summaryrefslogtreecommitdiff
path: root/src/vm/i386/gmsx86.cpp
blob: 2852b924ab88ac8792786b6475e8d8027ddf93c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/**************************************************************/
/*                       gmsx86.cpp                           */
/**************************************************************/

#include "common.h"
#include "gmscpu.h"

#ifdef FEATURE_PAL
#define USE_EXTERNAL_UNWINDER
#endif

#ifndef USE_EXTERNAL_UNWINDER
/***************************************************************/
/* setMachState figures out what the state of the CPU will be
   when the function that calls 'setMachState' returns.  It stores
   this information in 'frame'

   setMachState works by simulating the execution of the
   instructions starting at the instruction following the
   call to 'setMachState' and continuing until a return instruction
   is simulated.  To avoid having to process arbitrary code, the
   call to 'setMachState' should be called as follows

      if (machState.setMachState != 0) return;

   setMachState is guarnenteed to return 0 (so the return
   statement will never be executed), but the expression above
   insures insures that there is a 'quick' path to epilog
   of the function.  This insures that setMachState will only
   have to parse a limited number of X86 instructions.   */


/***************************************************************/
#ifndef POISONC
#define POISONC ((sizeof(int *) == 4)?0xCCCCCCCCU:UI64(0xCCCCCCCCCCCCCCCC))
#endif

/***************************************************************/
/* the 'zeroFtn and 'recursiveFtn' are only here to determine 
   if if mscorwks itself has been instrumented by a profiler
   that intercepts calls or epilogs of functions. (the 
   callsInstrumented and epilogInstrumented functions).  */
   
#if !defined(DACCESS_COMPILE)

#ifdef _MSC_VER
#pragma optimize("gsy", on )        // optimize to insure that code generation does not have junk in it
#endif // _MSC_VER
#pragma warning(disable:4717) 

static int __stdcall zeroFtn() {
    return 0;
}

#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winfinite-recursion"
#endif

static int __stdcall recursiveFtn() {
    return recursiveFtn()+1;
}

#ifdef __clang__
#pragma clang diagnostic pop
#endif

#ifdef _MSC_VER
#pragma optimize("", on )
#endif // _MSC_VER


/* Has mscorwks been instrumented so that calls are morphed into push XXXX call <helper> */
static bool callsInstrumented() {
        // Does the recusive function begin with push XXXX call <helper>
    PTR_BYTE ptr = PTR_BYTE(recursiveFtn);

    return (ptr[0] == 0x68 && ptr[5] == 0xe8);    // PUSH XXXX, call <helper>
}

/* Has mscorwks been instrumented so function prolog and epilogs are replaced with 
   jmp [XXXX] */

static bool epilogInstrumented() {

    PTR_BYTE ptr = PTR_BYTE(zeroFtn);
    if (ptr[0] == 0xe8)                            // call <helper>     (prolog instrumentation)
        ptr += 5;
    if (ptr[0] == 0x33 && ptr[1] == 0xc0)        // xor eax eax
        ptr += 2;
    return (ptr[0] == 0xeb || ptr[0] == 0xe9);        // jmp <XXXX>
}

#else 

    // Note that we have the callsInstrumeted and epilogInstrumented
    // functions so that the looser heuristics used for instrumented code
    // can't foul up an instrumented mscorwks.  For simplicity sake we
    // don't bother with this in the DAC, which means that the DAC could
    // be misled more frequently than mscorwks itself, but I still think
    // it will not be misled in any real scenario
static bool callsInstrumented() { LIMITED_METHOD_DAC_CONTRACT; return true; }
static bool epilogInstrumented() { LIMITED_METHOD_DAC_CONTRACT; return true; }

#endif // !defined(DACCESS_COMPILE)

/***************************************************************/
/* returns true if a call to 'ip' should be entered by the
   epilog walker.  Bascically we are looking for things that look
   like __SEH_epilog.  In particular we look for things that
   pops a register before doing a push.  If we see something
   that we don't recognise, we dont consider it a epilog helper
   and return false.
*/

static bool shouldEnterCall(PTR_BYTE ip) {
    SUPPORTS_DAC;

    int datasize; // helper variable for decoding of address modes
    int mod;      // helper variable for decoding of mod r/m
    int rm;       // helper variable for decoding of mod r/m

    int pushes = 0;

    // we should start unbalenced pops within 48 instrs. If not, it is not a special epilog function
    // the only reason we need as many instructions as we have below is because  coreclr
    // gets instrumented for profiling, code coverage, BBT etc, and we want these things to
    // just work.
    for (int i = 0; i < 48; i++) {
        switch(*ip) {
            case 0xF2:              // repne
            case 0xF3:              // repe
                ip++;
                break;

            case 0x68:              // push 0xXXXXXXXX
                ip += 5;

                // For office profiler.  They morph tail calls into push TARGET; jmp helper
                // so if you see
                // 
                // push XXXX
                // jmp xxxx
                // 
                // and we notice that coreclr has been instrumented and
                // xxxx starts with a JMP [] then do what you would do for jmp XXXX
                if (*ip == 0xE9 && callsInstrumented()) {        // jmp helper
                    PTR_BYTE tmpIp = ip + 5;
                    PTR_BYTE target = tmpIp + (__int32)*((PTR_TADDR)(PTR_TO_TADDR(tmpIp) - 4));
                    if (target[0] == 0xFF && target[1] == 0x25) {                // jmp [xxxx] (to external dll)
                        ip = PTR_BYTE(*((PTR_TADDR)(PTR_TO_TADDR(ip) - 4)));
                    }
                }
                else {
                pushes++;
                }
                break;

            case 0x50:              // push EAX
            case 0x51:              // push ECX
            case 0x52:              // push EDX
            case 0x53:              // push EBX
            case 0x55:              // push EBP
            case 0x56:              // push ESI
            case 0x57:              // push EDI
                pushes++;
                ip++;
                break;
                
            case 0xE8:              // call <disp32>
                ip += 5;
                pushes = 0;         // This assumes that all of the previous pushes are arguments to this call 
                break;

            case 0xFF:        
                if (ip[1] != 0x15)  // call [XXXX] is OK (prolog of epilog helper is intrumented)
                    return false;   // but everything else is not OK. 
                ip += 6;
                pushes = 0;         // This assumes that all of the previous pushes are arguments to this call 
                break;

            case 0x9C:              // pushfd
            case 0x9D:              // popfd
                // a pushfd can never be an argument, so we model a pair of
                // these instruction as not changing the stack so that a call
                // that occurs between them does not consume the value of pushfd
                ip++;
                break;

            case 0x5D:              // pop EBP
            case 0x5E:              // pop ESI
            case 0x5F:              // pop EDI
            case 0x5B:              // pop EBX
            case 0x58:              // pop EAX
            case 0x59:              // pop ECX
            case 0x5A:              // pop EDX
                if (pushes <= 0) {
                    // We now have more pops than pushes.  This is our indication
                    // that we are in an EH_epilog function so we return true.
                    // This is the only way to exit this method with a retval of true.
                    return true;
                }
                --pushes;
                ip++;
                break;

            case 0xA1:              // MOV EAX, [XXXX]
                ip += 5;
                break;

            case 0xC6:              // MOV r/m8, imm8
                datasize = 1;
                goto decodeRM;

            case 0x89:              // MOV r/m, reg
                if (ip[1] == 0xE5)  // MOV EBP, ESP
                    return false;
                if (ip[1] == 0xEC)  // MOV ESP, EBP
                    return false;
                goto move;

            case 0x8B:              // MOV reg, r/m
                if (ip[1] == 0xE5)  // MOV ESP, EBP
                    return false;
                if (ip[1] == 0xEC)  // MOV EBP, ESP
                    return false;
                goto move;

            case 0x88:              // MOV reg, r/m (BYTE)
            case 0x8A:              // MOV r/m, reg (BYTE)

            case 0x31:              // XOR
            case 0x32:              // XOR
            case 0x33:              // XOR

        move:
                datasize = 0;

        decodeRM:
                // Note that we don't want to read from ip[] after
                // we do ANY incrementing of ip

                mod = (ip[1] & 0xC0) >> 6;
                if (mod != 3) {
                    rm  = (ip[1] & 0x07);
                    if (mod == 0) {         // (mod == 0) 
                        if      (rm == 5)
                            ip += 4;            // disp32
                        else if (rm == 4)
                            ip += 1;            // [reg*K+reg]
                                                // otherwise [reg]

                    }
                    else if (mod == 1) {    // (mod == 1) 
                        ip += 1;                // for disp8
                        if (rm == 4)
                            ip += 1;            // [reg*K+reg+disp8]
                                                // otherwise [reg+disp8]
                    }
                    else {                  // (mod == 2) 
                        ip += 4;                // for disp32
                        if (rm == 4)
                            ip += 1;            // [reg*K+reg+disp32]
                                                // otherwise [reg+disp32]
                    }
                }

                ip += 2;
                ip += datasize;
                break;

            case 0x64:              // FS: prefix
                ip++;
                break;

            case 0xEB:              // jmp <disp8>
                ip += (signed __int8) ip[1] + 2;
                break;

            case 0xE9:              // jmp <disp32>
                ip += (__int32)*PTR_DWORD(PTR_TO_TADDR(ip) + 1) + 5; 
                break;

            case 0xF7:               // test r/m32, imm32
                // Magellan code coverage build
                if ( (ip[1] & 0x38) == 0x00)
                {
                    datasize = 4;
                    goto decodeRM;
                }
                else
                {
                    return false;
                }
                break;

            case 0x75:              // jnz <target>
                // Magellan code coverage build
                // We always follow forward jump to avoid possible looping.
                {
                    PTR_BYTE tmpIp = ip + (TADDR)(signed __int8) ip[1] + 2;
                    if (tmpIp > ip) {
                        ip = tmpIp;     // follow forwards jump
                    }
                    else {
                        return false;   // backwards jump implies not EH_epilog function
                    }
                }
                break;

            case 0xC2:                // ret
            case 0xC3:                // ret n
            default:
                return false;
        }
    }

    return false;
}


/***************************************************************/
#ifdef _PREFAST_
#pragma warning(push)
#pragma warning(disable:21000) // Suppress PREFast warning about overly large function
#endif

/***************************************************************/
// A fundamental requirement of managed code is that we need to be able to enumerate all GC references on the
// stack at GC time. To do this we need to be able to 'crawl' the stack. We know how to do this in JIT
// compiled code (it generates additional information like the frame size etc), but we don't know how to do
// this for unmanaged code. For PINVOKE calls, we leave a pointer to the transition boundary between managed
// and unmanaged code and we simply ignore the lower part of the stack. However setting up this transition is
// a bit expensive (1-2 dozen instructions), and while that is acceptable for PINVOKE, it is not acceptable
// for high volume calls, like NEW, CAST, WriterBarrier, Stack field fetch and others.
//
// To get around this, for transitions into the runtime (which we call FCALLS), we DEFER setting up the
// boundary variables (what we call the transition frame), until we actually need it (we will do an operation
// that might cause a GC). This allow us to handle the common case (where we might find the thing in a cache,
// or be service the 'new' from a allocation quantum), and only pay the cost of setting up the transition
// frame when it will actually be used.
//
// The problem is that in order to set up a transition frame we need to be able to find ALL REGISTERS AT THE
// TIME THE TRANSITION TO UNMANAGED CODE WAS MADE (because we might need to update them if they have GC
// references). Because we have executed ordinary C++ code (which might spill the registers to the stack at
// any time), we have a problem. LazyMachState is our 'solution' to this problem. We take advantage of the
// fact that the C++ code MUST RESTORE the register before returning. Thus we simulate the execution from the
// current location to the return and 'watch' where the registers got restored from. This is what
// unwindLazyState does (determine what the registers would be IF you had never executed and unmanaged C++
// code).
// 
// By design, this code does not handle all X86 instructions, but only those instructions needed in an
// epilog.  If you get a failure because of a missing instruction, it MAY simply be because the compiler
// changed and now emits a new instruction in the epilog, but it MAY also be because the unwinder is
// 'confused' and is trying to follow a code path that is NOT AN EPILOG, and in this case adding
// instructions to 'fix' it is inappropriate.
//
void LazyMachState::unwindLazyState(LazyMachState* baseState,
                                    MachState* lazyState,
                                    DWORD threadId,
                                    int funCallDepth /* = 1 */,
                                    HostCallPreference hostCallPreference /* = (HostCallPreference)(-1) */)
{
    CONTRACTL {
        NOTHROW;
        GC_NOTRIGGER;
        SO_TOLERANT;
        SUPPORTS_DAC;
    } CONTRACTL_END;

    lazyState->_edi = baseState->_edi;
    lazyState->_esi = baseState->_esi;
    lazyState->_ebx = baseState->_ebx;
    lazyState->_ebp = baseState->captureEbp;
#ifndef DACCESS_COMPILE
    lazyState->_pEdi = &baseState->_edi;
    lazyState->_pEsi = &baseState->_esi;
    lazyState->_pEbx = &baseState->_ebx;
    lazyState->_pEbp = &baseState->_ebp;
#endif

    // We have captured the state of the registers as they exist in 'captureState'
    // we need to simulate execution from the return address captured in 'captureState
    // until we return from the caller of captureState.

    PTR_BYTE ip = PTR_BYTE(baseState->captureEip);
    PTR_TADDR ESP = PTR_TADDR(baseState->captureEsp);
    ESP++;                                 // pop captureState's return address


    // VC now has small helper calls that it uses in epilogs.  We need to walk into these
    // helpers if we are to decode the stack properly.  After we walk the helper we need
    // to return and continue walking the epiliog.  This varaible remembers were to return to
    PTR_BYTE epilogCallRet = PTR_BYTE((TADDR)0);

    // The very first conditional jump that we are going to encounter is
    // the one testing for the return value of LazyMachStateCaptureState.
    // The non-zero path is the one directly leading to a return statement.
    // This variable keeps track of whether we are still looking for that
    // first conditional jump.
    BOOL bFirstCondJmp = TRUE;

    // The general strategy is that we always try to plough forward:
    // we follow a conditional jump if and only if it is a forward jump.
    // However, in fcall functions that set up a HELPER_METHOD_FRAME in
    // more than one place, gcc will have both of them share the same
    // epilog - and the second one may actually be a backward jump.
    // This can lead us to loop in a destructor code loop.  To protect
    // against this, we remember the ip of the last conditional jump
    // we followed, and if we encounter it again, we take the other branch.
    PTR_BYTE lastCondJmpIp = PTR_BYTE((TADDR)0);

    int datasize; // helper variable for decoding of address modes
    int mod;      // helper variable for decoding of mod r/m
    int rm;       // helper variable for decoding of mod r/m

#ifdef _DEBUG
    int count = 0;
    const DWORD cInstructions = 1000;
    PTR_BYTE *instructionBytes = (PTR_BYTE*)alloca(cInstructions * sizeof(PTR_BYTE));
    memset(instructionBytes, 0, cInstructions * sizeof(PTR_BYTE));
#endif
    bool bset16bit=false;
    bool b16bit=false;
    for(;;)
    {
        _ASSERTE(count++ < 1000);       // we should never walk more than 1000 instructions!
        b16bit=bset16bit;
        bset16bit=false;

#ifndef DACCESS_COMPILE
    again:
#endif
#ifdef _DEBUG
        instructionBytes[count-1] = ip;
#endif
        switch(*ip)
        {

            case 0x64:              // FS: prefix
                bset16bit=b16bit;   // In case we have just seen a 0x66 prefix
                goto incIp1;

            case 0x66:
                bset16bit=true;     // Remember that we saw the 0x66 prefix [16-bit datasize override]
                goto incIp1;

            case 0x50:              // push EAX
            case 0x51:              // push ECX
            case 0x52:              // push EDX
            case 0x53:              // push EBX
            case 0x55:              // push EBP
            case 0x56:              // push ESI
            case 0x57:              // push EDI
            case 0x9C:              // pushfd
                --ESP;
            case 0x40:              // inc EAX
            case 0x41:              // inc ECX
            case 0x42:              // inc EDX
            case 0x43:              // inc EBX
            case 0x46:              // inc ESI
            case 0x47:              // inc EDI
                goto incIp1;

            case 0x58:              // pop EAX
            case 0x59:              // pop ECX
            case 0x5A:              // pop EDX
            case 0x9D:              // popfd
                ESP++;
                // FALL THROUGH

            case 0x90:              // nop
        incIp1:
                ip++;
                break;

            case 0x5B:              // pop EBX
                lazyState->_pEbx = ESP;
                lazyState->_ebx  = *ESP++;
                goto incIp1;
            case 0x5D:              // pop EBP
                lazyState->_pEbp = ESP;
                lazyState->_ebp  = *ESP++;
                goto incIp1;
            case 0x5E:              // pop ESI
                lazyState->_pEsi = ESP;
                lazyState->_esi = *ESP++;
                goto incIp1;
            case 0x5F:              // pop EDI
                lazyState->_pEdi = ESP;
                lazyState->_edi = *ESP++;
                goto incIp1;

            case 0xEB:              // jmp <disp8>
                ip += (signed __int8) ip[1] + 2;
                break;

            case 0x72:              // jb <disp8> for gcc.
                {
                    PTR_BYTE tmpIp = ip + (int)(signed __int8)ip[1] + 2;
                    if (tmpIp > ip)
                        ip = tmpIp;
                    else
                        ip += 2;
                }
                break;

            case 0xE8:              // call <disp32>
                ip += 5;
                if (epilogCallRet == 0)
                {
                    PTR_BYTE target = ip + (__int32)*PTR_DWORD(PTR_TO_TADDR(ip) - 4);    // calculate target

                    if (shouldEnterCall(target)) 
                    {
                        epilogCallRet = ip;             // remember our return address
                        --ESP;                          // simulate pushing the return address
                        ip = target;
                    }
                }
                break;

            case 0xE9:              // jmp <disp32>
                {
                    PTR_BYTE tmpIp = ip
                        + ((__int32)*dac_cast<PTR_DWORD>(ip + 1) + 5);
                    ip = tmpIp;
                }
                break;

            case 0x0f:              // follow non-zero jumps:
              if (ip[1] >= 0x90 && ip[1] <= 0x9f) {
                  if ((ip[2] & 0xC0) != 0xC0)  // set<cc> reg
                      goto badOpcode;
                  ip += 3;
                  break;
              }
              else if ((ip[1] & 0xf0) == 0x40) { //cmov mod/rm
                  ++ip;
                  datasize = 0;
                  goto decodeRM;
              }
              else if (ip[1] >= 0x10 && ip[1] <= 0x17) { // movups, movlps, movhps, unpcklpd, unpckhpd
                  ++ip;
                  datasize = 0;
                  goto decodeRM;
              }
              else if (ip[1] == 0x1f) {     // nop (multi-byte)
                  ++ip;
                  datasize = 0;
                  goto decodeRM;
              }
              else if (ip[1] == 0x57) {     // xorps
                  ++ip;
                  datasize = 0;
                  goto decodeRM;
              }
              else if (ip[1] == 0xb6 || ip[1] == 0xb7) {     //movzx reg, r/m8
                  ++ip;
                  datasize = 0;
                  goto decodeRM;
              }
              else if (ip[1] == 0xbf) {     //movsx reg, r/m16
                  ++ip;
                  datasize = 0;
                  goto decodeRM;
              }
              else if (ip[1] == 0xd6 || ip[1] == 0x7e) {     // movq
                  ++ip;
                  datasize = 0;
                  goto decodeRM;
              }
              else if (bFirstCondJmp) {
                  bFirstCondJmp = FALSE;
                  if (ip[1] == 0x85)  // jne <disp32>
                      ip += (__int32)*dac_cast<PTR_DWORD>(ip + 2) + 6;
                  else if (ip[1] >= 0x80 && ip[1] <= 0x8F)  // jcc <disp32>
                      ip += 6;
                  else
                      goto badOpcode;
              }
              else {
                  if ((ip[1] >= 0x80) && (ip[1] <= 0x8F)) {
                      PTR_BYTE tmpIp = ip + (__int32)*dac_cast<PTR_DWORD>(ip + 2) + 6;

                      if ((tmpIp > ip) == (lastCondJmpIp != ip)) {
                          lastCondJmpIp = ip;
                          ip = tmpIp;
                      }
                      else {
                          lastCondJmpIp = ip;
                          ip += 6;
                      }
                  }
                  else
                      goto badOpcode;
              }
              break;

              // This is here because VC seems to not always optimize
              // away a test for a literal constant
            case 0x6A:              // push 0xXX
                ip += 2;
                --ESP;
                break;

            case 0x68:              // push 0xXXXXXXXX
                if ((ip[5] == 0xFF) && (ip[6] == 0x15)) {
                    ip += 11; // 
                }
                else {
                    ip += 5;

                    // For office profiler.  They morph calls into push TARGET; call helper
                    // so if you see
                    // 
                    // push XXXX
                    // call xxxx
                    // 
                    // and we notice that mscorwks has been instrumented and
                    // xxxx starts with a JMP [] then do what you would do for call XXXX
                    if ((*ip & 0xFE) == 0xE8 && callsInstrumented()) {       // It is a call or a jump (E8 or E9)
                        PTR_BYTE tmpIp = ip + 5;
                        PTR_BYTE target = tmpIp + (__int32)*PTR_DWORD(PTR_TO_TADDR(tmpIp) - 4); 
                        if (target[0] == 0xFF && target[1] == 0x25) {                // jmp [xxxx] (to external dll)
                            target = PTR_BYTE(*PTR_TADDR(PTR_TO_TADDR(ip) - 4));
                            if (*ip == 0xE9) {                                       // Do logic for jmp
                                ip = target;
                            }
                            else if (shouldEnterCall(target)) {                      // Do logic for calls
                                epilogCallRet = ip;             // remember our return address
                                --ESP;                          // simulate pushing the return address
                                ip = target;
                            }
                        }
                    }
                }
                break;

           case 0x74:              // jz <target>
                if (bFirstCondJmp) {
                    bFirstCondJmp = FALSE;
                    ip += 2;            // follow the non-zero path
                    break;
                }
                goto condJumpDisp8;

            case 0x75:              // jnz <target>
                // Except the first jump, we always follow forward jump to avoid possible looping.
                // 
                if (bFirstCondJmp) {
                    bFirstCondJmp = FALSE;
                    ip += (signed __int8) ip[1] + 2;   // follow the non-zero path
                    break;
                }
                goto condJumpDisp8;

            case 0x77:              // ja <target>
            case 0x78:              // js <target>
            case 0x79:              // jns <target>
            case 0x7d:              // jge <target>
            case 0x7c:              // jl <target>
                goto condJumpDisp8;

        condJumpDisp8:
                {
                    PTR_BYTE tmpIp = ip + (TADDR)(signed __int8) ip[1] + 2;
                    if ((tmpIp > ip) == (lastCondJmpIp != ip)) {
                        lastCondJmpIp = ip;
                        ip = tmpIp;
                    }
                    else {
                        lastCondJmpIp = ip;
                        ip += 2;
                    }
                }
                break;

            case 0x84:
            case 0x85:
                mod = (ip[1] & 0xC0) >> 6;
                if (mod != 3)           // test reg1, reg2
                    goto badOpcode;
                ip += 2;
                break;

            case 0x34:                            // XOR AL, imm8
                ip += 2;
                break;

            case 0x31:
            case 0x32:
            case 0x33:
#ifdef __GNUC__
                //there are lots of special workarounds for XOR for msvc.  For GnuC
                //just do the normal Mod/rm stuff.
                datasize = 0;
                goto decodeRM;
#else
                mod = (ip[1] & 0xC0) >> 6;
                if (mod == 3)
                {
                    // XOR reg1, reg2

                    // VC generates this sequence in some code:
                    // xor reg, reg
                    // test reg reg
                    // je   <target>
                    // This is just an unconditional branch, so jump to it
                    if ((ip[1] & 7) == ((ip[1] >> 3) & 7)) {        // reg1 == reg2?
                        if (ip[2] == 0x85 && ip[3] == ip[1]) {      // TEST reg, reg
                            if (ip[4] == 0x74) {
                                ip += (signed __int8) ip[5] + 6;   // follow the non-zero path
                                break;
                            }
                            _ASSERTE(ip[4] != 0x0f || ((ip[5] & 0xF0)!=0x80)); // If this goes off, we need the big jumps
                        }
                        else
                        {
                            if (ip[2]==0x74)
                            {
                                ip += (signed __int8) ip[3] + 4;
                                break;
                            }
                            _ASSERTE(ip[2] != 0x0f || ((ip[3] & 0xF0)!=0x80));              // If this goes off, we need the big jumps
                        }
                    }
                    ip += 2;
                }
                else if (mod == 1)
                {
                    // XOR reg1, [reg+offs8]
                    // Used by the /GS flag for call to __security_check_cookie()
                    // Should only be XOR ECX,[EBP+4]
                    _ASSERTE((((ip[1] >> 3) & 0x7) == 0x1) && ((ip[1] & 0x7) == 0x5) && (ip[2] == 4));
                    ip += 3;
                }
                else if (mod == 2)
                {
                    // XOR reg1, [reg+offs32]
                    // Should not happen but may occur with __security_check_cookie()
                    _ASSERTE(!"Unexpected XOR reg1, [reg+offs32]");
                    ip += 6;
                }
                else // (mod == 0)
                {
                    // XOR reg1, [reg]
                    goto badOpcode;
                }
                break;
#endif

            case 0x05:
                // added to handle gcc 3.3 generated code
                // add %reg, constant
                ip += 5;
                break;

            case 0xFF:
                if ( (ip[1] & 0x38) == 0x30)
                {
                    // opcode generated by Vulcan/BBT instrumentation
                    // search for push dword ptr[esp]; push imm32; call disp32 and if found ignore it
                    if ((ip[1] == 0x34) && (ip[2] == 0x24) && // push dword ptr[esp]  (length 3 bytes)
                        (ip[3] == 0x68) &&                    // push imm32           (length 5 bytes)
                        (ip[8] == 0xe8))                      // call disp32          (length 5 bytes)
                    {
                        // found the magic seq emitted by Vulcan instrumentation
                        ip += 13;  // (3+5+5)
                        break;
                    }

                    --ESP;      // push r/m
                    datasize = 0;
                    goto decodeRM;
                }
                else if ( (ip[1] & 0x38) == 0x10) 
                {
                    // added to handle gcc 3.3 generated code
                    // This is a call *(%eax) generated by gcc for destructor calls.
                    // We can safely skip over the call
                    datasize = 0;
                    goto decodeRM;
                }
                else if (ip[1] == 0xe0)
                {
                    goto badOpcode;
#if 0
                    // Handles jmp *%eax from gcc
                    datasize = 0;
                    goto decodeRM;
#endif
                }
                else if (ip[1] == 0x25 && epilogInstrumented())        // is it jmp [XXXX]
                {
                    // this is a office profiler epilog (this jmp is acting as a return instruction)
                    PTR_BYTE epilogHelper = PTR_BYTE(*PTR_TADDR(*PTR_TADDR(PTR_TO_TADDR(ip) + 2)));

                    ip = PTR_BYTE(*ESP);
                    lazyState->_pRetAddr = ESP++;

                    if (epilogHelper[0] != 0x6A)             // push <number of dwords to pop>
                        goto badOpcode;
                    unsigned disp = *PTR_BYTE(PTR_TO_TADDR(epilogHelper) + 1) * 4;
                    ESP = PTR_TADDR(PTR_TO_TADDR(ESP) + disp);         // pop args
                    goto ret_with_epilogHelperCheck;

                }
                else
                {
                    goto badOpcode;
                }
                break;

            case 0x39:                       // comp r/m, reg
            case 0x3B:                       // comp reg, r/m
                datasize = 0;
                goto decodeRM;

            case 0xA1:                          // MOV EAX, [XXXX]
                ip += 5;
                break;

            case 0x89:                          // MOV r/m, reg
                if (ip[1] == 0xEC)              // MOV ESP, EBP
                    goto mov_esp_ebp;
                // FALL THROUGH

            case 0x18:                          // SBB r/m8, r8
            case 0x19:                          // SBB r/m[16|32], r[16|32]
            case 0x1A:                          // SBB r8, r/m8
            case 0x1B:                          // SBB r[16|32], r/m[16|32]

            case 0x88:                          // MOV reg, r/m (BYTE)
            case 0x8A:                          // MOV r/m, reg (BYTE)

        move:
                datasize = 0;

        decodeRM:
                // Note that we don't want to read from ip[]
                // after we do ANY incrementing of ip

                mod = (ip[1] & 0xC0) >> 6;
                if (mod != 3) {
                    rm  = (ip[1] & 0x07);
                    if (mod == 0) {             // (mod == 0)
                        if      (rm == 5)       //   has disp32?
                            ip += 4;            //     [disp32]
                        else if (rm == 4)       //   has SIB byte?
                            ip += 1;            //     [reg*K+reg]
                    }
                    else if (mod == 1) {        // (mod == 1) 
                        if (rm == 4)            //   has SIB byte?
                            ip += 1;            //     [reg*K+reg+disp8]
                        ip += 1;                //   for disp8
                    }
                    else {                      // (mod == 2) 
                        if (rm == 4)            //   has SIB byte?
                            ip += 1;            //     [reg*K+reg+disp32]
                        ip += 4;                //   for disp32
                    }
                }
                ip += 2;                        // opcode and Mod R/M byte
                ip += datasize;
                break;

            case 0x80:                           // OP r/m8, <imm8>
                datasize = 1;
                goto decodeRM;

            case 0x81:                           // OP r/m32, <imm32>
                if (!b16bit && ip[1] == 0xC4) {  // ADD ESP, <imm32>
                    ESP = dac_cast<PTR_TADDR>(dac_cast<TADDR>(ESP) +
                          (__int32)*dac_cast<PTR_DWORD>(ip + 2));
                    ip += 6;
                    break;
                } else if (!b16bit && ip[1] == 0xC5) { // ADD EBP, <imm32>
                    lazyState->_ebp += (__int32)*dac_cast<PTR_DWORD>(ip + 2);
                    ip += 6;
                    break;
                }

                datasize = b16bit?2:4;
                goto decodeRM;

            case 0x24:                           // AND AL, imm8
                ip += 2;
                break;

            case 0x01:                           // ADD mod/rm
            case 0x03:
            case 0x29:                           // SUB mod/rm
            case 0x2B:
                datasize = 0;
                goto decodeRM;
            case 0x83:                           // OP r/m32, <imm8>
                if (ip[1] == 0xC4)  {            // ADD ESP, <imm8>
                    ESP = dac_cast<PTR_TADDR>(dac_cast<TADDR>(ESP) + (signed __int8)ip[2]);
                    ip += 3;
                    break;
                }
                if (ip[1] == 0xec) {            // SUB ESP, <imm8>
                    ESP = PTR_TADDR(PTR_TO_TADDR(ESP) - (signed __int8)ip[2]);
                    ip += 3;
                    break;
                }
                if (ip[1] == 0xe4) {            // AND ESP, <imm8>
                    ESP = PTR_TADDR(PTR_TO_TADDR(ESP) & (signed __int8)ip[2]);
                    ip += 3;
                    break;
                }
                if (ip[1] == 0xc5) {            // ADD EBP, <imm8>
                    lazyState->_ebp += (signed __int8)ip[2];
                    ip += 3;
                    break;
                }

                datasize = 1;
                goto decodeRM;

            case 0x8B:                          // MOV reg, r/m
                if (ip[1] == 0xE5) {            // MOV ESP, EBP
                mov_esp_ebp:
                    ESP = PTR_TADDR(lazyState->_ebp);
                    ip += 2;
                    break;
                }

                if ((ip[1] & 0xc7) == 0x4 && ip[2] == 0x24) // move reg, [esp]
                {
                    if ( ip[1] == 0x1C ) {  // MOV EBX, [ESP]
                      lazyState->_pEbx = ESP;
                      lazyState->_ebx =  *lazyState->_pEbx;                
                    }
                    else if ( ip[1] == 0x34 ) {  // MOV ESI, [ESP]
                      lazyState->_pEsi = ESP;
                      lazyState->_esi =  *lazyState->_pEsi;
                    }
                    else if ( ip[1] == 0x3C ) {  // MOV EDI, [ESP]
                      lazyState->_pEdi = ESP;
                      lazyState->_edi =   *lazyState->_pEdi;
                    }
                    else if ( ip[1] == 0x24 /*ESP*/ || ip[1] == 0x2C /*EBP*/)
                      goto badOpcode;

                    ip += 3;
                    break;
                }

                if ((ip[1] & 0xc7) == 0x44 && ip[2] == 0x24) // move reg, [esp+imm8]
                {
                    if ( ip[1] == 0x5C ) {  // MOV EBX, [ESP+XX]
                      lazyState->_pEbx = PTR_TADDR(PTR_TO_TADDR(ESP) + (signed __int8)ip[3]);
                      lazyState->_ebx =  *lazyState->_pEbx ;
                    }
                    else if ( ip[1] == 0x74 ) {  // MOV ESI, [ESP+XX]
                      lazyState->_pEsi = PTR_TADDR(PTR_TO_TADDR(ESP) + (signed __int8)ip[3]);
                      lazyState->_esi =  *lazyState->_pEsi;
                    }
                    else if ( ip[1] == 0x7C ) {  // MOV EDI, [ESP+XX]
                      lazyState->_pEdi = PTR_TADDR(PTR_TO_TADDR(ESP) + (signed __int8)ip[3]);
                      lazyState->_edi =   *lazyState->_pEdi;
                    }
                    else if ( ip[1] == 0x64 /*ESP*/ || ip[1] == 0x6C /*EBP*/)
                      goto badOpcode;

                    ip += 4;
                    break;
                }

                if ((ip[1] & 0xC7) == 0x45) {   // MOV reg, [EBP + imm8]
                    // gcc sometimes restores callee-preserved registers
                    // via 'mov reg, [ebp-xx]' instead of 'pop reg'
                    if ( ip[1] == 0x5D ) {  // MOV EBX, [EBP+XX]
                      lazyState->_pEbx = PTR_TADDR(lazyState->_ebp + (signed __int8)ip[2]);
                      lazyState->_ebx =  *lazyState->_pEbx ;
                    }
                    else if ( ip[1] == 0x75 ) {  // MOV ESI, [EBP+XX]
                      lazyState->_pEsi = PTR_TADDR(lazyState->_ebp + (signed __int8)ip[2]);
                      lazyState->_esi =  *lazyState->_pEsi;
                    }
                    else if ( ip[1] == 0x7D ) {  // MOV EDI, [EBP+XX]
                      lazyState->_pEdi = PTR_TADDR(lazyState->_ebp + (signed __int8)ip[2]);
                      lazyState->_edi =   *lazyState->_pEdi;
                    }
                    else if ( ip[1] == 0x65 /*ESP*/ || ip[1] == 0x6D /*EBP*/)
                      goto badOpcode;

                    // We don't track the values of EAX,ECX,EDX

                    ip += 3;   // MOV reg, [reg + imm8]
                    break;
                }

                if ((ip[1] & 0xC7) == 0x85) {   // MOV reg, [EBP+imm32]
                    // gcc sometimes restores callee-preserved registers
                    // via 'mov reg, [ebp-xx]' instead of 'pop reg'
                    if ( ip[1] == 0xDD ) {  // MOV EBX, [EBP+XXXXXXXX]
                      lazyState->_pEbx = PTR_TADDR(lazyState->_ebp + (__int32)*dac_cast<PTR_DWORD>(ip + 2));
                      lazyState->_ebx =  *lazyState->_pEbx ;
                    }
                    else if ( ip[1] == 0xF5 ) {  // MOV ESI, [EBP+XXXXXXXX]
                      lazyState->_pEsi = PTR_TADDR(lazyState->_ebp + (__int32)*dac_cast<PTR_DWORD>(ip + 2));
                      lazyState->_esi =  *lazyState->_pEsi;
                    }
                    else if ( ip[1] == 0xFD ) {  // MOV EDI, [EBP+XXXXXXXX]
                      lazyState->_pEdi = PTR_TADDR(lazyState->_ebp + (__int32)*dac_cast<PTR_DWORD>(ip + 2));
                      lazyState->_edi =   *lazyState->_pEdi;
                    }
                    else if ( ip[1] == 0xE5 /*ESP*/ || ip[1] == 0xED /*EBP*/)
                      goto badOpcode;  // Add more registers

                    // We don't track the values of EAX,ECX,EDX

                    ip += 6;   // MOV reg, [reg + imm32]
                    break;
                }
                goto move;

            case 0x8D:                          // LEA
                if ((ip[1] & 0x38) == 0x20) {                       // Don't allow ESP to be updated
                    if (ip[1] == 0xA5)          // LEA ESP, [EBP+XXXX]
                        ESP = PTR_TADDR(lazyState->_ebp + (__int32)*dac_cast<PTR_DWORD>(ip + 2));
                    else if (ip[1] == 0x65)     // LEA ESP, [EBP+XX]
                        ESP = PTR_TADDR(lazyState->_ebp + (signed __int8) ip[2]);
                    else if (ip[1] == 0x24 && ip[2] == 0x24)    // LEA ESP, [ESP]
                        ;
                    else if (ip[1] == 0xa4 && ip[2] == 0x24 && *((DWORD *)(&ip[3])) == 0) // Another form of: LEA ESP, [ESP]
                        ;
                    else if (ip[1] == 0x64 && ip[2] == 0x24 && ip[3] == 0) // Yet another form of: LEA ESP, [ESP] (8 bit offset)
                        ;
                    else
                    {
                        goto badOpcode;
                    }
                }

                datasize = 0;
                goto decodeRM;

            case 0xB0:  // MOV AL, imm8
                ip += 2;
                break;
            case 0xB8:  // MOV EAX, imm32
            case 0xB9:  // MOV ECX, imm32
            case 0xBA:  // MOV EDX, imm32
            case 0xBB:  // MOV EBX, imm32
            case 0xBE:  // MOV ESI, imm32
            case 0xBF:  // MOV EDI, imm32
                if(b16bit)
                    ip += 3;
                else
                    ip += 5;
                break;

            case 0xC2:                  // ret N
                {
                unsigned __int16 disp = *dac_cast<PTR_WORD>(ip + 1);
                ip = PTR_BYTE(*ESP);
                lazyState->_pRetAddr = ESP++;
                _ASSERTE(disp < 64);    // sanity check (although strictly speaking not impossible)
                ESP = dac_cast<PTR_TADDR>(dac_cast<TADDR>(ESP) + disp);         // pop args
                goto ret;
                }
            case 0xC3:                  // ret
                ip = PTR_BYTE(*ESP);
                lazyState->_pRetAddr = ESP++;

            ret_with_epilogHelperCheck:
                if (epilogCallRet != 0) {       // we are returning from a special epilog helper
                    ip = epilogCallRet;
                    epilogCallRet = 0;
                    break;                      // this does not count toward funCallDepth
                }
            ret:
                if (funCallDepth > 0)
                {
                    --funCallDepth;
                    if (funCallDepth == 0)
                        goto done;
                }
                else
                {
                    // Determine  whether given IP resides in JITted code. (It returns nonzero in that case.) 
                    // Use it now to see if we've unwound to managed code yet.
                    BOOL fFailedReaderLock = FALSE;
                    BOOL fIsManagedCode = ExecutionManager::IsManagedCode(*lazyState->pRetAddr(), hostCallPreference, &fFailedReaderLock);
                    if (fFailedReaderLock)
                    {
                        // We don't know if we would have been able to find a JIT
                        // manager, because we couldn't enter the reader lock without
                        // yielding (and our caller doesn't want us to yield).  So abort
                        // now.

                        // Invalidate the lazyState we're returning, so the caller knows
                        // we aborted before we could fully unwind
                        lazyState->_pRetAddr = NULL;
                        return;
                    }

                    if (fIsManagedCode)
                        goto done;
                }

                bFirstCondJmp = TRUE;
                break;

            case 0xC6:                  // MOV r/m8, imm8
                datasize = 1;
                goto decodeRM;

            case 0xC7:                  // MOV r/m32, imm32
                datasize = b16bit?2:4;
                goto decodeRM;

            case 0xC9:                  // leave
                ESP = PTR_TADDR(lazyState->_ebp);
                lazyState->_pEbp = ESP;
                lazyState->_ebp = *ESP++;
                ip++;
                break;

#ifndef DACCESS_COMPILE
            case 0xCC:
                if (IsDebuggerPresent())
                {
                    OutputDebugStringA("CLR: Invalid breakpoint in a helpermethod frame epilog\n");
                    DebugBreak();
                    goto again;
                }
#ifndef _PREFIX_
                *((volatile int*) 0) = 1; // If you get at this error, it is because yout
                                        // set a breakpoint in a helpermethod frame epilog
                                        // you can't do that unfortunately.  Just move it
                                        // into the interior of the method to fix it  
#endif // !_PREFIX_
                goto done;
#endif //!DACCESS_COMPILE

            case 0xD0:  //  shl REG16, 1
            case 0xD1:  //  shl REG32, 1
                    if (0xE4 == ip[1] || 0xE5 == ip[1]) // shl, ESP, 1 or shl EBP, 1
                    goto badOpcode;       // Doesn't look like valid code
                ip += 2;
                break;

            case 0xC1:  //  shl REG32, imm8
                    if (0xE4 == ip[1] || 0xE5 == ip[1]) // shl, ESP, imm8 or shl EBP, imm8
                    goto badOpcode;       // Doesn't look like valid code
                ip += 3;
                break;

            case 0xD9:  // single prefix
                if (0xEE == ip[1])
                {
                    ip += 2;            // FLDZ
                    break;
                }
                //
                // INTENTIONAL FALL THRU
                //
            case 0xDD:  // double prefix
                if ((ip[1] & 0xC0) != 0xC0)
                {
                    datasize = 0;       // floatop r/m
                    goto decodeRM;
                }
                else
                {
                    goto badOpcode;
                }
                break;

            case 0xf2: // repne prefix
            case 0xF3: // rep prefix
                ip += 1;
                break;

            case 0xA4:  // MOVS byte
            case 0xA5:  // MOVS word/dword
                ip += 1;
                break;

            case 0xA8: //test AL, imm8
                ip += 2;
                break;
            case 0xA9: //test EAX, imm32
                ip += 5;
                break;
            case 0xF6:
                if ( (ip[1] & 0x38) == 0x00) // TEST r/m8, imm8
                {
                    datasize = 1;
                    goto decodeRM;
                }
                else
                {
                    goto badOpcode;
                }
                break;

            case 0xF7:
                if ( (ip[1] & 0x38) == 0x00) // TEST r/m32, imm32
                {
                    datasize = b16bit?2:4;
                    goto decodeRM;
                }
                else if ((ip[1] & 0xC8)  == 0xC8) //neg reg
                {
                    ip += 2;
                    break;
                }
                else if ((ip[1] & 0x30) == 0x30) //div eax by mod/rm
                {
                    datasize = 0;
                    goto decodeRM;
                }
                else
                {
                    goto badOpcode;
                }
                break;

#ifdef __GNUC__
            case 0x2e:
                // Group 2 instruction prefix.
                if (ip[1] == 0x0f && ip[2] == 0x1f)
                {
                    // Although not the recommended multi-byte sequence for 9-byte
                    // nops (the suggestion is to use 0x66 as the prefix), this shows
                    // up in GCC-optimized code.
                    ip += 2;
                    datasize = 0;
                    goto decodeRM;
                }
                else
                {
                    goto badOpcode;
                }
                break;
#endif // __GNUC__

            default:
            badOpcode:
                _ASSERTE(!"Bad opcode");
                // FIX what to do here?
#ifndef DACCESS_COMPILE
#ifndef _PREFIX_
                *((volatile PTR_BYTE*) 0) = ip;  // cause an access violation (Free Build assert)
#endif // !_PREFIX_                            
#else
                DacNotImpl();
#endif
                goto done;
        }
    }
done:
    _ASSERTE(epilogCallRet == 0);

    // At this point the fields in 'frame' coorespond exactly to the register
    // state when the the helper returns to its caller.
    lazyState->_esp = dac_cast<TADDR>(ESP);
}
#ifdef _PREFAST_
#pragma warning(pop)
#endif
#else  // !USE_EXTERNAL_UNWINDER

void LazyMachState::unwindLazyState(LazyMachState* baseState,
                                    MachState* lazyState,
                                    DWORD threadId,
                                    int funCallDepth /* = 1 */,
                                    HostCallPreference hostCallPreference /* = (HostCallPreference)(-1) */)
{
    CONTRACTL {
        NOTHROW;
        GC_NOTRIGGER;
        SO_TOLERANT;
        SUPPORTS_DAC;
    } CONTRACTL_END;

    CONTEXT                         ctx;
    KNONVOLATILE_CONTEXT_POINTERS   nonVolRegPtrs;

    ctx.Eip = baseState->captureEip;
    ctx.Esp = baseState->captureEsp;
    ctx.Ebp = baseState->captureEbp;

    ctx.Edi = lazyState->_edi = baseState->_edi;
    ctx.Esi = lazyState->_esi = baseState->_esi;
    ctx.Ebx = lazyState->_ebx = baseState->_ebx;

    nonVolRegPtrs.Edi = &(baseState->_edi);
    nonVolRegPtrs.Esi = &(baseState->_esi);
    nonVolRegPtrs.Ebx = &(baseState->_ebx);
    nonVolRegPtrs.Ebp = &(baseState->_ebp);

    PCODE pvControlPc;

    LOG((LF_GCROOTS, LL_INFO100000, "STACKWALK    LazyMachState::unwindLazyState(ip:%p,bp:%p,sp:%p)\n", baseState->captureEip, baseState->captureEbp, baseState->captureEsp));

    do
    {
#ifdef DACCESS_COMPILE
        HRESULT hr = DacVirtualUnwind(threadId, &ctx, &nonVolRegPtrs);
        if (FAILED(hr))
        {
            DacError(hr);
        }
#else
        BOOL success = PAL_VirtualUnwind(&ctx, &nonVolRegPtrs);
        if (!success)
        {
            _ASSERTE(!"unwindLazyState: Unwinding failed");
            EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE);
        }
#endif // DACCESS_COMPILE

        pvControlPc = GetIP(&ctx);

        _ASSERTE(pvControlPc != 0);

        if (funCallDepth > 0)
        {
            --funCallDepth;
            if (funCallDepth == 0)
                break;
        }
        else
        {
            // Determine  whether given IP resides in JITted code. (It returns nonzero in that case.) 
            // Use it now to see if we've unwound to managed code yet.
            BOOL fFailedReaderLock = FALSE;
            BOOL fIsManagedCode = ExecutionManager::IsManagedCode(pvControlPc, hostCallPreference, &fFailedReaderLock);            
            if (fFailedReaderLock)
            {
                // We don't know if we would have been able to find a JIT
                // manager, because we couldn't enter the reader lock without
                // yielding (and our caller doesn't want us to yield).  So abort
                // now.
                
                // Invalidate the lazyState we're returning, so the caller knows
                // we aborted before we could fully unwind
                lazyState->_pRetAddr = NULL;                
                return;
            }

            if (fIsManagedCode)
                break;
        }
    }
    while(TRUE);    

    lazyState->_esp = ctx.Esp;
    lazyState->_pRetAddr = PTR_TADDR(lazyState->_esp - 4);

    lazyState->_edi = ctx.Edi;
    lazyState->_esi = ctx.Esi;
    lazyState->_ebx = ctx.Ebx;
    lazyState->_ebp = ctx.Ebp;
   
#ifdef DACCESS_COMPILE
    lazyState->_pEdi = NULL;
    lazyState->_pEsi = NULL;
    lazyState->_pEbx = NULL;
    lazyState->_pEbp = NULL;
#else  // DACCESS_COMPILE
    lazyState->_pEdi = nonVolRegPtrs.Edi;
    lazyState->_pEsi = nonVolRegPtrs.Esi;
    lazyState->_pEbx = nonVolRegPtrs.Ebx;
    lazyState->_pEbp = nonVolRegPtrs.Ebp;
#endif // DACCESS_COMPILE
}
#endif // !USE_EXTERNAL_UNWINDER