterfaceDuplicates;
            if (*prgInterfaceDispatchMapTypeIDs == NULL)
            {
                *prgInterfaceDispatchMapTypeIDs = 
                    new (GetStackingAllocator()) DispatchMapTypeID[bmtInterface->dwInterfaceMapSize];
            }

            // Compute all TypeIDs for this interface (all duplicates in the interface map)
            ComputeDispatchMapTypeIDs(
                pEquivItfMT, 
                pEquivItfSubst, 
                *prgInterfaceDispatchMapTypeIDs, 
                bmtInterface->dwInterfaceMapSize, 
                &cInterfaceDuplicates);
            // There cannot be more duplicates than number of interfaces
            _ASSERTE(cInterfaceDuplicates <= bmtInterface->dwInterfaceMapSize);
            _ASSERTE(cInterfaceDuplicates > 0);
            
            // NOTE: This override does not cache the resulting MethodData object
            MethodTable::MethodDataWrapper hParentData;
            hParentData = MethodTable::GetMethodData(
                    *prgInterfaceDispatchMapTypeIDs, 
                    cInterfaceDuplicates, 
                    pEquivItfMT, 
                    GetParentMethodTable());

            SLOT_INDEX slotIndex = static_cast<SLOT_INDEX>
                (hParentData->GetImplSlotNumber(static_cast<UINT32>(otherMTSlot)));

            // Interface is implemented on parent abstract type and this particular slot was not implemented
            if (slotIndex == INVALID_SLOT_INDEX)
            {
                continue;
            }

            bmtMethodSlot & parentSlotImplementation = (*bmtParent->pSlotTable)[slotIndex];
            bmtMethodHandle & parentImplementation = parentSlotImplementation.Impl();

            // Check to verify that the equivalent slot on the equivalent interface actually matches the method
            // on the current interface. If not, then the slot is not a match, and we should search other interfaces
            // for an implementation of the method.
            if (!MethodSignature::SignaturesEquivalent(pCurItfMethod->GetMethodSignature(), parentImplementation.GetMethodSignature()))
            {
                continue;
            }

            itfSlotIt->Impl() = slotIndex;

            MethodDesc * pMD = hParentData->GetImplMethodDesc(static_cast<UINT32>(otherMTSlot));

            DispatchMapTypeID dispatchMapTypeID =
                DispatchMapTypeID::InterfaceClassID(dwCurInterface);
            bmtVT->pDispatchMapBuilder->InsertMDMapping(
                dispatchMapTypeID, 
                static_cast<UINT32>(itfSlotIt.CurrentIndex()), 
                pMD, 
                FALSE);
        }
    }
} // MethodTableBuilder::PlaceMethodFromParentEquivalentInterfaceIntoInterfaceSlot
#endif // FEATURE_COMINTEROP

//*******************************************************************************
//
// Used by BuildMethodTable
//
//
// If we are a class, then there may be some unplaced vtable methods (which are by definition
// interface methods, otherwise they'd already have been placed).  Place as many unplaced methods
// as possible, in the order preferred by interfaces.  However, do not allow any duplicates - once
// a method has been placed, it cannot be placed again - if we are unable to neatly place an interface,
// create duplicate slots for it starting at dwCurrentDuplicateVtableSlot.  Fill out the interface
// map for all interfaces as they are placed.
//
// If we are an interface, then all methods are already placed.  Fill out the interface map for
// interfaces as they are placed.
//
// BEHAVIOUR (based on Partition II: 11.2, not including MethodImpls)
//   C is current class, P is a parent class, I is the interface being implemented
//
//   FOREACH interface I implemented by this class C
//     FOREACH method I::M
//       IF I is EXPLICITLY implemented by C
//         IF some method C::M matches I::M
//           USE C::M as implementation for I::M
//         ELIF we inherit a method P::M that matches I::M
//           USE P::M as implementation for I::M
//         ENDIF
//       ELSE
//         IF I::M lacks implementation
//           IF some method C::M matches I::M
//             USE C::M as implementation for I::M
//           ELIF we inherit a method P::M that matches I::M
//             USE P::M as implementation for I::M
//           ELIF I::M was implemented by the parent type with method Parent::M
//             USE Parent::M for the implementation of I::M // VSD does this by default if we really 
//                                                           // implemented I on the parent type, but 
//                                                           // equivalent interfaces need to make this 
//                                                           // explicit
//           ENDIF
//         ENDIF
//       ENDIF
//     ENDFOR
//   ENDFOR
//

VOID
MethodTableBuilder::PlaceInterfaceMethods()
{
    STANDARD_VM_CONTRACT;

    BOOL fParentInterface;
    DispatchMapTypeID * rgInterfaceDispatchMapTypeIDs = NULL;

    for (DWORD dwCurInterface = 0;
         dwCurInterface < bmtInterface->dwInterfaceMapSize;
         dwCurInterface++)
    {
        // Default to being implemented by the current class
        fParentInterface = FALSE;

        // Keep track of the current interface we are trying to place
        bmtInterfaceEntry *     pCurItfEntry = &bmtInterface->pInterfaceMap[dwCurInterface];
        bmtRTType *             pCurItf      = pCurItfEntry->GetInterfaceType();
        MethodTable *           pCurItfMT    = pCurItf->GetMethodTable();
        const Substitution *    pCurItfSubst = &pCurItf->GetSubstitution();

        //
        // There are three reasons why an interface could be in the implementation list
        // 1. Inherited from parent
        // 2. Explicitly declared in the implements list
        // 3. Implicitly declared through the implements list of an explicitly declared interface
        //
        // The reason these cases need to be distinguished is that an inherited interface that is
        // also explicitly redeclared in the implements list must be fully reimplemented using the
        // virtual methods of this type (thereby using matching methods in this type that may have
        // a different slot than an inherited method, but hidden it by name & sig); however all
        // implicitly redeclared interfaces should not be fully reimplemented if they were also
        // inherited from the parent.
        //
        // Example:
        //   interface I1 : I2
        //   class A : I1
        //   class B : A, I1
        //
        // In this example I1 must be fully reimplemented on B, but B can inherit the implementation
        // of I2.
        //

        if (pCurItfEntry->IsImplementedByParent())
        {
            if (!pCurItfEntry->IsDeclaredOnType())
            {
                fParentInterface = TRUE;
            }
        }

        bool fEquivalentInterfaceImplementedByParent = pCurItfEntry->IsImplementedByParent();
        bool fEquivalentInterfaceDeclaredOnType = pCurItfEntry->IsDeclaredOnType();

        if (pCurItfEntry->InEquivalenceSetWithMultipleEntries())
        {
            for (DWORD dwEquivalentInterface = 0;
                 dwEquivalentInterface < bmtInterface->dwInterfaceMapSize;
                 dwEquivalentInterface++)
            {
                bmtInterfaceEntry *     pEquivItfEntry = &bmtInterface->pInterfaceMap[dwEquivalentInterface];
                if (pEquivItfEntry->GetInterfaceEquivalenceSet() != pCurItfEntry->GetInterfaceEquivalenceSet())
                {
                    // Not equivalent
                    continue;
                }
                if (pEquivItfEntry->IsImplementedByParent())
                {
                    fEquivalentInterfaceImplementedByParent = true;
                }
                if (pEquivItfEntry->IsDeclaredOnType())
                {
                    fEquivalentInterfaceDeclaredOnType = true;
                }

                if (fEquivalentInterfaceDeclaredOnType && fEquivalentInterfaceImplementedByParent)
                    break;
            }
        }

        bool fParentInterfaceEquivalent = fEquivalentInterfaceImplementedByParent && !fEquivalentInterfaceDeclaredOnType;

        CONSISTENCY_CHECK(!fParentInterfaceEquivalent || HasParent());

        if (fParentInterfaceEquivalent)
        {
            // In the case the fParentInterface is TRUE, virtual overrides are enough and the interface
            // does not have to be explicitly (re)implemented. The only exception is if the parent is
            // abstract, in which case an inherited interface may not be fully implemented yet.
            // This is an optimization that allows us to skip the more expensive slot filling in below.
            // Note that the check here is for fParentInterface and not for fParentInterfaceEquivalent.
            // This is necessary as if the interface is not actually implemented on the parent type we will
            // need to fill in the slot table below.
            if (fParentInterface && !GetParentMethodTable()->IsAbstract())
            {
                continue;
            }

            {
                // We will reach here in two cases.
                // 1 .The parent is abstract and the interface has been declared on the parent,
                // and possibly partially implemented, so we need to populate the
                // bmtInterfaceSlotImpl table for this interface with the implementation slot
                // information.
                // 2 .The the interface has not been declared on the parent,
                // but an equivalent interface has been. So we need to populate the
                // bmtInterfaceSlotImpl table for this interface with the implementation slot
                // information from one of the parent equivalent interfaces. We may or may not
                // find implementations for all of the methods on the interface on the parent type.
                // The parent type may or may not be abstract.

                MethodTable::MethodDataWrapper hParentData;
                CONSISTENCY_CHECK(CheckPointer(GetParentMethodTable()));
                
                if (rgInterfaceDispatchMapTypeIDs == NULL)
                {
                    rgInterfaceDispatchMapTypeIDs = 
                        new (GetStackingAllocator()) DispatchMapTypeID[bmtInterface->dwInterfaceMapSize];
                }
                
                if (pCurItfEntry->IsImplementedByParent())
                {
                    UINT32 cInterfaceDuplicates;
                    // Compute all TypeIDs for this interface (all duplicates in the interface map)
                    ComputeDispatchMapTypeIDs(
                        pCurItfMT, 
                        pCurItfSubst, 
                        rgInterfaceDispatchMapTypeIDs, 
                        bmtInterface->dwInterfaceMapSize, 
                        &cInterfaceDuplicates);
                    // There cannot be more duplicates than number of interfaces
                    _ASSERTE(cInterfaceDuplicates <= bmtInterface->dwInterfaceMapSize);
                    _ASSERTE(cInterfaceDuplicates > 0);
                    
                    //#InterfaceMap_UseParentInterfaceImplementations
                    // We rely on the fact that interface map of parent type is subset of this type (incl. 
                    // duplicates), see code:#InterfaceMap_SupersetOfParent
                    // NOTE: This override does not cache the resulting MethodData object
                    hParentData = MethodTable::GetMethodData(
                            rgInterfaceDispatchMapTypeIDs, 
                            cInterfaceDuplicates, 
                            pCurItfMT, 
                            GetParentMethodTable());

                    bmtInterfaceEntry::InterfaceSlotIterator itfSlotIt =
                        pCurItfEntry->IterateInterfaceSlots(GetStackingAllocator());
                    for (; !itfSlotIt.AtEnd(); itfSlotIt.Next())
                    {
                        itfSlotIt->Impl() = static_cast<SLOT_INDEX>
                            (hParentData->GetImplSlotNumber(static_cast<UINT32>(itfSlotIt.CurrentIndex())));
                    }
                }
#ifdef FEATURE_COMINTEROP
                else
                {
                    // Iterate through the methods on the interface, and if they have a slot which was filled in
                    // on an equivalent interface inherited from the parent fill in the appropriate slot.
                    // This code path is only used when there is an implicit implementation of an interface
                    // that was not implemented on a parent type, but there was an equivalent interface implemented
                    // on a parent type.
                    bmtInterfaceEntry::InterfaceSlotIterator itfSlotIt =
                        pCurItfEntry->IterateInterfaceSlots(GetStackingAllocator());
                    for (; !itfSlotIt.AtEnd(); itfSlotIt.Next())
                    {
                        PlaceMethodFromParentEquivalentInterfaceIntoInterfaceSlot(itfSlotIt, pCurItfEntry, &rgInterfaceDispatchMapTypeIDs, dwCurInterface);
                    }
                }
#endif // FEATURE_COMINTEROP
            }
        }

#ifdef FEATURE_COMINTEROP
        // WinRT types always use methodimpls to line up methods with interface implementations, so we do not want to allow implicit
        // interface implementations to kick in.   This can especially cause problems with redirected interfaces, where the underlying
        // runtimeclass doesn't actually implement the interfaces we claim it does.   For example, a WinRT class which implements both
        // IVector<int> and ICalculator will be projected as implementing IList<int> and ICalculator.  In this case, we do not want the
        // ICalculator Add(int) method to get lined up with the ICollection<int> Add method, since that will cause us to dispatch to the
        // wrong underlying COM interface.
        //
        // There are a special WinRT types in mscorlib (notably DisposableRuntimeClass) which do implement interfaces in the normal way
        // so we skip this check for them.  (Note that we can't use a methodimpl directly in mscorlib, since ComImport classes are
        // forbidden from having implementation code by the C# compiler).
        if (GetHalfBakedClass()->IsProjectedFromWinRT() && !GetModule()->IsSystem())
        {
            continue;
        }
#endif // FEATURE_COMINTEROP

        // For each method declared in this interface
        bmtInterfaceEntry::InterfaceSlotIterator itfSlotIt =
            pCurItfEntry->IterateInterfaceSlots(GetStackingAllocator());
        for (; !itfSlotIt.AtEnd(); ++itfSlotIt)
        {
            if (fParentInterfaceEquivalent)
            {
                if (itfSlotIt->Impl() != INVALID_SLOT_INDEX)
                {   // If this interface is not explicitly declared on this class, and the interface slot has already been
                    // given an implementation, then the only way to provide a new implementation is through an override
                    // or through a MethodImpl. This is necessary in addition to the continue statement before this for
                    // loop because an abstract interface can still have a partial implementation and it is necessary to
                    // skip those interface slots that have already been satisfied.
                    continue;
                }
            }

            BOOL                    fFoundMatchInBuildingClass = FALSE;
            bmtInterfaceSlotImpl &  curItfSlot = *itfSlotIt;
            bmtRTMethod *           pCurItfMethod = curItfSlot.Decl().AsRTMethod();
            const MethodSignature & curItfMethodSig = pCurItfMethod->GetMethodSignature();

            //
            // First, try to find the method explicitly declared in our class
            //

            DeclaredMethodIterator methIt(*this);
            while (methIt.Next())
            {
                // Note that non-publics can legally be exposed via an interface, but only
                // through methodImpls.
                if (IsMdVirtual(methIt.Attrs()) && IsMdPublic(methIt.Attrs()))
                {
#ifdef _DEBUG 
                    if(GetHalfBakedClass()->m_fDebuggingClass && g_pConfig->ShouldBreakOnMethod(methIt.Name()))
                        CONSISTENCY_CHECK_MSGF(false, ("BreakOnMethodName: '%s' ", methIt.Name()));
#endif // _DEBUG

                    if (pCurItfMethod->GetMethodSignature().Equivalent(methIt->GetMethodSignature()))
                    {
                        fFoundMatchInBuildingClass = TRUE;
                        curItfSlot.Impl() = methIt->GetSlotIndex();

                        DispatchMapTypeID dispatchMapTypeID =
                            DispatchMapTypeID::InterfaceClassID(dwCurInterface);
                        bmtVT->pDispatchMapBuilder->InsertMDMapping(
                            dispatchMapTypeID, 
                            static_cast<UINT32>(itfSlotIt.CurrentIndex()), 
                            methIt->GetMethodDesc(),
                            FALSE);

                        break;
                    }
                }
            } // end ... try to find method

            //
            // The ECMA CLR spec states that a type will inherit interface implementations
            // and that explicit re-declaration of an inherited interface will try to match
            // only newslot methods with methods in the re-declared interface (note that
            // this also takes care of matching against unsatisfied interface methods in
            // the abstract parent type scenario).
            //
            // So, if the interface was not declared on a parent and we haven't found a
            // newslot method declared on this type as a match, search all remaining
            // public virtual methods (including overrides declared on this type) for a
            // match.
            //
            // Please see bug VSW577403 and VSW593884 for details of this breaking change.
            //
            if (!fFoundMatchInBuildingClass &&
                !fEquivalentInterfaceImplementedByParent)
            {
                if (HasParent())
                {
                    // Iterate backward through the parent's method table. This is important to 
                    // find the most derived method.
                    bmtParentInfo::Iterator parentMethodIt = bmtParent->IterateSlots();
                    parentMethodIt.ResetToEnd();
                    while (parentMethodIt.Prev())
                    {
                        bmtRTMethod * pCurParentMethod = parentMethodIt->Decl().AsRTMethod();
                        DWORD dwAttrs = pCurParentMethod->GetDeclAttrs();
                        if (!IsMdVirtual(dwAttrs) || !IsMdPublic(dwAttrs))
                        {   // Only match mdPublic mdVirtual methods for interface implementation
                            continue;
                        }

                        if (curItfMethodSig.Equivalent(pCurParentMethod->GetMethodSignature()))
                        {
                            fFoundMatchInBuildingClass = TRUE;
                            curItfSlot.Impl() = pCurParentMethod->GetSlotIndex();

                            DispatchMapTypeID dispatchMapTypeID =
                                DispatchMapTypeID::InterfaceClassID(dwCurInterface);
                            bmtVT->pDispatchMapBuilder->InsertMDMapping(
                                dispatchMapTypeID, 
                                static_cast<UINT32>(itfSlotIt.CurrentIndex()), 
                                pCurParentMethod->GetMethodDesc(), 
                                FALSE);

                            break;
                        }
                    } // end ... try to find parent method
                }
            }

            // For type equivalent interfaces that had an equivalent interface implemented by their parent
            // and where the previous logic to fill in the method based on the virtual mappings on the type have
            // failed, we should attempt to get the mappings from the equivalent interfaces declared on parent types
            // of the type we are currently building.
#ifdef FEATURE_COMINTEROP
            if (!fFoundMatchInBuildingClass && fEquivalentInterfaceImplementedByParent && !pCurItfEntry->IsImplementedByParent())
            {
                PlaceMethodFromParentEquivalentInterfaceIntoInterfaceSlot(itfSlotIt, pCurItfEntry, &rgInterfaceDispatchMapTypeIDs, dwCurInterface);
            }
#endif
        }
    }
} // MethodTableBuilder::PlaceInterfaceMethods


//*******************************************************************************
//
// Used by BuildMethodTable
//
// Place static fields
//
VOID MethodTableBuilder::PlaceRegularStaticFields()
{
    STANDARD_VM_CONTRACT;

    DWORD i;

    LOG((LF_CLASSLOADER, LL_INFO10000, "STATICS: Placing statics for %s\n", this->GetDebugClassName()));

    //
    // Place gc refs and value types first, as they need to have handles created for them.
    // (Placing them together allows us to easily create the handles when Restoring the class,
    // and when initializing new DLS for the class.)
    //

    DWORD   dwCumulativeStaticFieldPos = 0 ;
    DWORD   dwCumulativeStaticGCFieldPos = 0;
    DWORD   dwCumulativeStaticBoxFieldPos = 0;

    // We don't need to do any calculations for the gc refs or valuetypes, as they're
    // guaranteed to be aligned in ModuleStaticsInfo
    bmtFP->NumRegularStaticFieldsOfSize[LOG2_PTRSIZE] -=
        bmtFP->NumRegularStaticGCBoxedFields + bmtFP->NumRegularStaticGCPointerFields;

    // Place fields, largest first, padding so that each group is aligned to its natural size
    for (i = MAX_LOG2_PRIMITIVE_FIELD_SIZE; (signed int) i >= 0; i--)
    {
        // Fields of this size start at the next available location
        bmtFP->RegularStaticFieldStart[i] = dwCumulativeStaticFieldPos;
        dwCumulativeStaticFieldPos += (bmtFP->NumRegularStaticFieldsOfSize[i] << i);

        // Reset counters for the loop after this one
        bmtFP->NumRegularStaticFieldsOfSize[i]    = 0;
    }


    if (dwCumulativeStaticFieldPos > FIELD_OFFSET_LAST_REAL_OFFSET)
        BuildMethodTableThrowException(IDS_CLASSLOAD_GENERAL);

    DWORD dwNumHandleStatics = bmtFP->NumRegularStaticGCBoxedFields + bmtFP->NumRegularStaticGCPointerFields;
    if (!FitsIn<WORD>(dwNumHandleStatics))
    {   // Overflow.
        BuildMethodTableThrowException(IDS_EE_TOOMANYFIELDS);
    }
    SetNumHandleRegularStatics(static_cast<WORD>(dwNumHandleStatics));

    if (!FitsIn<WORD>(bmtFP->NumRegularStaticGCBoxedFields))
    {   // Overflow.
        BuildMethodTableThrowException(IDS_EE_TOOMANYFIELDS);
    }
    SetNumBoxedRegularStatics(static_cast<WORD>(bmtFP->NumRegularStaticGCBoxedFields));

    // Tell the module to give us the offsets we'll be using and commit space for us
    // if necessary
    DWORD dwNonGCOffset, dwGCOffset;
    GetModule()->GetOffsetsForRegularStaticData(bmtInternal->pType->GetTypeDefToken(),
                                                bmtProp->fDynamicStatics,
                                                GetNumHandleRegularStatics(), dwCumulativeStaticFieldPos,
                                                &dwGCOffset, &dwNonGCOffset);

    // Allocate boxed statics first ("x << LOG2_PTRSIZE" is equivalent to "x * sizeof(void *)")
    dwCumulativeStaticGCFieldPos = bmtFP->NumRegularStaticGCBoxedFields<<LOG2_PTRSIZE;

    FieldDesc *pFieldDescList = GetApproxFieldDescListRaw();
    // Place static fields
    for (i = 0; i < bmtEnumFields->dwNumStaticFields - bmtEnumFields->dwNumThreadStaticFields; i++)
    {
        FieldDesc * pCurField   = &pFieldDescList[bmtEnumFields->dwNumInstanceFields+i];
        DWORD dwLog2FieldSize   = (DWORD)(DWORD_PTR&)pCurField->m_pMTOfEnclosingClass; // log2(field size)
        DWORD dwOffset          = (DWORD) pCurField->m_dwOffset; // offset or type of field

        switch (dwOffset)
        {
        case FIELD_OFFSET_UNPLACED_GC_PTR:
            // Place GC reference static field
            pCurField->SetOffset(dwCumulativeStaticGCFieldPos + dwGCOffset);
            dwCumulativeStaticGCFieldPos += 1<<LOG2_PTRSIZE;
            LOG((LF_CLASSLOADER, LL_INFO10000, "STATICS: Field placed at GC offset 0x%x\n", pCurField->GetOffset_NoLogging()));

            break;

        case FIELD_OFFSET_VALUE_CLASS:
            // Place boxed GC reference static field
            pCurField->SetOffset(dwCumulativeStaticBoxFieldPos + dwGCOffset);
            dwCumulativeStaticBoxFieldPos += 1<<LOG2_PTRSIZE;
            LOG((LF_CLASSLOADER, LL_INFO10000, "STATICS: Field placed at GC offset 0x%x\n", pCurField->GetOffset_NoLogging()));

            break;

        case FIELD_OFFSET_UNPLACED:
            // Place non-GC static field
            pCurField->SetOffset(bmtFP->RegularStaticFieldStart[dwLog2FieldSize] +
                                 (bmtFP->NumRegularStaticFieldsOfSize[dwLog2FieldSize] << dwLog2FieldSize) +
                                 dwNonGCOffset);
            bmtFP->NumRegularStaticFieldsOfSize[dwLog2FieldSize]++;
            LOG((LF_CLASSLOADER, LL_INFO10000, "STATICS: Field placed at non GC offset 0x%x\n", pCurField->GetOffset_NoLogging()));
            break;

        default:
            // RVA field
            break;
        }

        LOG((LF_CLASSLOADER, LL_INFO1000000, "Offset of %s: %i\n", pCurField->m_debugName, pCurField->GetOffset_NoLogging()));
    }

    if (bmtProp->fDynamicStatics)
    {
        _ASSERTE(dwNonGCOffset == 0 ||  // no statics at all
                 dwNonGCOffset == OFFSETOF__DomainLocalModule__NormalDynamicEntry__m_pDataBlob); // We need space to point to the GC statics
        bmtProp->dwNonGCRegularStaticFieldBytes = dwCumulativeStaticFieldPos;
    }
    else
    {
        bmtProp->dwNonGCRegularStaticFieldBytes = 0; // Non dynamics shouldnt be using this
    }
    LOG((LF_CLASSLOADER, LL_INFO10000, "STATICS: Static field bytes needed (0 is normal for non dynamic case)%i\n", bmtProp->dwNonGCRegularStaticFieldBytes));
}


VOID MethodTableBuilder::PlaceThreadStaticFields()
{
    STANDARD_VM_CONTRACT;

    DWORD i;

    LOG((LF_CLASSLOADER, LL_INFO10000, "STATICS: Placing ThreadStatics for %s\n", this->GetDebugClassName()));

    //
    // Place gc refs and value types first, as they need to have handles created for them.
    // (Placing them together allows us to easily create the handles when Restoring the class,
    // and when initializing new DLS for the class.)
    //

    DWORD   dwCumulativeStaticFieldPos = 0 ;
    DWORD   dwCumulativeStaticGCFieldPos = 0;
    DWORD   dwCumulativeStaticBoxFieldPos = 0;

    // We don't need to do any calculations for the gc refs or valuetypes, as they're
    // guaranteed to be aligned in ModuleStaticsInfo
    bmtFP->NumThreadStaticFieldsOfSize[LOG2_PTRSIZE] -=
        bmtFP->NumThreadStaticGCBoxedFields + bmtFP->NumThreadStaticGCPointerFields;

    // Place fields, largest first, padding so that each group is aligned to its natural size
    for (i = MAX_LOG2_PRIMITIVE_FIELD_SIZE; (signed int) i >= 0; i--)
    {
        // Fields of this size start at the next available location
        bmtFP->ThreadStaticFieldStart[i] = dwCumulativeStaticFieldPos;
        dwCumulativeStaticFieldPos += (bmtFP->NumThreadStaticFieldsOfSize[i] << i);

        // Reset counters for the loop after this one
        bmtFP->NumThreadStaticFieldsOfSize[i]    = 0;
    }


    if (dwCumulativeStaticFieldPos > FIELD_OFFSET_LAST_REAL_OFFSET)
        BuildMethodTableThrowException(IDS_CLASSLOAD_GENERAL);

    DWORD dwNumHandleStatics = bmtFP->NumThreadStaticGCBoxedFields + bmtFP->NumThreadStaticGCPointerFields;
    if (!FitsIn<WORD>(dwNumHandleStatics))
    {   // Overflow.
        BuildMethodTableThrowException(IDS_EE_TOOMANYFIELDS);
    }

    SetNumHandleThreadStatics(static_cast<WORD>(dwNumHandleStatics));

    if (!FitsIn<WORD>(bmtFP->NumThreadStaticGCBoxedFields))
    {   // Overflow.
        BuildMethodTableThrowException(IDS_EE_TOOMANYFIELDS);
    }

    SetNumBoxedThreadStatics(static_cast<WORD>(bmtFP->NumThreadStaticGCBoxedFields));

    // Tell the module to give us the offsets we'll be using and commit space for us
    // if necessary
    DWORD dwNonGCOffset, dwGCOffset;

    GetModule()->GetOffsetsForThreadStaticData(bmtInternal->pType->GetTypeDefToken(),
                                               bmtProp->fDynamicStatics,
                                               GetNumHandleThreadStatics(), dwCumulativeStaticFieldPos,
                                               &dwGCOffset, &dwNonGCOffset);

    // Allocate boxed statics first ("x << LOG2_PTRSIZE" is equivalent to "x * sizeof(void *)")
    dwCumulativeStaticGCFieldPos = bmtFP->NumThreadStaticGCBoxedFields<<LOG2_PTRSIZE;

    FieldDesc *pFieldDescList = GetHalfBakedClass()->GetFieldDescList();
    // Place static fields
    for (i = 0; i < bmtEnumFields->dwNumThreadStaticFields; i++)
    {
        FieldDesc * pCurField   = &pFieldDescList[bmtEnumFields->dwNumInstanceFields + bmtEnumFields->dwNumStaticFields - bmtEnumFields->dwNumThreadStaticFields + i];
        DWORD dwLog2FieldSize   = (DWORD)(DWORD_PTR&)pCurField->m_pMTOfEnclosingClass; // log2(field size)
        DWORD dwOffset          = (DWORD) pCurField->m_dwOffset; // offset or type of field

        switch (dwOffset)
        {
        case FIELD_OFFSET_UNPLACED_GC_PTR:
            // Place GC reference static field
            pCurField->SetOffset(dwCumulativeStaticGCFieldPos + dwGCOffset);
            dwCumulativeStaticGCFieldPos += 1<<LOG2_PTRSIZE;
            LOG((LF_CLASSLOADER, LL_INFO10000, "THREAD STATICS: Field placed at GC offset 0x%x\n", pCurField->GetOffset_NoLogging()));

            break;

        case FIELD_OFFSET_VALUE_CLASS:
            // Place boxed GC reference static field
            pCurField->SetOffset(dwCumulativeStaticBoxFieldPos + dwGCOffset);
            dwCumulativeStaticBoxFieldPos += 1<<LOG2_PTRSIZE;
            LOG((LF_CLASSLOADER, LL_INFO10000, "THREAD STATICS: Field placed at GC offset 0x%x\n", pCurField->GetOffset_NoLogging()));

            break;

        case FIELD_OFFSET_UNPLACED:
            // Place non-GC static field
            pCurField->SetOffset(bmtFP->ThreadStaticFieldStart[dwLog2FieldSize] +
                                 (bmtFP->NumThreadStaticFieldsOfSize[dwLog2FieldSize] << dwLog2FieldSize) +
                                 dwNonGCOffset);
            bmtFP->NumThreadStaticFieldsOfSize[dwLog2FieldSize]++;
            LOG((LF_CLASSLOADER, LL_INFO10000, "THREAD STATICS: Field placed at non GC offset 0x%x\n", pCurField->GetOffset_NoLogging()));
            break;

        default:
            // RVA field
            break;
        }

        LOG((LF_CLASSLOADER, LL_INFO1000000, "Offset of %s: %i\n", pCurField->m_debugName, pCurField->GetOffset_NoLogging()));
    }

    if (bmtProp->fDynamicStatics)
    {
        _ASSERTE(dwNonGCOffset == 0 ||  // no thread statics at all
                 dwNonGCOffset == OFFSETOF__ThreadLocalModule__DynamicEntry__m_pDataBlob); // We need space to point to the GC statics
        bmtProp->dwNonGCThreadStaticFieldBytes = dwCumulativeStaticFieldPos;
    }
    else
    {
        bmtProp->dwNonGCThreadStaticFieldBytes = 0; // Non dynamics shouldnt be using this
    }
    LOG((LF_CLASSLOADER, LL_INFO10000, "STATICS: ThreadStatic field bytes needed (0 is normal for non dynamic case)%i\n", bmtProp->dwNonGCThreadStaticFieldBytes));
}

//*******************************************************************************
//
// Used by BuildMethodTable
//
// Place instance fields
//
VOID    MethodTableBuilder::PlaceInstanceFields(MethodTable ** pByValueClassCache)
{
    STANDARD_VM_CONTRACT;


    DWORD i;

        //===============================================================
        // BEGIN: Place instance fields
        //===============================================================

        FieldDesc *pFieldDescList = GetHalfBakedClass()->GetFieldDescList();
        DWORD   dwCumulativeInstanceFieldPos;

        // Instance fields start right after the parent
        dwCumulativeInstanceFieldPos    = HasParent() ? GetParentMethodTable()->GetNumInstanceFieldBytes() : 0;

        DWORD dwOffsetBias = 0;
#ifdef FEATURE_64BIT_ALIGNMENT
        // On platforms where the alignment of 64-bit primitives is a requirement (but we're not guaranteed
        // this implicitly by the GC) field offset 0 is actually not 8-byte aligned in reference classes.
        // That's because all such platforms are currently 32-bit and the 4-byte MethodTable pointer pushes us
        // out of alignment. Ideally we'd solve this by arranging to have the object header allocated at a
        // 4-byte offset from an 8-byte boundary, but this is difficult to achieve for objects allocated on
        // the large object heap (which actually requires headers to be 8-byte aligned).
        //
        // So we adjust dwCumulativeInstanceFieldPos to account for the MethodTable* and our alignment
        // calculations will automatically adjust and add padding as necessary. We need to remove this
        // adjustment when setting the field offset in the field desc, however, since the rest of the system
        // expects that value to not include the MethodTable*.
        //
        // This happens only for reference classes: value type field 0 really does lie at offset 0 for unboxed
        // value types. We deal with boxed value types by allocating their headers mis-aligned (luckily for us
        // value types can never get large enough to allocate on the LOH). 
        if (!IsValueClass())
        {
            dwOffsetBias = TARGET_POINTER_SIZE;
            dwCumulativeInstanceFieldPos += dwOffsetBias;
        }
#endif // FEATURE_64BIT_ALIGNMENT

#ifdef FEATURE_READYTORUN
        if (NeedsAlignedBaseOffset())
        {
            // READYTORUN: FUTURE: Use the minimum possible alignment, reduce padding when inheriting within same bubble
            DWORD dwAlignment = DATA_ALIGNMENT;
#ifdef FEATURE_64BIT_ALIGNMENT
            if (GetHalfBakedClass()->IsAlign8Candidate())
                dwAlignment = 8;
#endif
            dwCumulativeInstanceFieldPos = (DWORD)ALIGN_UP(dwCumulativeInstanceFieldPos, dwAlignment);
        }
#endif // FEATURE_READYTORUN

        // place small fields first if the parent have a number of field bytes that is not aligned
        if (!IS_ALIGNED(dwCumulativeInstanceFieldPos, DATA_ALIGNMENT))
        {
            for (i = 0; i < MAX_LOG2_PRIMITIVE_FIELD_SIZE; i++) {
                DWORD j;

                if (IS_ALIGNED(dwCumulativeInstanceFieldPos, size_t{ 1 } << (i + 1)))
                    continue;

                // check whether there are any bigger fields
                for (j = i + 1; j <= MAX_LOG2_PRIMITIVE_FIELD_SIZE; j++) {
                    if (bmtFP->NumInstanceFieldsOfSize[j] != 0)
                        break;
                }
                // nothing to gain if there are no bigger fields
                // (the subsequent loop will place fields from large to small fields)
                if (j > MAX_LOG2_PRIMITIVE_FIELD_SIZE)
                    break;

                // check whether there are any small enough fields
                for (j = i; (signed int) j >= 0; j--) {
                    if (bmtFP->NumInstanceFieldsOfSize[j] != 0)
                        break;
                    // TODO: since we will refuse to place GC references we should filter them out here.
                    // otherwise the "back-filling" process stops completely.
                    // (PlaceInstanceFields)
                    // the following code would fix the issue (a replacement for the code above this comment):
                    // if (bmtFP->NumInstanceFieldsOfSize[j] != 0 &&
                    //     (j != LOG2SLOT || bmtFP->NumInstanceFieldsOfSize[j] > bmtFP->NumInstanceGCPointerFields))
                    // {
                    //     break;
                    // }

                }
                // nothing to play with if there are no smaller fields
                if ((signed int) j < 0)
                    break;
                // eventually go back and use the smaller field as filling
                i = j;

                CONSISTENCY_CHECK(bmtFP->NumInstanceFieldsOfSize[i] != 0);

                j = bmtFP->FirstInstanceFieldOfSize[i];

                // Avoid reordering of gcfields
                if (i == LOG2SLOT) {
                    for ( ; j < bmtEnumFields->dwNumInstanceFields; j++) {
                        if ((pFieldDescList[j].GetOffset_NoLogging() == FIELD_OFFSET_UNPLACED) &&
                            ((DWORD_PTR&)pFieldDescList[j].m_pMTOfEnclosingClass == (size_t)i))
                            break;
                    }

                    // out of luck - can't reorder gc fields
                    if (j >= bmtEnumFields->dwNumInstanceFields)
                        break;
                }

                // Place the field
                dwCumulativeInstanceFieldPos = (DWORD)ALIGN_UP(dwCumulativeInstanceFieldPos, size_t{ 1 } << i);

                pFieldDescList[j].SetOffset(dwCumulativeInstanceFieldPos - dwOffsetBias);
                dwCumulativeInstanceFieldPos += (1 << i);

                // We've placed this field now, so there is now one less of this size field to place
                if (--bmtFP->NumInstanceFieldsOfSize[i] == 0)
                    continue;

                // We are done in this round if we haven't picked the first field
                if (bmtFP->FirstInstanceFieldOfSize[i] != j)
                    continue;

                // Update FirstInstanceFieldOfSize[i] to point to the next such field
                for (j = j+1; j < bmtEnumFields->dwNumInstanceFields; j++)
                {
                    // The log of the field size is stored in the method table
                    if ((DWORD_PTR&)pFieldDescList[j].m_pMTOfEnclosingClass == (size_t)i)
                    {
                        bmtFP->FirstInstanceFieldOfSize[i] = j;
                        break;
                    }
                }
                _ASSERTE(j < bmtEnumFields->dwNumInstanceFields);
            }
        }

        // Place fields, largest first
        for (i = MAX_LOG2_PRIMITIVE_FIELD_SIZE; (signed int) i >= 0; i--)
        {
            if (bmtFP->NumInstanceFieldsOfSize[i] == 0)
                continue;

            // Align instance fields if we aren't already
#ifdef FEATURE_64BIT_ALIGNMENT
            DWORD dwDataAlignment = 1 << i;
#else
            DWORD dwDataAlignment = min(1 << i, DATA_ALIGNMENT);
#endif
            dwCumulativeInstanceFieldPos = (DWORD)ALIGN_UP(dwCumulativeInstanceFieldPos, dwDataAlignment);

            // Fields of this size start at the next available location
            bmtFP->InstanceFieldStart[i] = dwCumulativeInstanceFieldPos;
            dwCumulativeInstanceFieldPos += (bmtFP->NumInstanceFieldsOfSize[i] << i);

            // Reset counters for the loop after this one
            bmtFP->NumInstanceFieldsOfSize[i]  = 0;
        }


        // Make corrections to reserve space for GC Pointer Fields
        //
        // The GC Pointers simply take up the top part of the region associated
        // with fields of that size (GC pointers can be 64 bit on certain systems)
        if (bmtFP->NumInstanceGCPointerFields)
        {
            bmtFP->GCPointerFieldStart = bmtFP->InstanceFieldStart[LOG2SLOT] - dwOffsetBias;
            bmtFP->InstanceFieldStart[LOG2SLOT] = bmtFP->InstanceFieldStart[LOG2SLOT] + (bmtFP->NumInstanceGCPointerFields << LOG2SLOT);
            bmtFP->NumInstanceGCPointerFields = 0;     // reset to zero here, counts up as pointer slots are assigned below
        }

        // Place instance fields - be careful not to place any already-placed fields
        for (i = 0; i < bmtEnumFields->dwNumInstanceFields; i++)
        {
            DWORD dwFieldSize   = (DWORD)(DWORD_PTR&)pFieldDescList[i].m_pMTOfEnclosingClass;
            DWORD dwOffset;

            dwOffset = pFieldDescList[i].GetOffset_NoLogging();

            // Don't place already-placed fields
            if ((dwOffset == FIELD_OFFSET_UNPLACED || dwOffset == FIELD_OFFSET_UNPLACED_GC_PTR || dwOffset == FIELD_OFFSET_VALUE_CLASS))
            {
                if (dwOffset == FIELD_OFFSET_UNPLACED_GC_PTR)
                {
                    pFieldDescList[i].SetOffset(bmtFP->GCPointerFieldStart + (bmtFP->NumInstanceGCPointerFields << LOG2SLOT));
                    bmtFP->NumInstanceGCPointerFields++;
                }
                else if (pFieldDescList[i].IsByValue() == FALSE) // it's a regular field
                {
                    pFieldDescList[i].SetOffset(bmtFP->InstanceFieldStart[dwFieldSize] + (bmtFP->NumInstanceFieldsOfSize[dwFieldSize] << dwFieldSize) - dwOffsetBias);
                    bmtFP->NumInstanceFieldsOfSize[dwFieldSize]++;
                }
            }
        }

        DWORD dwNumGCPointerSeries;
        // Save Number of pointer series
        if (bmtFP->NumInstanceGCPointerFields)
            dwNumGCPointerSeries = bmtParent->NumParentPointerSeries + 1;
        else
            dwNumGCPointerSeries = bmtParent->NumParentPointerSeries;

        // Place by value class fields last
        // Update the number of GC pointer series
        for (i = 0; i < bmtEnumFields->dwNumInstanceFields; i++)
        {
            if (pFieldDescList[i].IsByValue())
            {
                MethodTable * pByValueMT = pByValueClassCache[i];

                    // value classes could have GC pointers in them, which need to be pointer-size aligned
                    // so do this if it has not been done already

#if !defined(_TARGET_64BIT_) && (DATA_ALIGNMENT > 4) 
                dwCumulativeInstanceFieldPos = (DWORD)ALIGN_UP(dwCumulativeInstanceFieldPos,
                    (pByValueMT->GetNumInstanceFieldBytes() >= DATA_ALIGNMENT) ? DATA_ALIGNMENT : TARGET_POINTER_SIZE);
#else // !(!defined(_TARGET_64BIT_) && (DATA_ALIGNMENT > 4))
#ifdef FEATURE_64BIT_ALIGNMENT
                if (pByValueMT->RequiresAlign8())
                    dwCumulativeInstanceFieldPos = (DWORD)ALIGN_UP(dwCumulativeInstanceFieldPos, 8);
                else
#endif // FEATURE_64BIT_ALIGNMENT
                    dwCumulativeInstanceFieldPos = (DWORD)ALIGN_UP(dwCumulativeInstanceFieldPos, TARGET_POINTER_SIZE);
#endif // !(!defined(_TARGET_64BIT_) && (DATA_ALIGNMENT > 4))

                pFieldDescList[i].SetOffset(dwCumulativeInstanceFieldPos - dwOffsetBias);
                dwCumulativeInstanceFieldPos += pByValueMT->GetAlignedNumInstanceFieldBytes();

                // Add pointer series for by-value classes
                dwNumGCPointerSeries += pByValueMT->ContainsPointers() ?
                    (DWORD)CGCDesc::GetCGCDescFromMT(pByValueMT)->GetNumSeries() : 0;
            }
        }

            // Can be unaligned
        DWORD dwNumInstanceFieldBytes = dwCumulativeInstanceFieldPos - dwOffsetBias;

        if (IsValueClass())
        {
                 // Like C++ we enforce that there can be no 0 length structures.
                // Thus for a value class with no fields, we 'pad' the length to be 1
            if (dwNumInstanceFieldBytes == 0)
                dwNumInstanceFieldBytes = 1;

                // The JITs like to copy full machine words,
                //  so if the size is bigger than a void* round it up to minAlign
                // and if the size is smaller than void* round it up to next power of two
            unsigned minAlign;

#ifdef FEATURE_64BIT_ALIGNMENT
            if (GetHalfBakedClass()->IsAlign8Candidate()) {
                minAlign = 8;
            }
            else
#endif // FEATURE_64BIT_ALIGNMENT
            if (dwNumInstanceFieldBytes > TARGET_POINTER_SIZE) {
                minAlign = TARGET_POINTER_SIZE;
            }
            else {
                minAlign = 1;
                while (minAlign < dwNumInstanceFieldBytes)
                    minAlign *= 2;
            }

            dwNumInstanceFieldBytes = (dwNumInstanceFieldBytes + minAlign-1) & ~(minAlign-1);
        }

        if (dwNumInstanceFieldBytes > FIELD_OFFSET_LAST_REAL_OFFSET) {
            BuildMethodTableThrowException(IDS_CLASSLOAD_FIELDTOOLARGE);
        }

        bmtFP->NumInstanceFieldBytes = dwNumInstanceFieldBytes;

        bmtFP->NumGCPointerSeries = dwNumGCPointerSeries;

        //===============================================================
        // END: Place instance fields
        //===============================================================
}

//*******************************************************************************
// this accesses the field size which is temporarily stored in m_pMTOfEnclosingClass
// during class loading. Don't use any other time
DWORD MethodTableBuilder::GetFieldSize(FieldDesc *pFD)
{
    STATIC_CONTRACT_NOTHROW;
    STATIC_CONTRACT_GC_NOTRIGGER;
    STATIC_CONTRACT_FORBID_FAULT;

        // We should only be calling this while this class is being built.
    _ASSERTE(GetHalfBakedMethodTable() == 0);
    BAD_FORMAT_NOTHROW_ASSERT(! pFD->IsByValue() || HasExplicitFieldOffsetLayout());

    if (pFD->IsByValue())
        return (DWORD)(DWORD_PTR&)(pFD->m_pMTOfEnclosingClass);
    return (1 << (DWORD)(DWORD_PTR&)(pFD->m_pMTOfEnclosingClass));
}

#ifdef UNIX_AMD64_ABI
// checks whether the struct is enregisterable.
void MethodTableBuilder::SystemVAmd64CheckForPassStructInRegister()
{
    STANDARD_VM_CONTRACT;

    // This method should be called for valuetypes only
    _ASSERTE(IsValueClass());

    TypeHandle th(GetHalfBakedMethodTable());

    if (th.IsTypeDesc())
    {
        // Not an enregisterable managed structure.
        return;
    }

    DWORD totalStructSize = bmtFP->NumInstanceFieldBytes;

    // If num of bytes for the fields is bigger than CLR_SYSTEMV_MAX_STRUCT_BYTES_TO_PASS_IN_REGISTERS
    // pass through stack
    if (totalStructSize > CLR_SYSTEMV_MAX_STRUCT_BYTES_TO_PASS_IN_REGISTERS)
    {
        LOG((LF_JIT, LL_EVERYTHING, "**** SystemVAmd64CheckForPassStructInRegister: struct %s is too big to pass in registers (%d bytes)\n",
               this->GetDebugClassName(), totalStructSize));
        return;
    }

    const bool useNativeLayout = false;
    // Iterate through the fields and make sure they meet requirements to pass in registers
    SystemVStructRegisterPassingHelper helper((unsigned int)totalStructSize);
    if (GetHalfBakedMethodTable()->ClassifyEightBytes(&helper, 0, 0, useNativeLayout))
    {
        // All the above tests passed. It's registers passed struct!
        GetHalfBakedMethodTable()->SetRegPassedStruct();

        StoreEightByteClassification(&helper);
    }
}

// checks whether the struct is enregisterable.
void MethodTableBuilder::SystemVAmd64CheckForPassNativeStructInRegister()
{
    STANDARD_VM_CONTRACT;
    DWORD totalStructSize = 0;

    // If not a native value type, return.
    if (!IsValueClass())
    {
        return;
    }

    totalStructSize = GetLayoutInfo()->GetNativeSize();

    // If num of bytes for the fields is bigger than CLR_SYSTEMV_MAX_STRUCT_BYTES_TO_PASS_IN_REGISTERS
    // pass through stack
    if (totalStructSize > CLR_SYSTEMV_MAX_STRUCT_BYTES_TO_PASS_IN_REGISTERS)
    {
        LOG((LF_JIT, LL_EVERYTHING, "**** SystemVAmd64CheckForPassNativeStructInRegister: struct %s is too big to pass in registers (%d bytes)\n",
            this->GetDebugClassName(), totalStructSize));
        return;
    }

    _ASSERTE(HasLayout());

    // Classify the native layout for this struct.
    const bool useNativeLayout = true;
    // Iterate through the fields and make sure they meet requirements to pass in registers
    SystemVStructRegisterPassingHelper helper((unsigned int)totalStructSize);
    if (GetHalfBakedMethodTable()->ClassifyEightBytes(&helper, 0, 0, useNativeLayout))
    {
        GetLayoutInfo()->SetNativeStructPassedInRegisters();
    }
}

// Store the eightbyte classification into the EEClass
void MethodTableBuilder::StoreEightByteClassification(SystemVStructRegisterPassingHelper* helper)
{
    EEClass* eeClass = GetHalfBakedMethodTable()->GetClass();
    LoaderAllocator* pAllocator = MethodTableBuilder::GetLoaderAllocator();
    AllocMemTracker* pamTracker = MethodTableBuilder::GetMemTracker();
    EnsureOptionalFieldsAreAllocated(eeClass, pamTracker, pAllocator->GetLowFrequencyHeap());
    eeClass->SetEightByteClassification(helper->eightByteCount, helper->eightByteClassifications, helper->eightByteSizes);
}

#endif // UNIX_AMD64_ABI

//---------------------------------------------------------------------------------------
//
// make sure that no object fields are overlapped incorrectly and define the
// GC pointer series for the class. We are assuming that this class will always be laid out within
// its enclosing class by the compiler in such a way that offset 0 will be the correct alignment
// for object ref fields so we don't need to try to align it
// 
VOID 
MethodTableBuilder::HandleExplicitLayout(
    MethodTable ** pByValueClassCache)
{
    STANDARD_VM_CONTRACT;


    // Instance slice size is the total size of an instance, and is calculated as
    // the field whose offset and size add to the greatest number.
    UINT instanceSliceSize = 0;
    DWORD firstObjectOverlapOffset = ((DWORD)(-1));


    UINT i;
    for (i = 0; i < bmtMetaData->cFields; i++)
    {
        FieldDesc *pFD = bmtMFDescs->ppFieldDescList[i];
        if (pFD == NULL || pFD->IsStatic())
        {
            continue;
        }

        UINT fieldExtent = 0;
        if (!ClrSafeInt<UINT>::addition(pFD->GetOffset_NoLogging(), GetFieldSize(pFD), fieldExtent))
        {
            BuildMethodTableThrowException(COR_E_OVERFLOW);
        }

        if (fieldExtent > instanceSliceSize)
        {
            instanceSliceSize = fieldExtent;
        }
    }

    CQuickBytes qb;
    PREFIX_ASSUME(sizeof(BYTE) == 1);
    BYTE *pFieldLayout = (BYTE*) qb.AllocThrows(instanceSliceSize * sizeof(BYTE));
    for (i=0; i < instanceSliceSize; i++)
    {
        pFieldLayout[i] = empty;
    }

    // go through each field and look for invalid layout
    // (note that we are more permissive than what Ecma allows. We only disallow the minimum set necessary to
    // close security holes.)
    //
    // This is what we implment:
    //
    // 1. Verify that every OREF is on a valid alignment
    // 2. Verify that OREFs only overlap with other OREFs.
    // 3. If an OREF does overlap with another OREF, the class is marked unverifiable.
    // 4. If an overlap of any kind occurs, the class will be marked NotTightlyPacked (affects ValueType.Equals()).
    //
    char emptyObject[TARGET_POINTER_SIZE];
    char isObject[TARGET_POINTER_SIZE];
    for (i = 0; i < TARGET_POINTER_SIZE; i++)
    {
        emptyObject[i] = empty;
        isObject[i]    = oref;
    }


    ExplicitClassTrust explicitClassTrust;

    UINT valueClassCacheIndex = ((UINT)(-1));
    UINT badOffset = 0;
    FieldDesc * pFD = NULL;
    for (i = 0; i < bmtMetaData->cFields; i++)
    {
        // Note about this loop body:
        //
        // This loop is coded to make it as hard as possible to allow a field to be trusted when it shouldn't.
        //
        // Every path in this loop body must lead to an explicit decision as to whether the field nonoverlaps,
        // overlaps in a verifiable fashion, overlaps in a nonverifiable fashion or overlaps in a completely illegal fashion.
        //
        // It must call fieldTrust.SetTrust() with the appropriate result. If you don't call it, fieldTrust's destructor
        // will intentionally default to kNone and mark the entire class illegal.
        //
        // If your result is anything but kNone (class is illegal), you must also explicitly "continue" the loop.
        // There is a "break" at end of this loop body that will abort the loop if you don't do this. And
        // if you don't finish iterating through all the fields, this function will automatically mark the entire
        // class illegal. This rule is a vestige of an earlier version of this function.

        // This object's dtor will aggregate the trust decision for this field into the trust level for the class as a whole.
        ExplicitFieldTrustHolder fieldTrust(&explicitClassTrust);

        pFD = bmtMFDescs->ppFieldDescList[i];
        if (pFD == NULL || pFD->IsStatic())
        {
            fieldTrust.SetTrust(ExplicitFieldTrust::kNonOverLayed);
            continue;
        }

        // "i" indexes all fields, valueClassCacheIndex indexes non-static fields only. Don't get them confused!
        valueClassCacheIndex++;

        if (CorTypeInfo::IsObjRef(pFD->GetFieldType()))
        {
            // Check that the ref offset is pointer aligned
            if ((pFD->GetOffset_NoLogging() & ((ULONG)TARGET_POINTER_SIZE - 1)) != 0)
            {
                badOffset = pFD->GetOffset_NoLogging();
                fieldTrust.SetTrust(ExplicitFieldTrust::kNone);

                // If we got here, OREF field was not pointer aligned. THROW.
                break;
            }
            // check if overlaps another object
            if (memcmp((void *)&pFieldLayout[pFD->GetOffset_NoLogging()], (void *)isObject, sizeof(isObject)) == 0)
            {
                // If we got here, an OREF overlapped another OREF. We permit this but mark the class unverifiable.
                fieldTrust.SetTrust(ExplicitFieldTrust::kLegal);

                if (firstObjectOverlapOffset == ((DWORD)(-1)))
                {
                    firstObjectOverlapOffset = pFD->GetOffset_NoLogging();
                }

                continue;
            }
            // check if is empty at this point
            if (memcmp((void *)&pFieldLayout[pFD->GetOffset_NoLogging()], (void *)emptyObject, sizeof(emptyObject)) == 0)
            {
                // If we got here, this OREF is overlapping no other fields (yet). Record that these bytes now contain an OREF.
                memset((void *)&pFieldLayout[pFD->GetOffset_NoLogging()], oref, sizeof(isObject));
                fieldTrust.SetTrust(ExplicitFieldTrust::kNonOverLayed);
                continue;
            }

            // If we got here, the OREF overlaps a non-OREF. THROW.
            badOffset = pFD->GetOffset_NoLogging();
            fieldTrust.SetTrust(ExplicitFieldTrust::kNone);
            break;
        }
        else
        {
            UINT fieldSize;
            if (pFD->IsByValue())
            {
                MethodTable *pByValueMT = pByValueClassCache[valueClassCacheIndex];
                if (pByValueMT->ContainsPointers())
                {
                    if ((pFD->GetOffset_NoLogging() & ((ULONG)TARGET_POINTER_SIZE - 1)) == 0)
                    {
                        ExplicitFieldTrust::TrustLevel trust;
                        DWORD firstObjectOverlapOffsetInsideValueClass = ((DWORD)(-1));
                        trust = CheckValueClassLayout(pByValueMT, &pFieldLayout[pFD->GetOffset_NoLogging()], &firstObjectOverlapOffsetInsideValueClass);
                        fieldTrust.SetTrust(trust);
                        if (firstObjectOverlapOffsetInsideValueClass != ((DWORD)(-1)))
                        {
                            if (firstObjectOverlapOffset == ((DWORD)(-1)))
                            {
                                firstObjectOverlapOffset = pFD->GetOffset_NoLogging() + firstObjectOverlapOffsetInsideValueClass;
                            }
                        }

                        if (trust != ExplicitFieldTrust::kNone)
                        {
                            continue;
                        }
                        else
                        {
                            // If we got here, then an OREF inside the valuetype illegally overlapped a non-OREF field. THROW.
                            badOffset = pFD->GetOffset_NoLogging();
                            break;
                        }
                    }
                    // If we got here, then a valuetype containing an OREF was misaligned.
                    badOffset = pFD->GetOffset_NoLogging();
                    fieldTrust.SetTrust(ExplicitFieldTrust::kNone);
                    break;
                }
                // no pointers so fall through to do standard checking
                fieldSize = pByValueMT->GetNumInstanceFieldBytes();
            }
            else
            {
                // field size temporarily stored in pInterface field
                fieldSize = GetFieldSize(pFD);
            }

            // If we got here, we are trying to place a non-OREF (or a valuetype composed of non-OREFs.)
            // Look for any orefs under this field
            BYTE *loc;
            if ((loc = (BYTE*)memchr((void*)&pFieldLayout[pFD->GetOffset_NoLogging()], oref, fieldSize)) == NULL)
            {
                // If we have a nonoref in the range then we are doing an overlay
                if(memchr((void*)&pFieldLayout[pFD->GetOffset_NoLogging()], nonoref, fieldSize))
                {
                    fieldTrust.SetTrust(ExplicitFieldTrust::kVerifiable);
                }
                else
                {
                    fieldTrust.SetTrust(ExplicitFieldTrust::kNonOverLayed);
                }
                memset((void*)&pFieldLayout[pFD->GetOffset_NoLogging()], nonoref, fieldSize);
                continue;
            }

            // If we got here, we tried to place a non-OREF (or a valuetype composed of non-OREFs)
            // on top of an OREF. THROW.
            badOffset = (UINT)(loc - pFieldLayout);
            fieldTrust.SetTrust(ExplicitFieldTrust::kNone);
            break;
            // anything else is an error
        }

        // We have to comment out this assert because otherwise, the compiler refuses to build because the _ASSERT is unreachable
        // (Thanks for nothing, compiler, that's what the assert is trying to enforce!) But the intent of the assert is correct.
        //_ASSERTE(!"You aren't supposed to be here. Some path inside the loop body did not execute an explicit break or continue.");


        // If we got here, some code above failed to execute an explicit "break" or "continue." This is a bug! To be safe,
        // we will put a catchall "break" here which will cause the typeload to abort (albeit with a probably misleading
        // error message.)
        break;
    } // for(;;)

    // We only break out of the loop above if we detected an error.
    if (i < bmtMetaData->cFields || !explicitClassTrust.IsLegal())
    {
        ThrowFieldLayoutError(GetCl(),
                              GetModule(),
                              badOffset,
                              IDS_CLASSLOAD_EXPLICIT_LAYOUT);
    }

    if (!explicitClassTrust.IsNonOverLayed())
    {
        SetHasOverLayedFields();
    }

    if (IsBlittable() || IsManagedSequential())
    {
        // Bug 849333: We shouldn't update "bmtFP->NumInstanceFieldBytes" 
        // for Blittable/ManagedSequential types.  As this will break backward compatiblity
        // for the size of types that return true for HasExplicitFieldOffsetLayout()
        // 
        return;
    }

    FindPointerSeriesExplicit(instanceSliceSize, pFieldLayout);

    // Fixup the offset to include parent as current offsets are relative to instance slice
    // Could do this earlier, but it's just easier to assume instance relative for most
    // of the earlier calculations

    // Instance fields start right after the parent
    S_UINT32 dwInstanceSliceOffset = S_UINT32(HasParent() ? GetParentMethodTable()->GetNumInstanceFieldBytes() : 0);
    if (bmtGCSeries->numSeries != 0)
    {
        dwInstanceSliceOffset.AlignUp(TARGET_POINTER_SIZE);
    }
    if (dwInstanceSliceOffset.IsOverflow())
    {
        // addition overflow or cast truncation
        BuildMethodTableThrowException(IDS_CLASSLOAD_GENERAL);
    }

    S_UINT32 numInstanceFieldBytes = dwInstanceSliceOffset + S_UINT32(instanceSliceSize);

    if (IsValueClass())
    {
        ULONG clstotalsize;
        if (FAILED(GetMDImport()->GetClassTotalSize(GetCl(), &clstotalsize)))
        {
            clstotalsize = 0;
        }
        
        if (clstotalsize != 0)
        {
            // size must be large enough to accomodate layout. If not, we use the layout size instead.
            if (!numInstanceFieldBytes.IsOverflow() && clstotalsize >= numInstanceFieldBytes.Value())
            {
                numInstanceFieldBytes = S_UINT32(clstotalsize);
            }
        }
    }
    
    // The GC requires that all valuetypes containing orefs be sized to a multiple of TARGET_POINTER_SIZE.
    if (bmtGCSeries->numSeries != 0)
    {
        numInstanceFieldBytes.AlignUp(TARGET_POINTER_SIZE);
    }
    if (numInstanceFieldBytes.IsOverflow())
    {
        // addition overflow or cast truncation
        BuildMethodTableThrowException(IDS_CLASSLOAD_GENERAL);
    }

    // Set the total size
    bmtFP->NumInstanceFieldBytes = numInstanceFieldBytes.Value();

    for (i = 0; i < bmtMetaData->cFields; i++)
    {
        FieldDesc * pTempFD = bmtMFDescs->ppFieldDescList[i];
        if ((pTempFD == NULL) || pTempFD->IsStatic())
        {
            continue;
        }
        HRESULT hr = pTempFD->SetOffset(pTempFD->GetOffset_NoLogging() + dwInstanceSliceOffset.Value());
        if (FAILED(hr))
        {
            BuildMethodTableThrowException(hr, *bmtError);
        }
    }
} // MethodTableBuilder::HandleExplicitLayout

//*******************************************************************************
// make sure that no object fields are overlapped incorrectly, returns S_FALSE if
// there overlap but nothing illegal, S_OK if there is no overlap
/*static*/ ExplicitFieldTrust::TrustLevel MethodTableBuilder::CheckValueClassLayout(MethodTable * pMT, BYTE *pFieldLayout, DWORD *pFirstObjectOverlapOffset)
{
    STANDARD_VM_CONTRACT;


    *pFirstObjectOverlapOffset = (DWORD)(-1);

    // Build a layout of the value class. Don't know the sizes of all the fields easily, but
    // do know a) vc is already consistent so don't need to check it's overlaps and
    // b) size and location of all objectrefs. So build it by setting all non-oref
    // then fill in the orefs later
    UINT fieldSize = pMT->GetNumInstanceFieldBytes();
    CQuickBytes qb;
    BYTE *vcLayout = (BYTE*) qb.AllocThrows(fieldSize * sizeof(BYTE));

    memset((void*)vcLayout, nonoref, fieldSize);

    // use pointer series to locate the orefs

    CGCDesc* map = CGCDesc::GetCGCDescFromMT(pMT);
    CGCDescSeries *pSeries = map->GetLowestSeries();

    for (SIZE_T j = 0; j < map->GetNumSeries(); j++)
    {
        CONSISTENCY_CHECK(pSeries <= map->GetHighestSeries());

        memset((void*)&vcLayout[pSeries->GetSeriesOffset() - OBJECT_SIZE], oref, pSeries->GetSeriesSize() + pMT->GetBaseSize());
        pSeries++;
    }


    ExplicitClassTrust explicitClassTrust;

    for (UINT i=0; i < fieldSize; i++) {

        ExplicitFieldTrustHolder fieldTrust(&explicitClassTrust);

        if (vcLayout[i] == oref) {
            switch (pFieldLayout[i]) {
                // oref <--> empty
                case empty:
                    pFieldLayout[i] = oref;
                    fieldTrust.SetTrust(ExplicitFieldTrust::kNonOverLayed);
                    break;

                // oref <--> nonoref
                case nonoref:
                    fieldTrust.SetTrust(ExplicitFieldTrust::kNone);
                    break;

                // oref <--> oref
                case oref:
                    fieldTrust.SetTrust(ExplicitFieldTrust::kLegal);
                    if ((*pFirstObjectOverlapOffset) == ((DWORD)(-1)))
                    {
                        *pFirstObjectOverlapOffset = (DWORD)i;
                    }
                    break;

                default:
                    _ASSERTE(!"Can't get here.");
                }
        } else if (vcLayout[i] == nonoref) {
            switch (pFieldLayout[i]) {
                // nonoref <--> empty
                case empty:
                    pFieldLayout[i] = nonoref;
                    fieldTrust.SetTrust(ExplicitFieldTrust::kNonOverLayed);
                    break;

                // nonoref <--> nonoref
                case nonoref:
                    fieldTrust.SetTrust(ExplicitFieldTrust::kVerifiable);
                    break;

                // nonoref <--> oref
                case oref:
                    fieldTrust.SetTrust(ExplicitFieldTrust::kNone);
                    break;

                default:
                    _ASSERTE(!"Can't get here.");
            }
        } else {
            _ASSERTE(!"Can't get here.");
        }
    }

    return explicitClassTrust.GetTrustLevel();
}







//*******************************************************************************
void MethodTableBuilder::FindPointerSeriesExplicit(UINT instanceSliceSize,
                                                   BYTE *pFieldLayout)
{
    STANDARD_VM_CONTRACT;


    // Allocate a structure to track the series. We know that the worst case is a
    // ref-non-ref-non, and since only ref series are recorded and non-ref series
    // are skipped, the max number of series is total instance size / 2 / sizeof(ref).
    // But watch out for the case where we have e.g. an instanceSlizeSize of 4.
    DWORD sz = (instanceSliceSize + (2 * TARGET_POINTER_SIZE) - 1);
    bmtGCSeries->pSeries = new bmtGCSeriesInfo::Series[sz/2/ TARGET_POINTER_SIZE];

    BYTE *loc = pFieldLayout;
    BYTE *layoutEnd = pFieldLayout + instanceSliceSize;
    while (loc < layoutEnd)
    {
        // Find the next OREF entry.
        loc = (BYTE*)memchr((void*)loc, oref, layoutEnd-loc);
        if (loc == NULL)
        {
            break;
        }

        // Find the next non-OREF entry
        BYTE *cur = loc;
        while(cur < layoutEnd && *cur == oref)
        {
            cur++;
        }

        // so we have a GC series at loc for cur-loc bytes
        bmtGCSeries->pSeries[bmtGCSeries->numSeries].offset = (DWORD)(loc - pFieldLayout);
        bmtGCSeries->pSeries[bmtGCSeries->numSeries].len = (DWORD)(cur - loc);

        CONSISTENCY_CHECK(IS_ALIGNED(cur - loc, TARGET_POINTER_SIZE));

        bmtGCSeries->numSeries++;
        loc = cur;
    }

    // Calculate the total series count including the parent, if a parent exists.

    bmtFP->NumGCPointerSeries = bmtParent->NumParentPointerSeries + bmtGCSeries->numSeries;

}

//*******************************************************************************
VOID 
MethodTableBuilder::HandleGCForExplicitLayout()
{
    STANDARD_VM_CONTRACT;

    MethodTable *pMT = GetHalfBakedMethodTable();

#ifdef FEATURE_COLLECTIBLE_TYPES
    if (bmtFP->NumGCPointerSeries == 0 && pMT->Collectible())
    {
        // For collectible types, insert empty gc series
        CGCDescSeries *pSeries;

        CGCDesc::Init( (PVOID) pMT, 1);
        pSeries = ((CGCDesc*)pMT)->GetLowestSeries();
        pSeries->SetSeriesSize( (size_t) (0) - (size_t) pMT->GetBaseSize());
        pSeries->SetSeriesOffset(OBJECT_SIZE);
    }
    else
#endif // FEATURE_COLLECTIBLE_TYPES
    if (bmtFP->NumGCPointerSeries != 0)
    {
        pMT->SetContainsPointers();

        // Copy the pointer series map from the parent
        CGCDesc::Init( (PVOID) pMT, bmtFP->NumGCPointerSeries );
        if (bmtParent->NumParentPointerSeries != 0)
        {
            size_t ParentGCSize = CGCDesc::ComputeSize(bmtParent->NumParentPointerSeries);
            memcpy( (PVOID) (((BYTE*) pMT) - ParentGCSize),  (PVOID) (((BYTE*) GetParentMethodTable()) - ParentGCSize), ParentGCSize - sizeof(UINT) );

        }

        UINT32 dwInstanceSliceOffset = AlignUp(HasParent() ? GetParentMethodTable()->GetNumInstanceFieldBytes() : 0, TARGET_POINTER_SIZE);

        // Build the pointer series map for this pointers in this instance
        CGCDescSeries *pSeries = ((CGCDesc*)pMT)->GetLowestSeries();
        for (UINT i=0; i < bmtGCSeries->numSeries; i++) {
            // See gcdesc.h for an explanation of why we adjust by subtracting BaseSize
            BAD_FORMAT_NOTHROW_ASSERT(pSeries <= CGCDesc::GetCGCDescFromMT(pMT)->GetHighestSeries());

            pSeries->SetSeriesSize( (size_t) bmtGCSeries->pSeries[i].len - (size_t) pMT->GetBaseSize() );
            pSeries->SetSeriesOffset(bmtGCSeries->pSeries[i].offset + OBJECT_SIZE + dwInstanceSliceOffset);
            pSeries++;
        }
    }

    delete [] bmtGCSeries->pSeries;
    bmtGCSeries->pSeries = NULL;
} // MethodTableBuilder::HandleGCForExplicitLayout

static 
BOOL 
InsertMethodTable(
    MethodTable  *pNew, 
    MethodTable **pArray, 
    DWORD         nArraySizeMax, 
    DWORD        *pNumAssigned)
{
    LIMITED_METHOD_CONTRACT;

    for (DWORD j = 0; j < (*pNumAssigned); j++)
    {
        if (pNew == pArray[j])
        {
#ifdef _DEBUG
            LOG((LF_CLASSLOADER, LL_INFO1000, "GENERICS: Found duplicate interface %s (%p) at position %d out of %d\n", pNew->GetDebugClassName(), pNew, j, *pNumAssigned));
#endif
            return pNew->HasInstantiation(); // bail out - we found a duplicate instantiated interface
        }
        else
        {
#ifdef _DEBUG 
            LOG((LF_CLASSLOADER, LL_INFO1000, "  GENERICS: InsertMethodTable ignored interface %s (%p) at position %d out of %d\n", pArray[j]->GetDebugClassName(), pArray[j], j, *pNumAssigned));
#endif
        }
    }
    if (*pNumAssigned >= nArraySizeMax)
    {
        LOG((LF_CLASSLOADER, LL_INFO1000, "GENERICS: Found interface %s (%p) exceeding size %d of interface array\n", pNew->GetDebugClassName(), pNew, nArraySizeMax));
        return TRUE;
    }
    LOG((LF_CLASSLOADER, LL_INFO1000, "GENERICS: Inserting interface %s (%p) at position %d\n", pNew->GetDebugClassName(), pNew, *pNumAssigned));
    pArray[(*pNumAssigned)++] = pNew;
    return FALSE;
} // InsertMethodTable


//*******************************************************************************
// --------------------------------------------------------------------------------------------
// Copy virtual slots inherited from parent:
//
// In types created at runtime, inherited virtual slots are initialized using approximate parent 
// during method table building. This method will update them based on the exact parent.
// In types loaded from NGen image, inherited virtual slots from cross-module parents are not 
// initialized. This method will initialize them based on the actually loaded exact parent
// if necessary.
/* static */
void MethodTableBuilder::CopyExactParentSlots(MethodTable *pMT, MethodTable *pApproxParentMT)
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(pMT));
    }
    CONTRACTL_END;

    if (pMT->IsZapped())
        return;

    DWORD nParentVirtuals = pMT->GetNumParentVirtuals();
    if (nParentVirtuals == 0)
        return;

    _ASSERTE(nParentVirtuals == pApproxParentMT->GetNumVirtuals());

    //
    // Update all inherited virtual slots to match exact parent
    //

    if (!pMT->IsCanonicalMethodTable())
    {
        //
        // Copy all slots for non-canonical methodtables to avoid touching methoddescs.
        //
        MethodTable * pCanonMT = pMT->GetCanonicalMethodTable();

        // Do not write into vtable chunks shared with parent. It would introduce race 
        // with code:MethodDesc::SetStableEntryPointInterlocked.
        //
        // Non-canonical method tables either share everything or nothing so it is sufficient to check
        // just the first indirection to detect sharing.
        if (pMT->GetVtableIndirections()[0].GetValueMaybeNull() != pCanonMT->GetVtableIndirections()[0].GetValueMaybeNull())
        {
            MethodTable::MethodDataWrapper hCanonMTData(MethodTable::GetMethodData(pCanonMT, FALSE));
            for (DWORD i = 0; i < nParentVirtuals; i++)
            {
                pMT->CopySlotFrom(i, hCanonMTData, pCanonMT);
            }
        }
    }
    else
    {
        MethodTable::MethodDataWrapper hMTData(MethodTable::GetMethodData(pMT, FALSE));

        MethodTable * pParentMT = pMT->GetParentMethodTable();
        MethodTable::MethodDataWrapper hParentMTData(MethodTable::GetMethodData(pParentMT, FALSE));

        for (DWORD i = 0; i < nParentVirtuals; i++)
        {
            // fix up wrongly-inherited method descriptors
            MethodDesc* pMD = hMTData->GetImplMethodDesc(i);
            CONSISTENCY_CHECK(CheckPointer(pMD));
            CONSISTENCY_CHECK(pMD == pMT->GetMethodDescForSlot(i));

            if (pMD->GetMethodTable() == pMT)
                continue;

            // We need to re-inherit this slot from the exact parent.

            DWORD indirectionIndex = MethodTable::GetIndexOfVtableIndirection(i);
            if (pMT->GetVtableIndirections()[indirectionIndex].GetValueMaybeNull() == pApproxParentMT->GetVtableIndirections()[indirectionIndex].GetValueMaybeNull())
            {
                // The slot lives in a chunk shared from the approximate parent MT
                // If so, we need to change to share the chunk from the exact parent MT

#ifdef FEATURE_PREJIT
                _ASSERTE(MethodTable::CanShareVtableChunksFrom(pParentMT, pMT->GetLoaderModule(), Module::GetPreferredZapModuleForMethodTable(pMT)));
#else
                _ASSERTE(MethodTable::CanShareVtableChunksFrom(pParentMT, pMT->GetLoaderModule()));
#endif

                pMT->GetVtableIndirections()[indirectionIndex].SetValueMaybeNull(pParentMT->GetVtableIndirections()[indirectionIndex].GetValueMaybeNull());

                i = MethodTable::GetEndSlotForVtableIndirection(indirectionIndex, nParentVirtuals) - 1;
                continue;
            }

            // The slot lives in an unshared chunk. We need to update the slot contents
            pMT->CopySlotFrom(i, hParentMTData, pParentMT);
        }
    }
} // MethodTableBuilder::CopyExactParentSlots

//*******************************************************************************
/* static */
void 
MethodTableBuilder::LoadExactInterfaceMap(MethodTable *pMT)
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(pMT));
    }
    CONTRACTL_END;

    BOOL hasInstantiatedInterfaces = FALSE;
    MethodTable::InterfaceMapIterator it = pMT->IterateInterfaceMap();
    while (it.Next())
    {
        if (it.GetInterface()->HasInstantiation())
        {
            hasInstantiatedInterfaces = TRUE;
            break;
        }
    }

    // If we have some instantiated interfaces, then we have lots more work to do...

    // In the worst case we have to use the metadata to
    //  (a) load the exact interfaces and determine the order in which they
    //      go.  We do those by re-running the interface layout algorithm
    //      and using metadata-comparisons to place interfaces in the list.
    //  (b) do a check to see if any ambiguity in the interface dispatch map is introduced
    //      by the instantiation
    // See code:#LoadExactInterfaceMap_Algorithm2
    //
    // However, we can do something simpler: we just use
    // the loaded interface method tables to determine ordering.  This can be done
    // if there are no duplicate instantiated interfaces in the interface
    // set.
    // See code:#LoadExactInterfaceMap_Algorithm1.

    if (!hasInstantiatedInterfaces)
    {
        return;
    }

    HRESULT hr;
    TypeHandle thisTH(pMT);
    SigTypeContext typeContext(thisTH);
    MethodTable *pParentMT = pMT->GetParentMethodTable();

    //#LoadExactInterfaceMap_Algorithm1
    // Exact interface instantiation loading TECHNIQUE 1.
    // (a) For interfaces inherited from an instantiated parent class, just copy down from exact parent
    // (b) Grab newly declared interfaces by loading and then copying down all their inherited parents
    // (c) But check for any exact duplicates along the way
    // (d) If no duplicates then we can use the computed interface map we've created
    // (e) If duplicates found then use the slow metadata-based technique code:#LoadExactInterfaceMap_Algorithm2
    DWORD nInterfacesCount = pMT->GetNumInterfaces();
    MethodTable **pExactMTs = (MethodTable**) _alloca(sizeof(MethodTable *) * nInterfacesCount);
    DWORD nAssigned = 0;
    BOOL duplicates = false;
    if (pParentMT != NULL)
    {
        MethodTable::InterfaceMapIterator parentIt = pParentMT->IterateInterfaceMap();
        while (parentIt.Next())
        {
            duplicates |= InsertMethodTable(parentIt.GetInterface(), pExactMTs, nInterfacesCount, &nAssigned);
        }
    }
    InterfaceImplEnum ie(pMT->GetModule(), pMT->GetCl(), NULL);
    while ((hr = ie.Next()) == S_OK)
    {
        MethodTable *pNewIntfMT = ClassLoader::LoadTypeDefOrRefOrSpecThrowing(pMT->GetModule(),
                                                                              ie.CurrentToken(),
                                                                              &typeContext,
                                                                              ClassLoader::ThrowIfNotFound,
                                                                              ClassLoader::FailIfUninstDefOrRef,
                                                                              ClassLoader::LoadTypes,
                                                                              CLASS_LOAD_EXACTPARENTS,
                                                                              TRUE).GetMethodTable();

        duplicates |= InsertMethodTable(pNewIntfMT, pExactMTs, nInterfacesCount, &nAssigned);
        MethodTable::InterfaceMapIterator intIt = pNewIntfMT->IterateInterfaceMap();
        while (intIt.Next())
        {
            duplicates |= InsertMethodTable(intIt.GetInterface(), pExactMTs, nInterfacesCount, &nAssigned);
        }
    }
    if (FAILED(hr))
    {
        pMT->GetAssembly()->ThrowTypeLoadException(pMT->GetMDImport(), pMT->GetCl(), IDS_CLASSLOAD_BADFORMAT);
    }
#ifdef _DEBUG 
    duplicates |= EEConfig::GetConfigDWORD_DontUse_(CLRConfig::INTERNAL_AlwaysUseMetadataInterfaceMapLayout, FALSE);
    
    //#InjectInterfaceDuplicates_LoadExactInterfaceMap
    // If we are injecting duplicates also for non-generic interfaces in check builds, we have to use 
    // algorithm code:#LoadExactInterfaceMap_Algorithm2.
    // Has to be in sync with code:#InjectInterfaceDuplicates_Main.
    duplicates |= pMT->Debug_HasInjectedInterfaceDuplicates();
#endif
    CONSISTENCY_CHECK(duplicates || (nAssigned == pMT->GetNumInterfaces()));
    if (duplicates)
    {
        //#LoadExactInterfaceMap_Algorithm2
        // Exact interface instantiation loading TECHNIQUE 2 - The exact instantiation has caused some duplicates to
        // appear in the interface map!  This may not be an error: if the duplicates
        // were ones that arose because because of inheritance from
        // a parent type then we accept that.  For example
        //     class C<T> : I<T>
        //     class D<T> : C<T>, I<string>
        // is acceptable even when loading D<string>.  Note that in such a case
        // there will be two entries for I<string> in the final interface map for D<string>.
        // For dispatch the mappings in D take precedence.
        //
        // However we consider it an error if there is real ambiguity within
        // the interface definitions within the one class, e.g.
        //     class E<T> : I<T>, I<string>
        // In this situation it is not defined how to dispatch calls to I<string>: would
        // we use the bindings for I<T> or I<string>?
        //
        // Because we may had duplicates the interface map we created above may not
        // be the correct one: for example for D<string> above we would have computed
        // a map with only one entry.  This is incorrect: an exact instantiation's interface
        // map must have entries that match the ordering of the interface map in the generic case
        // (this is because code:#InterfaceMap_SupersetOfParent).
        //
        // So, in order to determine how to place the interfaces we need go back to
        // the metadata. We also do this to check if the presence of duplicates
        // has caused any potential ambiguity, i.e. the E<string> case above.

        // First we do a GetCheckpoint for the thread-based allocator.  ExpandExactInheritedInterfaces allocates substitution chains
        // on the thread allocator rather than on the stack.
        Thread * pThread = GetThread();
        CheckPointHolder cph(pThread->m_MarshalAlloc.GetCheckpoint()); //hold checkpoint for autorelease

        // ***********************************************************
        // ****** This must be consistent with code:ExpandApproxInterface etc. *******
        //
        // The correlation to ExpandApproxInterfaces etc. simply drops out by how we
        // traverse interfaces.
        // ***********************************************************

        bmtExactInterfaceInfo bmtExactInterface;
        bmtExactInterface.pInterfaceSubstitution = new (&pThread->m_MarshalAlloc) Substitution[pMT->GetNumInterfaces()];
        bmtExactInterface.pExactMTs = pExactMTs;
        bmtExactInterface.nAssigned = 0;
        bmtExactInterface.typeContext = typeContext;

        // Do the interfaces inherited from a parent class
        if ((pParentMT != NULL) && (pParentMT->GetNumInterfaces() > 0))
        {
            Substitution * pParentSubstForTypeLoad = new (&pThread->m_MarshalAlloc) Substitution(
                pMT->GetSubstitutionForParent(NULL));
            Substitution * pParentSubstForComparing = new (&pThread->m_MarshalAlloc) Substitution(
                pMT->GetSubstitutionForParent(NULL));
            ExpandExactInheritedInterfaces(
                &bmtExactInterface, 
                pParentMT, 
                pParentSubstForTypeLoad, 
                pParentSubstForComparing);
        }
#ifdef _DEBUG
        //#ExactInterfaceMap_SupersetOfParent
        // Check that parent's interface map is subset of this interface map
        // See code:#InterfaceMap_SupersetOfParent
        {
            _ASSERTE(pParentMT->GetNumInterfaces() == bmtExactInterface.nAssigned);
            
            MethodTable::InterfaceMapIterator parentInterfacesIterator = pParentMT->IterateInterfaceMap();
            UINT32 nInterfaceIndex = 0;
            while (parentInterfacesIterator.Next())
            {
                if (pMT->IsSharedByGenericInstantiations())
                {   // The type is a canonical instantiation (contains _Canon)
                    // The interface instantiations of parent can be different (see 
                    // code:#InterfaceMap_CanonicalSupersetOfParent), therefore we cannot compare 
                    // MethodTables
                    _ASSERTE(parentInterfacesIterator.GetInterfaceInfo()->GetApproxMethodTable(pParentMT->GetLoaderModule())->HasSameTypeDefAs(
                        bmtExactInterface.pExactMTs[nInterfaceIndex]));
                }
                else
                {   // It is not canonical instantiation, we can compare MethodTables
                    _ASSERTE(parentInterfacesIterator.GetInterface() == bmtExactInterface.pExactMTs[nInterfaceIndex]);
                }
                nInterfaceIndex++;
            }
            _ASSERTE(nInterfaceIndex == bmtExactInterface.nAssigned);
        }
#endif //_DEBUG

        // If there are any __Canon instances in the type argument list, then we defer the
        // ambiguity checking until an exact instantiation.
        if (!pMT->IsSharedByGenericInstantiations())
        {
            // There are no __Canon types in the instantiation, so do ambiguity check.
            bmtInterfaceAmbiguityCheckInfo bmtCheckInfo;
            bmtCheckInfo.pMT = pMT;
            bmtCheckInfo.ppInterfaceSubstitutionChains = new (&pThread->m_MarshalAlloc) Substitution *[pMT->GetNumInterfaces()];
            bmtCheckInfo.ppExactDeclaredInterfaces = new (&pThread->m_MarshalAlloc) MethodTable *[pMT->GetNumInterfaces()];
            bmtCheckInfo.nAssigned = 0;
            bmtCheckInfo.typeContext = typeContext;
            MethodTableBuilder::InterfacesAmbiguityCheck(&bmtCheckInfo, pMT->GetModule(), pMT->GetCl(), NULL);
        }

        // OK, there is no ambiguity amongst the instantiated interfaces declared on this class.
        MethodTableBuilder::ExpandExactDeclaredInterfaces(
            &bmtExactInterface, 
            pMT->GetModule(), 
            pMT->GetCl(), 
            NULL, 
            NULL 
            COMMA_INDEBUG(pMT));
        CONSISTENCY_CHECK(bmtExactInterface.nAssigned == pMT->GetNumInterfaces());
        
        // We cannot process interface duplicates on types with __Canon. The duplicates are processed on 
        // exact types only
        if (!pMT->IsSharedByGenericInstantiations())
        {
            // Process all pairs of duplicates in the interface map:
            //     i.e. If there are 3 duplicates of the same interface at indexes: i1, i2 and i3, then 
            //     process pairs of indexes [i1,i2], [i1,i3] and [i2,i3].
            //  - Update 'declared on type' flag for those interfaces which duplicate is 'declared on type'
            //  - Check interface method implementation ambiguity code:#DuplicateInterface_MethodAmbiguity
            for (DWORD nOriginalIndex = 0; nOriginalIndex < nInterfacesCount; nOriginalIndex++)
            {
                // Search for duplicates further in the interface map
                for (DWORD nDuplicateIndex = nOriginalIndex + 1; nDuplicateIndex < nInterfacesCount; nDuplicateIndex++)
                {
                    if (pExactMTs[nOriginalIndex] != pExactMTs[nDuplicateIndex])
                    {   // It's not a duplicate of original interface, skip it
                        continue;
                    }
                    // We found a duplicate
                    
                    // Set 'declared on type' flag if either original or duplicate interface is 
                    // 'declared on type'
                    if (pMT->IsInterfaceDeclaredOnClass(nOriginalIndex) || 
                        pMT->IsInterfaceDeclaredOnClass(nDuplicateIndex))
                    {
                        // 
                        // Note that both checks are needed:
                        //     A<T> : I<T>
                        //     B<T,U> : A<T>, I<U>
                        //     C<T,U> : B<T,U>, I<T>   // Reimplements interface from A<T>
                        // After code:BuildMethodTableThrowing algorithm, this will happen:
                        // B<int,int> will have interface map similar to B<T,U>:
                        //     I<int> ... not 'declared on type'
                        //     I<int> ... 'declared on type'
                        // C<int,int> will have interface map similar to C<T,U>:
                        //     I<int> ... 'declared on type'
                        //     I<int> ... not 'declared on type'
                        // 
                        
                        pMT->SetInterfaceDeclaredOnClass(nOriginalIndex);
                        pMT->SetInterfaceDeclaredOnClass(nDuplicateIndex);
                    }
                    
                    //#DuplicateInterface_MethodAmbiguity
                    // 
                    // In the ideal world we would now check for interface method implementation 
                    // ambiguity in the instantiation, but that would be a technical breaking change 
                    // (against 2.0 RTM/SP1).
                    // Therefore we ALLOW when interface method is implemented twice through this 
                    // original and duplicate interface.
                    // 
                    // This ambiguity pattern is therefore ALLOWED (can be expressed only in IL, not in C#):
                    //     I<T>
                    //         void Print(T t);
                    //     A<T> : I<T>    // abstract class
                    //     B<T,U> : A<T>, I<U>
                    //         void Print(T t) { ... }
                    //         void Print(U u) { ... }
                    //     Now B<int,int> has 2 implementations of I<int>.Print(int), while B<int,char> is 
                    //     fine. Therefore an instantiation can introduce ambiguity.
                    
#if 0 // Removing this code for now as it is a technical breaking change (against CLR 2.0 RTM/SP1).
      // We might decide later that we want to take this breaking change.
                    // 
                    // Note that dispatch map entries are sorted by interface index and then interface 
                    // method slot index.
                    // 
                    DispatchMapTypeID originalTypeID = DispatchMapTypeID::InterfaceClassID(nOriginalIndex);
                    DispatchMap::EncodedMapIterator originalIt(pMT);
                    // Find first entry for original interface
                    while (originalIt.IsValid())
                    {
                        DispatchMapEntry *pEntry = originalIt.Entry();
                        if (pEntry->GetTypeID().ToUINT32() >= originalTypeID.ToUINT32())
                        {   // Found the place where original interface entries should be (dispatch map is 
                            // sorted)
                            break;
                        }
                        originalIt.Next();
                    }
                    
                    DispatchMapTypeID duplicateTypeID = DispatchMapTypeID::InterfaceClassID(nDuplicateIndex);
                    DispatchMap::EncodedMapIterator duplicateIt(pMT);
                    // Find first entry for duplicate interface
                    while (duplicateIt.IsValid())
                    {
                        DispatchMapEntry *pEntry = duplicateIt.Entry();
                        if (pEntry->GetTypeID().ToUINT32() >= duplicateTypeID.ToUINT32())
                        {   // Found the place where original interface entries should be (dispatch map is 
                            // sorted)
                            break;
                        }
                        duplicateIt.Next();
                    }
                    
                    // Compare original and duplicate interface entries in the dispatch map if they contain 
                    // different implementation for the same interface method
                    for (;;)
                    {
                        if (!originalIt.IsValid() || !duplicateIt.IsValid())
                        {   // We reached end of one dispatch map iterator
                            break;
                        }
                        DispatchMapEntry *pOriginalEntry = originalIt.Entry();
                        if (pOriginalEntry->GetTypeID().ToUINT32() != originalTypeID.ToUINT32())
                        {   // We reached behind original interface entries
                            break;
                        }
                        DispatchMapEntry *pDuplicateEntry = duplicateIt.Entry();
                        if (pDuplicateEntry->GetTypeID().ToUINT32() != duplicateTypeID.ToUINT32())
                        {   // We reached behind duplicate interface entries
                            break;
                        }
                        
                        if (pOriginalEntry->GetSlotNumber() == pDuplicateEntry->GetSlotNumber())
                        {   // Found duplicate implementation of interface method
                            if (pOriginalEntry->GetTargetSlotNumber() != pDuplicateEntry->GetTargetSlotNumber())
                            {   // Implementation of the slots is different
                                bmtErrorInfo bmtError;
                                
                                bmtError.pModule = pMT->GetModule();
                                bmtError.cl = pMT->GetCl();
                                bmtError.resIDWhy = IDS_CLASSLOAD_MI_MULTIPLEOVERRIDES;
                                bmtError.szMethodNameForError = NULL;
                                bmtError.pThrowable = NULL;
                                
                                MethodDesc *pMD = pMT->GetMethodDescForSlot(pDuplicateEntry->GetTargetSlotNumber());
                                bmtError.dMethodDefInError = pMD->GetMemberDef();
                                
                                BuildMethodTableThrowException(COR_E_TYPELOAD, bmtError);
                            }
                            // The method is implemented by the same slot on both interfaces (original and 
                            // duplicate)
                            
                            // Process next dispatch map entry
                            originalIt.Next();
                            duplicateIt.Next();
                            continue;
                        }
                        // Move iterator representing smaller interface method slot index (the dispatch map 
                        // is sorted by slot indexes)
                        if (pOriginalEntry->GetSlotNumber() < pDuplicateEntry->GetSlotNumber())
                        {
                            originalIt.Next();
                            continue;
                        }
                        _ASSERTE(pOriginalEntry->GetSlotNumber() > pDuplicateEntry->GetSlotNumber());
                        duplicateIt.Next();
                    }
#endif //0
                }
                // All duplicates of this original interface were processed
            }
            // All pairs of duplicates in the interface map are processed
        }
    }
    // Duplicates in the interface map are resolved
    
    // OK, if we've got this far then pExactMTs should now hold the array of exact instantiated interfaces.
    MethodTable::InterfaceMapIterator thisIt = pMT->IterateInterfaceMap();
    DWORD i = 0;
    while (thisIt.Next())
    {
#ifdef _DEBUG 
        MethodTable*pOldMT = thisIt.GetInterface();
        MethodTable *pNewMT = pExactMTs[i];
        CONSISTENCY_CHECK(pOldMT->HasSameTypeDefAs(pNewMT));
#endif // _DEBUG
        thisIt.SetInterface(pExactMTs[i]);
        i++;
    }

} // MethodTableBuilder::LoadExactInterfaceMap

//*******************************************************************************
void 
MethodTableBuilder::ExpandExactInheritedInterfaces(
    bmtExactInterfaceInfo * bmtInfo, 
    MethodTable *           pMT, 
    const Substitution *    pSubstForTypeLoad, 
    Substitution *          pSubstForComparing)
{
    STANDARD_VM_CONTRACT;

    MethodTable *pParentMT = pMT->GetParentMethodTable();
    
    // Backup type's substitution chain for comparing interfaces
    Substitution substForComparingBackup = *pSubstForComparing;
    // Make type an open type for comparing interfaces
    *pSubstForComparing = Substitution();
    
    if (pParentMT)
    {
        // Chain parent's substitution for exact type load
        Substitution * pParentSubstForTypeLoad = new (&GetThread()->m_MarshalAlloc) Substitution(
            pMT->GetSubstitutionForParent(pSubstForTypeLoad));
        
        // Chain parent's substitution for comparing interfaces (note that this type is temporarily 
        // considered as open type)
        Substitution * pParentSubstForComparing = new (&GetThread()->m_MarshalAlloc) Substitution(
            pMT->GetSubstitutionForParent(pSubstForComparing));
        
        ExpandExactInheritedInterfaces(
            bmtInfo, 
            pParentMT, 
            pParentSubstForTypeLoad, 
            pParentSubstForComparing);
    }
    ExpandExactDeclaredInterfaces(
        bmtInfo, 
        pMT->GetModule(), 
        pMT->GetCl(), 
        pSubstForTypeLoad, 
        pSubstForComparing 
        COMMA_INDEBUG(pMT));
    
    // Restore type's subsitution chain for comparing interfaces
    *pSubstForComparing = substForComparingBackup;
} // MethodTableBuilder::ExpandExactInheritedInterfaces

//*******************************************************************************
/* static */
void 
MethodTableBuilder::ExpandExactDeclaredInterfaces(
    bmtExactInterfaceInfo *     bmtInfo, 
    Module *                    pModule, 
    mdToken                     typeDef, 
    const Substitution *        pSubstForTypeLoad, 
    Substitution *              pSubstForComparing 
    COMMA_INDEBUG(MethodTable * dbg_pClassMT))
{
    STANDARD_VM_CONTRACT;

    HRESULT hr;
    InterfaceImplEnum ie(pModule, typeDef, NULL);
    while ((hr = ie.Next()) == S_OK)
    {
        MethodTable * pInterface = ClassLoader::LoadTypeDefOrRefOrSpecThrowing(
            pModule, 
            ie.CurrentToken(), 
            &bmtInfo->typeContext,
            ClassLoader::ThrowIfNotFound,
            ClassLoader::FailIfUninstDefOrRef,
            ClassLoader::LoadTypes,
            CLASS_LOAD_EXACTPARENTS,
            TRUE,
            pSubstForTypeLoad).GetMethodTable();
        
        Substitution ifaceSubstForTypeLoad(ie.CurrentToken(), pModule, pSubstForTypeLoad);
        Substitution ifaceSubstForComparing(ie.CurrentToken(), pModule, pSubstForComparing);
        ExpandExactInterface(
            bmtInfo, 
            pInterface, 
            &ifaceSubstForTypeLoad, 
            &ifaceSubstForComparing 
            COMMA_INDEBUG(dbg_pClassMT));
    }
    if (FAILED(hr))
    {
        pModule->GetAssembly()->ThrowTypeLoadException(pModule->GetMDImport(), typeDef, IDS_CLASSLOAD_BADFORMAT);
    }
} // MethodTableBuilder::ExpandExactDeclaredInterfaces

//*******************************************************************************
void 
MethodTableBuilder::ExpandExactInterface(
    bmtExactInterfaceInfo *     bmtInfo, 
    MethodTable *               pIntf, 
    const Substitution *        pSubstForTypeLoad_OnStack,   // Allocated on stack!
    const Substitution *        pSubstForComparing_OnStack   // Allocated on stack!
    COMMA_INDEBUG(MethodTable * dbg_pClassMT))
{
    STANDARD_VM_CONTRACT;

    // ****** This must be consistent with code:MethodTableBuilder::ExpandApproxInterface ******

    // Is it already present according to the "generic" layout of the interfaces.
    // Note we use exactly the same algorithm as when we
    // determined the layout of the interface map for the "generic" version of the class.
    for (DWORD i = 0; i < bmtInfo->nAssigned; i++)
    {
        // Type Equivalence is not respected for this comparision as you can have multiple type equivalent interfaces on a class
        TokenPairList newVisited = TokenPairList::AdjustForTypeEquivalenceForbiddenScope(NULL);
        if (MetaSig::CompareTypeDefsUnderSubstitutions(bmtInfo->pExactMTs[i],
                                                       pIntf,
                                                       &bmtInfo->pInterfaceSubstitution[i],
                                                       pSubstForComparing_OnStack,
                                                       &newVisited))
        {
#ifdef _DEBUG
            //#InjectInterfaceDuplicates_ExactInterfaces
            // We will inject duplicate interfaces in check builds.
            // Has to be in sync with code:#InjectInterfaceDuplicates_Main.
            if (dbg_pClassMT->Debug_HasInjectedInterfaceDuplicates())
            {   // Just pretend we didn't find this match
                break;
            }
#endif //_DEBUG
            return; // found it, don't add it again
        }
    }

    // Add the interface and its sub-interfaces
    DWORD n = bmtInfo->nAssigned;
    bmtInfo->pExactMTs[n] = pIntf;
    bmtInfo->pInterfaceSubstitution[n] = *pSubstForComparing_OnStack;
    bmtInfo->nAssigned++;
    
    Substitution * pSubstForTypeLoad = new (&GetThread()->m_MarshalAlloc) Substitution(*pSubstForTypeLoad_OnStack);
    
    ExpandExactDeclaredInterfaces(
        bmtInfo, 
        pIntf->GetModule(), 
        pIntf->GetCl(), 
        pSubstForTypeLoad, 
        &bmtInfo->pInterfaceSubstitution[n] 
        COMMA_INDEBUG(dbg_pClassMT));
} // MethodTableBuilder::ExpandExactInterface

//*******************************************************************************
/* static */
void MethodTableBuilder::InterfacesAmbiguityCheck(bmtInterfaceAmbiguityCheckInfo *bmtCheckInfo,
                                                  Module *pModule,
                                                  mdToken typeDef,
                                                  const Substitution *pSubstChain)
{
    STANDARD_VM_CONTRACT;

    HRESULT hr;
    InterfaceImplEnum ie(pModule, typeDef, pSubstChain);
    while ((hr = ie.Next()) == S_OK)
    {
        MethodTable *pInterface =
            ClassLoader::LoadTypeDefOrRefOrSpecThrowing(pModule, ie.CurrentToken(),
                                                        &bmtCheckInfo->typeContext,
                                                        ClassLoader::ThrowIfNotFound,
                                                        ClassLoader::FailIfUninstDefOrRef,
                                                        ClassLoader::LoadTypes,
                                                        CLASS_LOAD_EXACTPARENTS,
                                                        TRUE,
                                                        pSubstChain).GetMethodTable();
        InterfaceAmbiguityCheck(bmtCheckInfo, ie.CurrentSubst(), pInterface);
    }
    if (FAILED(hr))
    {
        pModule->GetAssembly()->ThrowTypeLoadException(pModule->GetMDImport(), typeDef, IDS_CLASSLOAD_BADFORMAT);
    }
}

//*******************************************************************************
void MethodTableBuilder::InterfaceAmbiguityCheck(bmtInterfaceAmbiguityCheckInfo *bmtCheckInfo,
                                                 const Substitution *pItfSubstChain,
                                                 MethodTable *pIntf)
{
    STANDARD_VM_CONTRACT;

    // Is it already in the generic version of the freshly declared interfaces. We
    // do this based on metadata, i.e. via the substitution chains.
    // Note we use exactly the same algorithm as when we
    // determined the layout of the interface map for the "generic" version of the class.
    for (DWORD i = 0; i < bmtCheckInfo->nAssigned; i++)
    {
        // Type Equivalence is not respected for this comparision as you can have multiple type equivalent interfaces on a class
        TokenPairList newVisited = TokenPairList::AdjustForTypeEquivalenceForbiddenScope(NULL);
        if (MetaSig::CompareTypeDefsUnderSubstitutions(bmtCheckInfo->ppExactDeclaredInterfaces[i],
                                                       pIntf,
                                                       bmtCheckInfo->ppInterfaceSubstitutionChains[i],
                                                       pItfSubstChain,
                                                       &newVisited))
            return; // found it, don't add it again
    }

    // OK, so it isn't a duplicate based on the generic IL, now check if the instantiation
    // makes it a duplicate.
    for (DWORD i = 0; i < bmtCheckInfo->nAssigned; i++)
    {
        if (bmtCheckInfo->ppExactDeclaredInterfaces[i] == pIntf)
        {
                bmtCheckInfo->pMT->GetModule()->GetAssembly()->ThrowTypeLoadException(bmtCheckInfo->pMT->GetMDImport(),
                                                                                      bmtCheckInfo->pMT->GetCl(),
                                                                                      IDS_CLASSLOAD_OVERLAPPING_INTERFACES);
        }
    }

    DWORD n = bmtCheckInfo->nAssigned;
    bmtCheckInfo->ppExactDeclaredInterfaces[n] = pIntf;
    bmtCheckInfo->ppInterfaceSubstitutionChains[n] = new (&GetThread()->m_MarshalAlloc) Substitution[pItfSubstChain->GetLength()];
    pItfSubstChain->CopyToArray(bmtCheckInfo->ppInterfaceSubstitutionChains[n]);

    bmtCheckInfo->nAssigned++;
    InterfacesAmbiguityCheck(bmtCheckInfo,pIntf->GetModule(),pIntf->GetCl(),pItfSubstChain);
}


//*******************************************************************************
void MethodTableBuilder::CheckForSystemTypes()
{
    STANDARD_VM_CONTRACT;

    LPCUTF8 name, nameSpace;

    MethodTable * pMT = GetHalfBakedMethodTable();
    EEClass * pClass = GetHalfBakedClass();

    // We can exit early for generic types - there are just a few cases to check for.
    if (bmtGenerics->HasInstantiation())
    {
        if (pMT->IsIntrinsicType() && pClass->HasLayout())
        {
            if (FAILED(GetMDImport()->GetNameOfTypeDef(GetCl(), &name, &nameSpace)))
            {
                BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
            }

            if (strcmp(nameSpace, g_IntrinsicsNS) == 0)
            {
                EEClassLayoutInfo * pLayout = pClass->GetLayoutInfo();

                // The SIMD Hardware Intrinsic types correspond to fundamental data types in the underlying ABIs:
                // * Vector64<T>:  __m64
                // * Vector128<T>: __m128
                // * Vector256<T>: __m256

                // These __m128 and __m256 types, among other requirements, are special in that they must always
                // be aligned properly.

                if (IsCompilationProcess())
                {
                    // Disable AOT compiling for the SIMD hardware intrinsic types. These types require special
                    // ABI handling as they represent fundamental data types (__m64, __m128, and __m256) and not
                    // aggregate or union types. See https://github.com/dotnet/coreclr/issues/15943
                    //
                    // Once they are properly handled according to the ABI requirements, we can remove this check
                    // and allow them to be used in crossgen/AOT scenarios.
                    COMPlusThrow(kTypeLoadException, IDS_EE_HWINTRINSIC_NGEN_DISALLOWED);
                }

                if (strcmp(name, g_Vector64Name) == 0)
                {
                    // The System V ABI for i386 defaults to 8-byte alignment for __m64, except for parameter passing,
                    // where it has an alignment of 4.

                    pLayout->m_LargestAlignmentRequirementOfAllMembers        = 8; // sizeof(__m64)
                    pLayout->m_ManagedLargestAlignmentRequirementOfAllMembers = 8; // sizeof(__m64)
                }
                else if (strcmp(name, g_Vector128Name) == 0)
                {
    #ifdef _TARGET_ARM_
                    // The Procedure Call Standard for ARM defaults to 8-byte alignment for __m128

                    pLayout->m_LargestAlignmentRequirementOfAllMembers        = 8;
                    pLayout->m_ManagedLargestAlignmentRequirementOfAllMembers = 8;
    #else
                    pLayout->m_LargestAlignmentRequirementOfAllMembers        = 16; // sizeof(__m128)
                    pLayout->m_ManagedLargestAlignmentRequirementOfAllMembers = 16; // sizeof(__m128)
    #endif // _TARGET_ARM_
                }
                else if (strcmp(name, g_Vector256Name) == 0)
                {
    #ifdef _TARGET_ARM_
                    // No such type exists for the Procedure Call Standard for ARM. We will default
                    // to the same alignment as __m128, which is supported by the ABI.

                    pLayout->m_LargestAlignmentRequirementOfAllMembers        = 8;
                    pLayout->m_ManagedLargestAlignmentRequirementOfAllMembers = 8;
    #elif defined(_TARGET_ARM64_)
                    // The Procedure Call Standard for ARM 64-bit (with SVE support) defaults to
                    // 16-byte alignment for __m256.

                    pLayout->m_LargestAlignmentRequirementOfAllMembers        = 16;
                    pLayout->m_ManagedLargestAlignmentRequirementOfAllMembers = 16;
    #else
                    pLayout->m_LargestAlignmentRequirementOfAllMembers        = 32; // sizeof(__m256)
                    pLayout->m_ManagedLargestAlignmentRequirementOfAllMembers = 32; // sizeof(__m256)
    #endif // _TARGET_ARM_ elif _TARGET_ARM64_
                }
                else
                {
                    // These types should be handled or explicitly skipped below to ensure that we don't
                    // miss adding required ABI support for future types.

                    _ASSERTE_MSG(FALSE, "Unhandled Hardware Intrinsic Type.");
                }

                return;
            }
        }

        if (g_pNullableClass != NULL)
        {
            _ASSERTE(g_pByReferenceClass != NULL);
            _ASSERTE(g_pByReferenceClass->IsByRefLike());

#ifdef _TARGET_X86_
            if (GetCl() == g_pByReferenceClass->GetCl())
            {
                // x86 by default treats the type of ByReference<T> as the actual type of its IntPtr field, see calls to
                // ComputeInternalCorElementTypeForValueType in this file. This is a special case where the struct needs to be
                // treated as a value type so that its field can be considered as a byref pointer.
                _ASSERTE(pMT->GetFlag(MethodTable::enum_flag_Category_Mask) == MethodTable::enum_flag_Category_PrimitiveValueType);
                pMT->ClearFlag(MethodTable::enum_flag_Category_Mask);
                pMT->SetInternalCorElementType(ELEMENT_TYPE_VALUETYPE);
                return;
            }
#endif

            _ASSERTE(g_pNullableClass->IsNullable());

            // Pre-compute whether the class is a Nullable<T> so that code:Nullable::IsNullableType is efficient
            // This is useful to the performance of boxing/unboxing a Nullable
            if (GetCl() == g_pNullableClass->GetCl())
                pMT->SetIsNullable();

            return;
        }
    }

    if (IsNested() || IsEnum())
        return;

    if (FAILED(GetMDImport()->GetNameOfTypeDef(GetCl(), &name, &nameSpace)))
    {
        BuildMethodTableThrowException(IDS_CLASSLOAD_BADFORMAT);
    }

    if (IsValueClass())
    {
        //
        // Value types 
        // 

        // All special value types are in the system namespace
        if (strcmp(nameSpace, g_SystemNS) != 0)
            return;

        // Check if it is a primitive type 
        CorElementType type = CorTypeInfo::FindPrimitiveType(name);
        if (type != ELEMENT_TYPE_END)
        {
            pMT->SetInternalCorElementType(type);
            pMT->SetIsTruePrimitive();

#if defined(_TARGET_X86_) && defined(UNIX_X86_ABI)
            switch (type)
            {
                // The System V ABI for i386 defines different packing for these types.

                case ELEMENT_TYPE_I8:
                case ELEMENT_TYPE_U8:
                case ELEMENT_TYPE_R8:
                {
                    EEClassLayoutInfo * pLayout = pClass->GetLayoutInfo();
                    pLayout->m_LargestAlignmentRequirementOfAllMembers        = 4;
                    pLayout->m_ManagedLargestAlignmentRequirementOfAllMembers = 4;
                    break;
                }

                default:
                    break;
            }
#endif // _TARGET_X86_ && UNIX_X86_ABI

#ifdef _DEBUG 
            if (FAILED(GetMDImport()->GetNameOfTypeDef(GetCl(), &name, &nameSpace)))
            {
                name = nameSpace = "Invalid TypeDef record";
            }
            LOG((LF_CLASSLOADER, LL_INFO10000, "%s::%s marked as primitive type %i\n", nameSpace, name, type));
#endif // _DEBUG
        }
        else if (strcmp(name, g_NullableName) == 0)
        {
            pMT->SetIsNullable();
        }
#ifdef _TARGET_X86_
        else if (strcmp(name, g_ByReferenceName) == 0)
        {
            // x86 by default treats the type of ByReference<T> as the actual type of its IntPtr field, see calls to
            // ComputeInternalCorElementTypeForValueType in this file. This is a special case where the struct needs to be
            // treated as a value type so that its field can be considered as a byref pointer.
            _ASSERTE(pMT->GetFlag(MethodTable::enum_flag_Category_Mask) == MethodTable::enum_flag_Category_PrimitiveValueType);
            pMT->ClearFlag(MethodTable::enum_flag_Category_Mask);
            pMT->SetInternalCorElementType(ELEMENT_TYPE_VALUETYPE);
        }
#endif
#ifndef _TARGET_X86_ 
        else if (strcmp(name, g_RuntimeArgumentHandleName) == 0)
        {
            pMT->SetInternalCorElementType (ELEMENT_TYPE_I);
        }
        else if (strcmp(name, g_RuntimeMethodHandleInternalName) == 0)
        {
            pMT->SetInternalCorElementType (ELEMENT_TYPE_I);
        }
#endif
#if defined(ALIGN_ACCESS) || defined(FEATURE_64BIT_ALIGNMENT)
        else if (strcmp(name, g_DecimalName) == 0)
        {
            // This is required because native layout of System.Decimal causes it to be aligned
            // differently to the layout of the native DECIMAL structure, which will cause
            // data misalignent exceptions if Decimal is embedded in another type.

            EEClassLayoutInfo* pLayout = pClass->GetLayoutInfo();
            pLayout->m_LargestAlignmentRequirementOfAllMembers        = sizeof(ULONGLONG);
            pLayout->m_ManagedLargestAlignmentRequirementOfAllMembers = sizeof(ULONGLONG);

#ifdef FEATURE_64BIT_ALIGNMENT
            // Also need to mark the type so it will be allocated on a 64-bit boundary for
            // platforms that won't do this naturally.
            SetAlign8Candidate();
#endif
        }
#endif // ALIGN_ACCESS || FEATURE_64BIT_ALIGNMENT
    }
    else
    {
        //
        // Reference types
        // 
        if (strcmp(name, g_StringName) == 0 && strcmp(nameSpace, g_SystemNS) == 0)
        {
            // Strings are not "normal" objects, so we need to mess with their method table a bit
            // so that the GC can figure out how big each string is...
            DWORD baseSize = StringObject::GetBaseSize();
            pMT->SetBaseSize(baseSize);

            GetHalfBakedClass()->SetBaseSizePadding(baseSize - bmtFP->NumInstanceFieldBytes);

            pMT->SetComponentSize(2);
        }
        else if (strcmp(name, g_CriticalFinalizerObjectName) == 0 && strcmp(nameSpace, g_ConstrainedExecutionNS) == 0)
        {
            // To introduce a class with a critical finalizer,
            // we'll set the bit here.
            pMT->SetHasCriticalFinalizer();
        }
#ifdef FEATURE_COMINTEROP 
        else
        {
            bool bIsComObject = false;
            bool bIsRuntimeClass = false;

            if (strcmp(name, g_ComObjectName) == 0 && strcmp(nameSpace, g_SystemNS) == 0)
                bIsComObject = true;
            
            if (strcmp(name, g_RuntimeClassName) == 0 && strcmp(nameSpace, g_WinRTNS) == 0)
                bIsRuntimeClass = true;

            if (bIsComObject || bIsRuntimeClass)
            {
                // Make System.__ComObject/System.Runtime.InteropServices.WindowsRuntime.RuntimeClass a ComImport type
                // We can't do it using attribute as C# won't allow putting code in ComImport types
                pMT->SetComObjectType();

                // COM objects need an optional field on the EEClass, so ensure this class instance has allocated
                // the optional field descriptor.
                EnsureOptionalFieldsAreAllocated(pClass, m_pAllocMemTracker, GetLoaderAllocator()->GetLowFrequencyHeap());            
            }            
            
            if (bIsRuntimeClass)            
            {
                // Note that we set it here to avoid type loader considering RuntimeClass as a normal WindowsImportType 
                // as functions in RuntimeClass doesn't go through COM interop
                GetHalfBakedClass()->SetProjectedFromWinRT();
            }
        }
#endif // FEATURE_COMINTEROP
    }
}

//==========================================================================================
// Helper to create a new method table. This is the only
// way to allocate a new MT. Don't try calling new / ctor.
// Called from SetupMethodTable
// This needs to be kept consistent with MethodTable::GetSavedExtent()
MethodTable * MethodTableBuilder::AllocateNewMT(Module *pLoaderModule,
                                         DWORD dwVtableSlots,
                                         DWORD dwVirtuals,
                                         DWORD dwGCSize,
                                         DWORD dwNumInterfaces,
                                         DWORD dwNumDicts,
                                         DWORD cbInstAndDict,
                                         MethodTable *pMTParent,
                                         ClassLoader *pClassLoader,
                                         LoaderAllocator *pAllocator,
                                         BOOL isInterface,
                                         BOOL fDynamicStatics,
                                         BOOL fHasGenericsStaticsInfo,
                                         BOOL fNeedsRCWPerTypeData
#ifdef FEATURE_COMINTEROP
        , BOOL fHasDynamicInterfaceMap
#endif
#ifdef FEATURE_PREJIT
        , Module *pComputedPZM
#endif // FEATURE_PREJIT
        , AllocMemTracker *pamTracker
    )
{
    CONTRACT (MethodTable*)
    {
        THROWS;
        GC_TRIGGERS;
        MODE_ANY;
        POSTCONDITION(CheckPointer(RETVAL));
    }
    CONTRACT_END;

    DWORD dwNonVirtualSlots = dwVtableSlots - dwVirtuals;

    // GCSize must be aligned
    _ASSERTE(IS_ALIGNED(dwGCSize, sizeof(void*)));

    // size without the interface map
    S_SIZE_T cbTotalSize = S_SIZE_T(dwGCSize) + S_SIZE_T(sizeof(MethodTable));

    // vtable
    cbTotalSize += MethodTable::GetNumVtableIndirections(dwVirtuals) * sizeof(MethodTable::VTableIndir_t);


    DWORD dwMultipurposeSlotsMask = 0;
    if (dwNumInterfaces != 0)
        dwMultipurposeSlotsMask |= MethodTable::enum_flag_HasInterfaceMap;
    if (dwNumDicts != 0)
        dwMultipurposeSlotsMask |= MethodTable::enum_flag_HasPerInstInfo;
    if (bmtVT->pDispatchMapBuilder->Count() > 0)
        dwMultipurposeSlotsMask |= MethodTable::enum_flag_HasDispatchMapSlot;
    if (dwNonVirtualSlots != 0)
        dwMultipurposeSlotsMask |= MethodTable::enum_flag_HasNonVirtualSlots;
    if (pLoaderModule != GetModule())
        dwMultipurposeSlotsMask |= MethodTable::enum_flag_HasModuleOverride;

    // Add space for optional members here. Same as GetOptionalMembersSize()
    cbTotalSize += MethodTable::GetOptionalMembersAllocationSize(dwMultipurposeSlotsMask,
                                                      fHasGenericsStaticsInfo,
                                                      FALSE, // no GuidInfo needed for canonical instantiations
                                                      FALSE, // no CCW template needed for canonical instantiations
                                                      fNeedsRCWPerTypeData,
                                                      RidFromToken(GetCl()) >= METHODTABLE_TOKEN_OVERFLOW);

    // Interface map starts here
    S_SIZE_T offsetOfInterfaceMap = cbTotalSize;

    cbTotalSize += S_SIZE_T(dwNumInterfaces) * S_SIZE_T(sizeof(InterfaceInfo_t));

#ifdef FEATURE_COMINTEROP
    // DynamicInterfaceMap have an extra DWORD added to the end of the normal interface
    // map. This will be used to store the count of dynamically added interfaces
    // (the ones that are not in  the metadata but are QI'ed for at runtime).
    cbTotalSize += S_SIZE_T(fHasDynamicInterfaceMap ? sizeof(DWORD_PTR) : 0);
#endif

    // Dictionary pointers start here
    S_SIZE_T offsetOfInstAndDict = cbTotalSize;

    if (dwNumDicts != 0)
    {
        cbTotalSize += sizeof(GenericsDictInfo);
        cbTotalSize += S_SIZE_T(dwNumDicts) * S_SIZE_T(sizeof(MethodTable::PerInstInfoElem_t));
        cbTotalSize += cbInstAndDict;
    }

    S_SIZE_T offsetOfUnsharedVtableChunks = cbTotalSize;

    BOOL canShareVtableChunks = pMTParent && MethodTable::CanShareVtableChunksFrom(pMTParent, pLoaderModule
#ifdef FEATURE_PREJIT
        , pComputedPZM
#endif //FEATURE_PREJIT
        );

    // If pMTParent has a generic instantiation, we cannot share its vtable chunks
    // This is because pMTParent is only approximate at this point, and MethodTableBuilder::CopyExactParentSlots
    // may swap in an exact parent that does not satisfy CanShareVtableChunksFrom
    if (pMTParent && pMTParent->HasInstantiation())
    {
        canShareVtableChunks = FALSE;
    }

    // We will share any parent vtable chunk that does not contain a method we overrode (or introduced)
    // For the rest, we need to allocate space
    for (DWORD i = 0; i < dwVirtuals; i++)
    {
        if (!canShareVtableChunks || ChangesImplementationOfVirtualSlot(static_cast<SLOT_INDEX>(i)))
        {
            DWORD chunkStart = MethodTable::GetStartSlotForVtableIndirection(MethodTable::GetIndexOfVtableIndirection(i), dwVirtuals);
            DWORD chunkEnd = MethodTable::GetEndSlotForVtableIndirection(MethodTable::GetIndexOfVtableIndirection(i), dwVirtuals);

            cbTotalSize += S_SIZE_T(chunkEnd - chunkStart) * S_SIZE_T(sizeof(PCODE));

            i = chunkEnd - 1;
        }
    }

    // Add space for the non-virtual slots array (pointed to by an optional member) if required
    // If there is only one non-virtual slot, we store it directly in the optional member and need no array
    S_SIZE_T offsetOfNonVirtualSlots = cbTotalSize;
    if (dwNonVirtualSlots > 1)
    {
        cbTotalSize += S_SIZE_T(dwNonVirtualSlots) * S_SIZE_T(sizeof(PCODE));
    }

    BYTE *pData = (BYTE *)pamTracker->Track(pAllocator->GetHighFrequencyHeap()->AllocMem(cbTotalSize));

    _ASSERTE(IS_ALIGNED(pData, TARGET_POINTER_SIZE));
    
    // There should be no overflows if we have allocated the memory succesfully
    _ASSERTE(!cbTotalSize.IsOverflow());

    MethodTable* pMT = (MethodTable*)(pData + dwGCSize);

    pMT->SetMultipurposeSlotsMask(dwMultipurposeSlotsMask);

    MethodTableWriteableData * pMTWriteableData = (MethodTableWriteableData *) (BYTE *)
        pamTracker->Track(pAllocator->GetHighFrequencyHeap()->AllocMem(S_SIZE_T(sizeof(MethodTableWriteableData))));
    // Note: Memory allocated on loader heap is zero filled
    pMT->SetWriteableData(pMTWriteableData);

    // This also disables IBC logging until the type is sufficiently intitialized so
    // it needs to be done early
    pMTWriteableData->SetIsNotFullyLoadedForBuildMethodTable();

#ifdef _DEBUG
    pClassLoader->m_dwGCSize += dwGCSize;
    pClassLoader->m_dwInterfaceMapSize += (dwNumInterfaces * sizeof(InterfaceInfo_t));
    pClassLoader->m_dwMethodTableSize += (DWORD)cbTotalSize.Value();
    pClassLoader->m_dwVtableData += (dwVtableSlots * sizeof(PCODE));
#endif // _DEBUG

    // There should be no overflows if we have allocated the memory succesfully
    _ASSERTE(!offsetOfUnsharedVtableChunks.IsOverflow());
    _ASSERTE(!offsetOfNonVirtualSlots.IsOverflow());
    _ASSERTE(!offsetOfInterfaceMap.IsOverflow());
    _ASSERTE(!offsetOfInstAndDict.IsOverflow());

    // initialize the total number of slots
    pMT->SetNumVirtuals(static_cast<WORD>(dwVirtuals));

    pMT->SetParentMethodTable(pMTParent);

    // Fill out the vtable indirection slots
    SIZE_T dwCurrentUnsharedSlotOffset = offsetOfUnsharedVtableChunks.Value();
    MethodTable::VtableIndirectionSlotIterator it = pMT->IterateVtableIndirectionSlots();
    while (it.Next())
    {
        BOOL shared = canShareVtableChunks;

        // Recalculate whether we will share this chunk
        if (canShareVtableChunks)
        {
            for (DWORD i = it.GetStartSlot(); i < it.GetEndSlot(); i++)
            {
                if (ChangesImplementationOfVirtualSlot(static_cast<SLOT_INDEX>(i)))
                {
                    shared = FALSE;
                    break;
                }
            }
        }

        if (shared)
        {
            // Share the parent chunk
            _ASSERTE(it.GetEndSlot() <= pMTParent->GetNumVirtuals());
            it.SetIndirectionSlot(pMTParent->GetVtableIndirections()[it.GetIndex()].GetValueMaybeNull());
        }
        else
        {
            // Use the locally allocated chunk
            it.SetIndirectionSlot((MethodTable::VTableIndir2_t *)(pData+dwCurrentUnsharedSlotOffset));
            dwCurrentUnsharedSlotOffset += it.GetSize();
        }
    }

#ifdef FEATURE_COMINTEROP
    // Extensible RCW's are prefixed with the count of dynamic interfaces.
    if (fHasDynamicInterfaceMap)
    {
        _ASSERTE (dwNumInterfaces > 0);
        pMT->SetInterfaceMap ((WORD) (dwNumInterfaces), (InterfaceInfo_t*)(pData+offsetOfInterfaceMap.Value()+sizeof(DWORD_PTR)));

        *(((DWORD_PTR *)pMT->GetInterfaceMap()) - 1) = 0;
    }
    else
#endif // FEATURE_COMINTEROP
    {
        // interface map is at the end of the vtable
        pMT->SetInterfaceMap ((WORD) dwNumInterfaces, (InterfaceInfo_t *)(pData+offsetOfInterfaceMap.Value()));
    }

    _ASSERTE(((WORD) dwNumInterfaces) == dwNumInterfaces);

    if (fDynamicStatics)
    {
        pMT->SetDynamicStatics(fHasGenericsStaticsInfo);
    }

    if (dwNonVirtualSlots > 0)
    {
        if (dwNonVirtualSlots > 1)
        {
            pMT->SetNonVirtualSlotsArray((PTR_PCODE)(pData+offsetOfNonVirtualSlots.Value()));
        }
        else
        {
            pMT->SetHasSingleNonVirtualSlot();
        }
    }

    // the dictionary pointers follow the interface map
    if (dwNumDicts)
    {
        MethodTable::PerInstInfoElem_t *pPerInstInfo = (MethodTable::PerInstInfoElem_t *)(pData + offsetOfInstAndDict.Value() + sizeof(GenericsDictInfo));

        pMT->SetPerInstInfo ( pPerInstInfo);

        // Fill in the dictionary for this type, if it's instantiated
        if (cbInstAndDict)
        {
            MethodTable::PerInstInfoElem_t *pPInstInfo = (MethodTable::PerInstInfoElem_t *)(pPerInstInfo + (dwNumDicts-1));
            pPInstInfo->SetValueMaybeNull((Dictionary*) (pPerInstInfo + dwNumDicts));
        }
    }

#ifdef _DEBUG
    pMT->m_pWriteableData.GetValue()->m_dwLastVerifedGCCnt = (DWORD)-1;
#endif // _DEBUG

    RETURN(pMT);
}

    
//*******************************************************************************
//
// Used by BuildMethodTable
//
// Setup the method table
//
#ifdef _PREFAST_ 
#pragma warning(push)
#pragma warning(disable:21000) // Suppress PREFast warning about overly large function
#endif // _PREFAST_

VOID
MethodTableBuilder::SetupMethodTable2(
        Module * pLoaderModule 
#ifdef FEATURE_PREJIT
        , Module * pComputedPZM 
#endif // FEATURE_PREJIT
    )
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(CheckPointer(this));
        PRECONDITION(CheckPointer(bmtVT));
        PRECONDITION(CheckPointer(bmtInterface));
        PRECONDITION(CheckPointer(bmtInternal));
        PRECONDITION(CheckPointer(bmtProp));
        PRECONDITION(CheckPointer(bmtMFDescs));
        PRECONDITION(CheckPointer(bmtEnumFields));
        PRECONDITION(CheckPointer(bmtError));
        PRECONDITION(CheckPointer(bmtMetaData));
        PRECONDITION(CheckPointer(bmtParent));
        PRECONDITION(CheckPointer(bmtGenerics));
    }
    CONTRACTL_END;

    DWORD i;

#ifdef FEATURE_COMINTEROP 
    BOOL fHasDynamicInterfaceMap = bmtInterface->dwInterfaceMapSize > 0 &&
                                   bmtProp->fIsComObjectType &&
                                   (GetParentMethodTable() != g_pObjectClass);
    BOOL fNeedsRCWPerTypeData = bmtProp->fNeedsRCWPerTypeData;
#else // FEATURE_COMINTEROP
    BOOL fNeedsRCWPerTypeData = FALSE;
#endif // FEATURE_COMINTEROP

    EEClass *pClass = GetHalfBakedClass();

    DWORD cbDict = bmtGenerics->HasInstantiation()
                   ?  DictionaryLayout::GetFirstDictionaryBucketSize(
                          bmtGenerics->GetNumGenericArgs(), pClass->GetDictionaryLayout())
                   : 0;

#ifdef FEATURE_COLLECTIBLE_TYPES
    BOOL fCollectible = pLoaderModule->IsCollectible();
#endif // FEATURE_COLLECTIBLE_TYPES

    DWORD dwGCSize;
    
    if (bmtFP->NumGCPointerSeries > 0)
    {
        dwGCSize = (DWORD)CGCDesc::ComputeSize(bmtFP->NumGCPointerSeries);
    }
    else
    {
#ifdef FEATURE_COLLECTIBLE_TYPES
        if (fCollectible)
            dwGCSize = (DWORD)CGCDesc::ComputeSize(1);
        else
#endif // FEATURE_COLLECTIBLE_TYPES
            dwGCSize = 0;
    }

    pClass->SetNumMethods(bmtVT->cTotalSlots);
    pClass->SetNumNonVirtualSlots(bmtVT->cVtableSlots - bmtVT->cVirtualSlots);

    // Now setup the method table
    // interface map is allocated along with the method table
    MethodTable *pMT = AllocateNewMT(pLoaderModule,
                                   bmtVT->cVtableSlots,
                                   bmtVT->cVirtualSlots,
                                   dwGCSize,
                                   bmtInterface->dwInterfaceMapSize,
                                   bmtGenerics->numDicts,
                                   cbDict,
                                   GetParentMethodTable(),
                                   GetClassLoader(),
                                   bmtAllocator,
                                   IsInterface(),
                                   bmtProp->fDynamicStatics,
                                   bmtProp->fGenericsStatics,
                                   fNeedsRCWPerTypeData,
#ifdef FEATURE_COMINTEROP 
                                   fHasDynamicInterfaceMap,
#endif
#ifdef FEATURE_PREJIT
                                   pComputedPZM,
#endif //FEATURE_PREJIT
                                   GetMemTracker());

    pMT->SetClass(pClass);
    pClass->m_pMethodTable.SetValue(pMT);
    m_pHalfBakedMT = pMT;

#ifdef _DEBUG 
    pMT->SetDebugClassName(GetDebugClassName());
#endif

#ifdef FEATURE_COMINTEROP
    if (fNeedsRCWPerTypeData)
        pMT->SetHasRCWPerTypeData();
#endif // FEATURE_COMINTEROP


    if (IsInterface())
        pMT->SetIsInterface();

    if (GetParentMethodTable() != NULL)
    {
        if (GetParentMethodTable()->HasModuleDependencies())
        {
            pMT->SetHasModuleDependencies();
        }
        else
        {
            Module * pModule = GetModule();
            Module * pParentModule = GetParentMethodTable()->GetModule();
            if (pModule != pParentModule)
            {
                pMT->SetHasModuleDependencies();
            }
        }

        if (GetParentMethodTable()->HasPreciseInitCctors() || !pClass->IsBeforeFieldInit())
        {
            pMT->SetHasPreciseInitCctors();
        }
    }

    // Must be done early because various methods test HasInstantiation() and ContainsGenericVariables()
    if (bmtGenerics->GetNumGenericArgs() != 0)
    {
        pMT->SetHasInstantiation(bmtGenerics->fTypicalInstantiation, bmtGenerics->fSharedByGenericInstantiations);

        if (bmtGenerics->fContainsGenericVariables)
            pMT->SetContainsGenericVariables();
    }

    if (bmtGenerics->numDicts != 0)
    {
        if (!FitsIn<WORD>(bmtGenerics->GetNumGenericArgs()))
        {
            BuildMethodTableThrowException(IDS_CLASSLOAD_TOOMANYGENERICARGS);
        }

        pMT->SetDictInfo(bmtGenerics->numDicts,
            static_cast<WORD>(bmtGenerics->GetNumGenericArgs()));
    }

    CONSISTENCY_CHECK(pMT->GetNumGenericArgs() == bmtGenerics->GetNumGenericArgs());
    CONSISTENCY_CHECK(pMT->GetNumDicts() == bmtGenerics->numDicts);
    CONSISTENCY_CHECK(pMT->HasInstantiation() == bmtGenerics->HasInstantiation());
    CONSISTENCY_CHECK(pMT->HasInstantiation() == !pMT->GetInstantiation().IsEmpty());

    pMT->SetLoaderModule(pLoaderModule);
    pMT->SetLoaderAllocator(bmtAllocator);

    pMT->SetModule(GetModule());

    pMT->SetInternalCorElementType (ELEMENT_TYPE_CLASS);

    SetNonGCRegularStaticFieldBytes (bmtProp->dwNonGCRegularStaticFieldBytes);
    SetNonGCThreadStaticFieldBytes (bmtProp->dwNonGCThreadStaticFieldBytes);

#ifdef FEATURE_TYPEEQUIVALENCE
    if (bmtProp->fHasTypeEquivalence)
    {
        pMT->SetHasTypeEquivalence();
    }
#endif //FEATURE_TYPEEQUIVALENCE

#ifdef FEATURE_COMINTEROP 
    if (bmtProp->fSparse)
        pClass->SetSparseForCOMInterop();

    if (IsInterface() && IsComImport())
    {
        // Determine if we are creating an interface methodtable that may be used to dispatch through VSD
        // on an object that has the methodtable of __ComObject.

        // This is done to allow COM tearoff interfaces, but as a side-effect of this feature,
        // we end up using a domain-shared type (__ComObject) with a domain-specific dispatch token.
        // This is a problem because the same domain-specific dispatch token value can appear in
        // multiple unshared domains (VSD takes advantage of the fact that in general a shared type
        // cannot implement an unshared interface). This means that the same <token, __ComObject> pair
        // value can mean different things in different domains (since the token could represent
        // IFoo in one domain and IBar in another). This is a problem because the
        // VSD polymorphic lookup mechanism relies on a process-wide cache table, and as a result
        // these duplicate values would collide if we didn't use fat dispatch token to ensure uniqueness
        // and the interface methodtable is not in the shared domain.

        pMT->SetRequiresFatDispatchTokens();
    }
#endif // FEATURE_COMINTEROP

    if (bmtVT->pCCtor != NULL)
    {
        pMT->SetHasClassConstructor();
        CONSISTENCY_CHECK(pMT->GetClassConstructorSlot() == bmtVT->pCCtor->GetSlotIndex());
    }
    if (bmtVT->pDefaultCtor != NULL)
    {
        pMT->SetHasDefaultConstructor();
        CONSISTENCY_CHECK(pMT->GetDefaultConstructorSlot() == bmtVT->pDefaultCtor->GetSlotIndex());
    }

    for (MethodDescChunk *pChunk = GetHalfBakedClass()->GetChunks(); pChunk != NULL; pChunk = pChunk->GetNextChunk())
    {
        pChunk->SetMethodTable(pMT);
    }

#ifdef _DEBUG 
    {
        // disable ibc logging because we can assert in ComputerPreferredZapModule for partially constructed
        // generic types 
        IBCLoggingDisabler disableLogging;

        DeclaredMethodIterator it(*this);
        while (it.Next())
        {
            MethodDesc *pMD = it->GetMethodDesc();
            if (pMD != NULL)
            {
                pMD->m_pDebugMethodTable.SetValue(pMT);
                pMD->m_pszDebugMethodSignature = FormatSig(pMD, GetLoaderAllocator()->GetLowFrequencyHeap(), GetMemTracker());
            }
            MethodDesc *pUnboxedMD = it->GetUnboxedMethodDesc();
            if (pUnboxedMD != NULL)
            {
                pUnboxedMD->m_pDebugMethodTable.SetValue(pMT);
                pUnboxedMD->m_pszDebugMethodSignature = FormatSig(pUnboxedMD, GetLoaderAllocator()->GetLowFrequencyHeap(), GetMemTracker());
            }
        }
    }
#endif // _DEBUG

    // Note that for value classes, the following calculation is only appropriate
    // when the instance is in its "boxed" state.
    if (!IsInterface())
    {
        DWORD baseSize = Max<DWORD>(bmtFP->NumInstanceFieldBytes + OBJECT_BASESIZE, MIN_OBJECT_SIZE);
        baseSize = (baseSize + ALLOC_ALIGN_CONSTANT) & ~ALLOC_ALIGN_CONSTANT;  // m_BaseSize must be aligned
        pMT->SetBaseSize(baseSize);

        GetHalfBakedClass()->SetBaseSizePadding(baseSize - bmtFP->NumInstanceFieldBytes);

        if (bmtProp->fIsComObjectType)
        {   // Propagate the com specific info
            pMT->SetComObjectType();
#ifdef FEATURE_COMINTEROP 
            // COM objects need an optional field on the EEClass, so ensure this class instance has allocated
            // the optional field descriptor.
            EnsureOptionalFieldsAreAllocated(pClass, m_pAllocMemTracker, GetLoaderAllocator()->GetLowFrequencyHeap());
#endif // FEATURE_COMINTEROP
        }

#ifdef FEATURE_COMINTEROP 
        if (pMT->GetAssembly()->IsManagedWinMD())
        {
            // We need to mark classes that are implementations of managed WinRT runtime classes with
            // the "exported to WinRT" flag. It's not quite possible to tell which ones these are by
            // reading metadata so we ask the adapter.

            IWinMDImport *pWinMDImport = pMT->GetAssembly()->GetManifestWinMDImport();
            _ASSERTE(pWinMDImport != NULL);

            BOOL bResult;
            IfFailThrow(pWinMDImport->IsRuntimeClassImplementation(GetCl(), &bResult));
                
            if (bResult)
            {
                pClass->SetExportedToWinRT();

                // We need optional fields for activation from WinRT.
                EnsureOptionalFieldsAreAllocated(pClass, m_pAllocMemTracker, GetLoaderAllocator()->GetLowFrequencyHeap());
            }
        }

        if (pClass->IsProjectedFromWinRT() || pClass->IsExportedToWinRT())
        {
            const BYTE *        pVal;                 
            ULONG               cbVal;        
            HRESULT hr = GetMDImport()->GetCustomAttributeByName(GetCl(), g_WindowsFoundationMarshalingBehaviorAttributeClassName, (const void **) &pVal, &cbVal);
            if (hr == S_OK)
            {
                CustomAttributeParser cap(pVal, cbVal);
                IfFailThrow(cap.SkipProlog());
                UINT32 u = 0;
                IfFailThrow(cap.GetU4(&u));
                if(u > 0)
                    pClass->SetMarshalingType(u);
            }
        }
#endif // FEATURE_COMINTEROP
    }
    else
    {
#ifdef FEATURE_COMINTEROP 
        // If this is an interface then we need to set the ComInterfaceType to
        // -1 to indicate we have not yet determined the interface type.
        pClass->SetComInterfaceType((CorIfaceAttr)-1);

        // If this is a special COM event interface, then mark the MT as such.
        if (bmtProp->fComEventItfType)
        {
            pClass->SetComEventItfType();
        }
#endif // FEATURE_COMINTEROP
    }
    _ASSERTE((pMT->IsInterface() == 0) == (IsInterface() == 0));

    if (HasLayout())
    {
        pClass->SetNativeSize(GetLayoutInfo()->GetNativeSize());
    }

    FieldDesc *pFieldDescList = pClass->GetFieldDescList();
    // Set all field slots to point to the newly created MethodTable
    for (i = 0; i < (bmtEnumFields->dwNumStaticFields + bmtEnumFields->dwNumInstanceFields); i++)
    {
        pFieldDescList[i].m_pMTOfEnclosingClass.SetValue(pMT);
    }

    // Fill in type parameters before looking up exact parent or fetching the types of any field descriptors!
    // This must come before the use of GetFieldType in the value class representation optimization below.
    if (bmtGenerics->GetNumGenericArgs() != 0)
    {
        // Space has already been allocated for the instantiation but the parameters haven't been filled in
        Instantiation destInst = pMT->GetInstantiation();
        Instantiation inst = bmtGenerics->GetInstantiation();

        // So fill them in...
        TypeHandle * pInstDest = (TypeHandle *)destInst.GetRawArgs();
        for (DWORD j = 0; j < bmtGenerics->GetNumGenericArgs(); j++)
        {
            pInstDest[j] = inst[j];
        }
    }

    CorElementType normalizedType = ELEMENT_TYPE_CLASS;
    if (IsValueClass())
    {
        if (IsEnum())
        {
            if (GetNumInstanceFields() != 1 ||
                !CorTypeInfo::IsPrimitiveType(pFieldDescList[0].GetFieldType()))
            {
                BuildMethodTableThrowException(COR_E_BADIMAGEFORMAT, IDS_CLASSLOAD_BAD_FIELD, mdTokenNil);
            }
            CONSISTENCY_CHECK(!pFieldDescList[0].IsStatic());
            normalizedType = pFieldDescList->GetFieldType();
        }
        else
        {
#ifdef _TARGET_X86_ 
            // JIT64 is not aware of normalized value types and this
            // optimization (return small value types by value in registers)
            // is already done in JIT64.
            OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOADED);
            normalizedType = EEClass::ComputeInternalCorElementTypeForValueType(pMT);
#else
            normalizedType = ELEMENT_TYPE_VALUETYPE;
#endif
        }
    }
    pMT->SetInternalCorElementType(normalizedType);

    if (bmtProp->fIsIntrinsicType)
    {
        pMT->SetIsIntrinsicType();
    }

    if (GetModule()->IsSystem())
    {
        // we are in mscorlib
        CheckForSystemTypes();
    }

    // Now fill in the real interface map with the approximate interfaces
    if (bmtInterface->dwInterfaceMapSize > 0)
    {
        // First ensure we have enough space to record extra flag information for each interface (we don't
        // record this directly into each interface map entry since these flags don't pack well due to
        // alignment).
        PVOID pExtraInterfaceInfo = NULL;
        SIZE_T cbExtraInterfaceInfo = MethodTable::GetExtraInterfaceInfoSize(bmtInterface->dwInterfaceMapSize);
        if (cbExtraInterfaceInfo)
            pExtraInterfaceInfo = GetMemTracker()->Track(GetLoaderAllocator()->GetLowFrequencyHeap()->AllocMem(S_SIZE_T(cbExtraInterfaceInfo)));

        // Call this even in the case where pExtraInterfaceInfo == NULL (certain cases are optimized and don't
        // require extra buffer space).
        pMT->InitializeExtraInterfaceInfo(pExtraInterfaceInfo);

        InterfaceInfo_t *pInterfaces = pMT->GetInterfaceMap();

        CONSISTENCY_CHECK(CheckPointer(pInterfaces));

        // Copy the interface map member by member so there is no junk in the padding.
        for (i = 0; i < bmtInterface->dwInterfaceMapSize; i++)
        {
            bmtInterfaceEntry * pEntry = &bmtInterface->pInterfaceMap[i];

            if (pEntry->IsDeclaredOnType())
                pMT->SetInterfaceDeclaredOnClass(i);
            _ASSERTE(!!pEntry->IsDeclaredOnType() == !!pMT->IsInterfaceDeclaredOnClass(i));

            pInterfaces[i].SetMethodTable(pEntry->GetInterfaceType()->GetMethodTable());
        }
    }

    pMT->SetCl(GetCl());

    // The type is sufficiently initialized for most general purpose accessor methods to work.
    // Mark the type as restored to avoid avoid asserts. Note that this also enables IBC logging.
    pMT->GetWriteableDataForWrite_NoLogging()->SetIsRestoredForBuildMethodTable();

#ifdef _DEBUG
    // Store status if we tried to inject duplicate interfaces
    if (bmtInterface->dbg_fShouldInjectInterfaceDuplicates)
        pMT->Debug_SetHasInjectedInterfaceDuplicates();
#endif //_DEBUG

    // Keep bmtInterface data around since we no longer write the flags (IsDeclaredOnType and
    // IsImplementedByParent) into the interface map (these flags are only required during type loading).

    {
        for (MethodDescChunk *pChunk = GetHalfBakedClass()->GetChunks(); pChunk != NULL; pChunk = pChunk->GetNextChunk())
        {
            // Make sure that temporary entrypoints are create for methods. NGEN uses temporary
            // entrypoints as surrogate keys for precodes.
            pChunk->EnsureTemporaryEntryPointsCreated(GetLoaderAllocator(), GetMemTracker());
        }
    }

    {   // copy onto the real vtable (methods only)
        //@GENERICS: Because we sometimes load an inexact parent (see ClassLoader::GetParent) the inherited slots might
        // come from the wrong place and need fixing up once we know the exact parent

        for (bmtVtable::Iterator slotIt = bmtVT->IterateSlots(); !slotIt.AtEnd(); ++slotIt)
        {
            SLOT_INDEX iCurSlot = static_cast<SLOT_INDEX>(slotIt.CurrentIndex());

            // We want the unboxed MethodDesc if we're out of the virtual method range
            // and the method we're dealing with has an unboxing method. If so, then
            // the unboxing method was placed in the virtual section of the vtable and
            // we now need to place the unboxed version.
            MethodDesc * pMD = NULL;
            if (iCurSlot < bmtVT->cVirtualSlots || !slotIt->Impl().AsMDMethod()->IsUnboxing())
            {
                pMD = slotIt->Impl().GetMethodDesc();
                CONSISTENCY_CHECK(slotIt->Decl().GetSlotIndex() == iCurSlot);
            }
            else
            {
                pMD = slotIt->Impl().AsMDMethod()->GetUnboxedMethodDesc();
                CONSISTENCY_CHECK(pMD->GetSlot() == iCurSlot);
            }

            CONSISTENCY_CHECK(CheckPointer(pMD));

            if (pMD->GetMethodTable() != pMT)
            {
                //
                // Inherited slots
                //
                // Do not write into vtable chunks shared with parent. It would introduce race 
                // with code:MethodDesc::SetStableEntryPointInterlocked.
                //
                DWORD indirectionIndex = MethodTable::GetIndexOfVtableIndirection(iCurSlot);
                if (GetParentMethodTable()->GetVtableIndirections()[indirectionIndex].GetValueMaybeNull() != pMT->GetVtableIndirections()[indirectionIndex].GetValueMaybeNull())
                    pMT->SetSlot(iCurSlot, pMD->GetInitialEntryPointForCopiedSlot());
            }
            else
            {
                //
                // Owned slots
                //
                _ASSERTE(iCurSlot >= bmtVT->cVirtualSlots || ChangesImplementationOfVirtualSlot(iCurSlot));

                PCODE addr = pMD->GetTemporaryEntryPoint();
                _ASSERTE(addr != NULL);

                if (pMD->HasNonVtableSlot())
                {
                    *((PCODE *)pMD->GetAddrOfSlot()) = addr;
                }
                else
                {
                    pMT->SetSlot(iCurSlot, addr);
                }

                if (pMD->GetSlot() == iCurSlot && pMD->RequiresStableEntryPoint())
                {
                    // The rest of the system assumes that certain methods always have stable entrypoints.
                    // Create them now.
                    pMD->GetOrCreatePrecode();
                }
            }
        }
    }

    // If we have any entries, then finalize them and allocate the object in class loader heap
    DispatchMap                 *pDispatchMap        = NULL;
    DispatchMapBuilder          *pDispatchMapBuilder = bmtVT->pDispatchMapBuilder;
    CONSISTENCY_CHECK(CheckPointer(pDispatchMapBuilder));

    if (pDispatchMapBuilder->Count() > 0)
    {
        // Create a map in stacking memory.
        BYTE * pbMap;
        UINT32 cbMap;
        DispatchMap::CreateEncodedMapping(
            pMT, 
            pDispatchMapBuilder, 
            pDispatchMapBuilder->GetAllocator(), 
            &pbMap, 
            &cbMap);

        // Now finalize the impltable and allocate the block in the low frequency loader heap
        size_t objSize = (size_t) DispatchMap::GetObjectSize(cbMap);
        void * pv = AllocateFromLowFrequencyHeap(S_SIZE_T(objSize));
        _ASSERTE(pv != NULL);

        // Use placement new
        pDispatchMap = new (pv) DispatchMap(pbMap, cbMap);
        pMT->SetDispatchMap(pDispatchMap);

#ifdef LOGGING 
        g_sdStats.m_cDispatchMap++;
        g_sdStats.m_cbDispatchMap += (UINT32) objSize;
        LOG((LF_LOADER, LL_INFO1000, "SD: Dispatch map for %s: %d bytes for map, %d bytes total for object.\n",
            pMT->GetDebugClassName(), cbMap, objSize));
#endif // LOGGING

    }

    // GetMethodData by default will cache its result. However, in the case that we're
    // building a MethodTable, we aren't guaranteed that this type is going to successfully
    // load and so caching it would result in errors down the road since the memory and
    // type occupying the same memory location would very likely be incorrect. The second
    // argument specifies that GetMethodData should not cache the returned object.
    MethodTable::MethodDataWrapper hMTData(MethodTable::GetMethodData(pMT, FALSE));

    if (!IsInterface())
    {
        // Propagate inheritance.

        // NOTE: In the world of unfolded interface this was used to propagate overrides into
        //       the unfolded interface vtables to make sure that overrides of virtual methods
        //       also overrode the interface methods that they contributed to. This had the
        //       unfortunate side-effect of also overwriting regular vtable slots that had been
        //       methodimpl'd and as a result changed the meaning of methodimpl from "substitute
        //       the body of method A with the body of method B" to "unify the slots of methods
        //       A and B". But now compilers have come to rely on this side-effect and it can
        //       not be brought back to its originally intended behaviour.

        // For every slot whose body comes from another slot (determined by getting the MethodDesc
        // for a slot and seeing if MethodDesc::GetSlot returns a different value than the slot
        // from which the MethodDesc was recovered), copy the value of the slot stated by the
        // MethodDesc over top of the current slot.

        // Because of the way slot unification works, we need to iterate the enture vtable until
        // no slots need updated. To understand this, imagine the following:
        //      C1::M1 is overridden by C2::M2
        //      C1::M2 is methodImpled by C1::M3
        //      C1::M3 is overridden by C2::M3
        // This should mean that C1::M1 is implemented by C2::M3, but if we didn't run the below
        // for loop a second time, this would not be propagated properly - it would only be placed
        // into the slot for C1::M2 and never make its way up to C1::M1.
        
        BOOL fChangeMade;
        do
        {
            fChangeMade = FALSE;
            for (i = 0; i < pMT->GetNumVirtuals(); i++)
            {
                MethodDesc* pMD = hMTData->GetImplMethodDesc(i);

                CONSISTENCY_CHECK(CheckPointer(pMD));
                CONSISTENCY_CHECK(pMD == pMT->GetMethodDescForSlot(i));

                // This indicates that the method body in this slot was copied here through a methodImpl.
                // Thus, copy the value of the slot from which the body originally came, in case it was
                // overridden, to make sure the two slots stay in sync.
                DWORD originalIndex = pMD->GetSlot();
                if (originalIndex != i)
                {
                    MethodDesc *pOriginalMD = hMTData->GetImplMethodDesc(originalIndex);
                    CONSISTENCY_CHECK(CheckPointer(pOriginalMD));
                    CONSISTENCY_CHECK(pOriginalMD == pMT->GetMethodDescForSlot(originalIndex));
                    if (pMD != pOriginalMD)
                    {
                        // Copy the slot value in the method's original slot.
                        pMT->SetSlot(i, pOriginalMD->GetInitialEntryPointForCopiedSlot());
                        hMTData->InvalidateCachedVirtualSlot(i);

                        // Update the pMD to the new method desc we just copied over ourselves with. This will
                        // be used in the check for missing method block below.
                        pMD = pOriginalMD;

                        // This method is now duplicate
                        pMD->SetDuplicate();
                        INDEBUG(g_dupMethods++;)
                        fChangeMade = TRUE;
                    }
                }
            }
        }
        while (fChangeMade);
    }

    if (!bmtProp->fNoSanityChecks)
        VerifyVirtualMethodsImplemented(hMTData);

#ifdef _DEBUG 
    {
        for (bmtVtable::Iterator i = bmtVT->IterateSlots();
             !i.AtEnd(); ++i)
        {
            _ASSERTE(i->Impl().GetMethodDesc() != NULL);
        }
    }
#endif // _DEBUG


#ifdef FEATURE_COMINTEROP 
    // for ComObject types, i.e. if the class extends from a COM Imported
    // class
    // make sure any interface implementated by the COM Imported class
    // is overridden fully, (OR) not overridden at all..
    // We relax this for WinRT where we want to be able to override individual methods.
    if (bmtProp->fIsComObjectType && !pMT->IsWinRTObjectType())
    {
        MethodTable::InterfaceMapIterator intIt = pMT->IterateInterfaceMap();
        while (intIt.Next())
        {
            MethodTable* pIntfMT = intIt.GetInterface();
            if (pIntfMT->GetNumVirtuals() != 0)
            {
                BOOL hasComImportMethod = FALSE;
                BOOL hasManagedMethod = FALSE;

                // NOTE: Avoid caching the MethodData object for the type being built.
                MethodTable::MethodDataWrapper hItfImplData(MethodTable::GetMethodData(pIntfMT, pMT, FALSE));
                MethodTable::MethodIterator it(hItfImplData);
                for (;it.IsValid(); it.Next())
                {
                    MethodDesc *pClsMD = NULL;
                    // If we fail to find an _IMPLEMENTATION_ for the interface MD, then
                    // we are a ComImportMethod, otherwise we still be a ComImportMethod or
                    // we can be a ManagedMethod.
                    DispatchSlot impl(it.GetTarget());
                    if (!impl.IsNull())
                    {
                        pClsMD = it.GetMethodDesc();

                        CONSISTENCY_CHECK(!pClsMD->IsInterface());
                        if (pClsMD->GetClass()->IsComImport())
                        {
                            hasComImportMethod = TRUE;
                        }
                        else
                        {
                            hasManagedMethod = TRUE;
                        }
                    }
                    else
                    {
                        // Need to set the pClsMD for the error reporting below.
                        pClsMD = it.GetDeclMethodDesc();
                        CONSISTENCY_CHECK(CheckPointer(pClsMD));
                        hasComImportMethod = TRUE;
                    }

                    // One and only one of the two must be set.
                    if ((hasComImportMethod && hasManagedMethod) ||
                        (!hasComImportMethod && !hasManagedMethod))
                    {
                        BuildMethodTableThrowException(IDS_EE_BAD_COMEXTENDS_CLASS, pClsMD->GetNameOnNonArrayClass());
                    }
                }
            }
        }
    }

    // For COM event interfaces, we need to make sure that all the methods are
    // methods to add or remove events. This means that they all need to take
    // a delegate derived class and have a void return type.
    if (bmtProp->fComEventItfType)
    {
        // COM event interfaces had better be interfaces.
        CONSISTENCY_CHECK(IsInterface());

        // Go through all the methods and check the validity of the signature.
        // NOTE: Uses hMTData to avoid caching a MethodData object for the type being built.
        MethodTable::MethodIterator it(hMTData);
        for (;it.IsValid(); it.Next())
        {
            MethodDesc* pMD = it.GetMethodDesc();
            _ASSERTE(pMD);

            MetaSig Sig(pMD);

            {
                CONTRACT_VIOLATION(LoadsTypeViolation);
                if (Sig.GetReturnType() != ELEMENT_TYPE_VOID ||
                    Sig.NumFixedArgs() != 1 ||
                    Sig.NextArg() != ELEMENT_TYPE_CLASS ||
                    !Sig.GetLastTypeHandleThrowing().CanCastTo(TypeHandle(g_pDelegateClass)))
                {
                    BuildMethodTableThrowException(IDS_EE_BAD_COMEVENTITF_CLASS, pMD->GetNameOnNonArrayClass());
                }
            }
        }
    }
#endif // FEATURE_COMINTEROP

    // If this class uses any VTS (Version Tolerant Serialization) features
    // (event callbacks or OptionalField attributes) we've previously cached the
    // additional information in the bmtMFDescs structure. Now it's time to add
    // this information as an optional extension to the MethodTable.
}
#ifdef _PREFAST_ 
#pragma warning(pop)
#endif

// Returns true if there is at least one default implementation for this interface method
// We don't care about conflicts at this stage in order to avoid impact type load performance
BOOL MethodTableBuilder::HasDefaultInterfaceImplementation(bmtRTType *pDeclType, MethodDesc *pDeclMD)
{
    STANDARD_VM_CONTRACT;

#ifdef FEATURE_DEFAULT_INTERFACES
    // If the interface method is already non-abstract, we are done
    if (!pDeclMD->IsAbstract())
        return TRUE;

    int targetSlot = pDeclMD->GetSlot();

    // Iterate over all the interfaces this type implements
    bmtInterfaceEntry * pItfEntry = NULL;
    for (DWORD i = 0; i < bmtInterface->dwInterfaceMapSize; i++)
    {
        bmtRTType * pCurItf = bmtInterface->pInterfaceMap[i].GetInterfaceType();

        Module * pCurIntfModule = pCurItf->GetMethodTable()->GetModule();

        // Go over the methods on the interface
        MethodTable::IntroducedMethodIterator methIt(pCurItf->GetMethodTable());
        for (; methIt.IsValid(); methIt.Next())
        {
            MethodDesc * pPotentialImpl = methIt.GetMethodDesc();

            // If this interface method is not a MethodImpl, it can't possibly implement
            // the interface method we are looking for
            if (!pPotentialImpl->IsMethodImpl())
                continue;

            // Go over all the decls this MethodImpl is implementing
            MethodImpl::Iterator it(pPotentialImpl);
            for (; it.IsValid(); it.Next())
            {
                MethodDesc *pPotentialDecl = it.GetMethodDesc();

                // Check this is a decl with the right slot
                if (pPotentialDecl->GetSlot() != targetSlot)
                    continue;

                // Find out what interface this default implementation is implementing
                mdToken tkParent;
                IfFailThrow(pCurIntfModule->GetMDImport()->GetParentToken(it.GetToken(), &tkParent));

                // We can only load the approximate interface at this point
                MethodTable * pPotentialInterfaceMT = ClassLoader::LoadTypeDefOrRefOrSpecThrowing(
                    pCurIntfModule,
                    tkParent,
                    &bmtGenerics->typeContext,
                    ClassLoader::ThrowIfNotFound,
                    ClassLoader::PermitUninstDefOrRef,
                    ClassLoader::LoadTypes,
                    CLASS_LOAD_APPROXPARENTS,
                    TRUE).GetMethodTable()->GetCanonicalMethodTable();

                // Is this a default implementation for the interface we are looking for?
                if (pDeclType->GetMethodTable()->HasSameTypeDefAs(pPotentialInterfaceMT))
                {
                    // If the type is not generic, matching defs are all we need
                    if (!pDeclType->GetMethodTable()->HasInstantiation())
                        return TRUE;

                    // If this is generic, we need to compare under substitutions
                    Substitution curItfSubs(tkParent, pCurIntfModule, &pCurItf->GetSubstitution());

                    // Type Equivalence is not respected for this comparision as you can have multiple type equivalent interfaces on a class
                    TokenPairList newVisited = TokenPairList::AdjustForTypeEquivalenceForbiddenScope(NULL);
                    if (MetaSig::CompareTypeDefsUnderSubstitutions(
                        pPotentialInterfaceMT, pDeclType->GetMethodTable(),
                        &curItfSubs, &pDeclType->GetSubstitution(),
                        &newVisited))
                    {
                        return TRUE;
                    }
                }
            }
        }        
    }
#endif // FEATURE_DEFAULT_INTERFACES

    return FALSE;
}

void MethodTableBuilder::VerifyVirtualMethodsImplemented(MethodTable::MethodData * hMTData)
{
    STANDARD_VM_CONTRACT;

    //
    // This verification is not applicable or required in many cases
    //

    if (IsAbstract() || IsInterface())
        return;

#ifdef FEATURE_COMINTEROP
    // Note that this is important for WinRT where redirected .NET interfaces appear on the interface
    // impl list but their methods are not implemented (the adapter only hides the WinRT methods, it
    // does not make up the .NET ones).
    if (bmtProp->fIsComObjectType)
        return;
#endif // FEATURE_COMINTEROP

    // Since interfaces aren't laid out in the vtable for stub dispatch, what we need to do
    // is try to find an implementation for every interface contract by iterating through
    // the interfaces not declared on a parent.
    BOOL fParentIsAbstract = FALSE;
    if (HasParent())
    {
        fParentIsAbstract = GetParentMethodTable()->IsAbstract();
    }

    // If the parent is abstract, we need to check that each virtual method is implemented
    if (fParentIsAbstract)
    {
        // NOTE: Uses hMTData to avoid caching a MethodData object for the type being built.
        MethodTable::MethodIterator it(hMTData);
        for (; it.IsValid() && it.IsVirtual(); it.Next())
        {
            MethodDesc *pMD = it.GetMethodDesc();
            if (pMD->IsAbstract())
            {
                MethodDesc *pDeclMD = it.GetDeclMethodDesc();
                BuildMethodTableThrowException(IDS_CLASSLOAD_NOTIMPLEMENTED, pDeclMD->GetNameOnNonArrayClass());
            }
        }
    }
        
    DispatchMapTypeID * rgInterfaceDispatchMapTypeIDs = 
        new (GetStackingAllocator()) DispatchMapTypeID[bmtInterface->dwInterfaceMapSize];
        
    bmtInterfaceInfo::MapIterator intIt = bmtInterface->IterateInterfaceMap();
    for (; !intIt.AtEnd(); intIt.Next())
    {
        if (fParentIsAbstract || !intIt->IsImplementedByParent())
        {
            // Compute all TypeIDs for this interface (all duplicates in the interface map)
            UINT32 cInterfaceDuplicates;
            ComputeDispatchMapTypeIDs(
                intIt->GetInterfaceType()->GetMethodTable(), 
                &intIt->GetInterfaceType()->GetSubstitution(), 
                rgInterfaceDispatchMapTypeIDs, 
                bmtInterface->dwInterfaceMapSize, 
                &cInterfaceDuplicates);
            _ASSERTE(cInterfaceDuplicates <= bmtInterface->dwInterfaceMapSize);
            _ASSERTE(cInterfaceDuplicates > 0);
                
            // NOTE: This override does not cache the resulting MethodData object.
            MethodTable::MethodDataWrapper hData(MethodTable::GetMethodData(
                rgInterfaceDispatchMapTypeIDs, 
                cInterfaceDuplicates, 
                intIt->GetInterfaceType()->GetMethodTable(), 
                GetHalfBakedMethodTable()));
            MethodTable::MethodIterator it(hData);
            for (; it.IsValid() && it.IsVirtual(); it.Next())
            {
                if (it.GetTarget().IsNull())
                {
                    MethodDesc *pMD = it.GetDeclMethodDesc();

                    if (!HasDefaultInterfaceImplementation(intIt->GetInterfaceType(), pMD))
                        BuildMethodTableThrowException(IDS_CLASSLOAD_NOTIMPLEMENTED, pMD->GetNameOnNonArrayClass());
                }
            }
        }
    }
}

INT32 __stdcall IsDefined(Module *pModule, mdToken token, TypeHandle attributeClass)
{
    CONTRACTL
    {
        THROWS;
        GC_TRIGGERS;
    }
    CONTRACTL_END;

    BOOL isDefined = FALSE;

    IMDInternalImport *pInternalImport = pModule->GetMDImport();
    BOOL isSealed = FALSE;

    HENUMInternalHolder hEnum(pInternalImport);
    TypeHandle caTH;

    // Get the enum first but don't get any values
    hEnum.EnumInit(mdtCustomAttribute, token);

    ULONG cMax = pInternalImport->EnumGetCount(&hEnum);
    if (cMax)
    {
        // we have something to look at


        if (!attributeClass.IsNull())
            isSealed = attributeClass.GetMethodTable()->IsSealed();

        // Loop through the Attributes and look for the requested one
        mdCustomAttribute cv;
        while (pInternalImport->EnumNext(&hEnum, &cv))
        {
            //
            // fetch the ctor
            mdToken     tkCtor;
            IfFailThrow(pInternalImport->GetCustomAttributeProps(cv, &tkCtor));
            
            mdToken tkType = TypeFromToken(tkCtor);
            if(tkType != mdtMemberRef && tkType != mdtMethodDef)
                continue; // we only deal with the ctor case

            //
            // get the info to load the type, so we can check whether the current
            // attribute is a subtype of the requested attribute
            IfFailThrow(pInternalImport->GetParentToken(tkCtor, &tkType));
            
            _ASSERTE(TypeFromToken(tkType) == mdtTypeRef || TypeFromToken(tkType) == mdtTypeDef);
            // load the type
            if (isSealed)
            {
                caTH=ClassLoader::LoadTypeDefOrRefThrowing(pModule, tkType,
                                                           ClassLoader::ReturnNullIfNotFound,
                                                           ClassLoader::FailIfUninstDefOrRef,
                                                           TypeFromToken(tkType) == mdtTypeDef ? tdAllTypes : tdNoTypes);
            }
            else
            {
                caTH = ClassLoader::LoadTypeDefOrRefThrowing(pModule, tkType,
                                                             ClassLoader::ReturnNullIfNotFound,
                                                             ClassLoader::FailIfUninstDefOrRef);
            }
            if (caTH.IsNull())
                continue;

            // a null class implies all custom attribute
            if (!attributeClass.IsNull())
            {
                if (isSealed)
                {
                    if (attributeClass != caTH)
                        continue;
                }
                else
                {
                    if (!caTH.CanCastTo(attributeClass))
                        continue;
                }
            }

            //
            // if we are here we got one
            isDefined = TRUE;
            break;
        }
    }

    return isDefined;
}

//*******************************************************************************
VOID MethodTableBuilder::CheckForRemotingProxyAttrib()
{
    STANDARD_VM_CONTRACT;

}


//*******************************************************************************
// Checks for a bunch of special interface names and if it matches then it sets
// bmtProp->fIsMngStandardItf to TRUE. Additionally, it checks to see if the
// type is an interface and if it has ComEventInterfaceAttribute custom attribute
// set, then it sets bmtProp->fComEventItfType to true.
//
// NOTE: This only does anything when COM interop is enabled.

VOID MethodTableBuilder::CheckForSpecialTypes()
{
#ifdef FEATURE_COMINTEROP
    STANDARD_VM_CONTRACT;


    Module *pModule = GetModule();
    IMDInternalImport *pMDImport = pModule->GetMDImport();

    // Check to see if this type is a managed standard interface. All the managed
    // standard interfaces live in mscorlib.dll so checking for that first
    // makes the strcmp that comes afterwards acceptable.
    if (pModule->IsSystem())
    {
        if (IsInterface())
        {
            LPCUTF8 pszClassName;
            LPCUTF8 pszClassNamespace;
            if (FAILED(pMDImport->GetNameOfTypeDef(GetCl(), &pszClassName, &pszClassNamespace)))
            {
                pszClassName = pszClassNamespace = NULL;
            }
            if ((pszClassName != NULL) && (pszClassNamespace != NULL))
            {
                LPUTF8 pszFullyQualifiedName = NULL;
                MAKE_FULLY_QUALIFIED_NAME(pszFullyQualifiedName, pszClassNamespace, pszClassName);

                // This is just to give us a scope to break out of.
                do
                {

#define MNGSTDITF_BEGIN_INTERFACE(FriendlyName, strMngItfName, strUCOMMngItfName, strCustomMarshalerName, strCustomMarshalerCookie, strManagedViewName, NativeItfIID, bCanCastOnNativeItfQI) \
                    if (strcmp(strMngItfName, pszFullyQualifiedName) == 0) \
                    { \
                        bmtProp->fIsMngStandardItf = true; \
                        break; \
                    }

#define MNGSTDITF_DEFINE_METH_IMPL(FriendlyName, ECallMethName, MethName, MethSig, FcallDecl)

#define MNGSTDITF_END_INTERFACE(FriendlyName)

#include "mngstditflist.h"

#undef MNGSTDITF_BEGIN_INTERFACE
#undef MNGSTDITF_DEFINE_METH_IMPL
#undef MNGSTDITF_END_INTERFACE

                } while (FALSE);

                if (strcmp(pszFullyQualifiedName, g_CollectionsGenericCollectionItfName) == 0 ||
                    strcmp(pszFullyQualifiedName, g_CollectionsGenericReadOnlyCollectionItfName) == 0 ||
                    strcmp(pszFullyQualifiedName, g_CollectionsCollectionItfName) == 0)
                {
                    // ICollection`1, ICollection and IReadOnlyCollection`1 are special cases the adapter is unaware of
                    bmtProp->fIsRedirectedInterface = true;
                }
                else
                {
                    if (strcmp(pszFullyQualifiedName, WinMDAdapter::GetRedirectedTypeFullCLRName(WinMDAdapter::RedirectedTypeIndex_System_Collections_Generic_IEnumerable)) == 0 ||
                        strcmp(pszFullyQualifiedName, WinMDAdapter::GetRedirectedTypeFullCLRName(WinMDAdapter::RedirectedTypeIndex_System_Collections_Generic_IList)) == 0 ||
                        strcmp(pszFullyQualifiedName, WinMDAdapter::GetRedirectedTypeFullCLRName(WinMDAdapter::RedirectedTypeIndex_System_Collections_Generic_IDictionary)) == 0 ||
                        strcmp(pszFullyQualifiedName, WinMDAdapter::GetRedirectedTypeFullCLRName(WinMDAdapter::RedirectedTypeIndex_System_Collections_Generic_IReadOnlyList)) == 0 ||
                        strcmp(pszFullyQualifiedName, WinMDAdapter::GetRedirectedTypeFullCLRName(WinMDAdapter::RedirectedTypeIndex_System_Collections_Generic_IReadOnlyDictionary)) == 0 ||
                        strcmp(pszFullyQualifiedName, WinMDAdapter::GetRedirectedTypeFullCLRName(WinMDAdapter::RedirectedTypeIndex_System_Collections_IEnumerable)) == 0 ||
                        strcmp(pszFullyQualifiedName, WinMDAdapter::GetRedirectedTypeFullCLRName(WinMDAdapter::RedirectedTypeIndex_System_Collections_IList)) == 0 ||
                        strcmp(pszFullyQualifiedName, WinMDAdapter::GetRedirectedTypeFullCLRName(WinMDAdapter::RedirectedTypeIndex_System_IDisposable)) == 0)
                    {
                        bmtProp->fIsRedirectedInterface = true;
                    }
                }

                // We want to allocate the per-type RCW data optional MethodTable field for
                // 1. Redirected interfaces
                // 2. Mscorlib-declared [WindowsRuntimeImport] interfaces
                bmtProp->fNeedsRCWPerTypeData = (bmtProp->fIsRedirectedInterface || GetHalfBakedClass()->IsProjectedFromWinRT());

                if (!bmtProp->fNeedsRCWPerTypeData)
                {
                    // 3. Non-generic IEnumerable
                    if (strcmp(pszFullyQualifiedName, g_CollectionsEnumerableItfName) == 0)
                    {
                        bmtProp->fNeedsRCWPerTypeData = true;
                    }
                }
            }
        }
        else if (IsDelegate() && bmtGenerics->HasInstantiation())
        {
            // 4. Redirected delegates
            if (GetHalfBakedClass()->GetWinRTRedirectedTypeIndex()
                != WinMDAdapter::RedirectedTypeIndex_Invalid)
            {
                bmtProp->fNeedsRCWPerTypeData = true;
            }
        }
    }
    else if (bmtGenerics->HasInstantiation() && pModule->GetAssembly()->IsWinMD())
    {
        // 5. WinRT types with variance
        if (bmtGenerics->pVarianceInfo != NULL)
        {
            bmtProp->fNeedsRCWPerTypeData = true;
        }
        else if (IsInterface())
        {
            // 6. Windows.Foundation.Collections.IIterator`1
            LPCUTF8 pszClassName;
            LPCUTF8 pszClassNamespace;
            if (SUCCEEDED(pMDImport->GetNameOfTypeDef(GetCl(), &pszClassName, &pszClassNamespace)))
            {
                LPUTF8 pszFullyQualifiedName = NULL;
                MAKE_FULLY_QUALIFIED_NAME(pszFullyQualifiedName, pszClassNamespace, pszClassName);

                if (strcmp(pszFullyQualifiedName, g_WinRTIIteratorClassName) == 0)
                {
                    bmtProp->fNeedsRCWPerTypeData = true;
                }
            }
        }
    }
    else if ((IsInterface() || IsDelegate()) && 
        IsTdPublic(GetHalfBakedClass()->GetAttrClass()) && 
        GetHalfBakedClass()->GetWinRTRedirectedTypeIndex() != WinMDAdapter::RedirectedTypeIndex_Invalid)
    {
        // 7. System.Collections.Specialized.INotifyCollectionChanged
        // 8. System.Collections.Specialized.NotifyCollectionChangedEventHandler
        // 9. System.ComponentModel.INotifyPropertyChanged
        // 10. System.ComponentModel.PropertyChangedEventHandler
        // 11. System.Windows.Input.ICommand
        LPCUTF8 pszClassName;
        LPCUTF8 pszClassNamespace;
        if (SUCCEEDED(pMDImport->GetNameOfTypeDef(GetCl(), &pszClassName, &pszClassNamespace)))
        {
            LPUTF8 pszFullyQualifiedName = NULL;
            MAKE_FULLY_QUALIFIED_NAME(pszFullyQualifiedName, pszClassNamespace, pszClassName);

            if (strcmp(pszFullyQualifiedName, g_INotifyCollectionChangedName) == 0 ||
                strcmp(pszFullyQualifiedName, g_NotifyCollectionChangedEventHandlerName) == 0 ||
                strcmp(pszFullyQualifiedName, g_INotifyPropertyChangedName) == 0 ||
                strcmp(pszFullyQualifiedName, g_PropertyChangedEventHandlerName) == 0 ||
                strcmp(pszFullyQualifiedName, g_ICommandName) == 0)
            {
                bmtProp->fNeedsRCWPerTypeData = true;
            }
        }
    }

    // Check to see if the type is a COM event interface (classic COM interop only).
    if (IsInterface() && !GetHalfBakedClass()->IsProjectedFromWinRT())
    {
        HRESULT hr = pMDImport->GetCustomAttributeByName(GetCl(), INTEROP_COMEVENTINTERFACE_TYPE, NULL, NULL);
        if (hr == S_OK)
        {
            bmtProp->fComEventItfType = true;
        }
    }
#endif // FEATURE_COMINTEROP
}

#ifdef FEATURE_READYTORUN
//*******************************************************************************
VOID MethodTableBuilder::CheckLayoutDependsOnOtherModules(MethodTable * pDependencyMT)
{
    STANDARD_VM_CONTRACT;

    // These cases are expected to be handled by the caller
    _ASSERTE(!(pDependencyMT == g_pObjectClass || pDependencyMT->IsTruePrimitive() || ((g_pEnumClass != NULL) && pDependencyMT->IsEnum())));

    //
    // WARNING: Changes in this algorithm are potential ReadyToRun breaking changes !!!
    //
    // Track whether field layout of this type depend on information outside its containing module
    //
    // It is a stronger condition than MethodTable::IsInheritanceChainLayoutFixedInCurrentVersionBubble(). 
    // It has to remain fixed accross versioning changes in the module dependencies. In particular, it does 
    // not take into account NonVersionable attribute. Otherwise, adding NonVersionable attribute to existing
    // type would be ReadyToRun incompatible change.
    //
    if (pDependencyMT->GetModule() == GetModule())
    {
        if (!pDependencyMT->GetClass()->HasLayoutDependsOnOtherModules())
            return;
    }

    GetHalfBakedClass()->SetHasLayoutDependsOnOtherModules();
}

BOOL MethodTableBuilder::NeedsAlignedBaseOffset()
{
    STANDARD_VM_CONTRACT;

    //
    // WARNING: Changes in this algorithm are potential ReadyToRun breaking changes !!!
    //
    // This method returns whether the type needs aligned base offset in order to have layout resilient to 
    // base class layout changes.
    //
    if (IsValueClass())
        return FALSE;

    // Always use the ReadyToRun field layout algorithm if the source IL image was ReadyToRun, independent on
    // whether ReadyToRun is actually enabled for the module. It is required to allow mixing and matching 
    // ReadyToRun images with NGen.
    if (!GetModule()->GetFile()->IsILImageReadyToRun())
    {
        // Always use ReadyToRun field layout algorithm to produce ReadyToRun images
        if (!IsReadyToRunCompilation())
            return FALSE;
    }

    MethodTable * pParentMT = GetParentMethodTable();

    // Trivial parents
    if (pParentMT == NULL || pParentMT == g_pObjectClass)
        return FALSE;

    if (pParentMT->GetModule() == GetModule())
    {
        if (!pParentMT->GetClass()->HasLayoutDependsOnOtherModules())
            return FALSE;
    }

    return TRUE;
}
#endif // FEATURE_READYTORUN

//*******************************************************************************
//
// Used by BuildMethodTable
//
// Set the HasFinalizer and HasCriticalFinalizer flags
//
VOID MethodTableBuilder::SetFinalizationSemantics()
{
    STANDARD_VM_CONTRACT;

    if (g_pObjectFinalizerMD && !IsInterface() && !IsValueClass())
    {
        WORD slot = g_pObjectFinalizerMD->GetSlot();

        // Objects not derived from Object will get marked as having a finalizer, if they have 
        // sufficient virtual methods.  This will only be an issue if they can be allocated 
        // in the GC heap (which will cause all sorts of other problems).
        if (slot < bmtVT->cVirtualSlots && (*bmtVT)[slot].Impl().GetMethodDesc() != g_pObjectFinalizerMD)
        {
            GetHalfBakedMethodTable()->SetHasFinalizer();

            // The need for a critical finalizer can be inherited from a parent.
            // Since we set this automatically for CriticalFinalizerObject
            // elsewhere, the code below is the means by which any derived class
            // picks up the attribute.
            if (HasParent() && GetParentMethodTable()->HasCriticalFinalizer())
            {
                GetHalfBakedMethodTable()->SetHasCriticalFinalizer();
            }
        }
    }
}

//*******************************************************************************
//
// Used by BuildMethodTable
//
// Perform relevant GC calculations for value classes
//
VOID MethodTableBuilder::HandleGCForValueClasses(MethodTable ** pByValueClassCache)
{
    STANDARD_VM_CONTRACT;

    DWORD i;

    EEClass *pClass = GetHalfBakedClass();
    MethodTable *pMT = GetHalfBakedMethodTable();

    FieldDesc *pFieldDescList = pClass->GetFieldDescList();

    // Note that for value classes, the following calculation is only appropriate
    // when the instance is in its "boxed" state.
#ifdef FEATURE_COLLECTIBLE_TYPES
    if (bmtFP->NumGCPointerSeries == 0 && pMT->Collectible())
    {
        // For collectible types, insert empty gc series
        CGCDescSeries *pSeries;

        CGCDesc::Init( (PVOID) pMT, 1);
        pSeries = ((CGCDesc*)pMT)->GetLowestSeries();
        pSeries->SetSeriesSize( (size_t) (0) - (size_t) pMT->GetBaseSize());
        pSeries->SetSeriesOffset(OBJECT_SIZE);
    }
    else
#endif // FEATURE_COLLECTIBLE_TYPES
    if (bmtFP->NumGCPointerSeries != 0)
    {
        CGCDescSeries *pSeries;
        CGCDescSeries *pHighest;

        pMT->SetContainsPointers();

        // Copy the pointer series map from the parent
        CGCDesc::Init( (PVOID) pMT, bmtFP->NumGCPointerSeries );
        if (bmtParent->NumParentPointerSeries != 0)
        {
            size_t ParentGCSize = CGCDesc::ComputeSize(bmtParent->NumParentPointerSeries);
            memcpy( (PVOID) (((BYTE*) pMT) - ParentGCSize),
                    (PVOID) (((BYTE*) GetParentMethodTable()) - ParentGCSize),
                    ParentGCSize - sizeof(size_t)   // sizeof(size_t) is the NumSeries count
                  );

        }

        // Build the pointer series map for this pointers in this instance
        pSeries = ((CGCDesc*)pMT)->GetLowestSeries();
        if (bmtFP->NumInstanceGCPointerFields)
        {
            // See gcdesc.h for an explanation of why we adjust by subtracting BaseSize
            pSeries->SetSeriesSize( (size_t) (bmtFP->NumInstanceGCPointerFields * TARGET_POINTER_SIZE) - (size_t) pMT->GetBaseSize());
            pSeries->SetSeriesOffset(bmtFP->GCPointerFieldStart + OBJECT_SIZE);
            pSeries++;
        }

        // Insert GC info for fields which are by-value classes
        for (i = 0; i < bmtEnumFields->dwNumInstanceFields; i++)
        {
            if (pFieldDescList[i].IsByValue())
            {
                MethodTable *pByValueMT = pByValueClassCache[i];

                if (pByValueMT->ContainsPointers())
                {
                    // Offset of the by value class in the class we are building, does NOT include Object
                    DWORD       dwCurrentOffset = pFieldDescList[i].GetOffset_NoLogging();

                    // The by value class may have more than one pointer series
                    CGCDescSeries * pByValueSeries = CGCDesc::GetCGCDescFromMT(pByValueMT)->GetLowestSeries();
                    SIZE_T dwNumByValueSeries = CGCDesc::GetCGCDescFromMT(pByValueMT)->GetNumSeries();

                    for (SIZE_T j = 0; j < dwNumByValueSeries; j++)
                    {
                        size_t cbSeriesSize;
                        size_t cbSeriesOffset;

                        _ASSERTE(pSeries <= CGCDesc::GetCGCDescFromMT(pMT)->GetHighestSeries());

                        cbSeriesSize = pByValueSeries->GetSeriesSize();

                        // Add back the base size of the by value class, since it's being transplanted to this class
                        cbSeriesSize += pByValueMT->GetBaseSize();

                        // Subtract the base size of the class we're building
                        cbSeriesSize -= pMT->GetBaseSize();

                        // Set current series we're building
                        pSeries->SetSeriesSize(cbSeriesSize);

                        // Get offset into the value class of the first pointer field (includes a +Object)
                        cbSeriesOffset = pByValueSeries->GetSeriesOffset();

                        // Add it to the offset of the by value class in our class
                        cbSeriesOffset += dwCurrentOffset;

                        pSeries->SetSeriesOffset(cbSeriesOffset); // Offset of field
                        pSeries++;
                        pByValueSeries++;
                    }
                }
            }
        }

        // Adjust the inherited series - since the base size has increased by "# new field instance bytes", we need to
        // subtract that from all the series (since the series always has BaseSize subtracted for it - see gcdesc.h)
        pHighest = CGCDesc::GetCGCDescFromMT(pMT)->GetHighestSeries();
        while (pSeries <= pHighest)
        {
            CONSISTENCY_CHECK(CheckPointer(GetParentMethodTable()));
            pSeries->SetSeriesSize( pSeries->GetSeriesSize() - ((size_t) pMT->GetBaseSize() - (size_t) GetParentMethodTable()->GetBaseSize()) );
            pSeries++;
        }

        _ASSERTE(pSeries-1 <= CGCDesc::GetCGCDescFromMT(pMT)->GetHighestSeries());
    }

}

//*******************************************************************************
//
// Used by BuildMethodTable
//
// Check for the presence of type equivalence. If present, make sure
// it is permitted to be on this type.
//

void MethodTableBuilder::CheckForTypeEquivalence(
    WORD                     cBuildingInterfaceList,
    BuildingInterfaceInfo_t *pBuildingInterfaceList)
{
    STANDARD_VM_CONTRACT;

#ifdef FEATURE_TYPEEQUIVALENCE
    bmtProp->fIsTypeEquivalent = !!IsTypeDefEquivalent(GetCl(), GetModule());

    if (bmtProp->fIsTypeEquivalent)
    {
        BOOL comImportOrEventInterface = IsComImport();
#ifdef FEATURE_COMINTEROP
        comImportOrEventInterface = comImportOrEventInterface || bmtProp->fComEventItfType;
#endif // FEATURE_COMINTEROP

        BOOL fTypeEquivalentNotPermittedDueToType = !((comImportOrEventInterface && IsInterface()) || IsValueClass() || IsDelegate());
        BOOL fTypeEquivalentNotPermittedDueToGenerics = bmtGenerics->HasInstantiation();

        if (fTypeEquivalentNotPermittedDueToType || fTypeEquivalentNotPermittedDueToGenerics)
        {
            BuildMethodTableThrowException(IDS_CLASSLOAD_EQUIVALENTBADTYPE);
        }

        GetHalfBakedClass()->SetIsEquivalentType();
    }

    bmtProp->fHasTypeEquivalence = bmtProp->fIsTypeEquivalent;

    if (!bmtProp->fHasTypeEquivalence)
    {
        // fHasTypeEquivalence flag is inherited from interfaces so we can quickly detect
        // types that implement type equivalent interfaces
        for (WORD i = 0; i < cBuildingInterfaceList; i++)
        {
            MethodTable *pItfMT = pBuildingInterfaceList[i].m_pMethodTable;
            if (pItfMT->HasTypeEquivalence())
            {
                bmtProp->fHasTypeEquivalence = true;
                break;
            }
        }
    }

    if (!bmtProp->fHasTypeEquivalence)
    {
        // fHasTypeEquivalence flag is "inherited" from generic arguments so we can quickly detect
        // types like List<Str> where Str is a structure with the TypeIdentifierAttribute.
        if (bmtGenerics->HasInstantiation() && !bmtGenerics->IsTypicalTypeDefinition())
        {
            Instantiation inst = bmtGenerics->GetInstantiation();
            for (DWORD i = 0; i < inst.GetNumArgs(); i++) 
            {
                if (inst[i].HasTypeEquivalence())
                {
                    bmtProp->fHasTypeEquivalence = true;
                    break;
                }
            }
        }
    }
#endif //FEATURE_TYPEEQUIVALENCE
}

//*******************************************************************************
//
// Used by BuildMethodTable
//
// Before we make the final leap, make sure we've allocated all memory needed to
// fill out the RID maps.
//
VOID MethodTableBuilder::EnsureRIDMapsCanBeFilled()
{
    STANDARD_VM_CONTRACT;


    DWORD i;


    // Rather than call Ensure***CanBeStored() hundreds of times, we
    // will call it once on the largest token we find. This relies
    // on an invariant that RidMaps don't use some kind of sparse
    // allocation.

    {
        mdMethodDef largest = mdMethodDefNil;

        DeclaredMethodIterator it(*this);
        while (it.Next())
        {
            if (it.Token() > largest)
            {
                largest = it.Token();
            }
        }
        if ( largest != mdMethodDefNil )
        {
            GetModule()->EnsureMethodDefCanBeStored(largest);
        }
    }

    {
        mdFieldDef largest = mdFieldDefNil;

        for (i = 0; i < bmtMetaData->cFields; i++)
        {
            if (bmtMetaData->pFields[i] > largest)
            {
                largest = bmtMetaData->pFields[i];
            }
        }
        if ( largest != mdFieldDefNil )
        {
            GetModule()->EnsureFieldDefCanBeStored(largest);
        }
    }
}

#ifdef FEATURE_COMINTEROP
//*******************************************************************************
void MethodTableBuilder::GetCoClassAttribInfo()
{
    STANDARD_VM_CONTRACT;

    if (!GetHalfBakedClass()->IsProjectedFromWinRT()) // ignore classic COM interop CA on WinRT interfaces
    {
        // Retrieve the CoClassAttribute CA.
        HRESULT hr = GetMDImport()->GetCustomAttributeByName(GetCl(), INTEROP_COCLASS_TYPE, NULL, NULL);
        if (hr == S_OK)
        {
            // COM class interfaces may lazily populate the m_pCoClassForIntf field of EEClass. This field is
            // optional so we must ensure the optional field descriptor has been allocated.
            EnsureOptionalFieldsAreAllocated(GetHalfBakedClass(), m_pAllocMemTracker, GetLoaderAllocator()->GetLowFrequencyHeap());
            SetIsComClassInterface();
        }
    }
}
#endif // FEATURE_COMINTEROP

//*******************************************************************************
void MethodTableBuilder::bmtMethodImplInfo::AddMethodImpl(
    bmtMDMethod * pImplMethod, bmtMethodHandle declMethod, mdToken declToken,
    StackingAllocator * pStackingAllocator)
{
    STANDARD_VM_CONTRACT;

    CONSISTENCY_CHECK(CheckPointer(pImplMethod));
    CONSISTENCY_CHECK(!declMethod.IsNull());
    if (pIndex >= cMaxIndex)
    {
        DWORD newEntriesCount = 0;

        if (!ClrSafeInt<DWORD>::multiply(cMaxIndex, 2, newEntriesCount))
            ThrowHR(COR_E_OVERFLOW);

        if (newEntriesCount == 0)
            newEntriesCount = 10;

        // If we have to grow this array, we will not free the old array before we clean up the BuildMethodTable operation
        // because this is a stacking allocator. However, the old array will get freed when all the stack allocator is freed.
        Entry *rgEntriesNew = new (pStackingAllocator) Entry[newEntriesCount];
        memcpy(rgEntriesNew, rgEntries, sizeof(Entry) * cMaxIndex);

        // Start using newly allocated array.
        rgEntries = rgEntriesNew;
        cMaxIndex = newEntriesCount;
    }
    rgEntries[pIndex++] = Entry(pImplMethod, declMethod, declToken);
}

//*******************************************************************************
// Returns TRUE if tok acts as a body for any methodImpl entry. FALSE, otherwise.
BOOL MethodTableBuilder::bmtMethodImplInfo::IsBody(mdToken tok)
{
    LIMITED_METHOD_CONTRACT;
    CONSISTENCY_CHECK(TypeFromToken(tok) == mdtMethodDef);
    for (DWORD i = 0; i < pIndex; i++)
    {
        if (GetBodyMethodDesc(i)->GetMemberDef() == tok)
        {
            return TRUE;
        }
    }
    return FALSE;
}

//*******************************************************************************
BYTE *
MethodTableBuilder::AllocateFromHighFrequencyHeap(S_SIZE_T cbMem)
{
    CONTRACTL
    {
        THROWS;
        GC_NOTRIGGER;
        MODE_ANY;
    }
    CONTRACTL_END;
    return (BYTE *)GetMemTracker()->Track(
        GetLoaderAllocator()->GetHighFrequencyHeap()->AllocMem(cbMem));
}

//*******************************************************************************
BYTE *
MethodTableBuilder::AllocateFromLowFrequencyHeap(S_SIZE_T cbMem)
{
    CONTRACTL
    {
        THROWS;
        GC_NOTRIGGER;
        MODE_ANY;
    }
    CONTRACTL_END;
    return (BYTE *)GetMemTracker()->Track(
        GetLoaderAllocator()->GetLowFrequencyHeap()->AllocMem(cbMem));
}

//-------------------------------------------------------------------------------
// Make best-case effort to obtain an image name for use in an error message.
//
// This routine must expect to be called before the this object is fully loaded.
// It can return an empty if the name isn't available or the object isn't initialized
// enough to get a name, but it mustn't crash.
//-------------------------------------------------------------------------------
LPCWSTR MethodTableBuilder::GetPathForErrorMessages()
{
    STANDARD_VM_CONTRACT;

    return GetModule()->GetPathForErrorMessages();
}

BOOL MethodTableBuilder::ChangesImplementationOfVirtualSlot(SLOT_INDEX idx)
{
    STANDARD_VM_CONTRACT;

    BOOL fChangesImplementation = TRUE;

    _ASSERTE(idx < bmtVT->cVirtualSlots);

    if (HasParent() && idx < GetParentMethodTable()->GetNumVirtuals())
    {
        _ASSERTE(idx < bmtParent->pSlotTable->GetSlotCount());
        bmtMethodHandle VTImpl = (*bmtVT)[idx].Impl();
        bmtMethodHandle ParentImpl = (*bmtParent)[idx].Impl();

        fChangesImplementation = VTImpl != ParentImpl;

        // See code:MethodTableBuilder::SetupMethodTable2 and its logic
        // for handling MethodImpl's on parent classes which affect non interface
        // methods.
        if (!fChangesImplementation && (ParentImpl.GetSlotIndex() != idx))
            fChangesImplementation = TRUE;
    }

    return fChangesImplementation;
}

// Must be called prior to setting the value of any optional field on EEClass (on a debug build an assert will
// fire if this invariant is violated).
void MethodTableBuilder::EnsureOptionalFieldsAreAllocated(EEClass *pClass, AllocMemTracker *pamTracker, LoaderHeap *pHeap)
{
    STANDARD_VM_CONTRACT;

    if (pClass->HasOptionalFields())
        return;

    EEClassOptionalFields *pOptFields = (EEClassOptionalFields*)
        pamTracker->Track(pHeap->AllocMem(S_SIZE_T(sizeof(EEClassOptionalFields))));

    // Initialize default values for all optional fields.
    pOptFields->Init();

    // Attach optional fields to the class.
    pClass->AttachOptionalFields(pOptFields);
}

//---------------------------------------------------------------------------------------
// 
// Gather information about a generic type
// - number of parameters
// - variance annotations
// - dictionaries
// - sharability
// 
//static
void 
MethodTableBuilder::GatherGenericsInfo(
    Module *          pModule, 
    mdTypeDef         cl, 
    Instantiation     inst, 
    bmtGenericsInfo * bmtGenericsInfo)
{
    CONTRACTL
    {
        STANDARD_VM_CHECK;
        PRECONDITION(GetThread() != NULL);
        PRECONDITION(CheckPointer(pModule));
        PRECONDITION(CheckPointer(bmtGenericsInfo));
    }
    CONTRACTL_END;

    IMDInternalImport * pInternalImport = pModule->GetMDImport();

    // Enumerate the formal type parameters
    HENUMInternal   hEnumGenericPars;
    HRESULT hr = pInternalImport->EnumInit(mdtGenericParam, cl, &hEnumGenericPars);
    if (FAILED(hr))
        pModule->GetAssembly()->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_BADFORMAT);

    DWORD numGenericArgs = pInternalImport->EnumGetCount(&hEnumGenericPars);

    // Work out what kind of EEClass we're creating w.r.t. generics.  If there
    // are no generics involved this will be a VMFLAG_NONGENERIC.
    BOOL fHasVariance = FALSE;
    if (numGenericArgs > 0)
    {
        // Generic type verification
        {
            DWORD   dwAttr;
            mdToken tkParent;
            if (FAILED(pInternalImport->GetTypeDefProps(cl, &dwAttr, &tkParent)))
            {
                pModule->GetAssembly()->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_BADFORMAT);
            }
            // A generic with explicit layout is not allowed.
            if (IsTdExplicitLayout(dwAttr))
            {
                pModule->GetAssembly()->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_EXPLICIT_GENERIC);
            }
        }
        
        bmtGenericsInfo->numDicts = 1;
        
        mdGenericParam tkTyPar;
        bmtGenericsInfo->pVarianceInfo = new (&GetThread()->m_MarshalAlloc) BYTE[numGenericArgs];

        // If it has generic arguments but none have been specified, then load the instantiation at the formals
        if (inst.IsEmpty())
        {
            bmtGenericsInfo->fTypicalInstantiation = TRUE;
            S_UINT32 scbAllocSize = S_UINT32(numGenericArgs) * S_UINT32(sizeof(TypeHandle));
            TypeHandle * genericArgs = (TypeHandle *) GetThread()->m_MarshalAlloc.Alloc(scbAllocSize);

            inst = Instantiation(genericArgs, numGenericArgs);

            bmtGenericsInfo->fSharedByGenericInstantiations = FALSE;
        }
        else
        {
            bmtGenericsInfo->fTypicalInstantiation = FALSE;

            bmtGenericsInfo->fSharedByGenericInstantiations = TypeHandle::IsCanonicalSubtypeInstantiation(inst);
            _ASSERTE(bmtGenericsInfo->fSharedByGenericInstantiations == ClassLoader::IsSharableInstantiation(inst));

#ifdef _DEBUG
            // Set typical instantiation MethodTable
            {
                MethodTable * pTypicalInstantiationMT = pModule->LookupTypeDef(cl).AsMethodTable();
                // Typical instantiation was already loaded by code:ClassLoader::LoadApproxTypeThrowing
                _ASSERTE(pTypicalInstantiationMT != NULL);
                bmtGenericsInfo->dbg_pTypicalInstantiationMT = pTypicalInstantiationMT;
            }
#endif //_DEBUG
        }
        
        TypeHandle * pDestInst = (TypeHandle *)inst.GetRawArgs();
        for (unsigned int i = 0; i < numGenericArgs; i++)
        {
            pInternalImport->EnumNext(&hEnumGenericPars, &tkTyPar);
            DWORD flags;
            if (FAILED(pInternalImport->GetGenericParamProps(tkTyPar, NULL, &flags, NULL, NULL, NULL)))
            {
                pModule->GetAssembly()->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_BADFORMAT);
            }
            
            if (bmtGenericsInfo->fTypicalInstantiation)
            {
                // code:Module.m_GenericParamToDescMap maps generic parameter RIDs to TypeVarTypeDesc
                // instances so that we do not leak by allocating them all over again, if the type
                // repeatedly fails to load.
                TypeVarTypeDesc *pTypeVarTypeDesc = pModule->LookupGenericParam(tkTyPar);
                if (pTypeVarTypeDesc == NULL)
                {
                    // Do NOT use the alloc tracker for this memory as we need it stay allocated even if the load fails.
                    void *mem = (void *)pModule->GetLoaderAllocator()->GetLowFrequencyHeap()->AllocMem(S_SIZE_T(sizeof(TypeVarTypeDesc)));
                    pTypeVarTypeDesc = new (mem) TypeVarTypeDesc(pModule, cl, i, tkTyPar);

                    // No race here - the row in GenericParam table is owned exclusively by this type and we
                    // are holding a lock preventing other threads from concurrently loading it.
                    pModule->StoreGenericParamThrowing(tkTyPar, pTypeVarTypeDesc);
                }
                pDestInst[i] = TypeHandle(pTypeVarTypeDesc);
            }

            DWORD varianceAnnotation = flags & gpVarianceMask;
            bmtGenericsInfo->pVarianceInfo[i] = static_cast<BYTE>(varianceAnnotation);
            if (varianceAnnotation != gpNonVariant)               
            {
                if (varianceAnnotation != gpContravariant && varianceAnnotation != gpCovariant)
                {
                    pModule->GetAssembly()->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_BADVARIANCE);
                }
                else
                {
                    fHasVariance = TRUE;
                }
            }
        }

        if (!fHasVariance)
            bmtGenericsInfo->pVarianceInfo = NULL;
    }
    else
    {
        bmtGenericsInfo->fTypicalInstantiation = FALSE;
        bmtGenericsInfo->fSharedByGenericInstantiations = FALSE;
        bmtGenericsInfo->numDicts = 0;
    }

    bmtGenericsInfo->fContainsGenericVariables = MethodTable::ComputeContainsGenericVariables(inst);

    SigTypeContext typeContext(inst, Instantiation());
    bmtGenericsInfo->typeContext = typeContext;
} // MethodTableBuilder::GatherGenericsInfo

//---------------------------------------------------------------------------------------
// 
// This service is called for normal classes -- and for the pseudo class we invent to
// hold the module's public members.
// 
//static
TypeHandle 
ClassLoader::CreateTypeHandleForTypeDefThrowing(
    Module *          pModule, 
    mdTypeDef         cl, 
    Instantiation     inst, 
    AllocMemTracker * pamTracker)
{
    CONTRACT(TypeHandle)
    {
        STANDARD_VM_CHECK;
        PRECONDITION(GetThread() != NULL);
        PRECONDITION(CheckPointer(pModule));
        POSTCONDITION(!RETVAL.IsNull());
        POSTCONDITION(CheckPointer(RETVAL.GetMethodTable()));
    }
    CONTRACT_END;

    MethodTable * pMT = NULL;

    Thread * pThread = GetThread();
    BEGIN_SO_INTOLERANT_CODE_FOR(pThread, DefaultEntryProbeAmount() * 2)

    MethodTable * pParentMethodTable = NULL;
    SigPointer    parentInst;
    mdTypeDef     tdEnclosing = mdTypeDefNil;
    DWORD         cInterfaces;
    BuildingInterfaceInfo_t * pInterfaceBuildInfo = NULL;
    IMDInternalImport *       pInternalImport = NULL;
    LayoutRawFieldInfo *      pLayoutRawFieldInfos = NULL;
    MethodTableBuilder::bmtGenericsInfo genericsInfo;
    
    Assembly * pAssembly = pModule->GetAssembly();
    pInternalImport = pModule->GetMDImport();

    if (TypeFromToken(cl) != mdtTypeDef || !pInternalImport->IsValidToken(cl))
    {
        pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_BADFORMAT);
    }

    // GetCheckpoint for the thread-based allocator
    // This checkpoint provides a scope for all transient allocations of data structures
    // used during class loading.
    // <NICE> Ideally a debug/checked build should pass around tokens indicating the Checkpoint
    // being used and check these dynamically </NICE>
    CheckPointHolder cph(pThread->m_MarshalAlloc.GetCheckpoint()); //hold checkpoint for autorelease
    
    // Gather up generics info
    MethodTableBuilder::GatherGenericsInfo(pModule, cl, inst, &genericsInfo);

    Module * pLoaderModule = pModule;
    if (!inst.IsEmpty())
    {
        pLoaderModule = ClassLoader::ComputeLoaderModuleWorker(
            pModule, 
            cl, 
            inst, 
            Instantiation());
        pLoaderModule->GetLoaderAllocator()->EnsureInstantiation(pModule, inst);
    }

    LoaderAllocator * pAllocator = pLoaderModule->GetLoaderAllocator();

    {
        // As this is loading a parent type, we are allowed to override the load type limit.
        OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOAD_APPROXPARENTS);
        pParentMethodTable = LoadApproxParentThrowing(pModule, cl, &parentInst, &genericsInfo.typeContext);
    }

    if (pParentMethodTable != NULL)
    {
        // Since methods on System.Array assume the layout of arrays, we can not allow
        // subclassing of arrays, it is sealed from the users point of view.
        // Value types and enums should be sealed - disable inheritting from them (we cannot require sealed 
        // flag because of AppCompat)
        if (pParentMethodTable->IsSealed() || 
            (pParentMethodTable == g_pArrayClass) || 
            pParentMethodTable->IsValueType())
        {
            pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_SEALEDPARENT);
        }

        DWORD dwTotalDicts = genericsInfo.numDicts + pParentMethodTable->GetNumDicts();
        if (!FitsIn<WORD>(dwTotalDicts))
        {
            pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_TOOMANYGENERICARGS);
        }
        genericsInfo.numDicts = static_cast<WORD>(dwTotalDicts);
    }

    GetEnclosingClassThrowing(pInternalImport, pModule, cl, &tdEnclosing);

    BYTE nstructPackingSize = 0, nstructNLT = 0;
    BOOL fExplicitOffsets = FALSE;
    // NOTE: HasLayoutMetadata does not load classes
    BOOL fHasLayout = 
        !genericsInfo.fContainsGenericVariables && 
        HasLayoutMetadata(
            pModule->GetAssembly(), 
            pInternalImport, 
            cl, 
            pParentMethodTable, 
            &nstructPackingSize, 
            &nstructNLT, 
            &fExplicitOffsets);

    BOOL fIsEnum = ((g_pEnumClass != NULL) && (pParentMethodTable == g_pEnumClass));

    // enums may not have layout because they derive from g_pEnumClass and that has no layout
    // this is enforced by HasLayoutMetadata above
    _ASSERTE(!(fIsEnum && fHasLayout));

    // This is a delegate class if it derives from MulticastDelegate (we do not allow single cast delegates)
    BOOL fIsDelegate = pParentMethodTable && pParentMethodTable == g_pMulticastDelegateClass;

    // Create a EEClass entry for it, filling out a few fields, such as the parent class token
    // (and the generic type should we be creating an instantiation)
    EEClass * pClass = MethodTableBuilder::CreateClass(
        pModule, 
        cl, 
        fHasLayout, 
        fIsDelegate, 
        fIsEnum, 
        &genericsInfo, 
        pAllocator, 
        pamTracker);

    if ((pParentMethodTable != NULL) && (pParentMethodTable == g_pDelegateClass))
    {
        // Note we do not allow single cast delegates
        if (pModule->GetAssembly() != SystemDomain::SystemAssembly())
        {
            pAssembly->ThrowTypeLoadException(pInternalImport, cl, BFA_CANNOT_INHERIT_FROM_DELEGATE);
        }

#ifdef _DEBUG
        // Only MultiCastDelegate should inherit from Delegate
        LPCUTF8 className;
        LPCUTF8 nameSpace;
        if (FAILED(pInternalImport->GetNameOfTypeDef(cl, &className, &nameSpace)))
        {
            className = nameSpace = "Invalid TypeDef record";
        }
        BAD_FORMAT_NOTHROW_ASSERT(strcmp(className, "MulticastDelegate") == 0);
#endif
    }

    if (fIsDelegate)
    {
        if (!pClass->IsSealed())
        {
            pAssembly->ThrowTypeLoadException(pInternalImport, cl, BFA_DELEGATE_CLASS_NOTSEALED);
        }

        pClass->SetIsDelegate();
    }

    if (tdEnclosing != mdTypeDefNil)
    {
        pClass->SetIsNested();
        THROW_BAD_FORMAT_MAYBE(IsTdNested(pClass->GetProtection()), VLDTR_E_TD_ENCLNOTNESTED, pModule);
    }
    else if (IsTdNested(pClass->GetProtection()))
    {
        pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_BADFORMAT);
    }
    
    // We only permit generic interfaces and delegates to have variant type parameters
    if (genericsInfo.pVarianceInfo != NULL && !pClass->IsInterface() && !fIsDelegate)
    {
        pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_VARIANCE_CLASS);
    }
    
    // Now load all the interfaces
    HENUMInternalHolder hEnumInterfaceImpl(pInternalImport);
    hEnumInterfaceImpl.EnumInit(mdtInterfaceImpl, cl);
    
    cInterfaces = pInternalImport->EnumGetCount(&hEnumInterfaceImpl);
    
    if (cInterfaces != 0)
    {
        DWORD i;
        
        // Allocate the BuildingInterfaceList table
        pInterfaceBuildInfo = new (&GetThread()->m_MarshalAlloc) BuildingInterfaceInfo_t[cInterfaces];
        
        mdInterfaceImpl ii;
        for (i = 0; pInternalImport->EnumNext(&hEnumInterfaceImpl, &ii); i++)
        {
            // Get properties on this interface
            mdTypeRef crInterface;
            if (FAILED(pInternalImport->GetTypeOfInterfaceImpl(ii, &crInterface)))
            {
                pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_BADFORMAT);
            }
            // validate the token
            mdToken crIntType = 
                (RidFromToken(crInterface) && pInternalImport->IsValidToken(crInterface)) ? 
                TypeFromToken(crInterface) : 
                0;
            switch (crIntType)
            {
                case mdtTypeDef:
                case mdtTypeRef:
                case mdtTypeSpec:
                    break;
                default:
                    pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_INTERFACENULL);
            }
            
            TypeHandle intType;
            
            {
                OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOAD_APPROXPARENTS);
                intType = LoadApproxTypeThrowing(pModule, crInterface, NULL, &genericsInfo.typeContext);
            }
            
            pInterfaceBuildInfo[i].m_pMethodTable = intType.AsMethodTable();
            if (pInterfaceBuildInfo[i].m_pMethodTable == NULL)
            {
                pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_INTERFACENULL);
            }
            
            // Ensure this is an interface
            if (!pInterfaceBuildInfo[i].m_pMethodTable->IsInterface())
            {
                 pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_NOTINTERFACE);
            }
            
            // Check interface for use of variant type parameters
            if ((genericsInfo.pVarianceInfo != NULL) && (TypeFromToken(crInterface) == mdtTypeSpec))
            {
                ULONG cSig;
                PCCOR_SIGNATURE pSig;
                if (FAILED(pInternalImport->GetTypeSpecFromToken(crInterface, &pSig, &cSig)))
                {
                    pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_BADFORMAT);
                }
                // Interfaces behave covariantly
                if (!EEClass::CheckVarianceInSig(
                        genericsInfo.GetNumGenericArgs(), 
                        genericsInfo.pVarianceInfo, 
                        pModule, 
                        SigPointer(pSig, cSig), 
                        gpCovariant))
                {
                    pAssembly->ThrowTypeLoadException(
                        pInternalImport, 
                        cl, 
                        IDS_CLASSLOAD_VARIANCE_IN_INTERFACE);
                }
            }
        }
        _ASSERTE(i == cInterfaces);
    }
    
    if (fHasLayout ||
        /* Variant delegates should not have any instance fields of the variant.
           type parameter. For now, we just completely disallow all fields even
           if they are non-variant or static, as it is not a useful scenario.
           @TODO: A more logical place for this check would be in 
           MethodTableBuilder::EnumerateClassMembers() */
        (fIsDelegate && genericsInfo.pVarianceInfo))
    {
        // check for fields and variance
        ULONG               cFields;
        HENUMInternalHolder hEnumField(pInternalImport);
        hEnumField.EnumInit(mdtFieldDef, cl);

        cFields = pInternalImport->EnumGetCount(&hEnumField);

        if ((cFields != 0) && fIsDelegate && (genericsInfo.pVarianceInfo != NULL))
        {
            pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_VARIANCE_IN_DELEGATE);
        }

        if (fHasLayout)
        {
            // Though we fail on this condition, we should never run into it.
            CONSISTENCY_CHECK(nstructPackingSize != 0);
            // MD Val check: PackingSize
            if((nstructPackingSize == 0)  || 
               (nstructPackingSize > 128) || 
               (nstructPackingSize & (nstructPackingSize-1)))
            {
                THROW_BAD_FORMAT_MAYBE(!"ClassLayout:Invalid PackingSize", BFA_BAD_PACKING_SIZE, pModule);
                pAssembly->ThrowTypeLoadException(pInternalImport, cl, IDS_CLASSLOAD_BADFORMAT);
            }

            pLayoutRawFieldInfos = (LayoutRawFieldInfo *)GetThread()->m_MarshalAlloc.Alloc(
                (S_UINT32(1) + S_UINT32(cFields)) * S_UINT32(sizeof(LayoutRawFieldInfo)));
            
            {
                // Warning: this can load classes
                CONTRACT_VIOLATION(LoadsTypeViolation);

                // Set a flag that allows us to break dead-locks that are result of the LoadsTypeViolation
                ThreadStateNCStackHolder tsNC(TRUE, Thread::TSNC_LoadsTypeViolation);

                EEClassLayoutInfo::CollectLayoutFieldMetadataThrowing(
                    cl, 
                    nstructPackingSize, 
                    nstructNLT, 
#ifdef FEATURE_COMINTEROP
                    pClass->IsProjectedFromWinRT(),
#endif // FEATURE_COMINTEROP
                    fExplicitOffsets, 
                    pParentMethodTable, 
                    cFields, 
                    &hEnumField, 
                    pModule, 
                    &genericsInfo.typeContext, 
                    &(((LayoutEEClass *)pClass)->m_LayoutInfo), 
                    pLayoutRawFieldInfos, 
                    pAllocator, 
                    pamTracker);
            }
        }
    }

    // Resolve this class, given that we know now that all of its dependencies are loaded and resolved.
    // !!! This must be the last thing in this TRY block: if MethodTableBuilder succeeds, it has published the class
    // and there is no going back.
    MethodTableBuilder builder(
        NULL,
        pClass,
        &GetThread()->m_MarshalAlloc, 
        pamTracker);

    pMT = builder.BuildMethodTableThrowing(
        pAllocator, 
        pLoaderModule, 
        pModule, 
        cl, 
        pInterfaceBuildInfo, 
        pLayoutRawFieldInfos, 
        pParentMethodTable, 
        &genericsInfo, 
        parentInst, 
        (WORD)cInterfaces);

    END_SO_INTOLERANT_CODE;
    RETURN(TypeHandle(pMT));
} // ClassLoader::CreateTypeHandleForTypeDefThrowing