summaryrefslogtreecommitdiff
path: root/src/mscorlib/src/System/Double.cs
blob: 1e4e477366d742ab05be130f17f32bf87138f4ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*============================================================
**
**
**
** Purpose: A representation of an IEEE double precision
**          floating point number.
**
**
===========================================================*/
namespace System {

    using System;
    using System.Globalization;
    using System.Runtime.InteropServices;
    using System.Runtime.CompilerServices;
    using System.Runtime.ConstrainedExecution;
    using System.Diagnostics.Contracts;

[Serializable]
[StructLayout(LayoutKind.Sequential)]
    public struct Double : IComparable, IFormattable, IConvertible
        , IComparable<Double>, IEquatable<Double>
    {
        internal double m_value;

        //
        // Public Constants
        //
        public const double MinValue = -1.7976931348623157E+308;
        public const double MaxValue = 1.7976931348623157E+308;

        // Note Epsilon should be a double whose hex representation is 0x1
        // on little endian machines.
        public const double Epsilon  = 4.9406564584124654E-324;
        public const double NegativeInfinity = (double)-1.0 / (double)(0.0);
        public const double PositiveInfinity = (double)1.0 / (double)(0.0);
        public const double NaN = (double)0.0 / (double)0.0;
        
        internal static double NegativeZero = BitConverter.Int64BitsToDouble(unchecked((long)0x8000000000000000));

        [Pure]
        [System.Runtime.Versioning.NonVersionable]
        public unsafe static bool IsInfinity(double d) {
            return (*(long*)(&d) & 0x7FFFFFFFFFFFFFFF) == 0x7FF0000000000000;
        }

        [Pure]
        [System.Runtime.Versioning.NonVersionable]
        public static bool IsPositiveInfinity(double d) {
            //Jit will generate inlineable code with this
            if (d == double.PositiveInfinity)
            {
                return true;
            }
            else
            {
                return false;
            }
        }

        [Pure]
        [System.Runtime.Versioning.NonVersionable]
        public static bool IsNegativeInfinity(double d) {
            //Jit will generate inlineable code with this
            if (d == double.NegativeInfinity)
            {
                return true;
            }
            else
            {
                return false;
            }
        }

        [Pure]
        internal unsafe static bool IsNegative(double d) {
            return (*(UInt64*)(&d) & 0x8000000000000000) == 0x8000000000000000;
        }

        [Pure]
        [System.Runtime.Versioning.NonVersionable]
        public unsafe static bool IsNaN(double d)
        {
            return (*(UInt64*)(&d) & 0x7FFFFFFFFFFFFFFFL) > 0x7FF0000000000000L;
        }


        // Compares this object to another object, returning an instance of System.Relation.
        // Null is considered less than any instance.
        //
        // If object is not of type Double, this method throws an ArgumentException.
        //
        // Returns a value less than zero if this  object
        //
        public int CompareTo(Object value) {
            if (value == null) {
                return 1;
            }
            if (value is Double) {
                double d = (double)value;
                if (m_value < d) return -1;
                if (m_value > d) return 1;
                if (m_value == d) return 0;

                // At least one of the values is NaN.
                if (IsNaN(m_value))
                    return (IsNaN(d) ? 0 : -1);
                else
                    return 1;
            }
            throw new ArgumentException(Environment.GetResourceString("Arg_MustBeDouble"));
        }

        public int CompareTo(Double value) {
            if (m_value < value) return -1;
            if (m_value > value) return 1;
            if (m_value == value) return 0;

            // At least one of the values is NaN.
            if (IsNaN(m_value))
                return (IsNaN(value) ? 0 : -1);
            else
                return 1;
        }

        // True if obj is another Double with the same value as the current instance.  This is
        // a method of object equality, that only returns true if obj is also a double.
        public override bool Equals(Object obj) {
            if (!(obj is Double)) {
                return false;
            }
            double temp = ((Double)obj).m_value;
            // This code below is written this way for performance reasons i.e the != and == check is intentional.
            if (temp == m_value) {
                return true;
            }
            return IsNaN(temp) && IsNaN(m_value);
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator ==(Double left, Double right) {
            return left == right;
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator !=(Double left, Double right) {
            return left != right;
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator <(Double left, Double right) {
            return left < right;
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator >(Double left, Double right) {
            return left > right;
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator <=(Double left, Double right) {
            return left <= right;
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator >=(Double left, Double right) {
            return left >= right;
        }

        public bool Equals(Double obj)
        {
            if (obj == m_value) {
                return true;
            }
            return IsNaN(obj) && IsNaN(m_value);
        }

        //The hashcode for a double is the absolute value of the integer representation
        //of that double.
        //
        public unsafe override int GetHashCode() {
            double d = m_value;
            if (d == 0) {
                // Ensure that 0 and -0 have the same hash code
                return 0;
            }
            long value = *(long*)(&d);
            return unchecked((int)value) ^ ((int)(value >> 32));
        }

        public override String ToString() {
            Contract.Ensures(Contract.Result<String>() != null);
            return Number.FormatDouble(m_value, null, NumberFormatInfo.CurrentInfo);
        }

        public String ToString(String format) {
            Contract.Ensures(Contract.Result<String>() != null);
            return Number.FormatDouble(m_value, format, NumberFormatInfo.CurrentInfo);
        }
        
        public String ToString(IFormatProvider provider) {
            Contract.Ensures(Contract.Result<String>() != null);
            return Number.FormatDouble(m_value, null, NumberFormatInfo.GetInstance(provider));
        }
        
        public String ToString(String format, IFormatProvider provider) {
            Contract.Ensures(Contract.Result<String>() != null);
            return Number.FormatDouble(m_value, format, NumberFormatInfo.GetInstance(provider));
        }

        public static double Parse(String s) {
            return Parse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo);
        }

        public static double Parse(String s, NumberStyles style) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return Parse(s, style, NumberFormatInfo.CurrentInfo);
        }

        public static double Parse(String s, IFormatProvider provider) {
            return Parse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider));
        }

        public static double Parse(String s, NumberStyles style, IFormatProvider provider) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return Parse(s, style, NumberFormatInfo.GetInstance(provider));
        }
        
        // Parses a double from a String in the given style.  If
        // a NumberFormatInfo isn't specified, the current culture's
        // NumberFormatInfo is assumed.
        //
        // This method will not throw an OverflowException, but will return
        // PositiveInfinity or NegativeInfinity for a number that is too
        // large or too small.
        //
        private static double Parse(String s, NumberStyles style, NumberFormatInfo info) {
            return Number.ParseDouble(s, style, info);
        }

        public static bool TryParse(String s, out double result) {
            return TryParse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result);
        }

        public static bool TryParse(String s, NumberStyles style, IFormatProvider provider, out double result) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result);
        }
        
        private static bool TryParse(String s, NumberStyles style, NumberFormatInfo info, out double result) {
            if (s == null) {
                result = 0;
                return false;
            }
            bool success = Number.TryParseDouble(s, style, info, out result);
            if (!success) {
                String sTrim = s.Trim();
                if (sTrim.Equals(info.PositiveInfinitySymbol)) {
                    result = PositiveInfinity;
                } else if (sTrim.Equals(info.NegativeInfinitySymbol)) {
                    result = NegativeInfinity;
                } else if (sTrim.Equals(info.NaNSymbol)) {
                    result = NaN;
                } else
                    return false; // We really failed
            }
            return true;
        }

        //
        // IConvertible implementation
        //

        public TypeCode GetTypeCode() {
            return TypeCode.Double;
        }

        /// <internalonly/>
        bool IConvertible.ToBoolean(IFormatProvider provider) {
            return Convert.ToBoolean(m_value);
        }

        /// <internalonly/>
        char IConvertible.ToChar(IFormatProvider provider) {
            throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Double", "Char"));
        }

        /// <internalonly/>
        sbyte IConvertible.ToSByte(IFormatProvider provider) {
            return Convert.ToSByte(m_value);
        }

        /// <internalonly/>
        byte IConvertible.ToByte(IFormatProvider provider) {
            return Convert.ToByte(m_value);
        }

        /// <internalonly/>
        short IConvertible.ToInt16(IFormatProvider provider) {
            return Convert.ToInt16(m_value);
        }

        /// <internalonly/>
        ushort IConvertible.ToUInt16(IFormatProvider provider) {
            return Convert.ToUInt16(m_value);
        }

        /// <internalonly/>
        int IConvertible.ToInt32(IFormatProvider provider) {
            return Convert.ToInt32(m_value);
        }

        /// <internalonly/>
        uint IConvertible.ToUInt32(IFormatProvider provider) {
            return Convert.ToUInt32(m_value);
        }

        /// <internalonly/>
        long IConvertible.ToInt64(IFormatProvider provider) {
            return Convert.ToInt64(m_value);
        }

        /// <internalonly/>
        ulong IConvertible.ToUInt64(IFormatProvider provider) {
            return Convert.ToUInt64(m_value);
        }

        /// <internalonly/>
        float IConvertible.ToSingle(IFormatProvider provider) {
            return Convert.ToSingle(m_value);
        }

        /// <internalonly/>
        double IConvertible.ToDouble(IFormatProvider provider) {
            return m_value;
        }

        /// <internalonly/>
        Decimal IConvertible.ToDecimal(IFormatProvider provider) {
            return Convert.ToDecimal(m_value);
        }

        /// <internalonly/>
        DateTime IConvertible.ToDateTime(IFormatProvider provider) {
            throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Double", "DateTime"));
        }

        /// <internalonly/>
        Object IConvertible.ToType(Type type, IFormatProvider provider) {
            return Convert.DefaultToType((IConvertible)this, type, provider);
        }
    }
}