summaryrefslogtreecommitdiff
path: root/src/vm/eventpipebuffer.cpp
blob: e7489cd0cd37f6ef8dba64b3c5e4031ea5466186 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.


#include "common.h"
#include "eventpipe.h"
#include "eventpipeeventinstance.h"
#include "eventpipebuffer.h"

#ifdef FEATURE_PERFTRACING

EventPipeBuffer::EventPipeBuffer(unsigned int bufferSize)
{
    CONTRACTL
    {
        THROWS;
        GC_NOTRIGGER;
        MODE_ANY;
    }
    CONTRACTL_END;

    m_pBuffer = new BYTE[bufferSize];
    memset(m_pBuffer, 0, bufferSize);
    m_pLimit = m_pBuffer + bufferSize;
    m_pCurrent = GetNextAlignedAddress(m_pBuffer);

    m_mostRecentTimeStamp.QuadPart = 0;
    m_pLastPoppedEvent = NULL;
    m_pPrevBuffer = NULL;
    m_pNextBuffer = NULL;
}

EventPipeBuffer::~EventPipeBuffer()
{
    CONTRACTL
    {
        NOTHROW;
        GC_NOTRIGGER;
        MODE_ANY;
    }
    CONTRACTL_END;

    if(m_pBuffer != NULL)
    {
        delete[] m_pBuffer;
    }
}

bool EventPipeBuffer::WriteEvent(Thread *pThread, EventPipeSession &session, EventPipeEvent &event, EventPipeEventPayload &payload, LPCGUID pActivityId, LPCGUID pRelatedActivityId, StackContents *pStack)
{
    CONTRACTL
    {
        NOTHROW;
        GC_NOTRIGGER;
        MODE_ANY;
        PRECONDITION(pThread != NULL);
        PRECONDITION(((size_t)m_pCurrent % AlignmentSize) == 0);
    }
    CONTRACTL_END;

    // Calculate the size of the event.
    unsigned int eventSize = sizeof(EventPipeEventInstance) + payload.GetSize();

    // Make sure we have enough space to write the event.
    if(m_pCurrent + eventSize >= m_pLimit)
    {
        return false;
    }

    // Calculate the location of the data payload.
    BYTE *pDataDest = m_pCurrent + sizeof(EventPipeEventInstance);

    bool success = true;
    EX_TRY
    {
        // Placement-new the EventPipeEventInstance.
        EventPipeEventInstance *pInstance = new (m_pCurrent) EventPipeEventInstance(
            session,
            event,
            pThread->GetOSThreadId(),
            pDataDest,
            payload.GetSize(),
            pActivityId,
            pRelatedActivityId);

        // Copy the stack if a separate stack trace was provided.
        if(pStack != NULL)
        {
            StackContents *pInstanceStack = pInstance->GetStack();
            pStack->CopyTo(pInstanceStack);
        }

        // Write the event payload data to the buffer.
        if(payload.GetSize() > 0)
        {
            payload.CopyData(pDataDest);
        }

        // Save the most recent event timestamp.
        m_mostRecentTimeStamp = *pInstance->GetTimeStamp();

    }
    EX_CATCH
    {
        // If a failure occurs, bail out and don't advance the pointer.
        success = false;
    }
    EX_END_CATCH(SwallowAllExceptions);

    if(success)
    {
        // Advance the current pointer past the event.
        m_pCurrent = GetNextAlignedAddress(m_pCurrent + eventSize);
    }

    return success;
}

LARGE_INTEGER EventPipeBuffer::GetMostRecentTimeStamp() const
{
    LIMITED_METHOD_CONTRACT;

    return m_mostRecentTimeStamp;
}

void EventPipeBuffer::Clear()
{
    CONTRACTL
    {
        NOTHROW;
        GC_TRIGGERS;
        MODE_ANY;
    }
    CONTRACTL_END;

    memset(m_pBuffer, 0, (size_t)(m_pLimit - m_pBuffer));
    m_pCurrent = GetNextAlignedAddress(m_pBuffer);
    m_mostRecentTimeStamp.QuadPart = 0;
    m_pLastPoppedEvent = NULL;
}

EventPipeEventInstance* EventPipeBuffer::GetNext(EventPipeEventInstance *pEvent, LARGE_INTEGER beforeTimeStamp)
{
    CONTRACTL
    {
        NOTHROW;
        GC_NOTRIGGER;
        MODE_ANY;
    }
    CONTRACTL_END;

    EventPipeEventInstance *pNextInstance = NULL;
    // If input is NULL, return the first event if there is one.
    if(pEvent == NULL)
    {
        // If this buffer contains an event, select it.
        BYTE *pFirstAlignedInstance = GetNextAlignedAddress(m_pBuffer);
        if(m_pCurrent > pFirstAlignedInstance)
        {
            pNextInstance = (EventPipeEventInstance*)pFirstAlignedInstance;
        }
        else
        {
            return NULL;
        }
    }
    else
    {
        // Confirm that pEvent is within the used range of the buffer.
        if(((BYTE*)pEvent < m_pBuffer) || ((BYTE*)pEvent >= m_pCurrent))
        {
            _ASSERT(!"Input pointer is out of range.");
            return NULL;
        }

        // We have a pointer within the bounds of the buffer.
        // Find the next event by skipping the current event with it's data payload immediately after the instance.
        pNextInstance = (EventPipeEventInstance *)GetNextAlignedAddress(const_cast<BYTE *>(pEvent->GetData() + pEvent->GetDataLength()));

        // Check to see if we've reached the end of the written portion of the buffer.
        if((BYTE*)pNextInstance >= m_pCurrent)
        {
            return NULL;
        }
    }

    // Ensure that the timestamp is valid.  The buffer is zero'd before use, so a zero timestamp is invalid.
    LARGE_INTEGER nextTimeStamp = *pNextInstance->GetTimeStamp();
    if(nextTimeStamp.QuadPart == 0)
    {
        return NULL;
    }

    // Ensure that the timestamp is earlier than the beforeTimeStamp.
    if(nextTimeStamp.QuadPart >= beforeTimeStamp.QuadPart)
    {
        return NULL;
    }

    return pNextInstance;
}

EventPipeEventInstance* EventPipeBuffer::PeekNext(LARGE_INTEGER beforeTimeStamp)
{
    CONTRACTL
    {
        NOTHROW;
        GC_NOTRIGGER;
        MODE_ANY;
    }
    CONTRACTL_END;

    // Get the next event using the last popped event as a marker.
    return GetNext(m_pLastPoppedEvent, beforeTimeStamp);
}

EventPipeEventInstance* EventPipeBuffer::PopNext(LARGE_INTEGER beforeTimeStamp)
{
    CONTRACTL
    {
        NOTHROW;
        GC_NOTRIGGER;
        MODE_ANY;
    }
    CONTRACTL_END;

    // Get the next event using the last popped event as a marker.
    EventPipeEventInstance *pNext = PeekNext(beforeTimeStamp);
    if(pNext != NULL)
    {
        m_pLastPoppedEvent = pNext;
    }

    return pNext;
}

#ifdef _DEBUG
bool EventPipeBuffer::EnsureConsistency()
{
    CONTRACTL
    {
        NOTHROW;
        GC_NOTRIGGER;
        MODE_ANY;
    }
    CONTRACTL_END;

    // Check to see if the buffer is empty.
    if(GetNextAlignedAddress(m_pBuffer) == m_pCurrent)
    {
        // Make sure that the buffer size is greater than zero.
        _ASSERTE(m_pBuffer != m_pLimit);
    }

    // Validate the contents of the filled portion of the buffer.
    BYTE *ptr = GetNextAlignedAddress(m_pBuffer);
    while(ptr < m_pCurrent)
    {
        // Validate the event.
        EventPipeEventInstance *pInstance = (EventPipeEventInstance*)ptr;
        _ASSERTE(pInstance->EnsureConsistency());

        // Validate that payload and length match.
        _ASSERTE((pInstance->GetData() != NULL && pInstance->GetDataLength() > 0) || (pInstance->GetData() == NULL && pInstance->GetDataLength() == 0));

        // Skip the event.
        ptr = GetNextAlignedAddress(ptr + sizeof(*pInstance) + pInstance->GetDataLength());
    }

    // When we're done walking the filled portion of the buffer,
    // ptr should be the same as m_pCurrent.
    _ASSERTE(ptr == m_pCurrent);

    // Walk the rest of the buffer, making sure it is properly zeroed.
    while(ptr < m_pLimit)
    {
        _ASSERTE(*ptr++ == 0);
    }

    return true;
}
#endif // _DEBUG

#endif // FEATURE_PERFTRACING