summaryrefslogtreecommitdiff
path: root/src/vm/callingconvention.h
blob: 8ba72aed87231c541780771f17f32ae66e0c94dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
//


//
// Provides an abstraction over platform specific calling conventions (specifically, the calling convention
// utilized by the JIT on that platform). The caller enumerates each argument of a signature in turn, and is 
// provided with information mapping that argument into registers and/or stack locations.
//

#ifndef __CALLING_CONVENTION_INCLUDED
#define __CALLING_CONVENTION_INCLUDED

BOOL IsRetBuffPassedAsFirstArg();

// Describes how a single argument is laid out in registers and/or stack locations when given as an input to a
// managed method as part of a larger signature.
//
// Locations are split into floating point registers, general registers and stack offsets. Registers are
// obviously architecture dependent but are represented as a zero-based index into the usual sequence in which
// such registers are allocated for input on the platform in question. For instance:
//      X86: 0 == ecx, 1 == edx
//      ARM: 0 == r0, 1 == r1, 2 == r2 etc.
//
// Stack locations are represented as offsets from the stack pointer (at the point of the call). The offset is
// given as an index of a pointer sized slot. Similarly the size of data on the stack is given in slot-sized
// units. For instance, given an index of 2 and a size of 3:
//      X86:   argument starts at [ESP + 8] and is 12 bytes long
//      AMD64: argument starts at [RSP + 16] and is 24 bytes long
//
// The structure is flexible enough to describe an argument that is split over several (consecutive) registers
// and possibly on to the stack as well.
struct ArgLocDesc
{
    int     m_idxFloatReg;        // First floating point register used (or -1)
    int     m_cFloatReg;          // Count of floating point registers used (or 0)

    int     m_idxGenReg;          // First general register used (or -1)
    int     m_cGenReg;            // Count of general registers used (or 0)

    int     m_idxStack;           // First stack slot used (or -1)
    int     m_cStack;             // Count of stack slots used (or 0)

#if defined(UNIX_AMD64_ABI)

    EEClass* m_eeClass;           // For structs passed in register, it points to the EEClass of the struct

#endif // UNIX_AMD64_ABI

#ifdef FEATURE_HFA
    static unsigned getHFAFieldSize(CorElementType  hfaType)
    {
        switch (hfaType)
        {
        case ELEMENT_TYPE_R4: return 4;
        case ELEMENT_TYPE_R8: return 8;
            // We overload VALUETYPE for 16-byte vectors.
        case ELEMENT_TYPE_VALUETYPE: return 16;
        default: _ASSERTE(!"Invalid HFA Type"); return 0;
        }
    }
#endif
#if defined(_TARGET_ARM64_)
    unsigned m_hfaFieldSize;      // Size of HFA field in bytes.
    void setHFAFieldSize(CorElementType  hfaType)
    {
        m_hfaFieldSize = getHFAFieldSize(hfaType);
    }
#endif // defined(_TARGET_ARM64_)

#if defined(_TARGET_ARM_)
    BOOL    m_fRequires64BitAlignment; // True if the argument should always be aligned (in registers or on the stack
#endif

    ArgLocDesc()
    {
        Init();
    }

    // Initialize to represent a non-placed argument (no register or stack slots referenced).
    void Init()
    {
        m_idxFloatReg = -1;
        m_cFloatReg = 0;
        m_idxGenReg = -1;
        m_cGenReg = 0;
        m_idxStack = -1;
        m_cStack = 0;
#if defined(_TARGET_ARM_)
        m_fRequires64BitAlignment = FALSE;
#endif
#if defined(_TARGET_ARM64_)
        m_hfaFieldSize = 0;
#endif // defined(_TARGET_ARM64_)
#if defined(UNIX_AMD64_ABI)
        m_eeClass = NULL;
#endif
    }
};

//
// TransitionBlock is layout of stack frame of method call, saved argument registers and saved callee saved registers. Even though not 
// all fields are used all the time, we use uniform form for simplicity.
//
struct TransitionBlock
{
#if defined(_TARGET_X86_)
    ArgumentRegisters       m_argumentRegisters;
    CalleeSavedRegisters    m_calleeSavedRegisters;
    TADDR                   m_ReturnAddress;
#elif defined(_TARGET_AMD64_)
#ifdef UNIX_AMD64_ABI
    ArgumentRegisters       m_argumentRegisters;
#endif
    CalleeSavedRegisters    m_calleeSavedRegisters;
    TADDR                   m_ReturnAddress;
#elif defined(_TARGET_ARM_)
    union {
        CalleeSavedRegisters m_calleeSavedRegisters;
        // alias saved link register as m_ReturnAddress
        struct {
            INT32 r4, r5, r6, r7, r8, r9, r10;
            INT32 r11;
            TADDR m_ReturnAddress;
        };
    };
    ArgumentRegisters       m_argumentRegisters;
#elif defined(_TARGET_ARM64_)
    union {
        CalleeSavedRegisters m_calleeSavedRegisters;
        struct {
            INT64 x29; // frame pointer
            TADDR m_ReturnAddress;
            INT64 x19, x20, x21, x22, x23, x24, x25, x26, x27, x28;
        };
    };
    TADDR padding; // Keep size of TransitionBlock as multiple of 16-byte. Simplifies code in PROLOG_WITH_TRANSITION_BLOCK
    INT64 m_x8RetBuffReg;
    ArgumentRegisters       m_argumentRegisters;
#else
    PORTABILITY_ASSERT("TransitionBlock");
#endif

    // The transition block should define everything pushed by callee. The code assumes in number of places that
    // end of the transition block is caller's stack pointer.

    static int GetOffsetOfReturnAddress()
    {
        LIMITED_METHOD_CONTRACT;
        return offsetof(TransitionBlock, m_ReturnAddress);
    }

#ifdef _TARGET_ARM64_
    static int GetOffsetOfRetBuffArgReg()
    {
        LIMITED_METHOD_CONTRACT;
        return offsetof(TransitionBlock, m_x8RetBuffReg);
    }
    
    static int GetOffsetOfFirstGCRefMapSlot()
    {
        return GetOffsetOfRetBuffArgReg();
    }
#else
    static int GetOffsetOfFirstGCRefMapSlot()
    {
        return GetOffsetOfArgumentRegisters();
    }
#endif

    static BYTE GetOffsetOfArgs()
    {
        LIMITED_METHOD_CONTRACT;

        // Offset of the stack args (which are after the TransitionBlock)
        return sizeof(TransitionBlock);
    }

    static int GetOffsetOfArgumentRegisters()
    {
        LIMITED_METHOD_CONTRACT;
        int offs;
#if defined(_TARGET_AMD64_) && !defined(UNIX_AMD64_ABI)
        offs = sizeof(TransitionBlock);
#else
        offs = offsetof(TransitionBlock, m_argumentRegisters);
#endif
        return offs;
    }

    static BOOL IsStackArgumentOffset(int offset)
    {
        LIMITED_METHOD_CONTRACT;

#if defined(UNIX_AMD64_ABI)
        return offset >= (int)sizeof(TransitionBlock);
#else        
        int ofsArgRegs = GetOffsetOfArgumentRegisters();

        return offset >= (int) (ofsArgRegs + ARGUMENTREGISTERS_SIZE);
#endif        
    }

    static BOOL IsArgumentRegisterOffset(int offset)
    {
        LIMITED_METHOD_CONTRACT;

        int ofsArgRegs = GetOffsetOfArgumentRegisters();

        return offset >= ofsArgRegs && offset < (int) (ofsArgRegs + ARGUMENTREGISTERS_SIZE);
    }

    static UINT GetArgumentIndexFromOffset(int offset)
    {
        LIMITED_METHOD_CONTRACT;

#if defined(UNIX_AMD64_ABI)
        _ASSERTE(offset != TransitionBlock::StructInRegsOffset);
#endif        
        return (offset - GetOffsetOfArgumentRegisters()) / TARGET_POINTER_SIZE;
    }

    static UINT GetStackArgumentIndexFromOffset(int offset)
    {
        LIMITED_METHOD_CONTRACT;

        return (offset - TransitionBlock::GetOffsetOfArgs()) / STACK_ELEM_SIZE;
    }

#ifdef CALLDESCR_FPARGREGS
    static BOOL IsFloatArgumentRegisterOffset(int offset)
    {
        LIMITED_METHOD_CONTRACT;
#if defined(UNIX_AMD64_ABI)
        return (offset != TransitionBlock::StructInRegsOffset) && (offset < 0);
#else        
        return offset < 0;
#endif        
    }

    // Check if an argument has floating point register, that means that it is
    // either a floating point argument or a struct passed in registers that
    // has a floating point member.
    static BOOL HasFloatRegister(int offset, ArgLocDesc* argLocDescForStructInRegs)
    {
        LIMITED_METHOD_CONTRACT;
    #if defined(UNIX_AMD64_ABI)
        if (offset == TransitionBlock::StructInRegsOffset)
        {
            return argLocDescForStructInRegs->m_cFloatReg > 0;
        }
    #endif        
        return offset < 0;
    }

    static int GetOffsetOfFloatArgumentRegisters()
    {
        LIMITED_METHOD_CONTRACT;
        return -GetNegSpaceSize();
    }
#endif // CALLDESCR_FPARGREGS

    static int GetOffsetOfCalleeSavedRegisters()
    {
        LIMITED_METHOD_CONTRACT;
        return offsetof(TransitionBlock, m_calleeSavedRegisters);
    }

    static int GetNegSpaceSize()
    {
        LIMITED_METHOD_CONTRACT;
        int negSpaceSize = 0;
#ifdef CALLDESCR_FPARGREGS
        negSpaceSize += sizeof(FloatArgumentRegisters);
#endif
#ifdef _TARGET_ARM_
        negSpaceSize += TARGET_POINTER_SIZE; // padding to make FloatArgumentRegisters address 8-byte aligned
#endif
        return negSpaceSize;
    }

    static const int InvalidOffset = -1;
#if defined(UNIX_AMD64_ABI)
    // Special offset value to represent  struct passed in registers. Such a struct can span both
    // general purpose and floating point registers, so it can have two different offsets.
    static const int StructInRegsOffset = -2;
#endif    
};

//-----------------------------------------------------------------------
// ArgIterator is helper for dealing with calling conventions.
// It is tightly coupled with TransitionBlock. It uses offsets into
// TransitionBlock to represent argument locations for efficiency
// reasons. Alternatively, it can also return ArgLocDesc for less
// performance critical code.
//
// The ARGITERATOR_BASE argument of the template is provider of the parsed
// method signature. Typically, the arg iterator works on top of MetaSig. 
// Reflection invoke uses alternative implementation to save signature parsing
// time because of it has the parsed signature available.
//-----------------------------------------------------------------------
template<class ARGITERATOR_BASE>
class ArgIteratorTemplate : public ARGITERATOR_BASE
{
public:
    //------------------------------------------------------------
    // Constructor
    //------------------------------------------------------------
    ArgIteratorTemplate()
    {
        WRAPPER_NO_CONTRACT;
        m_dwFlags = 0;
    }

    UINT SizeOfArgStack()
    {
        WRAPPER_NO_CONTRACT;
        if (!(m_dwFlags & SIZE_OF_ARG_STACK_COMPUTED))
            ForceSigWalk();
        _ASSERTE((m_dwFlags & SIZE_OF_ARG_STACK_COMPUTED) != 0);
        return m_nSizeOfArgStack;
    }

    // For use with ArgIterator. This function computes the amount of additional
    // memory required above the TransitionBlock.  The parameter offsets
    // returned by ArgIteratorTemplate::GetNextOffset are relative to a
    // FramedMethodFrame, and may be in either of these regions.
    UINT SizeOfFrameArgumentArray()
    {
        WRAPPER_NO_CONTRACT;

        UINT size = SizeOfArgStack();

#if defined(_TARGET_AMD64_) && !defined(UNIX_AMD64_ABI)
        // The argument registers are not included in the stack size on AMD64
        size += ARGUMENTREGISTERS_SIZE;
#endif

        return size;
    }

    //------------------------------------------------------------------------

#ifdef _TARGET_X86_
    UINT CbStackPop()
    {
        WRAPPER_NO_CONTRACT;

        if (this->IsVarArg())
            return 0;
        else
            return SizeOfArgStack();
    }
#endif

    // Is there a hidden parameter for the return parameter? 
    //
    BOOL HasRetBuffArg()
    {
        WRAPPER_NO_CONTRACT;
        if (!(m_dwFlags & RETURN_FLAGS_COMPUTED))
            ComputeReturnFlags();
        return (m_dwFlags & RETURN_HAS_RET_BUFFER);
    }

    UINT GetFPReturnSize()
    {
        WRAPPER_NO_CONTRACT;
        if (!(m_dwFlags & RETURN_FLAGS_COMPUTED))
            ComputeReturnFlags();
        return m_dwFlags >> RETURN_FP_SIZE_SHIFT;
    }

#ifdef _TARGET_X86_
    //=========================================================================
    // Indicates whether an argument is to be put in a register using the
    // default IL calling convention. This should be called on each parameter
    // in the order it appears in the call signature. For a non-static method,
    // this function should also be called once for the "this" argument, prior
    // to calling it for the "real" arguments. Pass in a typ of ELEMENT_TYPE_CLASS.
    //
    //  *pNumRegistersUsed:  [in,out]: keeps track of the number of argument
    //                       registers assigned previously. The caller should
    //                       initialize this variable to 0 - then each call
    //                       will update it.
    //
    //  typ:                 the signature type
    //=========================================================================
    static BOOL IsArgumentInRegister(int * pNumRegistersUsed, CorElementType typ)
    {
        LIMITED_METHOD_CONTRACT;
        if ( (*pNumRegistersUsed) < NUM_ARGUMENT_REGISTERS) {
            if (gElementTypeInfo[typ].m_enregister) {
                (*pNumRegistersUsed)++;
                return(TRUE);
            }
        }

        return(FALSE);
    }
#endif // _TARGET_X86_

#if defined(ENREGISTERED_PARAMTYPE_MAXSIZE)

    // Note that this overload does not handle varargs
    static BOOL IsArgPassedByRef(TypeHandle th)
    {
        LIMITED_METHOD_CONTRACT;

        _ASSERTE(!th.IsNull());

        // This method only works for valuetypes. It includes true value types, 
        // primitives, enums and TypedReference.
        _ASSERTE(th.IsValueType());

        size_t size = th.GetSize();
#ifdef _TARGET_AMD64_
        return IsArgPassedByRef(size);
#elif defined(_TARGET_ARM64_)
        // Composites greater than 16 bytes are passed by reference
        return ((size > ENREGISTERED_PARAMTYPE_MAXSIZE) && !th.IsHFA());
#else
        PORTABILITY_ASSERT("ArgIteratorTemplate::IsArgPassedByRef");
        return FALSE;
#endif
    }

#ifdef _TARGET_AMD64_
    // This overload should only be used in AMD64-specific code only.
    static BOOL IsArgPassedByRef(size_t size)
    {
        LIMITED_METHOD_CONTRACT;

#ifdef UNIX_AMD64_ABI
        // No arguments are passed by reference on AMD64 on Unix
        return FALSE;
#else
        // If the size is bigger than ENREGISTERED_PARAM_TYPE_MAXSIZE, or if the size is NOT a power of 2, then
        // the argument is passed by reference.
        return (size > ENREGISTERED_PARAMTYPE_MAXSIZE) || ((size & (size-1)) != 0);
#endif        
    }
#endif // _TARGET_AMD64_

    // This overload should be used for varargs only.
    static BOOL IsVarArgPassedByRef(size_t size)
    {
        LIMITED_METHOD_CONTRACT;

#ifdef _TARGET_AMD64_
#ifdef UNIX_AMD64_ABI
        PORTABILITY_ASSERT("ArgIteratorTemplate::IsVarArgPassedByRef");                
        return FALSE;
#else // UNIX_AMD64_ABI
        return IsArgPassedByRef(size);
#endif // UNIX_AMD64_ABI

#else
        return (size > ENREGISTERED_PARAMTYPE_MAXSIZE);
#endif
    }

    BOOL IsArgPassedByRef()
    {
        LIMITED_METHOD_CONTRACT;

#ifdef _TARGET_AMD64_
        return IsArgPassedByRef(m_argSize);
#elif defined(_TARGET_ARM64_)
        if (m_argType == ELEMENT_TYPE_VALUETYPE)
        {
            _ASSERTE(!m_argTypeHandle.IsNull());
            return ((m_argSize > ENREGISTERED_PARAMTYPE_MAXSIZE) && (!m_argTypeHandle.IsHFA() || this->IsVarArg()));
        }
        return FALSE;
#else
        PORTABILITY_ASSERT("ArgIteratorTemplate::IsArgPassedByRef");
        return FALSE;
#endif
    }

#endif // ENREGISTERED_PARAMTYPE_MAXSIZE

    //------------------------------------------------------------
    // Return the offsets of the special arguments
    //------------------------------------------------------------

    static int GetThisOffset();

    int GetRetBuffArgOffset();
    int GetVASigCookieOffset();
    int GetParamTypeArgOffset();

    //------------------------------------------------------------
    // Each time this is called, this returns a byte offset of the next
    // argument from the TransitionBlock* pointer.
    //
    // Returns TransitionBlock::InvalidOffset once you've hit the end 
    // of the list.
    //------------------------------------------------------------
    int GetNextOffset();

    CorElementType GetArgType(TypeHandle *pTypeHandle = NULL)
    {
        LIMITED_METHOD_CONTRACT;
        if (pTypeHandle != NULL)
        {
            *pTypeHandle = m_argTypeHandle;
        }
        return m_argType;
    }

    int GetArgSize()
    {
        LIMITED_METHOD_CONTRACT;
        return m_argSize;
    }

    void ForceSigWalk();

#ifndef _TARGET_X86_
    // Accessors for built in argument descriptions of the special implicit parameters not mentioned directly
    // in signatures (this pointer and the like). Whether or not these can be used successfully before all the
    // explicit arguments have been scanned is platform dependent.
    void GetThisLoc(ArgLocDesc * pLoc) { WRAPPER_NO_CONTRACT; GetSimpleLoc(GetThisOffset(), pLoc); }
    void GetParamTypeLoc(ArgLocDesc * pLoc) { WRAPPER_NO_CONTRACT; GetSimpleLoc(GetParamTypeArgOffset(), pLoc); }
    void GetVASigCookieLoc(ArgLocDesc * pLoc) { WRAPPER_NO_CONTRACT; GetSimpleLoc(GetVASigCookieOffset(), pLoc); }

#ifndef CALLDESCR_RETBUFFARGREG
    void GetRetBuffArgLoc(ArgLocDesc * pLoc) { WRAPPER_NO_CONTRACT; GetSimpleLoc(GetRetBuffArgOffset(), pLoc); }
#endif

#endif // !_TARGET_X86_

    ArgLocDesc* GetArgLocDescForStructInRegs()
    {
#if defined(UNIX_AMD64_ABI) || defined (_TARGET_ARM64_)
        return m_hasArgLocDescForStructInRegs ? &m_argLocDescForStructInRegs : NULL;
#else
        return NULL;
#endif
    }

#ifdef _TARGET_X86_
    // Get layout information for the argument that the ArgIterator is currently visiting.
    void GetArgLoc(int argOffset, ArgLocDesc *pLoc)
    {
        LIMITED_METHOD_CONTRACT;

        pLoc->Init();

        int cSlots = (GetArgSize() + 3) / 4;
        if (!TransitionBlock::IsStackArgumentOffset(argOffset))
        {
            pLoc->m_idxGenReg = TransitionBlock::GetArgumentIndexFromOffset(argOffset);
            _ASSERTE(cSlots == 1);
            pLoc->m_cGenReg = cSlots;
        }
        else
        {
            pLoc->m_idxStack = TransitionBlock::GetStackArgumentIndexFromOffset(argOffset);
            pLoc->m_cStack = cSlots;
        }
    }
#endif

#ifdef _TARGET_ARM_
    // Get layout information for the argument that the ArgIterator is currently visiting.
    void GetArgLoc(int argOffset, ArgLocDesc *pLoc)
    {
        LIMITED_METHOD_CONTRACT;

        pLoc->Init();

        pLoc->m_fRequires64BitAlignment = m_fRequires64BitAlignment;

        int cSlots = (GetArgSize() + 3) / 4;

        if (TransitionBlock::IsFloatArgumentRegisterOffset(argOffset))
        {
            pLoc->m_idxFloatReg = (argOffset - TransitionBlock::GetOffsetOfFloatArgumentRegisters()) / 4;
            pLoc->m_cFloatReg = cSlots;
            return;
        }

        if (!TransitionBlock::IsStackArgumentOffset(argOffset))
        {
            pLoc->m_idxGenReg = TransitionBlock::GetArgumentIndexFromOffset(argOffset);

            if (cSlots <= (4 - pLoc->m_idxGenReg))
            {
                pLoc->m_cGenReg = cSlots;
            }
            else
            {
                pLoc->m_cGenReg = 4 - pLoc->m_idxGenReg;

                pLoc->m_idxStack = 0;
                pLoc->m_cStack = cSlots - pLoc->m_cGenReg;
            }
        }
        else
        {
            pLoc->m_idxStack = TransitionBlock::GetStackArgumentIndexFromOffset(argOffset);
            pLoc->m_cStack = cSlots;
        }
    }
#endif // _TARGET_ARM_

#ifdef _TARGET_ARM64_
    // Get layout information for the argument that the ArgIterator is currently visiting.
    void GetArgLoc(int argOffset, ArgLocDesc *pLoc)
    {
        LIMITED_METHOD_CONTRACT;

        pLoc->Init();

        if (TransitionBlock::IsFloatArgumentRegisterOffset(argOffset))
        {
            // Dividing by 16 as size of each register in FloatArgumentRegisters is 16 bytes.
            pLoc->m_idxFloatReg = (argOffset - TransitionBlock::GetOffsetOfFloatArgumentRegisters()) / 16;

            if (!m_argTypeHandle.IsNull() && m_argTypeHandle.IsHFA())
            {
                CorElementType type = m_argTypeHandle.GetHFAType();
                pLoc->setHFAFieldSize(type);
                pLoc->m_cFloatReg = GetArgSize()/pLoc->m_hfaFieldSize;

            }
            else
            {
                pLoc->m_cFloatReg = 1;
            }
            return;
        }

        int cSlots = (GetArgSize() + 7)/ 8;

        // Composites greater than 16bytes are passed by reference
        if (GetArgType() == ELEMENT_TYPE_VALUETYPE && GetArgSize() > ENREGISTERED_PARAMTYPE_MAXSIZE)
        {
            cSlots = 1;
        }

#ifdef _TARGET_ARM64_
        // Sanity check to make sure no caller is trying to get an ArgLocDesc that
        // describes the return buffer reg field that's in the TransitionBlock.
        _ASSERTE(argOffset != TransitionBlock::GetOffsetOfRetBuffArgReg());
#endif

        if (!TransitionBlock::IsStackArgumentOffset(argOffset))
        {
            pLoc->m_idxGenReg = TransitionBlock::GetArgumentIndexFromOffset(argOffset);
            pLoc->m_cGenReg = cSlots;
        }
        else
        {
            pLoc->m_idxStack = TransitionBlock::GetStackArgumentIndexFromOffset(argOffset);
            pLoc->m_cStack = cSlots;
        }
    }
#endif // _TARGET_ARM64_

#if defined(_TARGET_AMD64_)
    // Get layout information for the argument that the ArgIterator is currently visiting.
    void GetArgLoc(int argOffset, ArgLocDesc* pLoc)
    {
        LIMITED_METHOD_CONTRACT;

#if defined(UNIX_AMD64_ABI)
        if (m_hasArgLocDescForStructInRegs)
        {
            *pLoc = m_argLocDescForStructInRegs;
            return;
        }

        if (argOffset == TransitionBlock::StructInRegsOffset)
        {
            // We always already have argLocDesc for structs passed in registers, we 
            // compute it in the GetNextOffset for those since it is always needed.
            _ASSERTE(false);
            return;
        }
#endif // UNIX_AMD64_ABI

        pLoc->Init();

#if defined(UNIX_AMD64_ABI)
        if (TransitionBlock::IsFloatArgumentRegisterOffset(argOffset))
        {
            // Dividing by 16 as size of each register in FloatArgumentRegisters is 16 bytes.
            pLoc->m_idxFloatReg = (argOffset - TransitionBlock::GetOffsetOfFloatArgumentRegisters()) / 16;
            pLoc->m_cFloatReg = 1;
        }
        else
#endif // UNIX_AMD64_ABI
        if (!TransitionBlock::IsStackArgumentOffset(argOffset))
        {
#if !defined(UNIX_AMD64_ABI)
            // On Windows x64, we re-use the location in the transition block for both the integer and floating point registers
            if ((m_argType == ELEMENT_TYPE_R4) || (m_argType == ELEMENT_TYPE_R8))
            {
                pLoc->m_idxFloatReg = TransitionBlock::GetArgumentIndexFromOffset(argOffset);
                pLoc->m_cFloatReg = 1;
            }
            else
#endif
            {
                pLoc->m_idxGenReg = TransitionBlock::GetArgumentIndexFromOffset(argOffset);
                pLoc->m_cGenReg = 1;
            }
        }
        else
        {
            pLoc->m_idxStack = TransitionBlock::GetStackArgumentIndexFromOffset(argOffset);
            int argOnStackSize;
            if (IsArgPassedByRef())
                argOnStackSize = STACK_ELEM_SIZE;
            else
                argOnStackSize = GetArgSize();
            pLoc->m_cStack = (argOnStackSize + STACK_ELEM_SIZE - 1) / STACK_ELEM_SIZE;
        }
    }
#endif // _TARGET_AMD64_

protected:
    DWORD               m_dwFlags;              // Cached flags
    int                 m_nSizeOfArgStack;      // Cached value of SizeOfArgStack

    DWORD               m_argNum;

    // Cached information about last argument
    CorElementType      m_argType;
    int                 m_argSize;
    TypeHandle          m_argTypeHandle;
#if (defined(_TARGET_AMD64_) && defined(UNIX_AMD64_ABI)) || defined(_TARGET_ARM64_)
    ArgLocDesc          m_argLocDescForStructInRegs;
    bool                m_hasArgLocDescForStructInRegs;
#endif // (_TARGET_AMD64_ && UNIX_AMD64_ABI) || _TARGET_ARM64_

#ifdef _TARGET_X86_
    int                 m_curOfs;           // Current position of the stack iterator
    int                 m_numRegistersUsed;
#endif

#ifdef _TARGET_AMD64_
#ifdef UNIX_AMD64_ABI
    int                 m_idxGenReg;        // Next general register to be assigned a value
    int                 m_idxStack;         // Next stack slot to be assigned a value
    int                 m_idxFPReg;         // Next floating point register to be assigned a value
    bool                m_fArgInRegisters;  // Indicates that the current argument is stored in registers
#else
    int                 m_curOfs;           // Current position of the stack iterator
#endif
#endif

#ifdef _TARGET_ARM_
    int                 m_idxGenReg;        // Next general register to be assigned a value
    int                 m_idxStack;         // Next stack slot to be assigned a value

    WORD                m_wFPRegs;          // Bitmask of available floating point argument registers (s0-s15/d0-d7)
    bool                m_fRequires64BitAlignment; // Cached info about the current arg
#endif

#ifdef _TARGET_ARM64_
    int             m_idxGenReg;        // Next general register to be assigned a value
    int             m_idxStack;         // Next stack slot to be assigned a value
    int             m_idxFPReg;         // Next FP register to be assigned a value
#endif

    enum {
        ITERATION_STARTED               = 0x0001,   // Started iterating over arguments
        SIZE_OF_ARG_STACK_COMPUTED      = 0x0002,
        RETURN_FLAGS_COMPUTED           = 0x0004,
        RETURN_HAS_RET_BUFFER           = 0x0008,   // Cached value of HasRetBuffArg

#ifdef _TARGET_X86_
        PARAM_TYPE_REGISTER_MASK        = 0x0030,
        PARAM_TYPE_REGISTER_STACK       = 0x0010,
        PARAM_TYPE_REGISTER_ECX         = 0x0020,
        PARAM_TYPE_REGISTER_EDX         = 0x0030,
#endif

        METHOD_INVOKE_NEEDS_ACTIVATION  = 0x0040,   // Flag used by ArgIteratorForMethodInvoke

        RETURN_FP_SIZE_SHIFT            = 8,        // The rest of the flags is cached value of GetFPReturnSize
    };

    void ComputeReturnFlags();

#ifndef _TARGET_X86_
    void GetSimpleLoc(int offset, ArgLocDesc * pLoc)
    { 
        WRAPPER_NO_CONTRACT; 

#ifdef CALLDESCR_RETBUFFARGREG
        // Codepaths where this could happen have been removed. If this occurs, something
        // has been missed and this needs another look.
        _ASSERTE(offset != TransitionBlock::GetOffsetOfRetBuffArgReg());
#endif

        pLoc->Init();
        pLoc->m_idxGenReg = TransitionBlock::GetArgumentIndexFromOffset(offset);
        pLoc->m_cGenReg = 1;
    }
#endif
};


template<class ARGITERATOR_BASE>
int ArgIteratorTemplate<ARGITERATOR_BASE>::GetThisOffset()
{
    WRAPPER_NO_CONTRACT;

    // This pointer is in the first argument register by default
    int ret = TransitionBlock::GetOffsetOfArgumentRegisters();

#ifdef _TARGET_X86_
    // x86 is special as always
    ret += offsetof(ArgumentRegisters, ECX);
#endif

    return ret;
}

template<class ARGITERATOR_BASE>
int ArgIteratorTemplate<ARGITERATOR_BASE>::GetRetBuffArgOffset()
{
    WRAPPER_NO_CONTRACT;

    _ASSERTE(this->HasRetBuffArg());

    // RetBuf arg is in the second argument register by default
    int ret = TransitionBlock::GetOffsetOfArgumentRegisters();

#if _TARGET_X86_
    // x86 is special as always
    ret += this->HasThis() ? offsetof(ArgumentRegisters, EDX) : offsetof(ArgumentRegisters, ECX);
#elif _TARGET_ARM64_
    ret = TransitionBlock::GetOffsetOfRetBuffArgReg();
#else
    if (this->HasThis())
        ret += TARGET_POINTER_SIZE;
#endif

    return ret;
}

template<class ARGITERATOR_BASE>
int ArgIteratorTemplate<ARGITERATOR_BASE>::GetVASigCookieOffset()
{
    WRAPPER_NO_CONTRACT;

    _ASSERTE(this->IsVarArg());

#if defined(_TARGET_X86_)
    // x86 is special as always
    return sizeof(TransitionBlock);
#else
    // VaSig cookie is after this and retbuf arguments by default.
    int ret = TransitionBlock::GetOffsetOfArgumentRegisters();

    if (this->HasThis())
    {
        ret += TARGET_POINTER_SIZE;
    }

    if (this->HasRetBuffArg() && IsRetBuffPassedAsFirstArg())
    {
        ret += TARGET_POINTER_SIZE;
    }

    return ret;
#endif
}

//-----------------------------------------------------------
// Get the extra param offset for shared generic code
//-----------------------------------------------------------
template<class ARGITERATOR_BASE>
int ArgIteratorTemplate<ARGITERATOR_BASE>::GetParamTypeArgOffset()
{
    CONTRACTL
    {
        INSTANCE_CHECK;
        if (FORBIDGC_LOADER_USE_ENABLED()) NOTHROW; else THROWS;
        if (FORBIDGC_LOADER_USE_ENABLED()) GC_NOTRIGGER; else GC_TRIGGERS;
        if (FORBIDGC_LOADER_USE_ENABLED()) FORBID_FAULT; else { INJECT_FAULT(COMPlusThrowOM()); }
        MODE_ANY;
    }
    CONTRACTL_END

    _ASSERTE(this->HasParamType());

#ifdef _TARGET_X86_
    // x86 is special as always
    if (!(m_dwFlags & SIZE_OF_ARG_STACK_COMPUTED))
        ForceSigWalk();

    switch (m_dwFlags & PARAM_TYPE_REGISTER_MASK)
    {
    case PARAM_TYPE_REGISTER_ECX:
        return TransitionBlock::GetOffsetOfArgumentRegisters() + offsetof(ArgumentRegisters, ECX);
    case PARAM_TYPE_REGISTER_EDX:
        return TransitionBlock::GetOffsetOfArgumentRegisters() + offsetof(ArgumentRegisters, EDX);
    default:
        break;
    }

    // The param type arg is last stack argument otherwise
    return sizeof(TransitionBlock);
#else
    // The hidden arg is after this and retbuf arguments by default.
    int ret = TransitionBlock::GetOffsetOfArgumentRegisters();

    if (this->HasThis())
    {
        ret += TARGET_POINTER_SIZE;
    }

    if (this->HasRetBuffArg() && IsRetBuffPassedAsFirstArg())
    {
        ret += TARGET_POINTER_SIZE;
    }

    return ret;
#endif
}

// To avoid corner case bugs, limit maximum size of the arguments with sufficient margin
#define MAX_ARG_SIZE 0xFFFFFF

//------------------------------------------------------------
// Each time this is called, this returns a byte offset of the next
// argument from the Frame* pointer. This offset can be positive *or* negative.
//
// Returns TransitionBlock::InvalidOffset once you've hit the end of the list.
//------------------------------------------------------------
template<class ARGITERATOR_BASE>
int ArgIteratorTemplate<ARGITERATOR_BASE>::GetNextOffset()
{
    WRAPPER_NO_CONTRACT;
    SUPPORTS_DAC;

    if (!(m_dwFlags & ITERATION_STARTED))
    {
        int numRegistersUsed = 0;

        if (this->HasThis())
            numRegistersUsed++;

        if (this->HasRetBuffArg() && IsRetBuffPassedAsFirstArg())
            numRegistersUsed++;

        _ASSERTE(!this->IsVarArg() || !this->HasParamType());

#ifndef _TARGET_X86_
        if (this->IsVarArg() || this->HasParamType())
        {
            numRegistersUsed++;
        }
#endif

#ifdef _TARGET_X86_
        if (this->IsVarArg())
        {
            numRegistersUsed = NUM_ARGUMENT_REGISTERS; // Nothing else gets passed in registers for varargs
        }

#ifdef FEATURE_INTERPRETER
        BYTE callconv = CallConv();
        switch (callconv)
        {
        case IMAGE_CEE_CS_CALLCONV_C:
        case IMAGE_CEE_CS_CALLCONV_STDCALL:
            m_numRegistersUsed = NUM_ARGUMENT_REGISTERS;
            m_curOfs = TransitionBlock::GetOffsetOfArgs() + numRegistersUsed * sizeof(void *); 
            m_fUnmanagedCallConv = true;
            break;

        case IMAGE_CEE_CS_CALLCONV_THISCALL:
        case IMAGE_CEE_CS_CALLCONV_FASTCALL:
            _ASSERTE_MSG(false, "Unsupported calling convention.");

        default:
            m_fUnmanagedCallConv = false;
            m_numRegistersUsed = numRegistersUsed;
            m_curOfs = TransitionBlock::GetOffsetOfArgs() + SizeOfArgStack();
        }
#else
        m_numRegistersUsed = numRegistersUsed;
        m_curOfs = TransitionBlock::GetOffsetOfArgs() + SizeOfArgStack();
#endif

#elif defined(_TARGET_AMD64_)
#ifdef UNIX_AMD64_ABI
        m_idxGenReg = numRegistersUsed;
        m_idxStack = 0;
        m_idxFPReg = 0;
#else
        m_curOfs = TransitionBlock::GetOffsetOfArgs() + numRegistersUsed * sizeof(void *);
#endif
#elif defined(_TARGET_ARM_)
        m_idxGenReg = numRegistersUsed;
        m_idxStack = 0;

        m_wFPRegs = 0;
#elif defined(_TARGET_ARM64_)
        m_idxGenReg = numRegistersUsed;
        m_idxStack = 0;

        m_idxFPReg = 0;
#else
        PORTABILITY_ASSERT("ArgIteratorTemplate::GetNextOffset");
#endif

        m_argNum = 0;

        m_dwFlags |= ITERATION_STARTED;
    }

    // We're done going through the args for this MetaSig
    if (m_argNum == this->NumFixedArgs())
        return TransitionBlock::InvalidOffset;

    TypeHandle thValueType;
    CorElementType argType = this->GetNextArgumentType(m_argNum++, &thValueType);

    int argSize = MetaSig::GetElemSize(argType, thValueType);

    m_argType = argType;
    m_argSize = argSize;
    m_argTypeHandle = thValueType;

#if defined(UNIX_AMD64_ABI) || defined (_TARGET_ARM64_)
    m_hasArgLocDescForStructInRegs = false;
#endif

#ifdef _TARGET_X86_
#ifdef FEATURE_INTERPRETER
    if (m_fUnmanagedCallConv)
    {
        int argOfs = m_curOfs;
        m_curOfs += StackElemSize(argSize);
        return argOfs;
    }
#endif
    if (IsArgumentInRegister(&m_numRegistersUsed, argType))
    {
        return TransitionBlock::GetOffsetOfArgumentRegisters() + (NUM_ARGUMENT_REGISTERS - m_numRegistersUsed) * sizeof(void *);
    }

    m_curOfs -= StackElemSize(argSize);
    _ASSERTE(m_curOfs >= TransitionBlock::GetOffsetOfArgs());
    return m_curOfs;
#elif defined(_TARGET_AMD64_)
#ifdef UNIX_AMD64_ABI

    m_fArgInRegisters = true;

    int cFPRegs = 0;
    int cGenRegs = 0;
    int cbArg = StackElemSize(argSize);

    switch (argType)
    {

    case ELEMENT_TYPE_R4:
        // 32-bit floating point argument.
        cFPRegs = 1;
        break;

    case ELEMENT_TYPE_R8:
        // 64-bit floating point argument.
        cFPRegs = 1;
        break;

    case ELEMENT_TYPE_VALUETYPE:
    {
        MethodTable *pMT = m_argTypeHandle.GetMethodTable();
        if (this->IsRegPassedStruct(pMT))
        {
            EEClass* eeClass = pMT->GetClass();
            cGenRegs = 0;
            for (int i = 0; i < eeClass->GetNumberEightBytes(); i++)
            {
                switch (eeClass->GetEightByteClassification(i))
                {
                    case SystemVClassificationTypeInteger:
                    case SystemVClassificationTypeIntegerReference:
                    case SystemVClassificationTypeIntegerByRef:
                        cGenRegs++;
                        break;
                    case SystemVClassificationTypeSSE:
                        cFPRegs++;
                        break;
                    default:
                        _ASSERTE(false);
                        break;
                }
            }

            // Check if we have enough registers available for the struct passing
            if ((cFPRegs + m_idxFPReg <= NUM_FLOAT_ARGUMENT_REGISTERS) && (cGenRegs + m_idxGenReg) <= NUM_ARGUMENT_REGISTERS)
            {
                m_argLocDescForStructInRegs.Init();
                m_argLocDescForStructInRegs.m_cGenReg = cGenRegs;
                m_argLocDescForStructInRegs.m_cFloatReg = cFPRegs;
                m_argLocDescForStructInRegs.m_idxGenReg = m_idxGenReg;
                m_argLocDescForStructInRegs.m_idxFloatReg = m_idxFPReg;
                m_argLocDescForStructInRegs.m_eeClass = eeClass;
                
                m_hasArgLocDescForStructInRegs = true;

                m_idxGenReg += cGenRegs;
                m_idxFPReg += cFPRegs;

                return TransitionBlock::StructInRegsOffset;
            }
        }

        // Set the register counts to indicate that this argument will not be passed in registers
        cFPRegs = 0;
        cGenRegs = 0;
        break;
    }

    default:
        cGenRegs = cbArg / 8; // GP reg size
        break;
    }

    if ((cFPRegs > 0) && (cFPRegs + m_idxFPReg <= NUM_FLOAT_ARGUMENT_REGISTERS))
    {
        int argOfs = TransitionBlock::GetOffsetOfFloatArgumentRegisters() + m_idxFPReg * 16;
        m_idxFPReg += cFPRegs;
        return argOfs;
    }
    else if ((cGenRegs > 0) && (m_idxGenReg + cGenRegs <= NUM_ARGUMENT_REGISTERS))
    {
        int argOfs = TransitionBlock::GetOffsetOfArgumentRegisters() + m_idxGenReg * 8;
        m_idxGenReg += cGenRegs;
        return argOfs;
    }

    m_fArgInRegisters = false;     

    int argOfs = TransitionBlock::GetOffsetOfArgs() + m_idxStack * STACK_ELEM_SIZE;

    int cArgSlots = cbArg / STACK_ELEM_SIZE;
    m_idxStack += cArgSlots;

    return argOfs;
#else
    // Each argument takes exactly one slot on AMD64 on Windows
    int argOfs = m_curOfs;
    m_curOfs += sizeof(void *);
    return argOfs;
#endif
#elif defined(_TARGET_ARM_)
    // First look at the underlying type of the argument to determine some basic properties:
    //  1) The size of the argument in bytes (rounded up to the stack slot size of 4 if necessary).
    //  2) Whether the argument represents a floating point primitive (ELEMENT_TYPE_R4 or ELEMENT_TYPE_R8).
    //  3) Whether the argument requires 64-bit alignment (anything that contains a Int64/UInt64).

    bool fFloatingPoint = false;
    bool fRequiresAlign64Bit = false;

    switch (argType)
    {
    case ELEMENT_TYPE_I8:
    case ELEMENT_TYPE_U8:
        // 64-bit integers require 64-bit alignment on ARM.
        fRequiresAlign64Bit = true;
        break;

    case ELEMENT_TYPE_R4:
        // 32-bit floating point argument.
        fFloatingPoint = true;
        break;

    case ELEMENT_TYPE_R8:
        // 64-bit floating point argument.
        fFloatingPoint = true;
        fRequiresAlign64Bit = true;
        break;

    case ELEMENT_TYPE_VALUETYPE:
    {
        // Value type case: extract the alignment requirement, note that this has to handle 
        // the interop "native value types".
        fRequiresAlign64Bit = thValueType.RequiresAlign8();

#ifdef FEATURE_HFA
        // Handle HFAs: packed structures of 1-4 floats or doubles that are passed in FP argument
        // registers if possible.
        if (thValueType.IsHFA())
        {
            fFloatingPoint = true;
        }
#endif

        break;
    }

    default:
        // The default is are 4-byte arguments (or promoted to 4 bytes), non-FP and don't require any
        // 64-bit alignment.
        break;
    }

    // Now attempt to place the argument into some combination of floating point or general registers and
    // the stack.

    // Save the alignment requirement
    m_fRequires64BitAlignment = fRequiresAlign64Bit;

    int cbArg = StackElemSize(argSize);
    int cArgSlots = cbArg / 4;

    // Ignore floating point argument placement in registers if we're dealing with a vararg function (the ABI
    // specifies this so that vararg processing on the callee side is simplified).
#ifndef ARM_SOFTFP
    if (fFloatingPoint && !this->IsVarArg())
    {
        // Handle floating point (primitive) arguments.

        // First determine whether we can place the argument in VFP registers. There are 16 32-bit
        // and 8 64-bit argument registers that share the same register space (e.g. D0 overlaps S0 and
        // S1). The ABI specifies that VFP values will be passed in the lowest sequence of registers that
        // haven't been used yet and have the required alignment. So the sequence (float, double, float)
        // would be mapped to (S0, D1, S1) or (S0, S2/S3, S1).
        //
        // We use a 16-bit bitmap to record which registers have been used so far.
        //
        // So we can use the same basic loop for each argument type (float, double or HFA struct) we set up
        // the following input parameters based on the size and alignment requirements of the arguments:
        //   wAllocMask : bitmask of the number of 32-bit registers we need (1 for 1, 3 for 2, 7 for 3 etc.)
        //   cSteps     : number of loop iterations it'll take to search the 16 registers
        //   cShift     : how many bits to shift the allocation mask on each attempt

        WORD wAllocMask = (1 << (cbArg / 4)) - 1;
        WORD cSteps = (WORD)(fRequiresAlign64Bit ? 9 - (cbArg / 8) : 17 - (cbArg / 4));
        WORD cShift = fRequiresAlign64Bit ? 2 : 1;

        // Look through the availability bitmask for a free register or register pair.
        for (WORD i = 0; i < cSteps; i++)
        {
            if ((m_wFPRegs & wAllocMask) == 0)
            {
                // We found one, mark the register or registers as used. 
                m_wFPRegs |= wAllocMask;

                // Indicate the registers used to the caller and return.
                return TransitionBlock::GetOffsetOfFloatArgumentRegisters() + (i * cShift * 4);
            }
            wAllocMask <<= cShift;
        }

        // The FP argument is going to live on the stack. Once this happens the ABI demands we mark all FP
        // registers as unavailable.
        m_wFPRegs = 0xffff;

        // Doubles or HFAs containing doubles need the stack aligned appropriately.
        if (fRequiresAlign64Bit)
            m_idxStack = (int)ALIGN_UP(m_idxStack, 2);

        // Indicate the stack location of the argument to the caller.
        int argOfs = TransitionBlock::GetOffsetOfArgs() + m_idxStack * 4;

        // Record the stack usage.
        m_idxStack += cArgSlots;

        return argOfs;
    }
#endif // ARM_SOFTFP

    //
    // Handle the non-floating point case.
    //

    if (m_idxGenReg < 4)
    {
        if (fRequiresAlign64Bit)
        {
            // The argument requires 64-bit alignment. Align either the next general argument register if
            // we have any left.  See step C.3 in the algorithm in the ABI spec.       
            m_idxGenReg = (int)ALIGN_UP(m_idxGenReg, 2);
        }

        int argOfs = TransitionBlock::GetOffsetOfArgumentRegisters() + m_idxGenReg * 4;

        int cRemainingRegs = 4 - m_idxGenReg;
        if (cArgSlots <= cRemainingRegs)
        {
            // Mark the registers just allocated as used.
            m_idxGenReg += cArgSlots;
            return argOfs;
        }

        // The ABI supports splitting a non-FP argument across registers and the stack. But this is
        // disabled if the FP arguments already overflowed onto the stack (i.e. the stack index is not
        // zero). The following code marks the general argument registers as exhausted if this condition
        // holds.  See steps C.5 in the algorithm in the ABI spec.

        m_idxGenReg = 4;

        if (m_idxStack == 0)
        {
            m_idxStack += cArgSlots - cRemainingRegs;
            return argOfs;
        }
    }

    if (fRequiresAlign64Bit)
    {
        // The argument requires 64-bit alignment. If it is going to be passed on the stack, align
        // the next stack slot.  See step C.6 in the algorithm in the ABI spec.  
        m_idxStack = (int)ALIGN_UP(m_idxStack, 2);
    }

    int argOfs = TransitionBlock::GetOffsetOfArgs() + m_idxStack * 4;

    // Advance the stack pointer over the argument just placed.
    m_idxStack += cArgSlots;

    return argOfs;
#elif defined(_TARGET_ARM64_)

    int cFPRegs = 0;

    switch (argType)
    {

    case ELEMENT_TYPE_R4:
        // 32-bit floating point argument.
        cFPRegs = 1;
        break;

    case ELEMENT_TYPE_R8:
        // 64-bit floating point argument.
        cFPRegs = 1;
        break;

    case ELEMENT_TYPE_VALUETYPE:
    {
        // Handle HFAs: packed structures of 2-4 floats or doubles that are passed in FP argument
        // registers if possible.
        if (thValueType.IsHFA())
        {
            CorElementType type = thValueType.GetHFAType();

            m_argLocDescForStructInRegs.Init();
            m_argLocDescForStructInRegs.m_idxFloatReg = m_idxFPReg;

            m_argLocDescForStructInRegs.setHFAFieldSize(type);
            cFPRegs = argSize/m_argLocDescForStructInRegs.m_hfaFieldSize;
            m_argLocDescForStructInRegs.m_cFloatReg = cFPRegs;

            m_hasArgLocDescForStructInRegs = true;
        }
        else 
        {
            // Composite greater than 16bytes should be passed by reference
            if (argSize > ENREGISTERED_PARAMTYPE_MAXSIZE)
            {
                argSize = sizeof(TADDR);
            }
        }

        break;
    }

    default:
        break;
    }

    int cbArg = StackElemSize(argSize);
    int cArgSlots = cbArg / STACK_ELEM_SIZE;

    if (cFPRegs>0 && !this->IsVarArg())
    {
        if (cFPRegs + m_idxFPReg <= 8)
        {
            // Each floating point register in the argument area is 16 bytes.
            int argOfs = TransitionBlock::GetOffsetOfFloatArgumentRegisters() + m_idxFPReg * 16;
            m_idxFPReg += cFPRegs;
            return argOfs;
        }
        else
        {
            m_idxFPReg = 8;
        }
    }
    else
    {
        // Only x0-x7 are valid argument registers (x8 is always the return buffer)
        if (m_idxGenReg + cArgSlots <= 8)
        {
            // The entirety of the arg fits in the register slots.

            int argOfs = TransitionBlock::GetOffsetOfArgumentRegisters() + m_idxGenReg * 8;
            m_idxGenReg += cArgSlots;
            return argOfs;
        }
        else
        {
#ifdef _WIN32
            if (this->IsVarArg() && m_idxGenReg < 8)
            {
                // Address the Windows ARM64 varargs case where an arg is split between regs and stack.
                // This can happen in the varargs case because the first 64 bytes of the stack are loaded
                // into x0-x7, and any remaining stack arguments are placed normally.
                int argOfs = TransitionBlock::GetOffsetOfArgumentRegisters() + m_idxGenReg * 8;

                // Increase m_idxStack to account for the space used for the remainder of the arg after
                // register slots are filled.
                m_idxStack += (m_idxGenReg + cArgSlots - 8);

                // We used up the remaining reg slots.
                m_idxGenReg = 8; 

                return argOfs;
            }
            else
#endif
            {
                // Don't use reg slots for this. It will be passed purely on the stack arg space.
                m_idxGenReg = 8;
            }
        }
    }

    int argOfs = TransitionBlock::GetOffsetOfArgs() + m_idxStack * 8;
    m_idxStack += cArgSlots;
    return argOfs;
#else
    PORTABILITY_ASSERT("ArgIteratorTemplate::GetNextOffset");
    return TransitionBlock::InvalidOffset;
#endif
}

template<class ARGITERATOR_BASE>
void ArgIteratorTemplate<ARGITERATOR_BASE>::ComputeReturnFlags()
{
    CONTRACTL
    {
        INSTANCE_CHECK;
        if (FORBIDGC_LOADER_USE_ENABLED()) NOTHROW; else THROWS;
        if (FORBIDGC_LOADER_USE_ENABLED()) GC_NOTRIGGER; else GC_TRIGGERS;
        if (FORBIDGC_LOADER_USE_ENABLED()) FORBID_FAULT; else { INJECT_FAULT(COMPlusThrowOM()); }
        MODE_ANY;
    }
    CONTRACTL_END

    TypeHandle thValueType;
    CorElementType type = this->GetReturnType(&thValueType);

    DWORD flags = RETURN_FLAGS_COMPUTED;
    switch (type)
    {
    case ELEMENT_TYPE_TYPEDBYREF:
#ifdef ENREGISTERED_RETURNTYPE_INTEGER_MAXSIZE
        if (sizeof(TypedByRef) > ENREGISTERED_RETURNTYPE_INTEGER_MAXSIZE)
            flags |= RETURN_HAS_RET_BUFFER;
#else
        flags |= RETURN_HAS_RET_BUFFER;
#endif
        break;

    case ELEMENT_TYPE_R4:
#ifndef ARM_SOFTFP
        flags |= sizeof(float) << RETURN_FP_SIZE_SHIFT;
#endif
        break;

    case ELEMENT_TYPE_R8:
#ifndef ARM_SOFTFP
        flags |= sizeof(double) << RETURN_FP_SIZE_SHIFT;
#endif
        break;

    case ELEMENT_TYPE_VALUETYPE:
#ifdef ENREGISTERED_RETURNTYPE_INTEGER_MAXSIZE
        {
            _ASSERTE(!thValueType.IsNull());

#if defined(UNIX_AMD64_ABI)
            MethodTable *pMT = thValueType.AsMethodTable();
            if (pMT->IsRegPassedStruct())
            {
                EEClass* eeClass = pMT->GetClass();

                if (eeClass->GetNumberEightBytes() == 1)
                {
                    // Structs occupying just one eightbyte are treated as int / double
                    if (eeClass->GetEightByteClassification(0) == SystemVClassificationTypeSSE)
                    {
                        flags |= sizeof(double) << RETURN_FP_SIZE_SHIFT;
                    }
                }
                else
                {
                    // Size of the struct is 16 bytes
                    flags |= (16 << RETURN_FP_SIZE_SHIFT);
                    // The lowest two bits of the size encode the order of the int and SSE fields
                    if (eeClass->GetEightByteClassification(0) == SystemVClassificationTypeSSE)
                    {
                        flags |= (1 << RETURN_FP_SIZE_SHIFT);
                    }

                    if (eeClass->GetEightByteClassification(1) == SystemVClassificationTypeSSE)
                    {
                        flags |= (2 << RETURN_FP_SIZE_SHIFT);                    
                    }
                }

                break;
            }
#else // UNIX_AMD64_ABI

#ifdef FEATURE_HFA
            if (thValueType.IsHFA() && !this->IsVarArg())
            {
                CorElementType hfaType = thValueType.GetHFAType();

                int hfaFieldSize = ArgLocDesc::getHFAFieldSize(hfaType);
                flags |= ((4 * hfaFieldSize) << RETURN_FP_SIZE_SHIFT);
                break;
            }
#endif

            size_t size = thValueType.GetSize();

#if defined(_TARGET_X86_) || defined(_TARGET_AMD64_)
            // Return value types of size which are not powers of 2 using a RetBuffArg
            if ((size & (size-1)) != 0)
            {
                flags |= RETURN_HAS_RET_BUFFER;
                break;
            }
#endif

            if  (size <= ENREGISTERED_RETURNTYPE_INTEGER_MAXSIZE)
                break;
#endif // UNIX_AMD64_ABI
        }
#endif // ENREGISTERED_RETURNTYPE_INTEGER_MAXSIZE

        // Value types are returned using return buffer by default
        flags |= RETURN_HAS_RET_BUFFER;
        break;

    default:
        break;
    }

    m_dwFlags |= flags;
}

template<class ARGITERATOR_BASE>
void ArgIteratorTemplate<ARGITERATOR_BASE>::ForceSigWalk()
{
    CONTRACTL
    {
        INSTANCE_CHECK;
        if (FORBIDGC_LOADER_USE_ENABLED()) NOTHROW; else THROWS;
        if (FORBIDGC_LOADER_USE_ENABLED()) GC_NOTRIGGER; else GC_TRIGGERS;
        if (FORBIDGC_LOADER_USE_ENABLED()) FORBID_FAULT; else { INJECT_FAULT(COMPlusThrowOM()); }
        MODE_ANY;
    }
    CONTRACTL_END

    // This can be only used before the actual argument iteration started
    _ASSERTE((m_dwFlags & ITERATION_STARTED) == 0);

#ifdef _TARGET_X86_
    //
    // x86 is special as always
    //

    int numRegistersUsed = 0;
    int nSizeOfArgStack = 0;

    if (this->HasThis())
        numRegistersUsed++;

    if (this->HasRetBuffArg() && IsRetBuffPassedAsFirstArg())
        numRegistersUsed++;

    if (this->IsVarArg())
    {
        nSizeOfArgStack += sizeof(void *);
        numRegistersUsed = NUM_ARGUMENT_REGISTERS; // Nothing else gets passed in registers for varargs
    }

#ifdef FEATURE_INTERPRETER
     BYTE callconv = CallConv();
     switch (callconv)
     {
     case IMAGE_CEE_CS_CALLCONV_C:
     case IMAGE_CEE_CS_CALLCONV_STDCALL:
           numRegistersUsed = NUM_ARGUMENT_REGISTERS;
           nSizeOfArgStack = TransitionBlock::GetOffsetOfArgs() + numRegistersUsed * sizeof(void *); 
           break;

     case IMAGE_CEE_CS_CALLCONV_THISCALL:
     case IMAGE_CEE_CS_CALLCONV_FASTCALL:
          _ASSERTE_MSG(false, "Unsupported calling convention.");
     default:
     }
#endif // FEATURE_INTERPRETER

    DWORD nArgs = this->NumFixedArgs();
    for (DWORD i = 0; i < nArgs; i++)
    {        
        TypeHandle thValueType;        
        CorElementType type = this->GetNextArgumentType(i, &thValueType);

        if (!IsArgumentInRegister(&numRegistersUsed, type))
        {
            int structSize = MetaSig::GetElemSize(type, thValueType);

            nSizeOfArgStack += StackElemSize(structSize);

#ifndef DACCESS_COMPILE
            if (nSizeOfArgStack > MAX_ARG_SIZE)
            {
#ifdef _DEBUG
                // We should not ever throw exception in the "FORBIDGC_LOADER_USE_ENABLED" mode.
                // The contract violation is required to workaround bug in the static contract analyzer.                 
                _ASSERTE(!FORBIDGC_LOADER_USE_ENABLED());
                CONTRACT_VIOLATION(ThrowsViolation);
#endif
                COMPlusThrow(kNotSupportedException);
            }
#endif
        }
    }

    if (this->HasParamType())
    {
        DWORD paramTypeFlags = 0;
        if (numRegistersUsed < NUM_ARGUMENT_REGISTERS)
        {
            numRegistersUsed++;
            paramTypeFlags = (numRegistersUsed == 1) ? 
                PARAM_TYPE_REGISTER_ECX : PARAM_TYPE_REGISTER_EDX;
        }
        else
        {
            nSizeOfArgStack += sizeof(void *);
            paramTypeFlags = PARAM_TYPE_REGISTER_STACK;
        }
        m_dwFlags |= paramTypeFlags;
    }

#else // _TARGET_X86_

    int maxOffset = TransitionBlock::GetOffsetOfArgs();

    int ofs;
    while (TransitionBlock::InvalidOffset != (ofs = GetNextOffset()))
    {
        int stackElemSize;

#ifdef _TARGET_AMD64_
#ifdef UNIX_AMD64_ABI
        if (m_fArgInRegisters)
        {
            // Arguments passed in registers don't consume any stack 
            continue;
        }

        stackElemSize = StackElemSize(GetArgSize());
#else // UNIX_AMD64_ABI
        // All stack arguments take just one stack slot on AMD64 because of arguments bigger 
        // than a stack slot are passed by reference. 
        stackElemSize = STACK_ELEM_SIZE;
#endif // UNIX_AMD64_ABI
#else // _TARGET_AMD64_
        stackElemSize = StackElemSize(GetArgSize());
#if defined(ENREGISTERED_PARAMTYPE_MAXSIZE)
        if (IsArgPassedByRef())
            stackElemSize = STACK_ELEM_SIZE;
#endif
#endif // _TARGET_AMD64_

        int endOfs = ofs + stackElemSize;
        if (endOfs > maxOffset)
        {
#if !defined(DACCESS_COMPILE)
            if (endOfs > MAX_ARG_SIZE)
            {
#ifdef _DEBUG
                // We should not ever throw exception in the "FORBIDGC_LOADER_USE_ENABLED" mode.
                // The contract violation is required to workaround bug in the static contract analyzer.                 
                _ASSERTE(!FORBIDGC_LOADER_USE_ENABLED());
                CONTRACT_VIOLATION(ThrowsViolation);
#endif
                COMPlusThrow(kNotSupportedException);
            }
#endif
            maxOffset = endOfs;
        }        
    }
    // Clear the iterator started flag
    m_dwFlags &= ~ITERATION_STARTED;

    int nSizeOfArgStack = maxOffset - TransitionBlock::GetOffsetOfArgs();

#if defined(_TARGET_AMD64_) && !defined(UNIX_AMD64_ABI)
    nSizeOfArgStack = (nSizeOfArgStack > (int)sizeof(ArgumentRegisters)) ?
        (nSizeOfArgStack - sizeof(ArgumentRegisters)) : 0;
#endif

#endif // _TARGET_X86_

    // Cache the result
    m_nSizeOfArgStack = nSizeOfArgStack;
    m_dwFlags |= SIZE_OF_ARG_STACK_COMPUTED;

    this->Reset();
}

class ArgIteratorBase
{
protected:
    MetaSig * m_pSig;

    FORCEINLINE CorElementType GetReturnType(TypeHandle * pthValueType)
    {
        WRAPPER_NO_CONTRACT;
#ifdef ENREGISTERED_RETURNTYPE_INTEGER_MAXSIZE
        return m_pSig->GetReturnTypeNormalized(pthValueType);
#else
        return m_pSig->GetReturnTypeNormalized();
#endif
    }

    FORCEINLINE CorElementType GetNextArgumentType(DWORD iArg, TypeHandle * pthValueType)
    {
        WRAPPER_NO_CONTRACT;
        _ASSERTE(iArg == m_pSig->GetArgNum());
        CorElementType et = m_pSig->PeekArgNormalized(pthValueType);
        m_pSig->SkipArg();
        return et;
    }

    FORCEINLINE void Reset()
    {
        WRAPPER_NO_CONTRACT;
        m_pSig->Reset();
    }

    FORCEINLINE BOOL IsRegPassedStruct(MethodTable* pMT)
    {
        return pMT->IsRegPassedStruct();
    }

public:
    BOOL HasThis()
    {
        LIMITED_METHOD_CONTRACT;
        return m_pSig->HasThis();
    }

    BOOL HasParamType()
    {
        LIMITED_METHOD_CONTRACT;
        return m_pSig->GetCallingConventionInfo() & CORINFO_CALLCONV_PARAMTYPE;
    }

    BOOL IsVarArg()
    {
        LIMITED_METHOD_CONTRACT;
        return m_pSig->IsVarArg() || m_pSig->IsTreatAsVarArg();
    }

    DWORD NumFixedArgs()
    {
        LIMITED_METHOD_CONTRACT;
        return m_pSig->NumFixedArgs();
    }

#ifdef FEATURE_INTERPRETER
    BYTE CallConv()
    {
        return m_pSig->GetCallingConvention();
    }
#endif // FEATURE_INTERPRETER

    //
    // The following is used by the profiler to dig into the iterator for
    // discovering if the method has a This pointer or a return buffer.
    // Do not use this to re-initialize the signature, use the exposed Init()
    // method in this class.
    //
    MetaSig *GetSig(void)
    {
        return m_pSig;
    }
};

class ArgIterator : public ArgIteratorTemplate<ArgIteratorBase>
{
public:
    ArgIterator(MetaSig * pSig)
    {
        m_pSig = pSig;
    }

    // This API returns true if we are returning a structure in registers instead of using a byref return buffer
    BOOL HasNonStandardByvalReturn()
    {
        WRAPPER_NO_CONTRACT;

#ifdef ENREGISTERED_RETURNTYPE_MAXSIZE
        CorElementType type = m_pSig->GetReturnTypeNormalized();
        return (type == ELEMENT_TYPE_VALUETYPE || type == ELEMENT_TYPE_TYPEDBYREF) && !HasRetBuffArg();
#else
        return FALSE;
#endif
    }
};

// Conventience helper
inline BOOL HasRetBuffArg(MetaSig * pSig)
{
    WRAPPER_NO_CONTRACT;
    ArgIterator argit(pSig);
    return argit.HasRetBuffArg();
}

#ifdef UNIX_X86_ABI
// For UNIX_X86_ABI and unmanaged function, we always need RetBuf if the return type is VALUETYPE
inline BOOL HasRetBuffArgUnmanagedFixup(MetaSig * pSig)
{
    WRAPPER_NO_CONTRACT;
    // We cannot just pSig->GetReturnType() here since it will return ELEMENT_TYPE_VALUETYPE for enums
    CorElementType type = pSig->GetRetTypeHandleThrowing().GetVerifierCorElementType();
    return type == ELEMENT_TYPE_VALUETYPE;
}
#endif

inline BOOL IsRetBuffPassedAsFirstArg()
{
    WRAPPER_NO_CONTRACT;
#ifndef _TARGET_ARM64_
    return TRUE;
#else
    return FALSE;
#endif        
}

#endif // __CALLING_CONVENTION_INCLUDED