summaryrefslogtreecommitdiff
path: root/src/vm/i386/jithelp.asm
blob: 5d64b18c9424c0e54558e57b4a720587ad5eed5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
; Licensed to the .NET Foundation under one or more agreements.
; The .NET Foundation licenses this file to you under the MIT license.
; See the LICENSE file in the project root for more information.

; ***********************************************************************
; File: JIThelp.asm
;
; ***********************************************************************
;
;  *** NOTE:  If you make changes to this file, propagate the changes to
;             jithelp.s in this directory                            

; This contains JITinterface routines that are 100% x86 assembly

        .586
        .model  flat

        include asmconstants.inc

        option  casemap:none
        .code
;
; <TODO>@TODO Switch to g_ephemeral_low and g_ephemeral_high
; @TODO instead of g_lowest_address, g_highest address</TODO>
;

ARGUMENT_REG1           equ     ecx
ARGUMENT_REG2           equ     edx
g_ephemeral_low                 TEXTEQU <_g_ephemeral_low>
g_ephemeral_high                TEXTEQU <_g_ephemeral_high>
g_lowest_address                TEXTEQU <_g_lowest_address>
g_highest_address               TEXTEQU <_g_highest_address>
g_card_table                    TEXTEQU <_g_card_table>
WriteBarrierAssert              TEXTEQU <_WriteBarrierAssert@8>
JIT_LLsh                        TEXTEQU <_JIT_LLsh@0>
JIT_LRsh                        TEXTEQU <_JIT_LRsh@0>
JIT_LRsz                        TEXTEQU <_JIT_LRsz@0>
JIT_LMul                        TEXTEQU <@JIT_LMul@16>
JIT_Dbl2LngOvf                  TEXTEQU <@JIT_Dbl2LngOvf@8>
JIT_Dbl2Lng                     TEXTEQU <@JIT_Dbl2Lng@8>
JIT_Dbl2IntSSE2                 TEXTEQU <@JIT_Dbl2IntSSE2@8>
JIT_Dbl2LngP4x87                TEXTEQU <@JIT_Dbl2LngP4x87@8>
JIT_Dbl2LngSSE3	                TEXTEQU <@JIT_Dbl2LngSSE3@8>
JIT_InternalThrowFromHelper     TEXTEQU <@JIT_InternalThrowFromHelper@4>
JIT_WriteBarrierReg_PreGrow     TEXTEQU <_JIT_WriteBarrierReg_PreGrow@0>
JIT_WriteBarrierReg_PostGrow    TEXTEQU <_JIT_WriteBarrierReg_PostGrow@0>
JIT_TailCall                    TEXTEQU <_JIT_TailCall@0>
JIT_TailCallLeave               TEXTEQU <_JIT_TailCallLeave@0>
JIT_TailCallVSDLeave            TEXTEQU <_JIT_TailCallVSDLeave@0>
JIT_TailCallHelper              TEXTEQU <_JIT_TailCallHelper@4>
JIT_TailCallReturnFromVSD       TEXTEQU <_JIT_TailCallReturnFromVSD@0>

EXTERN  g_ephemeral_low:DWORD
EXTERN  g_ephemeral_high:DWORD
EXTERN  g_lowest_address:DWORD
EXTERN  g_highest_address:DWORD
EXTERN  g_card_table:DWORD
ifdef _DEBUG
EXTERN  WriteBarrierAssert:PROC
endif ; _DEBUG	
EXTERN  JIT_InternalThrowFromHelper:PROC
ifdef FEATURE_HIJACK
EXTERN  JIT_TailCallHelper:PROC
endif
EXTERN _g_TailCallFrameVptr:DWORD
EXTERN @JIT_FailFast@0:PROC
EXTERN _s_gsCookie:DWORD
EXTERN _GetThread@0:PROC
EXTERN @JITutil_IsInstanceOfInterface@8:PROC
EXTERN @JITutil_ChkCastInterface@8:PROC
EXTERN @JITutil_IsInstanceOfAny@8:PROC
EXTERN @JITutil_ChkCastAny@8:PROC

ifdef WRITE_BARRIER_CHECK 
; Those global variables are always defined, but should be 0 for Server GC
g_GCShadow                      TEXTEQU <?g_GCShadow@@3PAEA>
g_GCShadowEnd                   TEXTEQU <?g_GCShadowEnd@@3PAEA>
EXTERN  g_GCShadow:DWORD
EXTERN  g_GCShadowEnd:DWORD
INVALIDGCVALUE equ 0CCCCCCCDh
endif

EXTERN _COMPlusEndCatch@20:PROC

.686P
.XMM
; The following macro is needed because of a MASM issue with the
; movsd mnemonic
; 
$movsd MACRO op1, op2
    LOCAL begin_movsd, end_movsd
begin_movsd:
    movupd op1, op2
end_movsd:
    org begin_movsd
    db 0F2h
    org end_movsd
ENDM
.586

; The following macro is used to match the JITs
; multi-byte NOP sequence
$nop3 MACRO
    db 090h
    db 090h
    db 090h
ENDM



;***
;JIT_WriteBarrier* - GC write barrier helper
;
;Purpose:
;   Helper calls in order to assign an object to a field
;   Enables book-keeping of the GC.
;
;Entry:
;   EDX - address of ref-field (assigned to)
;   the resp. other reg - RHS of assignment
;
;Exit:
;
;Uses:
;       EDX is destroyed.
;
;Exceptions:
;
;*******************************************************************************

; The code here is tightly coupled with AdjustContextForWriteBarrier, if you change
; anything here, you might need to change AdjustContextForWriteBarrier as well
WriteBarrierHelper MACRO rg
        ALIGN 4

    ;; The entry point is the fully 'safe' one in which we check if EDX (the REF
    ;; begin updated) is actually in the GC heap

PUBLIC _JIT_CheckedWriteBarrier&rg&@0
_JIT_CheckedWriteBarrier&rg&@0 PROC
        ;; check in the REF being updated is in the GC heap
        cmp             edx, g_lowest_address
        jb              WriteBarrier_NotInHeap_&rg
        cmp             edx, g_highest_address
        jae             WriteBarrier_NotInHeap_&rg

        ;; fall through to unchecked routine
        ;; note that its entry point also happens to be aligned

ifdef WRITE_BARRIER_CHECK
    ;; This entry point is used when you know the REF pointer being updated
    ;; is in the GC heap
PUBLIC _JIT_DebugWriteBarrier&rg&@0
_JIT_DebugWriteBarrier&rg&@0:
endif

ifdef _DEBUG
        push    edx
        push    ecx
        push    eax

        push    rg
        push    edx
        call    WriteBarrierAssert

        pop     eax
        pop     ecx
        pop     edx
endif ;_DEBUG

        ; in the !WRITE_BARRIER_CHECK case this will be the move for all
        ; addresses in the GCHeap, addresses outside the GCHeap will get 
        ; taken care of below at WriteBarrier_NotInHeap_&rg

ifndef WRITE_BARRIER_CHECK
        mov     DWORD PTR [edx], rg
endif

ifdef WRITE_BARRIER_CHECK  
        ; Test dest here so if it is bad AV would happen before we change register/stack 
        ; status. This makes job of AdjustContextForWriteBarrier easier.
        cmp     [edx], 0
        ;; ALSO update the shadow GC heap if that is enabled
        ; Make ebp into the temporary src register. We need to do this so that we can use ecx
        ; in the calculation of the shadow GC address, but still have access to the src register
        push    ecx
        push    ebp 
        mov     ebp, rg  
        
        ; if g_GCShadow is 0, don't perform the check       
        cmp     g_GCShadow, 0
        je      WriteBarrier_NoShadow_&rg          

        mov     ecx, edx
        sub     ecx, g_lowest_address   ; U/V
        jb      WriteBarrier_NoShadow_&rg
        add     ecx, [g_GCShadow]
        cmp     ecx, [g_GCShadowEnd]
        ja      WriteBarrier_NoShadow_&rg

        ; TODO: In Orcas timeframe if we move to P4+ only on X86 we should enable 
        ; mfence barriers on either side of these two writes to make sure that 
        ; they stay as close together as possible

        ; edx contains address in GC
        ; ecx contains address in ShadowGC
        ; ebp temporarially becomes the src register

        ;; When we're writing to the shadow GC heap we want to be careful to minimize
        ;; the risk of a race that can occur here where the GC and ShadowGC don't match
        mov     DWORD PTR [edx], ebp
        mov     DWORD PTR [ecx], ebp
        
        ;; We need a scratch register to verify the shadow heap.  We also need to
        ;; construct a memory barrier so that the write to the shadow heap happens
        ;; before the read from the GC heap.  We can do both by using SUB/XCHG 
        ;; rather than PUSH.
        ;;
        ;; TODO: Should be changed to a push if the mfence described above is added.
        ;;
        sub     esp, 4
        xchg    [esp], eax
        
        ;; As part of our race avoidance (see above) we will now check whether the values
        ;; in the GC and ShadowGC match. There is a possibility that we're wrong here but
        ;; being overaggressive means we might mask a case where someone updates GC refs
        ;; without going to a write barrier, but by its nature it will be indeterminant
        ;; and we will find real bugs whereas the current implementation is indeterminant
        ;; but only leads to investigations that find that this code is fundamentally flawed
        mov     eax, [edx]
        cmp     [ecx], eax
        je      WriteBarrier_CleanupShadowCheck_&rg
        mov     [ecx], INVALIDGCVALUE

WriteBarrier_CleanupShadowCheck_&rg:
        pop     eax

        jmp     WriteBarrier_ShadowCheckEnd_&rg
        
WriteBarrier_NoShadow_&rg:
        ; If we come here then we haven't written the value to the GC and need to.
        ;   ebp contains rg
        ; We restore ebp/ecx immediately after this, and if either of them is the src
        ; register it will regain its value as the src register.
        mov     DWORD PTR [edx], ebp
WriteBarrier_ShadowCheckEnd_&rg:
        pop     ebp
        pop     ecx
endif
        cmp     rg, g_ephemeral_low
        jb      WriteBarrier_NotInEphemeral_&rg
        cmp     rg, g_ephemeral_high
        jae     WriteBarrier_NotInEphemeral_&rg

        shr     edx, 10
        add     edx, [g_card_table]
        cmp     BYTE PTR [edx], 0FFh
        jne     WriteBarrier_UpdateCardTable_&rg
        ret
        
WriteBarrier_UpdateCardTable_&rg:
        mov     BYTE PTR [edx], 0FFh
        ret

WriteBarrier_NotInHeap_&rg:
        ; If it wasn't in the heap then we haven't updated the dst in memory yet
        mov     DWORD PTR [edx], rg
WriteBarrier_NotInEphemeral_&rg:
        ; If it is in the GC Heap but isn't in the ephemeral range we've already
        ; updated the Heap with the Object*.
        ret
_JIT_CheckedWriteBarrier&rg&@0 ENDP

ENDM


;***
;JIT_ByRefWriteBarrier* - GC write barrier helper
;
;Purpose:
;   Helper calls in order to assign an object to a byref field
;   Enables book-keeping of the GC.
;
;Entry:
;   EDI - address of ref-field (assigned to)
;   ESI - address of the data  (source)
;   ECX can be trashed
;
;Exit:
;
;Uses:
;   EDI and ESI are incremented by a DWORD
;
;Exceptions:
;
;*******************************************************************************

; The code here is tightly coupled with AdjustContextForWriteBarrier, if you change
; anything here, you might need to change AdjustContextForWriteBarrier as well

ByRefWriteBarrierHelper MACRO
        ALIGN 4
PUBLIC _JIT_ByRefWriteBarrier@0
_JIT_ByRefWriteBarrier@0 PROC
        ;;test for dest in range
        mov     ecx, [esi] 
        cmp     edi, g_lowest_address
        jb      ByRefWriteBarrier_NotInHeap
        cmp     edi, g_highest_address
        jae     ByRefWriteBarrier_NotInHeap

ifndef WRITE_BARRIER_CHECK
        ;;write barrier
        mov     [edi],ecx
endif

ifdef WRITE_BARRIER_CHECK
        ; Test dest here so if it is bad AV would happen before we change register/stack 
        ; status. This makes job of AdjustContextForWriteBarrier easier.
        cmp     [edi], 0

        ;; ALSO update the shadow GC heap if that is enabled
        
        ; use edx for address in GC Shadow,
        push    edx      
        
        ;if g_GCShadow is 0, don't do the update
        cmp     g_GCShadow, 0
        je      ByRefWriteBarrier_NoShadow

        mov     edx, edi
        sub     edx, g_lowest_address   ; U/V
        jb      ByRefWriteBarrier_NoShadow
        add     edx, [g_GCShadow]
        cmp     edx, [g_GCShadowEnd]
        ja      ByRefWriteBarrier_NoShadow

        ; TODO: In Orcas timeframe if we move to P4+ only on X86 we should enable 
        ; mfence barriers on either side of these two writes to make sure that 
        ; they stay as close together as possible

        ; edi contains address in GC
        ; edx contains address in ShadowGC
        ; ecx is the value to assign

        ;; When we're writing to the shadow GC heap we want to be careful to minimize
        ;; the risk of a race that can occur here where the GC and ShadowGC don't match        
        mov     DWORD PTR [edi], ecx
        mov     DWORD PTR [edx], ecx

        ;; We need a scratch register to verify the shadow heap.  We also need to
        ;; construct a memory barrier so that the write to the shadow heap happens
        ;; before the read from the GC heap.  We can do both by using SUB/XCHG 
        ;; rather than PUSH.
        ;;
        ;; TODO: Should be changed to a push if the mfence described above is added.
        ;;
        sub     esp, 4
        xchg    [esp], eax

        ;; As part of our race avoidance (see above) we will now check whether the values
        ;; in the GC and ShadowGC match. There is a possibility that we're wrong here but
        ;; being overaggressive means we might mask a case where someone updates GC refs
        ;; without going to a write barrier, but by its nature it will be indeterminant
        ;; and we will find real bugs whereas the current implementation is indeterminant
        ;; but only leads to investigations that find that this code is fundamentally flawed
        
        mov     eax, [edi]
        cmp     [edx], eax
        je      ByRefWriteBarrier_CleanupShadowCheck
        mov     [edx], INVALIDGCVALUE
ByRefWriteBarrier_CleanupShadowCheck:
        pop     eax
        jmp     ByRefWriteBarrier_ShadowCheckEnd
        
ByRefWriteBarrier_NoShadow:
        ; If we come here then we haven't written the value to the GC and need to.
        mov     DWORD PTR [edi], ecx

ByRefWriteBarrier_ShadowCheckEnd:
        pop     edx
endif
        ;;test for *src in ephemeral segement
        cmp     ecx, g_ephemeral_low
        jb      ByRefWriteBarrier_NotInEphemeral
        cmp     ecx, g_ephemeral_high
        jae     ByRefWriteBarrier_NotInEphemeral 
        
        mov     ecx, edi
        add     esi,4
        add     edi,4

        shr     ecx, 10
        add     ecx, [g_card_table]
        cmp     byte ptr [ecx], 0FFh
        jne     ByRefWriteBarrier_UpdateCardTable
        ret
ByRefWriteBarrier_UpdateCardTable:
        mov     byte ptr [ecx], 0FFh
        ret
        
ByRefWriteBarrier_NotInHeap:
        ; If it wasn't in the heap then we haven't updated the dst in memory yet
        mov     [edi],ecx
ByRefWriteBarrier_NotInEphemeral:
        ; If it is in the GC Heap but isn't in the ephemeral range we've already
        ; updated the Heap with the Object*.
        add     esi,4
        add     edi,4
        ret
_JIT_ByRefWriteBarrier@0 ENDP
ENDM

;*******************************************************************************
; Write barrier wrappers with fcall calling convention
;
UniversalWriteBarrierHelper MACRO name
        ALIGN 4
PUBLIC @JIT_&name&@8
@JIT_&name&@8 PROC
        mov eax,edx
        mov edx,ecx
        jmp _JIT_&name&EAX@0
@JIT_&name&@8 ENDP
ENDM

; WriteBarrierStart and WriteBarrierEnd are used to determine bounds of
; WriteBarrier functions so can determine if got AV in them. 
; 
PUBLIC _JIT_WriteBarrierGroup@0
_JIT_WriteBarrierGroup@0 PROC
ret
_JIT_WriteBarrierGroup@0 ENDP

ifdef FEATURE_USE_ASM_GC_WRITE_BARRIERS
; Only define these if we're using the ASM GC write barriers; if this flag is not defined,
; we'll use C++ versions of these write barriers.
UniversalWriteBarrierHelper <CheckedWriteBarrier>
UniversalWriteBarrierHelper <WriteBarrier>
endif 

WriteBarrierHelper <EAX>
WriteBarrierHelper <EBX>
WriteBarrierHelper <ECX>
WriteBarrierHelper <ESI>
WriteBarrierHelper <EDI>
WriteBarrierHelper <EBP>

ByRefWriteBarrierHelper

; This is the first function outside the "keep together range". Used by BBT scripts.
PUBLIC _JIT_WriteBarrierGroup_End@0
_JIT_WriteBarrierGroup_End@0 PROC
ret
_JIT_WriteBarrierGroup_End@0 ENDP

;*********************************************************************/
; In cases where we support it we have an optimized GC Poll callback.  Normall (when we're not trying to
; suspend for GC, the CORINFO_HELP_POLL_GC helper points to this nop routine.  When we're ready to suspend
; for GC, we whack the Jit Helper table entry to point to the real helper.  When we're done with GC we
; whack it back.
PUBLIC @JIT_PollGC_Nop@0
@JIT_PollGC_Nop@0 PROC
ret
@JIT_PollGC_Nop@0 ENDP

;*********************************************************************/
;llshl - long shift left
;
;Purpose:
;   Does a Long Shift Left (signed and unsigned are identical)
;   Shifts a long left any number of bits.
;
;       NOTE:  This routine has been adapted from the Microsoft CRTs.
;
;Entry:
;   EDX:EAX - long value to be shifted
;       ECX - number of bits to shift by
;
;Exit:
;   EDX:EAX - shifted value
;
        ALIGN 16
PUBLIC JIT_LLsh
JIT_LLsh PROC
; Handle shifts of between bits 0 and 31
        cmp     ecx, 32
        jae     short LLshMORE32
        shld    edx,eax,cl
        shl     eax,cl
        ret
; Handle shifts of between bits 32 and 63
LLshMORE32:
        ; The x86 shift instructions only use the lower 5 bits.
        mov     edx,eax
        xor     eax,eax
        shl     edx,cl
        ret
JIT_LLsh ENDP


;*********************************************************************/
;LRsh - long shift right
;
;Purpose:
;   Does a signed Long Shift Right
;   Shifts a long right any number of bits.
;
;       NOTE:  This routine has been adapted from the Microsoft CRTs.
;
;Entry:
;   EDX:EAX - long value to be shifted
;       ECX - number of bits to shift by
;
;Exit:
;   EDX:EAX - shifted value
;
        ALIGN 16
PUBLIC JIT_LRsh
JIT_LRsh PROC
; Handle shifts of between bits 0 and 31
        cmp     ecx, 32
        jae     short LRshMORE32
        shrd    eax,edx,cl
        sar     edx,cl
        ret
; Handle shifts of between bits 32 and 63
LRshMORE32:
        ; The x86 shift instructions only use the lower 5 bits.
        mov     eax,edx
        sar     edx, 31
        sar     eax,cl
        ret
JIT_LRsh ENDP


;*********************************************************************/
; LRsz:
;Purpose:
;   Does a unsigned Long Shift Right
;   Shifts a long right any number of bits.
;
;       NOTE:  This routine has been adapted from the Microsoft CRTs.
;
;Entry:
;   EDX:EAX - long value to be shifted
;       ECX - number of bits to shift by
;
;Exit:
;   EDX:EAX - shifted value
;
        ALIGN 16
PUBLIC JIT_LRsz
JIT_LRsz PROC
; Handle shifts of between bits 0 and 31
        cmp     ecx, 32
        jae     short LRszMORE32
        shrd    eax,edx,cl
        shr     edx,cl
        ret
; Handle shifts of between bits 32 and 63
LRszMORE32:
        ; The x86 shift instructions only use the lower 5 bits.
        mov     eax,edx
        xor     edx,edx
        shr     eax,cl
        ret
JIT_LRsz ENDP

;*********************************************************************/
; LMul:
;Purpose:
;   Does a long multiply (same for signed/unsigned)
;
;       NOTE:  This routine has been adapted from the Microsoft CRTs.
;
;Entry:
;   Parameters are passed on the stack:
;               1st pushed: multiplier (QWORD)
;               2nd pushed: multiplicand (QWORD)
;
;Exit:
;   EDX:EAX - product of multiplier and multiplicand
;
        ALIGN 16
PUBLIC JIT_LMul
JIT_LMul PROC

;       AHI, BHI : upper 32 bits of A and B
;       ALO, BLO : lower 32 bits of A and B
;
;             ALO * BLO
;       ALO * BHI
; +     BLO * AHI
; ---------------------

        mov     eax,[esp + 8]   ; AHI
        mov     ecx,[esp + 16]  ; BHI
        or      ecx,eax         ;test for both hiwords zero.
        mov     ecx,[esp + 12]  ; BLO
        jnz     LMul_hard       ;both are zero, just mult ALO and BLO

        mov     eax,[esp + 4]
        mul     ecx

        ret     16              ; callee restores the stack

LMul_hard:
        push    ebx

        mul     ecx             ;eax has AHI, ecx has BLO, so AHI * BLO
        mov     ebx,eax         ;save result

        mov     eax,[esp + 8]   ; ALO
        mul     dword ptr [esp + 20] ;ALO * BHI
        add     ebx,eax         ;ebx = ((ALO * BHI) + (AHI * BLO))

        mov     eax,[esp + 8]   ; ALO   ;ecx = BLO
        mul     ecx             ;so edx:eax = ALO*BLO
        add     edx,ebx         ;now edx has all the LO*HI stuff

        pop     ebx

        ret     16              ; callee restores the stack

JIT_LMul ENDP

;*********************************************************************/
; JIT_Dbl2LngOvf

;Purpose:
;   converts a double to a long truncating toward zero (C semantics)
;   with check for overflow
;
;       uses stdcall calling conventions 
;
PUBLIC JIT_Dbl2LngOvf
JIT_Dbl2LngOvf PROC
        fnclex
        fld     qword ptr [esp+4]
        push    ecx
        push    ecx
        fstp    qword ptr [esp]
        call    JIT_Dbl2Lng
        mov     ecx,eax
        fnstsw  ax
        test    ax,01h
        jnz     Dbl2LngOvf_throw
        mov     eax,ecx
        ret     8

Dbl2LngOvf_throw:
        mov     ECX, CORINFO_OverflowException_ASM
        call    JIT_InternalThrowFromHelper
        ret     8
JIT_Dbl2LngOvf ENDP

;*********************************************************************/
; JIT_Dbl2Lng

;Purpose:
;   converts a double to a long truncating toward zero (C semantics)
;
;       uses stdcall calling conventions 
;
;   note that changing the rounding mode is very expensive.  This
;   routine basiclly does the truncation sematics without changing
;   the rounding mode, resulting in a win.
;
PUBLIC JIT_Dbl2Lng
JIT_Dbl2Lng PROC
        fld qword ptr[ESP+4]            ; fetch arg
        lea ecx,[esp-8]
        sub esp,16                      ; allocate frame
        and ecx,-8                      ; align pointer on boundary of 8
        fld st(0)                       ; duplciate top of stack
        fistp qword ptr[ecx]            ; leave arg on stack, also save in temp
        fild qword ptr[ecx]             ; arg, round(arg) now on stack
        mov edx,[ecx+4]                 ; high dword of integer
        mov eax,[ecx]                   ; low dword of integer
        test eax,eax
        je integer_QNaN_or_zero

arg_is_not_integer_QNaN:
        fsubp st(1),st                  ; TOS=d-round(d),
                                        ; { st(1)=st(1)-st & pop ST }
        test edx,edx                    ; what's sign of integer
        jns positive
                                        ; number is negative
                                        ; dead cycle
                                        ; dead cycle
        fstp dword ptr[ecx]             ; result of subtraction
        mov ecx,[ecx]                   ; dword of difference(single precision)
        add esp,16
        xor ecx,80000000h
        add ecx,7fffffffh               ; if difference>0 then increment integer
        adc eax,0                       ; inc eax (add CARRY flag)
        adc edx,0                       ; propagate carry flag to upper bits
        ret 8

positive:
        fstp dword ptr[ecx]             ;17-18 ; result of subtraction
        mov ecx,[ecx]                   ; dword of difference (single precision)
        add esp,16
        add ecx,7fffffffh               ; if difference<0 then decrement integer
        sbb eax,0                       ; dec eax (subtract CARRY flag)
        sbb edx,0                       ; propagate carry flag to upper bits
        ret 8

integer_QNaN_or_zero:
        test edx,7fffffffh
        jnz arg_is_not_integer_QNaN
        fstp st(0)                      ;; pop round(arg)
        fstp st(0)                      ;; arg
        add esp,16
        ret 8
JIT_Dbl2Lng ENDP

;*********************************************************************/
; JIT_Dbl2LngP4x87

;Purpose:
;   converts a double to a long truncating toward zero (C semantics)
;
;	uses stdcall calling conventions 
;
;   This code is faster on a P4 than the Dbl2Lng code above, but is
;   slower on a PIII.  Hence we choose this code when on a P4 or above.
;
PUBLIC JIT_Dbl2LngP4x87
JIT_Dbl2LngP4x87 PROC
arg1	equ	<[esp+0Ch]>

    sub 	esp, 8                  ; get some local space

    fld	qword ptr arg1              ; fetch arg
    fnstcw  word ptr arg1           ; store FPCW
    movzx   eax, word ptr arg1      ; zero extend - wide
    or	ah, 0Ch                     ; turn on OE and DE flags
    mov	dword ptr [esp], eax        ; store new FPCW bits
    fldcw   word ptr  [esp]         ; reload FPCW with new bits 
    fistp   qword ptr [esp]         ; convert
    mov	eax, dword ptr [esp]        ; reload FP result
    mov	edx, dword ptr [esp+4]      ;
    fldcw   word ptr arg1           ; reload original FPCW value

    add esp, 8                      ; restore stack

    ret	8
JIT_Dbl2LngP4x87 ENDP

;*********************************************************************/
; JIT_Dbl2LngSSE3

;Purpose:
;   converts a double to a long truncating toward zero (C semantics)
;
;	uses stdcall calling conventions 
;
;   This code is faster than the above P4 x87 code for Intel processors
;   equal or later than Core2 and Atom that have SSE3 support
;
.686P
.XMM
PUBLIC JIT_Dbl2LngSSE3
JIT_Dbl2LngSSE3 PROC
arg1	equ	<[esp+0Ch]>

    sub esp, 8                      ; get some local space

    fld qword ptr arg1              ; fetch arg
    fisttp qword ptr [esp]          ; convert
    mov eax, dword ptr [esp]        ; reload FP result
    mov edx, dword ptr [esp+4]
 
    add esp, 8                      ; restore stack

    ret	8
JIT_Dbl2LngSSE3 ENDP
.586

;*********************************************************************/
; JIT_Dbl2IntSSE2

;Purpose:
;   converts a double to a long truncating toward zero (C semantics)
;
;	uses stdcall calling conventions 
;
;   This code is even faster than the P4 x87 code for Dbl2LongP4x87,
;   but only returns a 32 bit value (only good for int).
;
.686P
.XMM
PUBLIC JIT_Dbl2IntSSE2
JIT_Dbl2IntSSE2 PROC
	$movsd	xmm0, [esp+4]
	cvttsd2si eax, xmm0
	ret 8
JIT_Dbl2IntSSE2 ENDP
.586


;*********************************************************************/
; This is the small write barrier thunk we use when we know the
; ephemeral generation is higher in memory than older generations.
; The 0x0F0F0F0F values are bashed by the two functions above.
; This the generic version - wherever the code says ECX, 
; the specific register is patched later into a copy
; Note: do not replace ECX by EAX - there is a smaller encoding for
; the compares just for EAX, which won't work for other registers.
;
; READ THIS!!!!!!
; it is imperative that the addresses of of the values that we overwrite
; (card table, ephemeral region ranges, etc) are naturally aligned since
; there are codepaths that will overwrite these values while the EE is running.
;
PUBLIC JIT_WriteBarrierReg_PreGrow
JIT_WriteBarrierReg_PreGrow PROC
        mov     DWORD PTR [edx], ecx
        cmp     ecx, 0F0F0F0F0h
        jb      NoWriteBarrierPre

        shr     edx, 10
        nop ; padding for alignment of constant
        cmp     byte ptr [edx+0F0F0F0F0h], 0FFh
        jne     WriteBarrierPre
NoWriteBarrierPre:
        ret
        nop ; padding for alignment of constant
        nop ; padding for alignment of constant
WriteBarrierPre:
        mov     byte ptr [edx+0F0F0F0F0h], 0FFh
        ret
JIT_WriteBarrierReg_PreGrow ENDP

;*********************************************************************/
; This is the larger write barrier thunk we use when we know that older
; generations may be higher in memory than the ephemeral generation
; The 0x0F0F0F0F values are bashed by the two functions above.
; This the generic version - wherever the code says ECX, 
; the specific register is patched later into a copy
; Note: do not replace ECX by EAX - there is a smaller encoding for
; the compares just for EAX, which won't work for other registers.
; NOTE: we need this aligned for our validation to work properly
        ALIGN 4
PUBLIC JIT_WriteBarrierReg_PostGrow
JIT_WriteBarrierReg_PostGrow PROC
        mov     DWORD PTR [edx], ecx
        cmp     ecx, 0F0F0F0F0h
        jb      NoWriteBarrierPost
        cmp     ecx, 0F0F0F0F0h
        jae     NoWriteBarrierPost

        shr     edx, 10
        nop ; padding for alignment of constant
        cmp     byte ptr [edx+0F0F0F0F0h], 0FFh
        jne     WriteBarrierPost
NoWriteBarrierPost:
        ret
        nop ; padding for alignment of constant
        nop ; padding for alignment of constant
WriteBarrierPost:
        mov     byte ptr [edx+0F0F0F0F0h], 0FFh
        ret
JIT_WriteBarrierReg_PostGrow ENDP

;*********************************************************************/
; 

        ; a fake virtual stub dispatch register indirect callsite
        $nop3
        call    dword ptr [eax]


PUBLIC JIT_TailCallReturnFromVSD
JIT_TailCallReturnFromVSD:
ifdef _DEBUG
        nop                         ; blessed callsite
endif
        call    VSDHelperLabel      ; keep call-ret count balanced.
VSDHelperLabel:

; Stack at this point :
;    ...
; m_ReturnAddress
; m_regs
; m_CallerAddress
; m_pThread
; vtbl
; GSCookie
; &VSDHelperLabel
OffsetOfTailCallFrame = 8

; ebx = pThread

ifdef _DEBUG
        mov     esi, _s_gsCookie        ; GetProcessGSCookie()
        cmp     dword ptr [esp+OffsetOfTailCallFrame-SIZEOF_GSCookie], esi
        je      TailCallFrameGSCookieIsValid
        call    @JIT_FailFast@0
    TailCallFrameGSCookieIsValid:
endif
        ; remove the padding frame from the chain
        mov     esi, dword ptr [esp+OffsetOfTailCallFrame+4]    ; esi = TailCallFrame::m_Next
        mov     dword ptr [ebx + Thread_m_pFrame], esi

        ; skip the frame
        add     esp, 20     ; &VSDHelperLabel, GSCookie, vtbl, m_Next, m_CallerAddress

        pop     edi         ; restore callee saved registers
        pop     esi
        pop     ebx
        pop     ebp

        ret                 ; return to m_ReturnAddress

;------------------------------------------------------------------------------
; 

PUBLIC JIT_TailCall
JIT_TailCall PROC

; the stack layout at this point is:
;
;   ebp+8+4*nOldStackArgs   <- end of argument destination
;    ...                       ...
;   ebp+8+                     old args (size is nOldStackArgs)
;    ...                       ...
;   ebp+8                   <- start of argument destination
;   ebp+4                   ret addr
;   ebp+0                   saved ebp
;   ebp-c                   saved ebx, esi, edi (if have callee saved regs = 1)
;
;                           other stuff (local vars) in the jitted callers' frame
;
;   esp+20+4*nNewStackArgs  <- end of argument source
;    ...                       ...
;   esp+20+                    new args (size is nNewStackArgs) to be passed to the target of the tail-call
;    ...                       ...
;   esp+20                  <- start of argument source
;   esp+16                  nOldStackArgs
;   esp+12                  nNewStackArgs
;   esp+8                   flags (1 = have callee saved regs, 2 = virtual stub dispatch)
;   esp+4                   target addr
;   esp+0                   retaddr
;   
;   If you change this function, make sure you update code:TailCallStubManager as well.

RetAddr         equ 0
TargetAddr      equ 4
nNewStackArgs   equ 12
nOldStackArgs   equ 16
NewArgs         equ 20

; extra space is incremented as we push things on the stack along the way
ExtraSpace      = 0

        push    0           ; Thread*

        ; save ArgumentRegisters
        push    ecx
        push    edx

        call    _GetThread@0; eax = Thread*
        mov     [esp + 8], eax

ExtraSpace      = 12    ; pThread, ecx, edx

ifdef FEATURE_HIJACK
        ; Make sure that the EE does have the return address patched. So we can move it around.
        test    dword ptr [eax+Thread_m_State], TS_Hijacked_ASM
        jz      NoHijack
        
        ; JIT_TailCallHelper(Thread *)
        push    eax
        call    JIT_TailCallHelper  ; this is __stdcall

NoHijack:
endif

        mov     edx, dword ptr [esp+ExtraSpace+JIT_TailCall_StackOffsetToFlags]           ; edx = flags

        mov     eax, dword ptr [esp+ExtraSpace+nOldStackArgs]   ; eax = nOldStackArgs
        mov     ecx, dword ptr [esp+ExtraSpace+nNewStackArgs]   ; ecx = nNewStackArgs

        ; restore callee saved registers
        ; <TODO>@TODO : esp based - doesnt work with localloc</TODO>
        test    edx, 1
        jz      NoCalleeSaveRegisters
        
        mov     edi, dword ptr [ebp-4]              ; restore edi
        mov     esi, dword ptr [ebp-8]              ; restore esi
        mov     ebx, dword ptr [ebp-12]             ; restore ebx

NoCalleeSaveRegisters:

        push    dword ptr [ebp+4]                   ; save the original return address for later
        push    edi
        push    esi

ExtraSpace      = 24    ; pThread, ecx, edx, orig retaddr, edi, esi
CallersEsi      = 0
CallersEdi      = 4
OrigRetAddr     = 8
pThread         = 20

        lea     edi, [ebp+8+4*eax]                  ; edi = the end of argument destination
        lea     esi, [esp+ExtraSpace+NewArgs+4*ecx] ; esi = the end of argument source

        mov     ebp, dword ptr [ebp]        ; restore ebp (do not use ebp as scratch register to get a good stack trace in debugger)

        test    edx, 2
        jnz     VSDTailCall

        ; copy the arguments to the final destination
        test    ecx, ecx
        jz      ArgumentsCopied
ArgumentCopyLoop:
        ; At this point, this is the value of the registers :
        ; edi = end of argument dest
        ; esi = end of argument source
        ; ecx = nNewStackArgs
        mov     eax, dword ptr [esi-4]
        sub     edi, 4
        sub     esi, 4
        mov     dword ptr [edi], eax
        dec     ecx
        jnz     ArgumentCopyLoop
ArgumentsCopied:

        ; edi = the start of argument destination

        mov     eax, dword ptr [esp+4+4]                    ; return address
        mov     ecx, dword ptr [esp+ExtraSpace+TargetAddr]  ; target address

        mov     dword ptr [edi-4], eax      ; return address
        mov     dword ptr [edi-8], ecx      ; target address

        lea     eax, [edi-8]                ; new value for esp

        pop     esi
        pop     edi
        pop     ecx         ; skip original return address
        pop     edx
        pop     ecx

        mov     esp, eax

PUBLIC JIT_TailCallLeave    ; add a label here so that TailCallStubManager can access it
JIT_TailCallLeave:
        retn                ; Will branch to targetAddr.  This matches the
                            ; "call" done by JITted code, keeping the
                            ; call-ret count balanced.

        ;----------------------------------------------------------------------
VSDTailCall:
        ;----------------------------------------------------------------------
        
        ; For the Virtual Stub Dispatch, we create a fake callsite to fool
        ; the callsite probes. In order to create the call site, we need to insert TailCallFrame
        ; if we do not have one already.
        ;
        ; ecx = nNewStackArgs
        ; esi = the end of argument source
        ; edi = the end of argument destination
        ;
        ; The stub has pushed the following onto the stack at this point :
        ; pThread, ecx, edx, orig retaddr, edi, esi


        cmp     dword ptr [esp+OrigRetAddr], JIT_TailCallReturnFromVSD
        jz      VSDTailCallFrameInserted_DoSlideUpArgs ; There is an exiting TailCallFrame that can be reused

        ; try to allocate space for the frame / check whether there is enough space
        ; If there is sufficient space, we will setup the frame and then slide 
        ; the arguments up the stack. Else, we first need to slide the arguments
        ; down the stack to make space for the TailCallFrame
        sub     edi, (SIZEOF_GSCookie + SIZEOF_TailCallFrame)
        cmp     edi, esi
        jae     VSDSpaceForFrameChecked

        ; There is not sufficient space to wedge in the TailCallFrame without 
        ; overwriting the new arguments.
        ; We need to allocate the extra space on the stack, 
        ; and slide down the new arguments
        
        mov     eax, esi
        sub     eax, edi
        sub     esp, eax

        mov     eax, ecx                        ; to subtract the size of arguments
        mov     edx, ecx                        ; for counter

        neg     eax

        ; copy down the arguments to the final destination, need to copy all temporary storage as well
        add     edx, (ExtraSpace+NewArgs)/4

        lea     esi, [esi+4*eax-(ExtraSpace+NewArgs)]
        lea     edi, [edi+4*eax-(ExtraSpace+NewArgs)]

VSDAllocFrameCopyLoop:
        mov     eax, dword ptr [esi]
        mov     dword ptr [edi], eax
        add     esi, 4
        add     edi, 4
        dec     edx
        jnz     VSDAllocFrameCopyLoop

        ; the argument source and destination are same now
        mov     esi, edi

VSDSpaceForFrameChecked:

        ; At this point, we have enough space on the stack for the TailCallFrame,
        ; and we may already have slided down the arguments
        
        mov     eax, _s_gsCookie                ; GetProcessGSCookie()
        mov     dword ptr [edi], eax            ; set GSCookie
        mov     eax, _g_TailCallFrameVptr       ; vptr
        mov     edx, dword ptr [esp+OrigRetAddr]        ; orig return address
        mov     dword ptr [edi+SIZEOF_GSCookie], eax            ; TailCallFrame::vptr
        mov     dword ptr [edi+SIZEOF_GSCookie+28], edx         ; TailCallFrame::m_ReturnAddress

        mov     eax, dword ptr [esp+CallersEdi]         ; restored edi
        mov     edx, dword ptr [esp+CallersEsi]         ; restored esi
        mov     dword ptr [edi+SIZEOF_GSCookie+12], eax         ; TailCallFrame::m_regs::edi
        mov     dword ptr [edi+SIZEOF_GSCookie+16], edx         ; TailCallFrame::m_regs::esi
        mov     dword ptr [edi+SIZEOF_GSCookie+20], ebx         ; TailCallFrame::m_regs::ebx
        mov     dword ptr [edi+SIZEOF_GSCookie+24], ebp         ; TailCallFrame::m_regs::ebp

        mov     ebx, dword ptr [esp+pThread]            ; ebx = pThread

        mov     eax, dword ptr [ebx+Thread_m_pFrame]
        lea     edx, [edi+SIZEOF_GSCookie]
        mov     dword ptr [edi+SIZEOF_GSCookie+4], eax          ; TailCallFrame::m_pNext
        mov     dword ptr [ebx+Thread_m_pFrame], edx    ; hook the new frame into the chain

        ; setup ebp chain
        lea     ebp, [edi+SIZEOF_GSCookie+24]                   ; TailCallFrame::m_regs::ebp

        ; Do not copy arguments again if they are in place already
        ; Otherwise, we will need to slide the new arguments up the stack
        cmp     esi, edi
        jne     VSDTailCallFrameInserted_DoSlideUpArgs

        ; At this point, we must have already previously slided down the new arguments,
        ; or the TailCallFrame is a perfect fit
        ; set the caller address
        mov     edx, dword ptr [esp+ExtraSpace+RetAddr] ; caller address
        mov     dword ptr [edi+SIZEOF_GSCookie+8], edx         ; TailCallFrame::m_CallerAddress

        ; adjust edi as it would by copying
        neg     ecx
        lea     edi, [edi+4*ecx]

        jmp     VSDArgumentsCopied

VSDTailCallFrameInserted_DoSlideUpArgs:
        ; set the caller address
        mov     edx, dword ptr [esp+ExtraSpace+RetAddr] ; caller address
        mov     dword ptr [edi+SIZEOF_GSCookie+8], edx          ; TailCallFrame::m_CallerAddress

        ; copy the arguments to the final destination
        test    ecx, ecx
        jz      VSDArgumentsCopied
VSDArgumentCopyLoop:
        mov     eax, dword ptr [esi-4]
        sub     edi, 4
        sub     esi, 4
        mov     dword ptr [edi], eax
        dec     ecx
        jnz     VSDArgumentCopyLoop
VSDArgumentsCopied:

        ; edi = the start of argument destination

        mov     ecx, dword ptr [esp+ExtraSpace+TargetAddr]   ; target address

        mov     dword ptr [edi-4], JIT_TailCallReturnFromVSD ; return address
        mov     dword ptr [edi-12], ecx     ; address of indirection cell
        mov     ecx, [ecx]
        mov     dword ptr [edi-8], ecx      ; target address

        ; skip original return address and saved esi, edi
        add     esp, 12

        pop     edx
        pop     ecx

        lea     esp, [edi-12]   ; new value for esp
        pop     eax

PUBLIC JIT_TailCallVSDLeave ; add a label here so that TailCallStubManager can access it
JIT_TailCallVSDLeave:
        retn                ; Will branch to targetAddr.  This matches the
                            ; "call" done by JITted code, keeping the
                            ; call-ret count balanced.

JIT_TailCall ENDP


;------------------------------------------------------------------------------

; HCIMPL2_VV(float, JIT_FltRem, float dividend, float divisor)
@JIT_FltRem@8 proc public
        fld  dword ptr [esp+4]          ; divisor
        fld  dword ptr [esp+8]          ; dividend
fremloop:
        fprem
        fstsw   ax
        fwait
        sahf
        jp      fremloop        ; Continue while the FPU status bit C2 is set
        fxch    ; swap, so divisor is on top and result is in st(1)
        fstp    ST(0)           ; Pop the divisor from the FP stack
        retn    8               ; Return value is in st(0)
@JIT_FltRem@8 endp

; HCIMPL2_VV(float, JIT_DblRem, float dividend, float divisor)
@JIT_DblRem@16 proc public
        fld  qword ptr [esp+4]          ; divisor
        fld  qword ptr [esp+12]         ; dividend
fremloopd:
        fprem
        fstsw   ax
        fwait
        sahf
        jp      fremloopd       ; Continue while the FPU status bit C2 is set
        fxch    ; swap, so divisor is on top and result is in st(1)
        fstp    ST(0)           ; Pop the divisor from the FP stack
        retn    16              ; Return value is in st(0)
@JIT_DblRem@16 endp

;------------------------------------------------------------------------------

; PatchedCodeStart and PatchedCodeEnd are used to determine bounds of patched code.
; 

_JIT_PatchedCodeStart@0 proc public
ret
_JIT_PatchedCodeStart@0 endp

            ALIGN 4

;**********************************************************************
; Write barriers generated at runtime

PUBLIC _JIT_PatchedWriteBarrierGroup@0
_JIT_PatchedWriteBarrierGroup@0 PROC
ret
_JIT_PatchedWriteBarrierGroup@0 ENDP

PatchedWriteBarrierHelper MACRO rg
        ALIGN 8
PUBLIC _JIT_WriteBarrier&rg&@0
_JIT_WriteBarrier&rg&@0 PROC
        ; Just allocate space that will be filled in at runtime
        db (48) DUP (0CCh)
_JIT_WriteBarrier&rg&@0 ENDP

ENDM

PatchedWriteBarrierHelper <EAX>
PatchedWriteBarrierHelper <EBX>
PatchedWriteBarrierHelper <ECX>
PatchedWriteBarrierHelper <ESI>
PatchedWriteBarrierHelper <EDI>
PatchedWriteBarrierHelper <EBP>

PUBLIC _JIT_PatchedWriteBarrierGroup_End@0
_JIT_PatchedWriteBarrierGroup_End@0 PROC
ret
_JIT_PatchedWriteBarrierGroup_End@0 ENDP

_JIT_PatchedCodeLast@0 proc public
ret
_JIT_PatchedCodeLast@0 endp

; This is the first function outside the "keep together range". Used by BBT scripts.
_JIT_PatchedCodeEnd@0 proc public
ret
_JIT_PatchedCodeEnd@0 endp

; This is the ASM portion of JIT_IsInstanceOfInterface.  For all the bizarre cases, it quickly
; fails and falls back on the JITutil_IsInstanceOfAny helper.  So all failure cases take
; the slow path, too.
;
; ARGUMENT_REG1 = array or interface to check for.
; ARGUMENT_REG2 = instance to be cast.

        ALIGN 16
PUBLIC @JIT_IsInstanceOfInterface@8
@JIT_IsInstanceOfInterface@8 PROC
        test    ARGUMENT_REG2, ARGUMENT_REG2
        jz      IsNullInst

        mov     eax, [ARGUMENT_REG2]            ; get MethodTable

        push    ebx
        push    esi
        movzx   ebx, word ptr [eax+MethodTable_m_wNumInterfaces]

        ; check if this MT implements any interfaces
        test    ebx, ebx
        jz      IsInstanceOfInterfaceDoBizarre

        ; move Interface map ptr into eax
        mov     eax, [eax+MethodTable_m_pInterfaceMap]

IsInstanceOfInterfaceTop:
        ; eax -> current InterfaceInfo_t entry in interface map list
ifdef FEATURE_PREJIT
        mov     esi, [eax]
        test    esi, 1
        ; Move the deference out of line so that this jump is correctly predicted for the case
        ; when there is no indirection
        jnz     IsInstanceOfInterfaceIndir
        cmp     ARGUMENT_REG1, esi
else
        cmp     ARGUMENT_REG1, [eax]
endif
        je      IsInstanceOfInterfaceFound

IsInstanceOfInterfaceNext:
        add     eax, SIZEOF_InterfaceInfo_t
        dec     ebx
        jnz     IsInstanceOfInterfaceTop

        ; fall through to DoBizarre

IsInstanceOfInterfaceDoBizarre:
        pop     esi
        pop     ebx
        mov     eax, [ARGUMENT_REG2]    ; get MethodTable
        test    dword ptr [eax+MethodTable_m_dwFlags], NonTrivialInterfaceCastFlags
        jnz     IsInstanceOfInterfaceNonTrivialCast

IsNullInst:
        xor     eax,eax
        ret

ifdef FEATURE_PREJIT
IsInstanceOfInterfaceIndir:
        cmp     ARGUMENT_REG1,[esi-1]
        jne     IsInstanceOfInterfaceNext
endif

IsInstanceOfInterfaceFound:
        pop     esi
        pop     ebx
        mov     eax, ARGUMENT_REG2      ; the successful instance
        ret

IsInstanceOfInterfaceNonTrivialCast:
        jmp     @JITutil_IsInstanceOfInterface@8

@JIT_IsInstanceOfInterface@8 endp

; This is the ASM portion of JIT_ChkCastInterface.  For all the bizarre cases, it quickly
; fails and falls back on the JITutil_ChkCastAny helper.  So all failure cases take
; the slow path, too.
;
; ARGUMENT_REG1 = array or interface to check for.
; ARGUMENT_REG2 = instance to be cast.

        ALIGN 16
PUBLIC @JIT_ChkCastInterface@8
@JIT_ChkCastInterface@8 PROC
        test    ARGUMENT_REG2, ARGUMENT_REG2
        jz      ChkCastInterfaceIsNullInst

        mov     eax, [ARGUMENT_REG2]            ; get MethodTable

        push    ebx
        push    esi
        movzx   ebx, word ptr [eax+MethodTable_m_wNumInterfaces]

        ; speculatively move Interface map ptr into eax
        mov     eax, [eax+MethodTable_m_pInterfaceMap]

        ; check if this MT implements any interfaces
        test    ebx, ebx
        jz      ChkCastInterfaceDoBizarre

ChkCastInterfaceTop:
        ; eax -> current InterfaceInfo_t entry in interface map list
ifdef FEATURE_PREJIT
        mov     esi, [eax]
        test    esi, 1
        ; Move the deference out of line so that this jump is correctly predicted for the case
        ; when there is no indirection
        jnz     ChkCastInterfaceIndir
        cmp     ARGUMENT_REG1, esi
else
        cmp     ARGUMENT_REG1, [eax]
endif
        je      ChkCastInterfaceFound

ChkCastInterfaceNext:
        add     eax, SIZEOF_InterfaceInfo_t
        dec     ebx
        jnz     ChkCastInterfaceTop

        ; fall through to DoBizarre

ChkCastInterfaceDoBizarre:
        pop     esi
        pop     ebx
        jmp     @JITutil_ChkCastInterface@8

ifdef FEATURE_PREJIT
ChkCastInterfaceIndir:
        cmp     ARGUMENT_REG1,[esi-1]
        jne     ChkCastInterfaceNext
endif

ChkCastInterfaceFound:
        pop     esi
        pop     ebx

ChkCastInterfaceIsNullInst:
        mov     eax, ARGUMENT_REG2      ; either null, or the successful instance
        ret

@JIT_ChkCastInterface@8 endp

; Note that the debugger skips this entirely when doing SetIP,
; since COMPlusCheckForAbort should always return 0.  Excep.cpp:LeaveCatch
; asserts that to be true.  If this ends up doing more work, then the
; debugger may need additional support.
; void __stdcall JIT_EndCatch();
JIT_EndCatch PROC stdcall public

    ; make temp storage for return address, and push the address of that
    ; as the last arg to COMPlusEndCatch
    mov     ecx, [esp]
    push    ecx;
    push    esp;

    ; push the rest of COMPlusEndCatch's args, right-to-left
    push    esi
    push    edi
    push    ebx
    push    ebp

    call    _COMPlusEndCatch@20 ; returns old esp value in eax, stores jump address
    ; now eax = new esp, [esp] = new eip

    pop     edx         ; edx = new eip
    mov     esp, eax    ; esp = new esp
    jmp     edx         ; eip = new eip

JIT_EndCatch ENDP

    end