summaryrefslogtreecommitdiff
path: root/src/mscorlib/src/System/MathF.cs
blob: 60669a4561526a931cc15968cda80821a127368c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*============================================================
**
** Purpose: Some single-precision floating-point math operations
**
===========================================================*/

//This class contains only static members and doesn't require serialization.

using System;
using System.Runtime;
using System.Runtime.CompilerServices;
using System.Runtime.ConstrainedExecution;
using System.Runtime.Versioning;
using System.Diagnostics.Contracts;

namespace System
{
    public static class MathF
    {
        private static float singleRoundLimit = 1e8f;

        private const int maxRoundingDigits = 6;

        // This table is required for the Round function which can specify the number of digits to round to
        private static float[] roundPower10Single = new float[] {
            1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f, 1e6f
        };

        public const float PI = 3.14159265f;

        public const float E = 2.71828183f;

        public static float Abs(float x) => Math.Abs(x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Acos(float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Asin(float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Atan(float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Atan2(float y, float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Ceiling(float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Cos(float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Cosh(float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Exp(float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Floor(float x);

        public static float IEEERemainder(float x, float y)
        {
            if (float.IsNaN(x))
            {
                return x; // IEEE 754-2008: NaN payload must be preserved
            }

            if (float.IsNaN(y))
            {
                return y; // IEEE 754-2008: NaN payload must be preserved
            }

            var regularMod = x % y;

            if (float.IsNaN(regularMod))
            {
                return float.NaN;
            }

            if ((regularMod == 0) && float.IsNegative(x))
            {
                return float.NegativeZero;
            }

            var alternativeResult = (regularMod - (Abs(y) * Sign(x)));

            if (Abs(alternativeResult) == Abs(regularMod))
            {
                var divisionResult = x / y;
                var roundedResult = Round(divisionResult);

                if (Abs(roundedResult) > Abs(divisionResult))
                {
                    return alternativeResult;
                }
                else
                {
                    return regularMod;
                }
            }

            if (Abs(alternativeResult) < Abs(regularMod))
            {
                return alternativeResult;
            }
            else
            {
                return regularMod;
            }
        }

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Log(float x);

        public static float Log(float x, float y)
        {
            if (float.IsNaN(x))
            {
                return x; // IEEE 754-2008: NaN payload must be preserved
            }

            if (float.IsNaN(y))
            {
                return y; // IEEE 754-2008: NaN payload must be preserved
            }

            if (y == 1)
            {
                return float.NaN;
            }

            if ((x != 1) && ((y == 0) || float.IsPositiveInfinity(y)))
            {
                return float.NaN;
            }

            return Log(x) / Log(y);
        }

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Log10(float x);

        public static float Max(float x, float y) => Math.Max(x, y);

        public static float Min(float x, float y) => Math.Min(x, y);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Pow(float x, float y);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Round(float x);

        public static float Round(float x, int digits)
        {
            if ((digits < 0) || (digits > maxRoundingDigits))
            {
                throw new ArgumentOutOfRangeException(nameof(digits), SR.ArgumentOutOfRange_RoundingDigits);
            }
            Contract.EndContractBlock();

            return InternalRound(x, digits, MidpointRounding.ToEven);
        }

        public static float Round(float x, int digits, MidpointRounding mode)
        {
            if ((digits < 0) || (digits > maxRoundingDigits))
            {
                throw new ArgumentOutOfRangeException(nameof(digits), SR.ArgumentOutOfRange_RoundingDigits);
            }

            if (mode < MidpointRounding.ToEven || mode > MidpointRounding.AwayFromZero)
            {
                throw new ArgumentException(SR.Format(SR.Argument_InvalidEnum, mode, nameof(MidpointRounding)), nameof(mode));
            }
            Contract.EndContractBlock();

            return InternalRound(x, digits, mode);
        }

        public static float Round(float x, MidpointRounding mode)
        {
            if (mode < MidpointRounding.ToEven || mode > MidpointRounding.AwayFromZero)
            {
                throw new ArgumentException(SR.Format(SR.Argument_InvalidEnum, mode, nameof(MidpointRounding)), nameof(mode));
            }
            Contract.EndContractBlock();

            return InternalRound(x, 0, mode);
        }

        public static int Sign(float x) => Math.Sign(x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Sin(float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Sinh(float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Sqrt(float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Tan(float x);

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern float Tanh(float x);

        public static float Truncate(float x) => InternalTruncate(x);

        private static unsafe float InternalRound(float x, int digits, MidpointRounding mode)
        {
            if (Abs(x) < singleRoundLimit)
            {
                var power10 = roundPower10Single[digits];

                x *= power10;

                if (mode == MidpointRounding.AwayFromZero)
                {
                    var fraction = SplitFractionSingle(&x);

                    if (Abs(fraction) >= 0.5f)
                    {
                        x += Sign(fraction);
                    }
                }
                else
                {
                    x = Round(x);
                }

                x /= power10;
            }

            return x;
        }

        private unsafe static float InternalTruncate(float x)
        {
            SplitFractionSingle(&x);
            return x;
        }

        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private static unsafe extern float SplitFractionSingle(float* x);
    }
}