summaryrefslogtreecommitdiff
path: root/src/jit/target.h
blob: 9fa5e3322ee2ef79bef9b4956fb8b9425235b210 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*****************************************************************************/
#ifndef _TARGET_H_
#define _TARGET_H_

#if defined(FEATURE_CORECLR) && defined(_TARGET_UNIX_)
#define FEATURE_VARARG 0
#else // !(defined(FEATURE_CORECLR) && defined(_TARGET_UNIX_))
#define FEATURE_VARARG 1
#endif // !(defined(FEATURE_CORECLR) && defined(_TARGET_UNIX_))

/*****************************************************************************/
// The following are human readable names for the target architectures
#if defined(_TARGET_X86_)
#define TARGET_READABLE_NAME "X86"
#elif defined(_TARGET_AMD64_)
#define TARGET_READABLE_NAME "AMD64"
#elif defined(_TARGET_ARM_)
#define TARGET_READABLE_NAME "ARM"
#elif defined(_TARGET_ARM64_)
#define TARGET_READABLE_NAME "ARM64"
#else
#error Unsupported or unset target architecture
#endif

/*****************************************************************************/
// The following are intended to capture only those #defines that cannot be replaced
// with static const members of Target
#if defined(_TARGET_X86_) && defined(LEGACY_BACKEND)
#define REGMASK_BITS 8 // number of bits used to represent register mask
#elif defined(_TARGET_XARCH_)
#define REGMASK_BITS 32

#elif defined(_TARGET_ARM_)
#define REGMASK_BITS 64

#elif defined(_TARGET_ARM64_)
#define REGMASK_BITS 64

#else
#error Unsupported or unset target architecture
#endif

/*****************************************************************************/

#if defined(_TARGET_ARM_)
DECLARE_TYPED_ENUM(_regNumber_enum, unsigned)
{
#define REGDEF(name, rnum, mask, sname) REG_##name = rnum,
#define REGALIAS(alias, realname) REG_##alias = REG_##realname,
#include "register.h"

    REG_COUNT, REG_NA = REG_COUNT, ACTUAL_REG_COUNT = REG_COUNT - 1 // everything but REG_STK (only real regs)
}
END_DECLARE_TYPED_ENUM(_regNumber_enum, unsigned)

DECLARE_TYPED_ENUM(_regMask_enum, unsigned __int64)
{
    RBM_NONE = 0,
#define REGDEF(name, rnum, mask, sname) RBM_##name = mask,
#define REGALIAS(alias, realname) RBM_##alias = RBM_##realname,
#include "register.h"
}
END_DECLARE_TYPED_ENUM(_regMask_enum, unsigned __int64)

#elif defined(_TARGET_ARM64_)

DECLARE_TYPED_ENUM(_regNumber_enum, unsigned)
{
#define REGDEF(name, rnum, mask, xname, wname) REG_##name = rnum,
#define REGALIAS(alias, realname) REG_##alias = REG_##realname,
#include "register.h"

    REG_COUNT, REG_NA = REG_COUNT, ACTUAL_REG_COUNT = REG_COUNT - 1 // everything but REG_STK (only real regs)
}
END_DECLARE_TYPED_ENUM(_regNumber_enum, unsigned)

DECLARE_TYPED_ENUM(_regMask_enum, unsigned __int64)
{
    RBM_NONE = 0,
#define REGDEF(name, rnum, mask, xname, wname) RBM_##name = mask,
#define REGALIAS(alias, realname) RBM_##alias = RBM_##realname,
#include "register.h"
}
END_DECLARE_TYPED_ENUM(_regMask_enum, unsigned __int64)

#elif defined(_TARGET_AMD64_)

DECLARE_TYPED_ENUM(_regNumber_enum, unsigned)
{
#define REGDEF(name, rnum, mask, sname) REG_##name = rnum,
#define REGALIAS(alias, realname) REG_##alias = REG_##realname,
#include "register.h"

    REG_COUNT, REG_NA = REG_COUNT, ACTUAL_REG_COUNT = REG_COUNT - 1 // everything but REG_STK (only real regs)
}
END_DECLARE_TYPED_ENUM(_regNumber_enum, unsigned)

DECLARE_TYPED_ENUM(_regMask_enum, unsigned)
{
    RBM_NONE = 0,

#define REGDEF(name, rnum, mask, sname) RBM_##name = mask,
#define REGALIAS(alias, realname) RBM_##alias = RBM_##realname,
#include "register.h"
}
END_DECLARE_TYPED_ENUM(_regMask_enum, unsigned)

#elif defined(_TARGET_X86_)

#ifndef LEGACY_BACKEND
DECLARE_TYPED_ENUM(_regNumber_enum, unsigned)
{
#define REGDEF(name, rnum, mask, sname) REG_##name = rnum,
#define REGALIAS(alias, realname) REG_##alias = REG_##realname,
#include "register.h"

    REG_COUNT, REG_NA = REG_COUNT, ACTUAL_REG_COUNT = REG_COUNT - 1 // everything but REG_STK (only real regs)
}
END_DECLARE_TYPED_ENUM(_regNumber_enum, unsigned)

DECLARE_TYPED_ENUM(_regMask_enum, unsigned)
{
    RBM_NONE = 0,

#define REGDEF(name, rnum, mask, sname) RBM_##name = mask,
#define REGALIAS(alias, realname) RBM_##alias = RBM_##realname,
#include "register.h"
}
END_DECLARE_TYPED_ENUM(_regMask_enum, unsigned)
#else // LEGACY_BACKEND
DECLARE_TYPED_ENUM(_regNumber_enum, unsigned)
{
#define REGDEF(name, rnum, mask, sname) REG_##name = rnum,
#define REGALIAS(alias, realname) REG_##alias = REG_##realname,
#include "register.h"

    REG_COUNT, REG_NA = REG_COUNT,
               ACTUAL_REG_COUNT = REG_COUNT - 1, // everything but REG_STK (only real regs)

#define REGDEF(name, rnum, mask, sname) REG_##name = rnum,
#include "registerfp.h"

        REG_FPCOUNT, REG_FPNONE = REG_FPCOUNT,

#define REGDEF(name, rnum, mask, sname) REG_##name = rnum,
#include "registerxmm.h"

               REG_XMMCOUNT
}
END_DECLARE_TYPED_ENUM(_regNumber_enum, unsigned)

DECLARE_TYPED_ENUM(_regMask_enum, unsigned)
{
    RBM_NONE = 0,

#define REGDEF(name, rnum, mask, sname) RBM_##name = mask,
#define REGALIAS(alias, realname) RBM_##alias = RBM_##realname,
#include "register.h"

#define REGDEF(name, rnum, mask, sname) RBM_##name = mask,
#include "registerfp.h"

#define REGDEF(name, rnum, mask, sname) RBM_##name = mask,
#include "registerxmm.h"
}
END_DECLARE_TYPED_ENUM(_regMask_enum, unsigned)

#endif // LEGACY_BACKEND
#else
#error Unsupported target architecture
#endif

/* The following are used to hold 'long' (64-bit integer) operands */

/*
    The following yield the number of bits and the mask of a register
    number in a register pair.
 */

#ifdef _TARGET_ARM_
#define REG_PAIR_NBITS 6
#else
#define REG_PAIR_NBITS 4
#endif
#define REG_PAIR_NMASK ((1 << REG_PAIR_NBITS) - 1)

#ifdef DEBUG
// Under DEBUG, we want to make sure that code doesn't accidentally confuse a reg pair value
// with a simple register number. Thus, we offset the reg pair numbers so they are distinct
// from all register numbers. Note that this increases the minimum size of a regPairNoSmall
// type due to the additional bits used for this offset.
#define REG_PAIR_FIRST (7 << REG_PAIR_NBITS)
#define REG_PAIR_NBITS_DEBUG                                                                                           \
    (REG_PAIR_NBITS +                                                                                                  \
     3) // extra bits needed by the debug shifting (3 instead of 0 because we shift "7", not "1", above).
C_ASSERT(REG_COUNT < REG_PAIR_FIRST); // make sure the register numbers (including REG_NA, ignoring fp/xmm regs on
                                      // x86/x64) are distinct from the pair numbers
#else
#define REG_PAIR_FIRST 0
#endif

DECLARE_TYPED_ENUM(_regPairNo_enum, unsigned)
{
#define PAIRDEF(rlo, rhi) REG_PAIR_##rlo##rhi = REG_##rlo + (REG_##rhi << REG_PAIR_NBITS) + REG_PAIR_FIRST,
#include "regpair.h"

    REG_PAIR_LAST = (REG_COUNT - 1) + ((REG_COUNT - 1) << REG_PAIR_NBITS) + REG_PAIR_FIRST,

    REG_PAIR_NONE = REG_PAIR_LAST + 1
}
END_DECLARE_TYPED_ENUM(_regPairNo_enum, unsigned)

enum regPairMask
{
#define PAIRDEF(rlo, rhi) RBM_PAIR_##rlo##rhi = (RBM_##rlo | RBM_##rhi),
#include "regpair.h"
};

/*****************************************************************************/

// TODO-Cleanup: The types defined below are mildly confusing: why are there both?
// regMaskSmall is large enough to represent the entire set of registers.
// If regMaskSmall is smaller than a "natural" integer type, regMaskTP is wider, based
// on a belief by the original authors of the JIT that in some situations it is more
// efficient to have the wider representation.  This belief should be tested, and if it
// is false, then we should coalesce these two types into one (the Small width, probably).
// In any case, we believe that is OK to freely cast between these types; no information will
// be lost.

#ifdef _TARGET_ARMARCH_
typedef unsigned __int64 regMaskTP;
#else
typedef unsigned       regMaskTP;
#endif

#if REGMASK_BITS == 8
typedef unsigned char regMaskSmall;
#define REG_MASK_INT_FMT "%02X"
#define REG_MASK_ALL_FMT "%02X"
#elif REGMASK_BITS == 16
typedef unsigned short regMaskSmall;
#define REG_MASK_INT_FMT "%04X"
#define REG_MASK_ALL_FMT "%04X"
#elif REGMASK_BITS == 32
typedef unsigned regMaskSmall;
#define REG_MASK_INT_FMT "%08X"
#define REG_MASK_ALL_FMT "%08X"
#else
typedef unsigned __int64 regMaskSmall;
#define REG_MASK_INT_FMT "%04llX"
#define REG_MASK_ALL_FMT "%016llX"
#endif

typedef _regNumber_enum regNumber;
typedef _regPairNo_enum regPairNo;

// LSRA currently converts freely between regNumber and regPairNo, so make sure they are the same size.
C_ASSERT(sizeof(regPairNo) == sizeof(regNumber));

typedef unsigned char regNumberSmall;

#ifdef DEBUG

// Under DEBUG, we shift the reg pair numbers to be independent of the regNumber range,
// so we need additional bits. See the definition of REG_PAIR_FIRST for details.

#if ((2 * REG_PAIR_NBITS) + REG_PAIR_NBITS_DEBUG) <= 16
C_ASSERT(((2 * REG_PAIR_NBITS) + REG_PAIR_NBITS_DEBUG) > 8); // assert that nobody fits in 8 bits
typedef unsigned short regPairNoSmall;                       // x86/x64: need 15 bits
#else
C_ASSERT(((2 * REG_PAIR_NBITS) + REG_PAIR_NBITS_DEBUG) <= 32);
typedef unsigned regPairNoSmall; // arm: need 21 bits
#endif

#else // DEBUG

#if (2 * REG_PAIR_NBITS) <= 8
typedef unsigned char  regPairNoSmall; // x86/x64: need 8 bits
#else
C_ASSERT((2 * REG_PAIR_NBITS) <= 16);  // assert that nobody needs more than 16 bits
typedef unsigned short regPairNoSmall; // arm: need 12 bits
#endif

#endif // DEBUG

/*****************************************************************************/

#define LEA_AVAILABLE 1
#define SCALED_ADDR_MODES 1

/*****************************************************************************/

#ifdef DEBUG
#define DSP_SRC_OPER_LEFT 0
#define DSP_SRC_OPER_RIGHT 1
#define DSP_DST_OPER_LEFT 1
#define DSP_DST_OPER_RIGHT 0
#endif

/*****************************************************************************/

// The pseudorandom nop insertion is not necessary for current CoreCLR scenarios
// #if defined(FEATURE_CORECLR) && !defined(_TARGET_ARM_)
// #define PSEUDORANDOM_NOP_INSERTION
// #endif

/*****************************************************************************/

// clang-format off
#if defined(_TARGET_X86_)

  #define CPU_LOAD_STORE_ARCH      0

#ifdef LEGACY_BACKEND
  #define CPU_LONG_USES_REGPAIR    1
#else
  #define CPU_LONG_USES_REGPAIR    0       // RyuJIT x86 doesn't use the regPairNo field to record register pairs for long
                                           // type tree nodes, and instead either decomposes them (for non-atomic operations)
                                           // or stores multiple regNumber values for operations such as calls where the
                                           // register definitions are effectively "atomic".
#endif // LEGACY_BACKEND

  #define CPU_HAS_FP_SUPPORT       1
  #define ROUND_FLOAT              1       // round intermed float expression results
  #define CPU_HAS_BYTE_REGS        1
  #define CPU_USES_BLOCK_MOVE      1 

#ifndef LEGACY_BACKEND
  // TODO-CQ: Fine tune the following xxBlk threshold values:

#define CPBLK_MOVS_LIMIT         16      // When generating code for CpBlk, this is the buffer size 
                                           // threshold to stop generating rep movs and switch to the helper call.
                                           // NOTE: Using rep movs is currently disabled since we found it has bad performance
                                           //       on pre-Ivy Bridge hardware.
                                           
  #define CPBLK_UNROLL_LIMIT       64      // Upper bound to let the code generator to loop unroll CpBlk.
  #define INITBLK_STOS_LIMIT       64      // When generating code for InitBlk, this is the buffer size 
                                           // NOTE: Using rep stos is currently disabled since we found it has bad performance
                                           //       on pre-Ivy Bridge hardware.
                                           // threshold to stop generating rep movs and switch to the helper call.
  #define INITBLK_UNROLL_LIMIT     128     // Upper bound to let the code generator to loop unroll InitBlk.
  #define CPOBJ_NONGC_SLOTS_LIMIT  4       // For CpObj code generation, this is the the threshold of the number 
                                           // of contiguous non-gc slots that trigger generating rep movsq instead of 
                                           // sequences of movsq instructions
                                           // The way we're currently disabling rep movs/stos is by setting a limit less than
                                           // its unrolling counterparts.  When lower takes the decision on which one to make it
                                           // always asks for the unrolling limit first so you can say the JIT 'favors' unrolling.
                                           // Setting the limit to something lower than that makes lower to never consider it.

#endif // !LEGACY_BACKEND

#ifdef FEATURE_SIMD
  #define ALIGN_SIMD_TYPES         1       // whether SIMD type locals are to be aligned
#endif // FEATURE_SIMD

  #define FEATURE_WRITE_BARRIER    1       // Generate the proper WriteBarrier calls for GC
  #define FEATURE_FIXED_OUT_ARGS   0       // X86 uses push instructions to pass args
  #define FEATURE_STRUCTPROMOTE    1       // JIT Optimization to promote fields of structs into registers
  #define FEATURE_MULTIREG_STRUCT_PROMOTE  0  // True when we want to promote fields of a multireg struct into registers
  #define FEATURE_FASTTAILCALL     0       // Tail calls made as epilog+jmp
  #define FEATURE_TAILCALL_OPT     0       // opportunistic Tail calls (without ".tail" prefix) made as fast tail calls.
  #define FEATURE_SET_FLAGS        0       // Set to true to force the JIT to mark the trees with GTF_SET_FLAGS when
                                           // the flags need to be set
#ifdef LEGACY_BACKEND
  #define FEATURE_MULTIREG_ARGS_OR_RET  0  // Support for passing and/or returning single values in more than one register
  #define FEATURE_MULTIREG_ARGS         0  // Support for passing a single argument in more than one register  
  #define FEATURE_MULTIREG_RET          0  // Support for returning a single value in more than one register
  #define MAX_PASS_MULTIREG_BYTES       0  // No multireg arguments 
  #define MAX_RET_MULTIREG_BYTES        0  // No multireg return values 
#else
  #define FEATURE_MULTIREG_ARGS_OR_RET  1  // Support for passing and/or returning single values in more than one register
  #define FEATURE_MULTIREG_ARGS         0  // Support for passing a single argument in more than one register  
  #define FEATURE_MULTIREG_RET          1  // Support for returning a single value in more than one register
  #define MAX_PASS_MULTIREG_BYTES       0  // No multireg arguments (note this seems wrong as MAX_ARG_REG_COUNT is 2)
  #define MAX_RET_MULTIREG_BYTES        8  // Maximum size of a struct that could be returned in more than one register
#endif

  #define MAX_ARG_REG_COUNT             2  // Maximum registers used to pass an argument.
  #define MAX_RET_REG_COUNT             2  // Maximum registers used to return a value.

#ifdef FEATURE_USE_ASM_GC_WRITE_BARRIERS
  #define NOGC_WRITE_BARRIERS      1       // We have specialized WriteBarrier JIT Helpers that DO-NOT trash the
                                           // RBM_CALLEE_TRASH registers
#else
  #define NOGC_WRITE_BARRIERS      0       // Do not modify this -- modify the definition above.  (If we're not using
                                           // ASM barriers we definitely don't have NOGC barriers).
#endif
  #define USER_ARGS_COME_LAST      0
  #define EMIT_TRACK_STACK_DEPTH   1
  #define TARGET_POINTER_SIZE      4       // equal to sizeof(void*) and the managed pointer size in bytes for this
                                           // target
  #define FEATURE_EH               1       // To aid platform bring-up, eliminate exceptional EH clauses (catch, filter,
                                           // filter-handler, fault) and directly execute 'finally' clauses.
#if defined(FEATURE_PAL) && !defined(LEGACY_BACKEND)
  #define FEATURE_EH_FUNCLETS      1
#else  // FEATURE_PAL && !LEGACY_BACKEND
  #define FEATURE_EH_FUNCLETS      0
#endif // FEATURE_PAL && !LEGACY_BACKEND
  #define FEATURE_EH_CALLFINALLY_THUNKS 0  // Generate call-to-finally code in "thunks" in the enclosing EH region,
                                           // protected by "cloned finally" clauses.
#ifndef LEGACY_BACKEND
  #define FEATURE_STACK_FP_X87     0
#else // LEGACY_BACKEND
  #define FEATURE_STACK_FP_X87     1       // Use flat register file model    
#endif // LEGACY_BACKEND
  #define FEATURE_X87_DOUBLES      0       // FP tree temps always use x87 doubles (when 1) or can be double or float
                                           // (when 0).
  #define ETW_EBP_FRAMED           1       // if 1 we cannot use EBP as a scratch register and must create EBP based
                                           // frames for most methods
  #define CSE_CONSTS               1       // Enable if we want to CSE constants

#ifndef LEGACY_BACKEND
  // The following defines are useful for iterating a regNumber
  #define REG_FIRST                REG_EAX
  #define REG_INT_FIRST            REG_EAX
  #define REG_INT_LAST             REG_EDI
  #define REG_INT_COUNT            (REG_INT_LAST - REG_INT_FIRST + 1)
  #define REG_NEXT(reg)           ((regNumber)((unsigned)(reg) + 1))
  #define REG_PREV(reg)           ((regNumber)((unsigned)(reg) - 1))

  #define REG_FP_FIRST             REG_XMM0
  #define REG_FP_LAST              REG_XMM7
  #define FIRST_FP_ARGREG          REG_XMM0
  #define LAST_FP_ARGREG           REG_XMM3
  #define REG_FLTARG_0             REG_XMM0
  #define REG_FLTARG_1             REG_XMM1
  #define REG_FLTARG_2             REG_XMM2
  #define REG_FLTARG_3             REG_XMM3

  #define RBM_FLTARG_0             RBM_XMM0
  #define RBM_FLTARG_1             RBM_XMM1
  #define RBM_FLTARG_2             RBM_XMM2
  #define RBM_FLTARG_3             RBM_XMM3

  #define RBM_FLTARG_REGS         (RBM_FLTARG_0|RBM_FLTARG_1|RBM_FLTARG_2|RBM_FLTARG_3)

  #define RBM_ALLFLOAT            (RBM_XMM0 | RBM_XMM1 | RBM_XMM2 | RBM_XMM3 | RBM_XMM4 | RBM_XMM5 | RBM_XMM6 | RBM_XMM7)
  #define RBM_ALLDOUBLE            RBM_ALLFLOAT

  // TODO-CQ: Currently we are following the x86 ABI for SSE2 registers.
  // This should be reconsidered.
  #define RBM_FLT_CALLEE_SAVED     RBM_NONE
  #define RBM_FLT_CALLEE_TRASH     RBM_ALLFLOAT
  #define REG_VAR_ORDER_FLT        REG_XMM0, REG_XMM1, REG_XMM2, REG_XMM3, REG_XMM4, REG_XMM5, REG_XMM6, REG_XMM7

  #define REG_FLT_CALLEE_SAVED_FIRST   REG_XMM6
  #define REG_FLT_CALLEE_SAVED_LAST    REG_XMM7

  #define XMM_REGSIZE_BYTES        16      // XMM register size in bytes
  #define YMM_REGSIZE_BYTES        32      // YMM register size in bytes

  #define REGNUM_BITS              6       // number of bits in a REG_*
  #define TINY_REGNUM_BITS         6       // number used in a tiny instrdesc (same)

#else // LEGACY_BACKEND
  #define FEATURE_FP_REGALLOC      0       // Enabled if RegAlloc is used to enregister Floating Point LclVars      

  #define FP_STK_SIZE              8
  #define RBM_ALLFLOAT            (RBM_FPV0 | RBM_FPV1 | RBM_FPV2 | RBM_FPV3 | RBM_FPV4 | RBM_FPV5 | RBM_FPV6)
  #define REG_FP_FIRST             REG_FPV0
  #define REG_FP_LAST              REG_FPV7
  #define FIRST_FP_ARGREG          REG_NA
  #define LAST_FP_ARGREG           REG_NA


  #define REGNUM_BITS              3       // number of bits in a REG_*
  #define TINY_REGNUM_BITS         3       
  #define REGMASK_BITS             8       // number of bits in a REGNUM_MASK

  #define RBM_FLTARG_REGS          0
  #define RBM_FLT_CALLEE_SAVED     0
  #define RBM_FLT_CALLEE_TRASH     0

#endif // LEGACY_BACKEND

  #define REGSIZE_BYTES            4       // number of bytes in one register
  #define MIN_ARG_AREA_FOR_CALL    0       // Minimum required outgoing argument space for a call.

  #define CODE_ALIGN               1       // code alignment requirement
#if !defined(UNIX_X86_ABI)
  #define STACK_ALIGN              4       // stack alignment requirement
  #define STACK_ALIGN_SHIFT        2       // Shift-right amount to convert stack size in bytes to size in DWORD_PTRs
  #define STACK_ALIGN_SHIFT_ALL    2       // Shift-right amount to convert stack size in bytes to size in STACK_ALIGN units
#else
  #define STACK_ALIGN              16      // stack alignment requirement
  #define STACK_ALIGN_SHIFT        4       // Shift-right amount to convert stack size in bytes to size in DWORD_PTRs
  #define STACK_ALIGN_SHIFT_ALL    4       // Shift-right amount to convert stack size in bytes to size in STACK_ALIGN units
#endif // !UNIX_X86_ABI

  #define RBM_INT_CALLEE_SAVED    (RBM_EBX|RBM_ESI|RBM_EDI)
  #define RBM_INT_CALLEE_TRASH    (RBM_EAX|RBM_ECX|RBM_EDX)

  #define RBM_CALLEE_SAVED        (RBM_INT_CALLEE_SAVED | RBM_FLT_CALLEE_SAVED)
  #define RBM_CALLEE_TRASH        (RBM_INT_CALLEE_TRASH | RBM_FLT_CALLEE_TRASH)

  #define RBM_ALLINT              (RBM_INT_CALLEE_SAVED | RBM_INT_CALLEE_TRASH)

  #define REG_VAR_ORDER            REG_EAX,REG_EDX,REG_ECX,REG_ESI,REG_EDI,REG_EBX
  #define MAX_VAR_ORDER_SIZE       6
  #define REG_TMP_ORDER            REG_EAX,REG_EDX,REG_ECX,REG_EBX,REG_ESI,REG_EDI
  #define RBM_TMP_ORDER            RBM_EAX,RBM_EDX,RBM_ECX,RBM_EBX,RBM_ESI,RBM_EDI
  #define REG_TMP_ORDER_COUNT      6

  #define REG_PREDICT_ORDER        REG_EAX,REG_EDX,REG_ECX,REG_EBX,REG_ESI,REG_EDI

  // The order here is fixed: it must agree with an order assumed in eetwain...
  #define REG_CALLEE_SAVED_ORDER   REG_EDI,REG_ESI,REG_EBX,REG_EBP
  #define RBM_CALLEE_SAVED_ORDER   RBM_EDI,RBM_ESI,RBM_EBX,RBM_EBP

  #define CNT_CALLEE_SAVED        (4)
  #define CNT_CALLEE_TRASH        (3)
  #define CNT_CALLEE_ENREG        (CNT_CALLEE_SAVED-1)

  #define CNT_CALLEE_SAVED_FLOAT  (0)
  #define CNT_CALLEE_TRASH_FLOAT  (6)

  #define CALLEE_SAVED_REG_MAXSZ  (CNT_CALLEE_SAVED*REGSIZE_BYTES)  // EBX,ESI,EDI,EBP

  // We reuse the ESP register as a illegal value in the register predictor
  #define RBM_ILLEGAL              RBM_ESP
  // We reuse the ESP register as a flag for last use handling in the register predictor
  #define RBM_LASTUSE              RBM_ESP
  // We're using the encoding for ESP to indicate a half-long on the frame
  #define REG_L_STK                REG_ESP

  //  This is the first register in REG_TMP_ORDER
  #define REG_TMP_0                REG_EAX
  #define RBM_TMP_0                RBM_EAX

  //  This is the second register in REG_TMP_ORDER
  #define REG_TMP_1                REG_EDX
  #define RBM_TMP_1                RBM_EDX

  #define REG_PAIR_TMP             REG_PAIR_EAXEDX
  #define REG_PAIR_TMP_REVERSE     REG_PAIR_EDXEAX
  #define RBM_PAIR_TMP             (RBM_EAX|RBM_EDX)
  #define REG_PAIR_TMP_LO          REG_EAX
  #define RBM_PAIR_TMP_LO          RBM_EAX
  #define REG_PAIR_TMP_HI          REG_EDX
  #define RBM_PAIR_TMP_HI          RBM_EDX
  #define PREDICT_PAIR_TMP         PREDICT_PAIR_EAXEDX
  #define PREDICT_PAIR_TMP_LO      PREDICT_REG_EAX

  // Used when calling the 64-bit Variable shift helper
  #define REG_LNGARG_0             REG_PAIR_EAXEDX
  #define RBM_LNGARG_0            (RBM_EAX|RBM_EDX)
  #define PREDICT_PAIR_LNGARG_0    PREDICT_PAIR_EAXEDX

  #define REG_LNGARG_LO             REG_EAX
  #define RBM_LNGARG_LO             RBM_EAX
  #define REG_LNGARG_HI             REG_EDX
  #define RBM_LNGARG_HI             RBM_EDX
  // register to hold shift amount
  #define REG_SHIFT                REG_ECX
  #define RBM_SHIFT                RBM_ECX
  #define PREDICT_REG_SHIFT        PREDICT_REG_ECX
  
  // register to hold shift amount when shifting 64-bit values
  #define REG_SHIFT_LNG            REG_ECX
  #define RBM_SHIFT_LNG            RBM_ECX
  #define PREDICT_REG_SHIFT_LNG    PREDICT_REG_ECX
  
  // This is a general scratch register that does not conflict with the argument registers
  #define REG_SCRATCH              REG_EAX
  #define RBM_SCRATCH              RBM_EAX

  // Where is the exception object on entry to the handler block?
  #define REG_EXCEPTION_OBJECT     REG_EAX
  #define RBM_EXCEPTION_OBJECT     RBM_EAX

  // Only used on ARM for GTF_CALL_M_VIRTSTUB_REL_INDIRECT
  #define REG_JUMP_THUNK_PARAM     REG_EAX
  #define RBM_JUMP_THUNK_PARAM     RBM_EAX

#if NOGC_WRITE_BARRIERS
  #define REG_WRITE_BARRIER        REG_EDX
  #define RBM_WRITE_BARRIER        RBM_EDX

  // We don't allow using ebp as a source register. Maybe we should only prevent this for ETW_EBP_FRAMED (but that is always set right now).
  #define RBM_WRITE_BARRIER_SRC    (RBM_EAX|RBM_ECX|RBM_EBX|RBM_ESI|RBM_EDI)

  #define RBM_CALLEE_TRASH_NOGC    RBM_EDX
#endif // NOGC_WRITE_BARRIERS

  // GenericPInvokeCalliHelper unmanaged target parameter
  #define REG_PINVOKE_TARGET_PARAM REG_EAX
  #define RBM_PINVOKE_TARGET_PARAM RBM_EAX

  // GenericPInvokeCalliHelper cookie parameter
  #define REG_PINVOKE_COOKIE_PARAM REG_STK

  // IL stub's secret parameter (JitFlags::JIT_FLAG_PUBLISH_SECRET_PARAM)
  #define REG_SECRET_STUB_PARAM    REG_EAX
  #define RBM_SECRET_STUB_PARAM    RBM_EAX

  // VSD extra parameter
  #define REG_VIRTUAL_STUB_PARAM   REG_EAX
  #define RBM_VIRTUAL_STUB_PARAM   RBM_EAX
  #define PREDICT_REG_VIRTUAL_STUB_PARAM  PREDICT_REG_EAX

  // VSD target address register
  #define REG_VIRTUAL_STUB_TARGET  REG_EAX
  #define RBM_VIRTUAL_STUB_TARGET  RBM_EAX

  // Registers used by PInvoke frame setup
  #define REG_PINVOKE_FRAME        REG_EDI      // EDI is p/invoke "Frame" pointer argument to CORINFO_HELP_INIT_PINVOKE_FRAME helper
  #define RBM_PINVOKE_FRAME        RBM_EDI
  #define REG_PINVOKE_TCB          REG_ESI      // ESI is set to Thread Control Block (TCB) on return from
                                                // CORINFO_HELP_INIT_PINVOKE_FRAME helper
  #define RBM_PINVOKE_TCB          RBM_ESI
  #define REG_PINVOKE_SCRATCH      REG_EAX      // EAX is trashed by CORINFO_HELP_INIT_PINVOKE_FRAME helper
  #define RBM_PINVOKE_SCRATCH      RBM_EAX

#ifdef LEGACY_BACKEND
  #define REG_SPILL_CHOICE         REG_EAX
  #define RBM_SPILL_CHOICE         RBM_EAX
#endif // LEGACY_BACKEND

  // The following defines are useful for iterating a regNumber
  #define REG_FIRST                REG_EAX
  #define REG_INT_FIRST            REG_EAX
  #define REG_INT_LAST             REG_EDI
  #define REG_INT_COUNT            (REG_INT_LAST - REG_INT_FIRST + 1)
  #define REG_NEXT(reg)           ((regNumber)((unsigned)(reg) + 1))
  #define REG_PREV(reg)           ((regNumber)((unsigned)(reg) - 1))

  // genCodeForCall() moves the target address of the tailcall into this register, before pushing it on the stack
  #define REG_TAILCALL_ADDR        REG_EAX

  // Which register are int and long values returned in ?
  #define REG_INTRET               REG_EAX
  #define RBM_INTRET               RBM_EAX
  #define REG_LNGRET               REG_PAIR_EAXEDX
  #define RBM_LNGRET              (RBM_EDX|RBM_EAX)
  #define REG_LNGRET_LO            REG_EAX
  #define RBM_LNGRET_LO            RBM_EAX
  #define REG_LNGRET_HI            REG_EDX
  #define RBM_LNGRET_HI            RBM_EDX

  #define REG_FLOATRET             REG_NA
  #define RBM_FLOATRET             RBM_NONE
  #define RBM_DOUBLERET            RBM_NONE

  // The registers trashed by the CORINFO_HELP_STOP_FOR_GC helper
  #define RBM_STOP_FOR_GC_TRASH    RBM_CALLEE_TRASH

  // The registers trashed by the CORINFO_HELP_INIT_PINVOKE_FRAME helper. On x86, this helper has a custom calling
  // convention that takes EDI as argument (but doesn't trash it), trashes EAX, and returns ESI.
  #define RBM_INIT_PINVOKE_FRAME_TRASH  (RBM_PINVOKE_SCRATCH | RBM_PINVOKE_TCB)

  #define REG_FPBASE               REG_EBP
  #define RBM_FPBASE               RBM_EBP
  #define STR_FPBASE               "ebp"
  #define REG_SPBASE               REG_ESP
  #define RBM_SPBASE               RBM_ESP
  #define STR_SPBASE               "esp"

  #define FIRST_ARG_STACK_OFFS    (2*REGSIZE_BYTES)   // Caller's saved EBP and return address

  #define MAX_REG_ARG              2
  #define MAX_FLOAT_REG_ARG        0
  #define REG_ARG_FIRST            REG_ECX
  #define REG_ARG_LAST             REG_EDX
  #define INIT_ARG_STACK_SLOT      0                  // No outgoing reserved stack slots

  #define REG_ARG_0                REG_ECX
  #define REG_ARG_1                REG_EDX

  SELECTANY const regNumber intArgRegs [] = {REG_ECX, REG_EDX};
  SELECTANY const regMaskTP intArgMasks[] = {RBM_ECX, RBM_EDX};
#if !FEATURE_STACK_FP_X87
  SELECTANY const regNumber fltArgRegs [] = {REG_XMM0, REG_XMM1, REG_XMM2, REG_XMM3};
  SELECTANY const regMaskTP fltArgMasks[] = {RBM_XMM0, RBM_XMM1, RBM_XMM2, RBM_XMM3};
#endif // FEATURE_STACK_FP_X87

  #define RBM_ARG_0                RBM_ECX
  #define RBM_ARG_1                RBM_EDX

  #define RBM_ARG_REGS            (RBM_ARG_0|RBM_ARG_1)

  // The registers trashed by profiler enter/leave/tailcall hook
  // See vm\i386\asmhelpers.asm for more details.
  #define RBM_PROFILER_ENTER_TRASH     RBM_NONE
  #define RBM_PROFILER_LEAVE_TRASH     RBM_NONE
  #define RBM_PROFILER_TAILCALL_TRASH  (RBM_ALLINT & ~RBM_ARG_REGS)

  // What sort of reloc do we use for [disp32] address mode
  #define IMAGE_REL_BASED_DISP32   IMAGE_REL_BASED_HIGHLOW

  // What sort of reloc to we use for 'moffset' address mode (for 'mov eax, moffset' or 'mov moffset, eax')
  #define IMAGE_REL_BASED_MOFFSET  IMAGE_REL_BASED_HIGHLOW

  // Pointer-sized string move instructions
  #define INS_movsp                INS_movsd
  #define INS_r_movsp              INS_r_movsd
  #define INS_stosp                INS_stosd
  #define INS_r_stosp              INS_r_stosd

#elif defined(_TARGET_AMD64_)
  // TODO-AMD64-CQ: Fine tune the following xxBlk threshold values:
 
  #define CPU_LOAD_STORE_ARCH      0
  #define CPU_LONG_USES_REGPAIR    0
  #define CPU_HAS_FP_SUPPORT       1
  #define ROUND_FLOAT              0       // Do not round intermed float expression results
  #define CPU_HAS_BYTE_REGS        0
  #define CPU_USES_BLOCK_MOVE      1 

  #define CPBLK_MOVS_LIMIT         16      // When generating code for CpBlk, this is the buffer size 
                                           // threshold to stop generating rep movs and switch to the helper call.
                                           // NOTE: Using rep movs is currently disabled since we found it has bad performance
                                           //       on pre-Ivy Bridge hardware.
                                           
  #define CPBLK_UNROLL_LIMIT       64      // Upper bound to let the code generator to loop unroll CpBlk.
  #define INITBLK_STOS_LIMIT       64      // When generating code for InitBlk, this is the buffer size 
                                           // NOTE: Using rep stos is currently disabled since we found it has bad performance
                                           //       on pre-Ivy Bridge hardware.
                                           // threshold to stop generating rep movs and switch to the helper call.
  #define INITBLK_UNROLL_LIMIT     128     // Upper bound to let the code generator to loop unroll InitBlk.
  #define CPOBJ_NONGC_SLOTS_LIMIT  4       // For CpObj code generation, this is the the threshold of the number 
                                           // of contiguous non-gc slots that trigger generating rep movsq instead of 
                                           // sequences of movsq instructions

                                           // The way we're currently disabling rep movs/stos is by setting a limit less than
                                           // its unrolling counterparts.  When lower takes the decision on which one to make it
                                           // always asks for the unrolling limit first so you can say the JIT 'favors' unrolling.
                                           // Setting the limit to something lower than that makes lower to never consider it.


#ifdef FEATURE_SIMD
  #define ALIGN_SIMD_TYPES         1       // whether SIMD type locals are to be aligned
#if defined(UNIX_AMD64_ABI) || !defined(FEATURE_AVX_SUPPORT)
  #define FEATURE_PARTIAL_SIMD_CALLEE_SAVE 0 // Whether SIMD registers are partially saved at calls
#else // !UNIX_AMD64_ABI && !FEATURE_AVX_SUPPORT
  #define FEATURE_PARTIAL_SIMD_CALLEE_SAVE 1 // Whether SIMD registers are partially saved at calls
#endif // !UNIX_AMD64_ABI
#endif
  #define FEATURE_WRITE_BARRIER    1       // Generate the WriteBarrier calls for GC (currently not the x86-style register-customized barriers)
  #define FEATURE_FIXED_OUT_ARGS   1       // Preallocate the outgoing arg area in the prolog
  #define FEATURE_STRUCTPROMOTE    1       // JIT Optimization to promote fields of structs into registers
  #define FEATURE_MULTIREG_STRUCT_PROMOTE  0  // True when we want to promote fields of a multireg struct into registers
  #define FEATURE_FASTTAILCALL     1       // Tail calls made as epilog+jmp
  #define FEATURE_TAILCALL_OPT     1       // opportunistic Tail calls (i.e. without ".tail" prefix) made as fast tail calls.
  #define FEATURE_SET_FLAGS        0       // Set to true to force the JIT to mark the trees with GTF_SET_FLAGS when the flags need to be set
#ifdef    UNIX_AMD64_ABI
  #define FEATURE_MULTIREG_ARGS_OR_RET  1  // Support for passing and/or returning single values in more than one register
  #define FEATURE_MULTIREG_ARGS         1  // Support for passing a single argument in more than one register  
  #define FEATURE_MULTIREG_RET          1  // Support for returning a single value in more than one register
  #define FEATURE_STRUCT_CLASSIFIER     1  // Uses a classifier function to determine if structs are passed/returned in more than one register
  #define MAX_PASS_MULTIREG_BYTES      32  // Maximum size of a struct that could be passed in more than one register (Max is two SIMD16s)
  #define MAX_RET_MULTIREG_BYTES       32  // Maximum size of a struct that could be returned in more than one register  (Max is two SIMD16s)
  #define MAX_ARG_REG_COUNT             2  // Maximum registers used to pass a single argument in multiple registers.
  #define MAX_RET_REG_COUNT             2  // Maximum registers used to return a value.
#else // !UNIX_AMD64_ABI
  #define WINDOWS_AMD64_ABI                // Uses the Windows ABI for AMD64
  #define FEATURE_MULTIREG_ARGS_OR_RET  0  // Support for passing and/or returning single values in more than one register
  #define FEATURE_MULTIREG_ARGS         0  // Support for passing a single argument in more than one register  
  #define FEATURE_MULTIREG_RET          0  // Support for returning a single value in more than one register
  #define MAX_PASS_MULTIREG_BYTES       0  // No multireg arguments 
  #define MAX_RET_MULTIREG_BYTES        0  // No multireg return values 
  #define MAX_ARG_REG_COUNT             1  // Maximum registers used to pass a single argument (no arguments are passed using multiple registers)
  #define MAX_RET_REG_COUNT             1  // Maximum registers used to return a value.
#endif // !UNIX_AMD64_ABI

#ifdef FEATURE_USE_ASM_GC_WRITE_BARRIERS
  #define NOGC_WRITE_BARRIERS      0       // We DO-NOT have specialized WriteBarrier JIT Helpers that DO-NOT trash the RBM_CALLEE_TRASH registers
#else
  #define NOGC_WRITE_BARRIERS      0       // Do not modify this -- modify the definition above.  (If we're not using ASM barriers we definitely don't have NOGC barriers).
#endif
  #define USER_ARGS_COME_LAST      1
  #define EMIT_TRACK_STACK_DEPTH   1
  #define TARGET_POINTER_SIZE      8       // equal to sizeof(void*) and the managed pointer size in bytes for this target
  #define FEATURE_EH               1       // To aid platform bring-up, eliminate exceptional EH clauses (catch, filter, filter-handler, fault) and directly execute 'finally' clauses.
  #define FEATURE_EH_FUNCLETS      1
  #define FEATURE_EH_CALLFINALLY_THUNKS 1  // Generate call-to-finally code in "thunks" in the enclosing EH region, protected by "cloned finally" clauses.
  #define FEATURE_STACK_FP_X87     0 
#ifdef    UNIX_AMD64_ABI
  #define ETW_EBP_FRAMED           1       // if 1 we cannot use EBP as a scratch register and must create EBP based frames for most methods
#else // !UNIX_AMD64_ABI
  #define ETW_EBP_FRAMED           0       // if 1 we cannot use EBP as a scratch register and must create EBP based frames for most methods
#endif // !UNIX_AMD64_ABI
  #define FEATURE_FP_REGALLOC      0       // Enabled if RegAlloc is used to enregister Floating Point LclVars  
  #define CSE_CONSTS               1       // Enable if we want to CSE constants

  #define RBM_ALLFLOAT            (RBM_XMM0 | RBM_XMM1 | RBM_XMM2 | RBM_XMM3 | RBM_XMM4 | RBM_XMM5 | RBM_XMM6 | RBM_XMM7 | RBM_XMM8 | RBM_XMM9 | RBM_XMM10 | RBM_XMM11 | RBM_XMM12 | RBM_XMM13 | RBM_XMM14 | RBM_XMM15)
  #define RBM_ALLDOUBLE            RBM_ALLFLOAT
  #define REG_FP_FIRST             REG_XMM0
  #define REG_FP_LAST              REG_XMM15
  #define FIRST_FP_ARGREG          REG_XMM0

#ifdef    UNIX_AMD64_ABI
  #define LAST_FP_ARGREG        REG_XMM7
#else // !UNIX_AMD64_ABI
  #define LAST_FP_ARGREG        REG_XMM3
#endif // !UNIX_AMD64_ABI

  #define REGNUM_BITS              6       // number of bits in a REG_*
  #define TINY_REGNUM_BITS         6       // number used in a tiny instrdesc (same)
  #define REGMASK_BITS             32      // number of bits in a REGNUM_MASK
  #define REGSIZE_BYTES            8       // number of bytes in one register
  #define XMM_REGSIZE_BYTES        16      // XMM register size in bytes
  #define YMM_REGSIZE_BYTES        32      // YMM register size in bytes

  #define CODE_ALIGN               1       // code alignment requirement
  #define STACK_ALIGN              16      // stack alignment requirement
  #define STACK_ALIGN_SHIFT        3       // Shift-right amount to convert stack size in bytes to size in pointer sized words
  #define STACK_ALIGN_SHIFT_ALL    4       // Shift-right amount to convert stack size in bytes to size in STACK_ALIGN units

#if ETW_EBP_FRAMED
  #define RBM_ETW_FRAMED_EBP        RBM_NONE
  #define RBM_ETW_FRAMED_EBP_LIST
  #define REG_ETW_FRAMED_EBP_LIST
  #define REG_ETW_FRAMED_EBP_COUNT  0
#else // !ETW_EBP_FRAMED
  #define RBM_ETW_FRAMED_EBP        RBM_EBP
  #define RBM_ETW_FRAMED_EBP_LIST   RBM_EBP,
  #define REG_ETW_FRAMED_EBP_LIST   REG_EBP,
  #define REG_ETW_FRAMED_EBP_COUNT  1
#endif // !ETW_EBP_FRAMED

#ifdef UNIX_AMD64_ABI
  #define MIN_ARG_AREA_FOR_CALL   0       // Minimum required outgoing argument space for a call.

  #define RBM_INT_CALLEE_SAVED    (RBM_EBX|RBM_ETW_FRAMED_EBP|RBM_R12|RBM_R13|RBM_R14|RBM_R15)
  #define RBM_INT_CALLEE_TRASH    (RBM_EAX|RBM_RDI|RBM_RSI|RBM_EDX|RBM_ECX|RBM_R8|RBM_R9|RBM_R10|RBM_R11)
  #define RBM_FLT_CALLEE_SAVED    (0)
  #define RBM_FLT_CALLEE_TRASH    (RBM_XMM0|RBM_XMM1|RBM_XMM2|RBM_XMM3|RBM_XMM4|RBM_XMM5|RBM_XMM6|RBM_XMM7| \
                                   RBM_XMM8|RBM_XMM9|RBM_XMM10|RBM_XMM11|RBM_XMM12|RBM_XMM13|RBM_XMM14|RBM_XMM15)
#else // !UNIX_AMD64_ABI
#define MIN_ARG_AREA_FOR_CALL     (4 * REGSIZE_BYTES)       // Minimum required outgoing argument space for a call.

  #define RBM_INT_CALLEE_SAVED    (RBM_EBX|RBM_ESI|RBM_EDI|RBM_ETW_FRAMED_EBP|RBM_R12|RBM_R13|RBM_R14|RBM_R15)
  #define RBM_INT_CALLEE_TRASH    (RBM_EAX|RBM_ECX|RBM_EDX|RBM_R8|RBM_R9|RBM_R10|RBM_R11)
  #define RBM_FLT_CALLEE_SAVED    (RBM_XMM6|RBM_XMM7|RBM_XMM8|RBM_XMM9|RBM_XMM10|RBM_XMM11|RBM_XMM12|RBM_XMM13|RBM_XMM14|RBM_XMM15)
  #define RBM_FLT_CALLEE_TRASH    (RBM_XMM0|RBM_XMM1|RBM_XMM2|RBM_XMM3|RBM_XMM4|RBM_XMM5)
#endif // !UNIX_AMD64_ABI
  
  #define REG_FLT_CALLEE_SAVED_FIRST   REG_XMM6
  #define REG_FLT_CALLEE_SAVED_LAST    REG_XMM15

  #define RBM_CALLEE_TRASH        (RBM_INT_CALLEE_TRASH | RBM_FLT_CALLEE_TRASH)
  #define RBM_CALLEE_SAVED        (RBM_INT_CALLEE_SAVED | RBM_FLT_CALLEE_SAVED)      

  #define RBM_CALLEE_TRASH_NOGC   RBM_CALLEE_TRASH

  #define RBM_ALLINT              (RBM_INT_CALLEE_SAVED | RBM_INT_CALLEE_TRASH)

#if 0
#define REG_VAR_ORDER            REG_EAX,REG_EDX,REG_ECX,REG_ESI,REG_EDI,REG_EBX,REG_ETW_FRAMED_EBP_LIST \
                                 REG_R8,REG_R9,REG_R10,REG_R11,REG_R14,REG_R15,REG_R12,REG_R13
#else
  // TEMPORARY ORDER TO AVOID CALLEE-SAVES
  // TODO-CQ: Review this and set appropriately
#ifdef UNIX_AMD64_ABI
  #define REG_VAR_ORDER          REG_EAX,REG_EDI,REG_ESI, \
                                 REG_EDX,REG_ECX,REG_R8,REG_R9, \
                                 REG_R10,REG_R11,REG_EBX,REG_ETW_FRAMED_EBP_LIST \
                                 REG_R14,REG_R15,REG_R12,REG_R13
#else // !UNIX_AMD64_ABI
  #define REG_VAR_ORDER          REG_EAX,REG_EDX,REG_ECX, \
                                 REG_R8,REG_R9,REG_R10,REG_R11, \
                                 REG_ESI,REG_EDI,REG_EBX,REG_ETW_FRAMED_EBP_LIST \
                                 REG_R14,REG_R15,REG_R12,REG_R13
#endif // !UNIX_AMD64_ABI
#endif

  #define REG_VAR_ORDER_FLT      REG_XMM0,REG_XMM1,REG_XMM2,REG_XMM3,REG_XMM4,REG_XMM5,REG_XMM6,REG_XMM7,REG_XMM8,REG_XMM9,REG_XMM10,REG_XMM11,REG_XMM12,REG_XMM13,REG_XMM14,REG_XMM15

#ifdef UNIX_AMD64_ABI
  #define REG_TMP_ORDER          REG_EAX,REG_EDI,REG_ESI,REG_EDX,REG_ECX,REG_EBX,REG_ETW_FRAMED_EBP_LIST \
                                 REG_R8,REG_R9,REG_R10,REG_R11,REG_R14,REG_R15,REG_R12,REG_R13
#else // !UNIX_AMD64_ABI
  #define MAX_VAR_ORDER_SIZE     (14 + REG_ETW_FRAMED_EBP_COUNT)
  #define REG_TMP_ORDER          REG_EAX,REG_EDX,REG_ECX,REG_EBX,REG_ESI,REG_EDI,REG_ETW_FRAMED_EBP_LIST \
                                 REG_R8,REG_R9,REG_R10,REG_R11,REG_R14,REG_R15,REG_R12,REG_R13
#endif // !UNIX_AMD64_ABI

#ifdef UNIX_AMD64_ABI
  #define REG_PREDICT_ORDER        REG_EAX,REG_EDI,REG_ESI,REG_EDX,REG_ECX,REG_EBX,REG_ETW_FRAMED_EBP_LIST \
                                   REG_R8,REG_R9,REG_R10,REG_R11,REG_R14,REG_R15,REG_R12,REG_R13
  #define CNT_CALLEE_SAVED         (5 + REG_ETW_FRAMED_EBP_COUNT)
  #define CNT_CALLEE_TRASH         (9)
  #define CNT_CALLEE_ENREG         (CNT_CALLEE_SAVED)

  #define CNT_CALLEE_SAVED_FLOAT   (0)
  #define CNT_CALLEE_TRASH_FLOAT   (16)

  #define REG_CALLEE_SAVED_ORDER   REG_EBX,REG_ETW_FRAMED_EBP_LIST REG_R12,REG_R13,REG_R14,REG_R15
  #define RBM_CALLEE_SAVED_ORDER   RBM_EBX,RBM_ETW_FRAMED_EBP_LIST RBM_R12,RBM_R13,RBM_R14,RBM_R15
#else // !UNIX_AMD64_ABI
  #define REG_TMP_ORDER_COUNT      (14 + REG_ETW_FRAMED_EBP_COUNT)
  #define REG_PREDICT_ORDER        REG_EAX,REG_EDX,REG_ECX,REG_EBX,REG_ESI,REG_EDI,REG_ETW_FRAMED_EBP_LIST \
                                   REG_R8,REG_R9,REG_R10,REG_R11,REG_R14,REG_R15,REG_R12,REG_R13
  #define CNT_CALLEE_SAVED         (7 + REG_ETW_FRAMED_EBP_COUNT)
  #define CNT_CALLEE_TRASH         (7)
  #define CNT_CALLEE_ENREG         (CNT_CALLEE_SAVED)

  #define CNT_CALLEE_SAVED_FLOAT   (10)
  #define CNT_CALLEE_TRASH_FLOAT   (6)

  #define REG_CALLEE_SAVED_ORDER   REG_EBX,REG_ESI,REG_EDI,REG_ETW_FRAMED_EBP_LIST REG_R12,REG_R13,REG_R14,REG_R15
  #define RBM_CALLEE_SAVED_ORDER   RBM_EBX,RBM_ESI,RBM_EDI,RBM_ETW_FRAMED_EBP_LIST RBM_R12,RBM_R13,RBM_R14,RBM_R15
#endif // !UNIX_AMD64_ABI

  #define CALLEE_SAVED_REG_MAXSZ   (CNT_CALLEE_SAVED*REGSIZE_BYTES)
  #define CALLEE_SAVED_FLOAT_MAXSZ (CNT_CALLEE_SAVED_FLOAT*16)

  // We reuse the ESP register as a illegal value in the register predictor
  #define RBM_ILLEGAL              RBM_ESP
  // We reuse the ESP register as a flag for last use handling in the register predictor
  #define RBM_LASTUSE              RBM_ESP
  // We're using the encoding for ESP to indicate a half-long on the frame
  #define REG_L_STK                REG_ESP

  //  This is the first register in REG_TMP_ORDER
  #define REG_TMP_0                REG_EAX
  #define RBM_TMP_0                RBM_EAX

  //  This is the second register in REG_TMP_ORDER
#ifdef UNIX_AMD64_ABI
  #define REG_TMP_1                REG_EDI
  #define RBM_TMP_1                RBM_EDI
#else // !UNIX_AMD64_ABI
  #define REG_TMP_1                REG_EDX
  #define RBM_TMP_1                RBM_EDX
#endif // !UNIX_AMD64_ABI
  #define REG_PAIR_TMP             REG_PAIR_EAXEDX
  #define RBM_PAIR_TMP             (RBM_EAX|RBM_EDX)
  #define REG_PAIR_TMP_LO          REG_EAX
  #define RBM_PAIR_TMP_LO          RBM_EAX
  #define REG_PAIR_TMP_HI          REG_EDX
  #define RBM_PAIR_TMP_HI          RBM_EDX
  #define PREDICT_PAIR_TMP         PREDICT_PAIR_RAXRDX
  #define PREDICT_PAIR_TMP_LO      PREDICT_REG_EAX
  
  // register to hold shift amount
  #define REG_SHIFT                REG_ECX
  #define RBM_SHIFT                RBM_ECX
  #define PREDICT_REG_SHIFT        PREDICT_REG_ECX
  
  // This is a general scratch register that does not conflict with the argument registers
  #define REG_SCRATCH              REG_EAX
  #define RBM_SCRATCH              RBM_EAX

// Where is the exception object on entry to the handler block?
#ifdef UNIX_AMD64_ABI
  #define REG_EXCEPTION_OBJECT     REG_ESI
  #define RBM_EXCEPTION_OBJECT     RBM_ESI
#else // !UNIX_AMD64_ABI
  #define REG_EXCEPTION_OBJECT     REG_EDX
  #define RBM_EXCEPTION_OBJECT     RBM_EDX
#endif // !UNIX_AMD64_ABI

  #define REG_JUMP_THUNK_PARAM     REG_EAX
  #define RBM_JUMP_THUNK_PARAM     RBM_EAX

#if NOGC_WRITE_BARRIERS
  #define REG_WRITE_BARRIER        REG_EDX
  #define RBM_WRITE_BARRIER        RBM_EDX
#endif

  // Register to be used for emitting helper calls whose call target is an indir of an
  // absolute memory address in case of Rel32 overflow i.e. a data address could not be
  // encoded as PC-relative 32-bit offset.
  //
  // Notes:
  // 1) that RAX is callee trash register that is not used for passing parameter and
  //    also results in smaller instruction encoding.  
  // 2) Profiler Leave callback requires the return value to be preserved
  //    in some form.  We can use custom calling convention for Leave callback.
  //    For e.g return value could be preserved in rcx so that it is available for
  //    profiler.
  #define REG_DEFAULT_HELPER_CALL_TARGET    REG_RAX

  // GenericPInvokeCalliHelper VASigCookie Parameter 
  #define REG_PINVOKE_COOKIE_PARAM          REG_R11
  #define RBM_PINVOKE_COOKIE_PARAM          RBM_R11
  #define PREDICT_REG_PINVOKE_COOKIE_PARAM  PREDICT_REG_R11

  // GenericPInvokeCalliHelper unmanaged target Parameter 
  #define REG_PINVOKE_TARGET_PARAM          REG_R10
  #define RBM_PINVOKE_TARGET_PARAM          RBM_R10
  #define PREDICT_REG_PINVOKE_TARGET_PARAM  PREDICT_REG_R10

  // IL stub's secret MethodDesc parameter (JitFlags::JIT_FLAG_PUBLISH_SECRET_PARAM)
  #define REG_SECRET_STUB_PARAM    REG_R10
  #define RBM_SECRET_STUB_PARAM    RBM_R10

  // VSD extra parameter (slot address)
  #define REG_VIRTUAL_STUB_PARAM   REG_R11
  #define RBM_VIRTUAL_STUB_PARAM   RBM_R11
  #define PREDICT_REG_VIRTUAL_STUB_PARAM  PREDICT_REG_R11

  // Registers used by PInvoke frame setup
  #define REG_PINVOKE_FRAME        REG_EDI
  #define RBM_PINVOKE_FRAME        RBM_EDI
  #define REG_PINVOKE_TCB          REG_EAX
  #define RBM_PINVOKE_TCB          RBM_EAX
  #define REG_PINVOKE_SCRATCH      REG_EAX
  #define RBM_PINVOKE_SCRATCH      RBM_EAX

  // The following defines are useful for iterating a regNumber
  #define REG_FIRST                REG_EAX
  #define REG_INT_FIRST            REG_EAX
  #define REG_INT_LAST             REG_R15
  #define REG_INT_COUNT            (REG_INT_LAST - REG_INT_FIRST + 1)
  #define REG_NEXT(reg)           ((regNumber)((unsigned)(reg) + 1))
  #define REG_PREV(reg)           ((regNumber)((unsigned)(reg) - 1))

  // genCodeForCall() moves the target address of the tailcall into this register, before pushing it on the stack
  #define REG_TAILCALL_ADDR        REG_RDX

  // Which register are int and long values returned in ?
  #define REG_INTRET               REG_EAX
  #define RBM_INTRET               RBM_EAX

  #define REG_LNGRET               REG_EAX
  #define RBM_LNGRET               RBM_EAX

#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
    #define REG_INTRET_1           REG_RDX
    #define RBM_INTRET_1           RBM_RDX

    #define REG_LNGRET_1           REG_RDX
    #define RBM_LNGRET_1           RBM_RDX
#endif // FEATURE_UNIX_AMD64_STRUCT_PASSING


  #define REG_FLOATRET             REG_XMM0
  #define RBM_FLOATRET             RBM_XMM0
  #define REG_DOUBLERET            REG_XMM0
  #define RBM_DOUBLERET            RBM_XMM0

#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
#define REG_FLOATRET_1             REG_XMM1
#define RBM_FLOATRET_1             RBM_XMM1

#define REG_DOUBLERET_1            REG_XMM1
#define RBM_DOUBLERET_1            RBM_XMM1
#endif // FEATURE_UNIX_AMD64_STRUCT_PASSING

  #define REG_FPBASE               REG_EBP
  #define RBM_FPBASE               RBM_EBP
  #define STR_FPBASE               "rbp"
  #define REG_SPBASE               REG_ESP
  #define RBM_SPBASE               RBM_ESP
  #define STR_SPBASE               "rsp"

  #define FIRST_ARG_STACK_OFFS     (REGSIZE_BYTES)   // return address

#ifdef UNIX_AMD64_ABI
  #define MAX_REG_ARG              6
  #define MAX_FLOAT_REG_ARG        8
  #define REG_ARG_FIRST            REG_EDI
  #define REG_ARG_LAST             REG_R9
  #define INIT_ARG_STACK_SLOT      0                  // No outgoing reserved stack slots

  #define REG_ARG_0                REG_EDI
  #define REG_ARG_1                REG_ESI
  #define REG_ARG_2                REG_EDX
  #define REG_ARG_3                REG_ECX
  #define REG_ARG_4                REG_R8
  #define REG_ARG_5                REG_R9

  SELECTANY const regNumber intArgRegs [] = { REG_EDI, REG_ESI, REG_EDX, REG_ECX, REG_R8, REG_R9 };
  SELECTANY const regMaskTP intArgMasks[] = { RBM_EDI, RBM_ESI, RBM_EDX, RBM_ECX, RBM_R8, RBM_R9 };
  SELECTANY const regNumber fltArgRegs [] = { REG_XMM0, REG_XMM1, REG_XMM2, REG_XMM3, REG_XMM4, REG_XMM5, REG_XMM6, REG_XMM7 };
  SELECTANY const regMaskTP fltArgMasks[] = { RBM_XMM0, RBM_XMM1, RBM_XMM2, RBM_XMM3, RBM_XMM4, RBM_XMM5, RBM_XMM6, RBM_XMM7 };

  #define RBM_ARG_0                RBM_RDI
  #define RBM_ARG_1                RBM_RSI
  #define RBM_ARG_2                RBM_EDX
  #define RBM_ARG_3                RBM_ECX
  #define RBM_ARG_4                RBM_R8
  #define RBM_ARG_5                RBM_R9
#else // !UNIX_AMD64_ABI
  #define MAX_REG_ARG              4
  #define MAX_FLOAT_REG_ARG        4
  #define REG_ARG_FIRST            REG_ECX
  #define REG_ARG_LAST             REG_R9
  #define INIT_ARG_STACK_SLOT      4                  // 4 outgoing reserved stack slots

  #define REG_ARG_0                REG_ECX
  #define REG_ARG_1                REG_EDX
  #define REG_ARG_2                REG_R8
  #define REG_ARG_3                REG_R9

  SELECTANY const regNumber intArgRegs [] = { REG_ECX, REG_EDX, REG_R8, REG_R9 };
  SELECTANY const regMaskTP intArgMasks[] = { RBM_ECX, RBM_EDX, RBM_R8, RBM_R9 };
  SELECTANY const regNumber fltArgRegs [] = { REG_XMM0, REG_XMM1, REG_XMM2, REG_XMM3 };
  SELECTANY const regMaskTP fltArgMasks[] = { RBM_XMM0, RBM_XMM1, RBM_XMM2, RBM_XMM3 };

  #define RBM_ARG_0                RBM_ECX
  #define RBM_ARG_1                RBM_EDX
  #define RBM_ARG_2                RBM_R8
  #define RBM_ARG_3                RBM_R9
#endif // !UNIX_AMD64_ABI

  #define REG_FLTARG_0             REG_XMM0
  #define REG_FLTARG_1             REG_XMM1
  #define REG_FLTARG_2             REG_XMM2
  #define REG_FLTARG_3             REG_XMM3

  #define RBM_FLTARG_0             RBM_XMM0
  #define RBM_FLTARG_1             RBM_XMM1
  #define RBM_FLTARG_2             RBM_XMM2
  #define RBM_FLTARG_3             RBM_XMM3

#ifdef UNIX_AMD64_ABI
  #define REG_FLTARG_4             REG_XMM4
  #define REG_FLTARG_5             REG_XMM5
  #define REG_FLTARG_6             REG_XMM6
  #define REG_FLTARG_7             REG_XMM7

  #define RBM_FLTARG_4             RBM_XMM4
  #define RBM_FLTARG_5             RBM_XMM5
  #define RBM_FLTARG_6             RBM_XMM6
  #define RBM_FLTARG_7             RBM_XMM7

  #define RBM_ARG_REGS            (RBM_ARG_0|RBM_ARG_1|RBM_ARG_2|RBM_ARG_3|RBM_ARG_4|RBM_ARG_5)
  #define RBM_FLTARG_REGS         (RBM_FLTARG_0|RBM_FLTARG_1|RBM_FLTARG_2|RBM_FLTARG_3|RBM_FLTARG_4|RBM_FLTARG_5|RBM_FLTARG_6|RBM_FLTARG_7)
#else // !UNIX_AMD64_ABI
  #define RBM_ARG_REGS            (RBM_ARG_0|RBM_ARG_1|RBM_ARG_2|RBM_ARG_3)
  #define RBM_FLTARG_REGS         (RBM_FLTARG_0|RBM_FLTARG_1|RBM_FLTARG_2|RBM_FLTARG_3)
#endif // !UNIX_AMD64_ABI

  // The registers trashed by profiler enter/leave/tailcall hook
  // See vm\amd64\asmhelpers.asm for more details.
  #define RBM_PROFILER_ENTER_TRASH     RBM_CALLEE_TRASH
  #define RBM_PROFILER_LEAVE_TRASH     (RBM_CALLEE_TRASH & ~(RBM_FLOATRET | RBM_INTRET))
  #define RBM_PROFILER_TAILCALL_TRASH  RBM_PROFILER_LEAVE_TRASH

  // The registers trashed by the CORINFO_HELP_STOP_FOR_GC helper.
#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
  // See vm\amd64\unixasmhelpers.S for more details.
  //
  // On Unix a struct of size >=9 and <=16 bytes in size is returned in two return registers.
  // The return registers could be any two from the set { RAX, RDX, XMM0, XMM1 }.
  // STOP_FOR_GC helper preserves all the 4 possible return registers.
  #define RBM_STOP_FOR_GC_TRASH     (RBM_CALLEE_TRASH & ~(RBM_FLOATRET | RBM_INTRET | RBM_FLOATRET_1 | RBM_INTRET_1))
#else
  // See vm\amd64\asmhelpers.asm for more details.
  #define RBM_STOP_FOR_GC_TRASH     (RBM_CALLEE_TRASH & ~(RBM_FLOATRET | RBM_INTRET))
#endif

  // The registers trashed by the CORINFO_HELP_INIT_PINVOKE_FRAME helper.
  #define RBM_INIT_PINVOKE_FRAME_TRASH  RBM_CALLEE_TRASH

  // What sort of reloc do we use for [disp32] address mode
  #define IMAGE_REL_BASED_DISP32   IMAGE_REL_BASED_REL32

  // What sort of reloc to we use for 'moffset' address mode (for 'mov eax, moffset' or 'mov moffset, eax')
  #define IMAGE_REL_BASED_MOFFSET  IMAGE_REL_BASED_DIR64

  // Pointer-sized string move instructions
  #define INS_movsp                INS_movsq
  #define INS_r_movsp              INS_r_movsq
  #define INS_stosp                INS_stosq
  #define INS_r_stosp              INS_r_stosq

#elif defined(_TARGET_ARM_)

  // TODO-ARM-CQ: Use shift for division by power of 2
  // TODO-ARM-CQ: Check for sdiv/udiv at runtime and generate it if available
  #define USE_HELPERS_FOR_INT_DIV  1       // BeagleBoard (ARMv7A) doesn't support SDIV/UDIV
  #define CPU_LOAD_STORE_ARCH      1
#ifdef LEGACY_BACKEND
  #define CPU_LONG_USES_REGPAIR    1
#else
  #define CPU_LONG_USES_REGPAIR    0
#endif
  #define CPU_HAS_FP_SUPPORT       1
  #define ROUND_FLOAT              0       // Do not round intermed float expression results
  #define CPU_HAS_BYTE_REGS        0
  #define CPU_USES_BLOCK_MOVE      0
  #define FEATURE_WRITE_BARRIER    1       // Generate the proper WriteBarrier calls for GC    
  #define FEATURE_FIXED_OUT_ARGS   1       // Preallocate the outgoing arg area in the prolog
  #define FEATURE_STRUCTPROMOTE    1       // JIT Optimization to promote fields of structs into registers
  #define FEATURE_MULTIREG_STRUCT_PROMOTE  0  // True when we want to promote fields of a multireg struct into registers
  #define FEATURE_FASTTAILCALL     0       // Tail calls made as epilog+jmp
  #define FEATURE_TAILCALL_OPT     0       // opportunistic Tail calls (i.e. without ".tail" prefix) made as fast tail calls.
  #define FEATURE_SET_FLAGS        1       // Set to true to force the JIT to mark the trees with GTF_SET_FLAGS when the flags need to be set
  #define FEATURE_MULTIREG_ARGS_OR_RET  1  // Support for passing and/or returning single values in more than one register (including HFA support)
  #define FEATURE_MULTIREG_ARGS         1  // Support for passing a single argument in more than one register (including passing HFAs)
  #define FEATURE_MULTIREG_RET          1  // Support for returning a single value in more than one register (including HFA returns)
  #define FEATURE_STRUCT_CLASSIFIER     0  // Uses a classifier function to determine is structs are passed/returned in more than one register
  #define MAX_PASS_MULTIREG_BYTES      32  // Maximum size of a struct that could be passed in more than one register (Max is an HFA of 4 doubles)
  #define MAX_RET_MULTIREG_BYTES       32  // Maximum size of a struct that could be returned in more than one register (Max is an HFA of 4 doubles)
  #define MAX_ARG_REG_COUNT             4  // Maximum registers used to pass a single argument in multiple registers. (max is 4 floats or doubles using an HFA)
  #define MAX_RET_REG_COUNT             4  // Maximum registers used to return a value.

#ifdef FEATURE_USE_ASM_GC_WRITE_BARRIERS
  #define NOGC_WRITE_BARRIERS      0       // We DO-NOT have specialized WriteBarrier JIT Helpers that DO-NOT trash the RBM_CALLEE_TRASH registers
#else
  #define NOGC_WRITE_BARRIERS      0       // Do not modify this -- modify the definition above.  (If we're not using ASM barriers we definitely don't have NOGC barriers).
#endif
  #define USER_ARGS_COME_LAST      1
  #define EMIT_TRACK_STACK_DEPTH   1       // This is something of a workaround.  For both ARM and AMD64, the frame size is fixed, so we don't really
                                           // need to track stack depth, but this is currently necessary to get GC information reported at call sites.
  #define TARGET_POINTER_SIZE      4       // equal to sizeof(void*) and the managed pointer size in bytes for this target
  #define FEATURE_EH               1       // To aid platform bring-up, eliminate exceptional EH clauses (catch, filter, filter-handler, fault) and directly execute 'finally' clauses.
  #define FEATURE_EH_FUNCLETS      1
  #define FEATURE_EH_CALLFINALLY_THUNKS 0  // Generate call-to-finally code in "thunks" in the enclosing EH region, protected by "cloned finally" clauses.
  #define FEATURE_STACK_FP_X87     0 
  #define ETW_EBP_FRAMED           1       // if 1 we cannot use REG_FP as a scratch register and must setup the frame pointer for most methods
  #define FEATURE_FP_REGALLOC      1       // Enabled if RegAlloc is used to enregister Floating Point LclVars  
  #define CSE_CONSTS               1       // Enable if we want to CSE constants 

  #define REG_FP_FIRST             REG_F0
  #define REG_FP_LAST              REG_F31
  #define FIRST_FP_ARGREG          REG_F0
  #define LAST_FP_ARGREG           REG_F15

  #define REGNUM_BITS              6       // number of bits in a REG_*
  #define TINY_REGNUM_BITS         4       // number of bits we will use for a tiny instr desc (may not use float)
  #define REGMASK_BITS             64      // number of bits in a REGNUM_MASK
  #define REGSIZE_BYTES            4       // number of bytes in one register
  #define MIN_ARG_AREA_FOR_CALL    0       // Minimum required outgoing argument space for a call.

  #define CODE_ALIGN               2       // code alignment requirement
  #define STACK_ALIGN              8       // stack alignment requirement
  #define STACK_ALIGN_SHIFT        2       // Shift-right amount to convert stack size in bytes to size in DWORD_PTRs

  #define RBM_INT_CALLEE_SAVED    (RBM_R4|RBM_R5|RBM_R6|RBM_R7|RBM_R8|RBM_R9|RBM_R10)
  #define RBM_INT_CALLEE_TRASH    (RBM_R0|RBM_R1|RBM_R2|RBM_R3|RBM_R12|RBM_LR)
  #define RBM_FLT_CALLEE_SAVED    (RBM_F16|RBM_F17|RBM_F18|RBM_F19|RBM_F20|RBM_F21|RBM_F22|RBM_F23|RBM_F24|RBM_F25|RBM_F26|RBM_F27|RBM_F28|RBM_F29|RBM_F30|RBM_F31)
  #define RBM_FLT_CALLEE_TRASH    (RBM_F0|RBM_F1|RBM_F2|RBM_F3|RBM_F4|RBM_F5|RBM_F6|RBM_F7|RBM_F8|RBM_F9|RBM_F10|RBM_F11|RBM_F12|RBM_F13|RBM_F14|RBM_F15)

  #define RBM_CALLEE_SAVED        (RBM_INT_CALLEE_SAVED | RBM_FLT_CALLEE_SAVED)
  #define RBM_CALLEE_TRASH        (RBM_INT_CALLEE_TRASH | RBM_FLT_CALLEE_TRASH)
#ifdef LEGACY_BACKEND
  #define RBM_CALLEE_TRASH_NOGC   (RBM_R2|RBM_R3|RBM_LR)
#else
  #define RBM_CALLEE_TRASH_NOGC   RBM_CALLEE_TRASH
#endif
  #define REG_DEFAULT_HELPER_CALL_TARGET REG_R12

  #define RBM_ALLINT              (RBM_INT_CALLEE_SAVED | RBM_INT_CALLEE_TRASH)
  #define RBM_ALLFLOAT            (RBM_FLT_CALLEE_SAVED | RBM_FLT_CALLEE_TRASH)
  #define RBM_ALLDOUBLE           (RBM_F0|RBM_F2|RBM_F4|RBM_F6|RBM_F8|RBM_F10|RBM_F12|RBM_F14|RBM_F16|RBM_F18|RBM_F20|RBM_F22|RBM_F24|RBM_F26|RBM_F28|RBM_F30)

  #define REG_VAR_ORDER            REG_R3,REG_R2,REG_R1,REG_R0,REG_R4,REG_LR,REG_R12,\
                                   REG_R5,REG_R6,REG_R7,REG_R8,REG_R9,REG_R10

  #define REG_VAR_ORDER_FLT        REG_F8,  REG_F9,  REG_F10, REG_F11, \
                                   REG_F12, REG_F13, REG_F14, REG_F15, \
                                   REG_F6,  REG_F7,  REG_F4,  REG_F5,  \
                                   REG_F2,  REG_F3,  REG_F0,  REG_F1,  \
                                   REG_F16, REG_F17, REG_F18, REG_F19, \
                                   REG_F20, REG_F21, REG_F22, REG_F23, \
                                   REG_F24, REG_F25, REG_F26, REG_F27, \
                                   REG_F28, REG_F29, REG_F30, REG_F31,

  #define MAX_VAR_ORDER_SIZE       32

  #define REG_TMP_ORDER            REG_R3,REG_R2,REG_R1,REG_R0, REG_R4,REG_R5,REG_R6,REG_R7,\
                                   REG_LR,REG_R12,              REG_R8,REG_R9,REG_R10
  #define REG_TMP_ORDER_COUNT      13

  #define REG_FLT_TMP_ORDER        REG_F14, REG_F15, REG_F12, REG_F13, \
                                   REG_F10, REG_F11, REG_F8,  REG_F9,  \
                                   REG_F6,  REG_F7,  REG_F4,  REG_F5,  \
                                   REG_F2,  REG_F3,  REG_F0,  REG_F1,  \
                                   REG_F16, REG_F17, REG_F18, REG_F19, \
                                   REG_F20, REG_F21, REG_F22, REG_F23, \
                                   REG_F24, REG_F25, REG_F26, REG_F27, \
                                   REG_F28, REG_F29, REG_F30, REG_F31,

  #define REG_FLT_TMP_ORDER_COUNT  32

  #define REG_PREDICT_ORDER        REG_LR,REG_R12,REG_R3,REG_R2,REG_R1,REG_R0, \
                                   REG_R7,REG_R6,REG_R5,REG_R4,REG_R8,REG_R9,REG_R10

  #define RBM_LOW_REGS            (RBM_R0|RBM_R1|RBM_R2|RBM_R3|RBM_R4|RBM_R5|RBM_R6|RBM_R7)
  #define RBM_HIGH_REGS           (RBM_R8|RBM_R9|RBM_R10|RBM_R11|RBM_R12|RBM_SP|RBM_LR|RBM_PC)

  #define REG_CALLEE_SAVED_ORDER   REG_R4,REG_R5,REG_R6,REG_R7,REG_R8,REG_R9,REG_R10,REG_R11
  #define RBM_CALLEE_SAVED_ORDER   RBM_R4,RBM_R5,RBM_R6,RBM_R7,RBM_R8,RBM_R9,RBM_R10,RBM_R11

  #define CNT_CALLEE_SAVED        (8)
  #define CNT_CALLEE_TRASH        (6)
  #define CNT_CALLEE_ENREG        (CNT_CALLEE_SAVED-1)

  #define CNT_CALLEE_SAVED_FLOAT  (16)
  #define CNT_CALLEE_TRASH_FLOAT  (16)

  #define CALLEE_SAVED_REG_MAXSZ    (CNT_CALLEE_SAVED*REGSIZE_BYTES)
  #define CALLEE_SAVED_FLOAT_MAXSZ  (CNT_CALLEE_SAVED_FLOAT*sizeof(float))

  // We reuse the ESP register as a illegal value in the register predictor
  #define RBM_ILLEGAL              RBM_SP
  // We reuse the ESP register as a flag for last use handling in the register predictor
  #define RBM_LASTUSE              RBM_SP
  // We're using the encoding for ESP to indicate a half-long on the frame
  #define REG_L_STK                REG_SP

  //  This is the first register in REG_TMP_ORDER
  #define REG_TMP_0                REG_R3
  #define RBM_TMP_0                RBM_R3

  //  This is the second register in REG_TMP_ORDER
  #define REG_TMP_1                REG_R2
  #define RBM_TMP_1                RBM_R2

  //  This is the first register pair in REG_TMP_ORDER
  #define REG_PAIR_TMP             REG_PAIR_R2R3
  #define REG_PAIR_TMP_REVERSE     REG_PAIR_R3R2
  #define RBM_PAIR_TMP             (RBM_R2|RBM_R3)
  #define REG_PAIR_TMP_LO          REG_R2
  #define RBM_PAIR_TMP_LO          RBM_R2
  #define REG_PAIR_TMP_HI          REG_R3
  #define RBM_PAIR_TMP_HI          RBM_R3
  #define PREDICT_PAIR_TMP         PREDICT_PAIR_R2R3
  #define PREDICT_PAIR_TMP_LO      PREDICT_REG_R2

  // Used when calling the 64-bit Variable shift helper
  #define REG_LNGARG_0             REG_PAIR_R0R1
  #define RBM_LNGARG_0            (RBM_R0|RBM_R1)
  #define PREDICT_PAIR_LNGARG_0    PREDICT_PAIR_R0R1
  
  // register to hold shift amount; no special register is required on the ARM
  #define REG_SHIFT                REG_NA
  #define RBM_SHIFT                RBM_ALLINT
  #define PREDICT_REG_SHIFT        PREDICT_REG

  // register to hold shift amount when shifting 64-bit values (this uses a helper call)
  #define REG_SHIFT_LNG            REG_R2            // REG_ARG_2
  #define RBM_SHIFT_LNG            RBM_R2            // RBM_ARG_2
  #define PREDICT_REG_SHIFT_LNG    PREDICT_REG_R2
 
  
  // This is a general scratch register that does not conflict with the argument registers
  #define REG_SCRATCH              REG_LR
  #define RBM_SCRATCH              RBM_LR

  // This is a general register that can be optionally reserved for other purposes during codegen
  #define REG_OPT_RSVD             REG_R10
  #define RBM_OPT_RSVD             RBM_R10

  // We reserve R9 to store SP on entry for stack unwinding when localloc is used
  #define REG_SAVED_LOCALLOC_SP    REG_R9
  #define RBM_SAVED_LOCALLOC_SP    RBM_R9

  // Where is the exception object on entry to the handler block?
  #define REG_EXCEPTION_OBJECT     REG_R0
  #define RBM_EXCEPTION_OBJECT     RBM_R0

  #define REG_JUMP_THUNK_PARAM     REG_R12
  #define RBM_JUMP_THUNK_PARAM     RBM_R12

#if NOGC_WRITE_BARRIERS
  #define REG_WRITE_BARRIER        REG_R1
  #define RBM_WRITE_BARRIER        RBM_R1
#endif

  //In the ARM case, registers of write barrier use the normal argument registers.
  #define REG_WRITE_BARRIER_SRC_BYREF    REG_ARG_1
  #define RBM_WRITE_BARRIER_SRC_BYREF    RBM_ARG_1

  #define REG_WRITE_BARRIER_DST_BYREF    REG_ARG_0
  #define RBM_WRITE_BARRIER_DST_BYREF    RBM_ARG_0

  // GenericPInvokeCalliHelper VASigCookie Parameter 
  #define REG_PINVOKE_COOKIE_PARAM          REG_R4
  #define RBM_PINVOKE_COOKIE_PARAM          RBM_R4
  #define PREDICT_REG_PINVOKE_COOKIE_PARAM  PREDICT_REG_R4

  // GenericPInvokeCalliHelper unmanaged target Parameter 
  #define REG_PINVOKE_TARGET_PARAM          REG_R12
  #define RBM_PINVOKE_TARGET_PARAM          RBM_R12
  #define PREDICT_REG_PINVOKE_TARGET_PARAM  PREDICT_REG_R12

  // IL stub's secret MethodDesc parameter (JitFlags::JIT_FLAG_PUBLISH_SECRET_PARAM)
  #define REG_SECRET_STUB_PARAM     REG_R12
  #define RBM_SECRET_STUB_PARAM     RBM_R12

  // VSD extra parameter (slot address)
  #define REG_VIRTUAL_STUB_PARAM          REG_R4
  #define RBM_VIRTUAL_STUB_PARAM          RBM_R4
  #define PREDICT_REG_VIRTUAL_STUB_PARAM  PREDICT_REG_R4

  // R2R indirect call. Use the same registers as VSD
  #define REG_R2R_INDIRECT_PARAM          REG_R4
  #define RBM_R2R_INDIRECT_PARAM          RBM_R4

  // Registers used by PInvoke frame setup
  #define REG_PINVOKE_FRAME        REG_R4
  #define RBM_PINVOKE_FRAME        RBM_R4
  #define REG_PINVOKE_TCB          REG_R5
  #define RBM_PINVOKE_TCB          RBM_R5
  #define REG_PINVOKE_SCRATCH      REG_R6
  #define RBM_PINVOKE_SCRATCH      RBM_R6

#ifdef LEGACY_BACKEND
  #define REG_SPILL_CHOICE         REG_LR
  #define RBM_SPILL_CHOICE         RBM_LR
  #define REG_SPILL_CHOICE_FLT     REG_F14
  #define RBM_SPILL_CHOICE_FLT    (RBM_F14|RBM_F15)
#endif // LEGACY_BACKEND

  // The following defines are useful for iterating a regNumber
  #define REG_FIRST                REG_R0
  #define REG_INT_FIRST            REG_R0
  #define REG_INT_LAST             REG_LR
  #define REG_INT_COUNT            (REG_INT_LAST - REG_INT_FIRST + 1)
  #define REG_NEXT(reg)           ((regNumber)((unsigned)(reg) + 1))
  #define REG_PREV(reg)           ((regNumber)((unsigned)(reg) - 1))

  // genCodeForCall() moves the target address of the tailcall into this register, before pushing it on the stack
  #define REG_TAILCALL_ADDR        REG_R1

  // The following registers are used in emitting Enter/Leave/Tailcall profiler callbacks
  #define REG_PROFILER_ENTER_ARG           REG_R0
  #define RBM_PROFILER_ENTER_ARG           RBM_R0
  #define REG_PROFILER_RET_SCRATCH         REG_R2
  #define RBM_PROFILER_RET_SCRATCH         RBM_R2
  #define RBM_PROFILER_RET_USED            (RBM_R0 | RBM_R1 | RBM_R2)
  #define REG_PROFILER_JMP_ARG             REG_R0
  #define RBM_PROFILER_JMP_USED            RBM_R0
  #define RBM_PROFILER_TAIL_USED           (RBM_R0 | RBM_R12 | RBM_LR)
  

  // Which register are int and long values returned in ?
  #define REG_INTRET               REG_R0
  #define RBM_INTRET               RBM_R0
  #define REG_LNGRET               REG_PAIR_R0R1
  #define RBM_LNGRET              (RBM_R1|RBM_R0)
  #define REG_LNGRET_LO            REG_R0
  #define REG_LNGRET_HI            REG_R1
  #define RBM_LNGRET_LO            RBM_R0
  #define RBM_LNGRET_HI            RBM_R1

  #define REG_FLOATRET             REG_F0
  #define RBM_FLOATRET             RBM_F0
  #define RBM_DOUBLERET           (RBM_F0|RBM_F1)

  // The registers trashed by the CORINFO_HELP_STOP_FOR_GC helper
  // See vm\arm\amshelpers.asm for more details.
  #define RBM_STOP_FOR_GC_TRASH     (RBM_CALLEE_TRASH & ~(RBM_FLOATRET | RBM_INTRET))

  // The registers trashed by the CORINFO_HELP_INIT_PINVOKE_FRAME helper.
  #define RBM_INIT_PINVOKE_FRAME_TRASH (RBM_CALLEE_TRASH | RBM_PINVOKE_TCB | RBM_PINVOKE_SCRATCH)

  #define REG_FPBASE               REG_R11
  #define RBM_FPBASE               RBM_R11
  #define STR_FPBASE               "r11"
  #define REG_SPBASE               REG_SP
  #define RBM_SPBASE               RBM_SP
  #define STR_SPBASE               "sp"

  #define FIRST_ARG_STACK_OFFS    (2*REGSIZE_BYTES)   // Caller's saved FP and return address

  #define MAX_REG_ARG              4
  #define MAX_FLOAT_REG_ARG        16
  #define MAX_HFA_RET_SLOTS        8

  #define REG_ARG_FIRST            REG_R0
  #define REG_ARG_LAST             REG_R3
  #define REG_ARG_FP_FIRST         REG_F0
  #define REG_ARG_FP_LAST          REG_F7
  #define INIT_ARG_STACK_SLOT      0                  // No outgoing reserved stack slots

  #define REG_ARG_0                REG_R0
  #define REG_ARG_1                REG_R1
  #define REG_ARG_2                REG_R2
  #define REG_ARG_3                REG_R3

  SELECTANY const regNumber intArgRegs [] = {REG_R0, REG_R1, REG_R2, REG_R3};
  SELECTANY const regMaskTP intArgMasks[] = {RBM_R0, RBM_R1, RBM_R2, RBM_R3};

  #define RBM_ARG_0                RBM_R0
  #define RBM_ARG_1                RBM_R1
  #define RBM_ARG_2                RBM_R2
  #define RBM_ARG_3                RBM_R3

  #define RBM_ARG_REGS            (RBM_ARG_0|RBM_ARG_1|RBM_ARG_2|RBM_ARG_3)
  #define RBM_FLTARG_REGS         (RBM_F0|RBM_F1|RBM_F2|RBM_F3|RBM_F4|RBM_F5|RBM_F6|RBM_F7|RBM_F8|RBM_F9|RBM_F10|RBM_F11|RBM_F12|RBM_F13|RBM_F14|RBM_F15)
  #define RBM_DBL_REGS            RBM_ALLDOUBLE

  SELECTANY const regNumber fltArgRegs [] = {REG_F0, REG_F1, REG_F2, REG_F3, REG_F4, REG_F5, REG_F6, REG_F7, REG_F8, REG_F9, REG_F10, REG_F11, REG_F12, REG_F13, REG_F14, REG_F15 };
  SELECTANY const regMaskTP fltArgMasks[] = {RBM_F0, RBM_F1, RBM_F2, RBM_F3, RBM_F4, RBM_F5, RBM_F6, RBM_F7, RBM_F8, RBM_F9, RBM_F10, RBM_F11, RBM_F12, RBM_F13, RBM_F14, RBM_F15 };

  #define LBL_DIST_SMALL_MAX_NEG  (0)
  #define LBL_DIST_SMALL_MAX_POS  (+1020)
  #define LBL_DIST_MED_MAX_NEG    (-4095)
  #define LBL_DIST_MED_MAX_POS    (+4096)

  #define JMP_DIST_SMALL_MAX_NEG  (-2048)
  #define JMP_DIST_SMALL_MAX_POS  (+2046)

  #define CALL_DIST_MAX_NEG (-16777216)
  #define CALL_DIST_MAX_POS (+16777214)

  #define JCC_DIST_SMALL_MAX_NEG  (-256)
  #define JCC_DIST_SMALL_MAX_POS  (+254)

  #define JCC_DIST_MEDIUM_MAX_NEG (-1048576)
  #define JCC_DIST_MEDIUM_MAX_POS (+1048574)

  #define LBL_SIZE_SMALL          (2)

  #define JMP_SIZE_SMALL          (2)
  #define JMP_SIZE_LARGE          (4)

  #define JCC_SIZE_SMALL          (2)
  #define JCC_SIZE_MEDIUM         (4)
  #define JCC_SIZE_LARGE          (6)

#elif defined(_TARGET_ARM64_)

  #define CPU_LOAD_STORE_ARCH      1
  #define CPU_LONG_USES_REGPAIR    0
  #define CPU_HAS_FP_SUPPORT       1
  #define ROUND_FLOAT              0       // Do not round intermed float expression results
  #define CPU_HAS_BYTE_REGS        0
  #define CPU_USES_BLOCK_MOVE      0

  #define CPBLK_UNROLL_LIMIT       64      // Upper bound to let the code generator to loop unroll CpBlk.
  #define INITBLK_UNROLL_LIMIT     64      // Upper bound to let the code generator to loop unroll InitBlk.

  #define FEATURE_WRITE_BARRIER    1       // Generate the proper WriteBarrier calls for GC    
  #define FEATURE_FIXED_OUT_ARGS   1       // Preallocate the outgoing arg area in the prolog
  #define FEATURE_STRUCTPROMOTE    1       // JIT Optimization to promote fields of structs into registers
  #define FEATURE_MULTIREG_STRUCT_PROMOTE 1  // True when we want to promote fields of a multireg struct into registers
  #define FEATURE_FASTTAILCALL     1       // Tail calls made as epilog+jmp
  #define FEATURE_TAILCALL_OPT     1       // opportunistic Tail calls (i.e. without ".tail" prefix) made as fast tail calls.
  #define FEATURE_SET_FLAGS        1       // Set to true to force the JIT to mark the trees with GTF_SET_FLAGS when the flags need to be set
  #define FEATURE_MULTIREG_ARGS_OR_RET  1  // Support for passing and/or returning single values in more than one register  
  #define FEATURE_MULTIREG_ARGS         1  // Support for passing a single argument in more than one register  
  #define FEATURE_MULTIREG_RET          1  // Support for returning a single value in more than one register  
  #define FEATURE_STRUCT_CLASSIFIER     0  // Uses a classifier function to determine is structs are passed/returned in more than one register
  #define MAX_PASS_MULTIREG_BYTES      32  // Maximum size of a struct that could be passed in more than one register (max is 4 doubles using an HFA)
  #define MAX_RET_MULTIREG_BYTES       32  // Maximum size of a struct that could be returned in more than one register (Max is an HFA of 4 doubles)
  #define MAX_ARG_REG_COUNT             4  // Maximum registers used to pass a single argument in multiple registers. (max is 4 floats or doubles using an HFA)
  #define MAX_RET_REG_COUNT             4  // Maximum registers used to return a value.

#ifdef FEATURE_USE_ASM_GC_WRITE_BARRIERS
  #define NOGC_WRITE_BARRIERS      1       // We have specialized WriteBarrier JIT Helpers that DO-NOT trash the RBM_CALLEE_TRASH registers
#else
  #define NOGC_WRITE_BARRIERS      0       // Do not modify this -- modify the definition above.  (If we're not using ASM barriers we definitely don't have NOGC barriers).
#endif
  #define USER_ARGS_COME_LAST      1
  #define EMIT_TRACK_STACK_DEPTH   1       // This is something of a workaround.  For both ARM and AMD64, the frame size is fixed, so we don't really
                                           // need to track stack depth, but this is currently necessary to get GC information reported at call sites.
  #define TARGET_POINTER_SIZE      8       // equal to sizeof(void*) and the managed pointer size in bytes for this target
  #define FEATURE_EH               1       // To aid platform bring-up, eliminate exceptional EH clauses (catch, filter, filter-handler, fault) and directly execute 'finally' clauses.
  #define FEATURE_EH_FUNCLETS      1
  #define FEATURE_EH_CALLFINALLY_THUNKS 1  // Generate call-to-finally code in "thunks" in the enclosing EH region, protected by "cloned finally" clauses.
  #define FEATURE_STACK_FP_X87     0 
  #define ETW_EBP_FRAMED           1       // if 1 we cannot use REG_FP as a scratch register and must setup the frame pointer for most methods
  #define FEATURE_FP_REGALLOC      0       // Enabled if RegAlloc is used to enregister Floating Point LclVars  
  #define CSE_CONSTS               1       // Enable if we want to CSE constants 

  #define REG_FP_FIRST             REG_V0
  #define REG_FP_LAST              REG_V31
  #define FIRST_FP_ARGREG          REG_V0
  #define LAST_FP_ARGREG           REG_V15

  #define REGNUM_BITS              6       // number of bits in a REG_*
  #define TINY_REGNUM_BITS         5       // number of bits we will use for a tiny instr desc (may not use float)
  #define REGMASK_BITS             64      // number of bits in a REGNUM_MASK
  #define REGSIZE_BYTES            8       // number of bytes in one general purpose register
  #define FP_REGSIZE_BYTES         16      // number of bytes in one FP/SIMD register
  #define FPSAVE_REGSIZE_BYTES     8       // number of bytes in one FP/SIMD register that are saved/restored, for callee-saved registers

  #define MIN_ARG_AREA_FOR_CALL    0       // Minimum required outgoing argument space for a call.

  #define CODE_ALIGN               4       // code alignment requirement
  #define STACK_ALIGN              16      // stack alignment requirement
  #define STACK_ALIGN_SHIFT        3       // Shift-right amount to convert stack size in bytes to size in DWORD_PTRs

  #define RBM_INT_CALLEE_SAVED    (RBM_R19|RBM_R20|RBM_R21|RBM_R22|RBM_R23|RBM_R24|RBM_R25|RBM_R26|RBM_R27|RBM_R28)
  #define RBM_INT_CALLEE_TRASH    (RBM_R0|RBM_R1|RBM_R2|RBM_R3|RBM_R4|RBM_R5|RBM_R6|RBM_R7|RBM_R8|RBM_R9|RBM_R10|RBM_R11|RBM_R12|RBM_R13|RBM_R14|RBM_R15|RBM_IP0|RBM_IP1|RBM_LR)
  #define RBM_FLT_CALLEE_SAVED    (RBM_V8|RBM_V9|RBM_V10|RBM_V11|RBM_V12|RBM_V13|RBM_V14|RBM_V15)
  #define RBM_FLT_CALLEE_TRASH    (RBM_V0|RBM_V1|RBM_V2|RBM_V3|RBM_V4|RBM_V5|RBM_V6|RBM_V7|RBM_V16|RBM_V17|RBM_V18|RBM_V19|RBM_V20|RBM_V21|RBM_V22|RBM_V23|RBM_V24|RBM_V25|RBM_V26|RBM_V27|RBM_V28|RBM_V29|RBM_V30|RBM_V31)

  #define RBM_CALLEE_SAVED        (RBM_INT_CALLEE_SAVED | RBM_FLT_CALLEE_SAVED)
  #define RBM_CALLEE_TRASH        (RBM_INT_CALLEE_TRASH | RBM_FLT_CALLEE_TRASH)
  #define RBM_CALLEE_TRASH_NOGC   (RBM_R12|RBM_R13|RBM_R14|RBM_R15|RBM_IP1)
  #define REG_DEFAULT_HELPER_CALL_TARGET REG_R12

  #define RBM_ALLINT              (RBM_INT_CALLEE_SAVED | RBM_INT_CALLEE_TRASH)
  #define RBM_ALLFLOAT            (RBM_FLT_CALLEE_SAVED | RBM_FLT_CALLEE_TRASH)
  #define RBM_ALLDOUBLE            RBM_ALLFLOAT

  #define REG_VAR_ORDER            REG_R9,REG_R10,REG_R11,REG_R12,REG_R13,REG_R14,REG_R15,\
                                   REG_R8,REG_R7,REG_R6,REG_R5,REG_R4,REG_R3,REG_R2,REG_R1,REG_R0,\
                                   REG_R19,REG_R20,REG_R21,REG_R22,REG_R23,REG_R24,REG_R25,REG_R26,REG_R27,REG_R28,\

  #define REG_VAR_ORDER_FLT        REG_V16, REG_V17, REG_V18, REG_V19, \
                                   REG_V20, REG_V21, REG_V22, REG_V23, \
                                   REG_V24, REG_V25, REG_V26, REG_V27, \
                                   REG_V28, REG_V29, REG_V30, REG_V31, \
                                   REG_V7,  REG_V6,  REG_V5,  REG_V4,  \
                                   REG_V8,  REG_V9,  REG_V10, REG_V11, \
                                   REG_V12, REG_V13, REG_V14, REG_V16, \
                                   REG_V3,  REG_V2, REG_V1,  REG_V0 

  #define REG_CALLEE_SAVED_ORDER   REG_R19,REG_R20,REG_R21,REG_R22,REG_R23,REG_R24,REG_R25,REG_R26,REG_R27,REG_R28
  #define RBM_CALLEE_SAVED_ORDER   RBM_R19,RBM_R20,RBM_R21,RBM_R22,RBM_R23,RBM_R24,RBM_R25,RBM_R26,RBM_R27,RBM_R28

  #define CNT_CALLEE_SAVED        (11)
  #define CNT_CALLEE_TRASH        (17)
  #define CNT_CALLEE_ENREG        (CNT_CALLEE_SAVED-1)

  #define CNT_CALLEE_SAVED_FLOAT  (8)
  #define CNT_CALLEE_TRASH_FLOAT  (24)

  #define CALLEE_SAVED_REG_MAXSZ    (CNT_CALLEE_SAVED * REGSIZE_BYTES)
  #define CALLEE_SAVED_FLOAT_MAXSZ  (CNT_CALLEE_SAVED_FLOAT * FPSAVE_REGSIZE_BYTES)

  // TODO-ARM64-Cleanup: Remove this
  #define REG_L_STK                REG_ZR

  //  This is the first register in REG_TMP_ORDER
  #define REG_TMP_0                REG_R9
  #define RBM_TMP_0                RBM_R9

  //  This is the second register in REG_TMP_ORDER
  #define REG_TMP_1                REG_R10
  #define RBM_TMP_1                RBM_R10

  // register to hold shift amount; no special register is required on ARM64.
  #define REG_SHIFT                REG_NA
  #define RBM_SHIFT                RBM_ALLINT
  #define PREDICT_REG_SHIFT        PREDICT_REG

  // This is a general scratch register that does not conflict with the argument registers
  #define REG_SCRATCH              REG_R9
  #define RBM_SCRATCH              RBM_R9

  // This is a general register that can be optionally reserved for other purposes during codegen
  #define REG_OPT_RSVD             REG_IP1
  #define RBM_OPT_RSVD             RBM_IP1

  // Where is the exception object on entry to the handler block?
  #define REG_EXCEPTION_OBJECT     REG_R0
  #define RBM_EXCEPTION_OBJECT     RBM_R0

  #define REG_JUMP_THUNK_PARAM     REG_R12
  #define RBM_JUMP_THUNK_PARAM     RBM_R12

#if NOGC_WRITE_BARRIERS
  #define REG_WRITE_BARRIER_SRC_BYREF    REG_R13
  #define RBM_WRITE_BARRIER_SRC_BYREF    RBM_R13

  #define REG_WRITE_BARRIER_DST_BYREF    REG_R14
  #define RBM_WRITE_BARRIER_DST_BYREF    RBM_R14

  #define REG_WRITE_BARRIER              REG_R15
  #define RBM_WRITE_BARRIER              RBM_R15
#endif

  // GenericPInvokeCalliHelper VASigCookie Parameter 
  #define REG_PINVOKE_COOKIE_PARAM          REG_R15
  #define RBM_PINVOKE_COOKIE_PARAM          RBM_R15
  #define PREDICT_REG_PINVOKE_COOKIE_PARAM  PREDICT_REG_R15

  // GenericPInvokeCalliHelper unmanaged target Parameter 
  #define REG_PINVOKE_TARGET_PARAM          REG_R14
  #define RBM_PINVOKE_TARGET_PARAM          RBM_R14
  #define PREDICT_REG_PINVOKE_TARGET_PARAM  PREDICT_REG_R14

  // IL stub's secret MethodDesc parameter (JitFlags::JIT_FLAG_PUBLISH_SECRET_PARAM)
  #define REG_SECRET_STUB_PARAM     REG_R12
  #define RBM_SECRET_STUB_PARAM     RBM_R12

  // VSD extra parameter (slot address)
  #define REG_VIRTUAL_STUB_PARAM          REG_R11
  #define RBM_VIRTUAL_STUB_PARAM          RBM_R11
  #define PREDICT_REG_VIRTUAL_STUB_PARAM  PREDICT_REG_R11

  // R2R indirect call. Use the same registers as VSD
  #define REG_R2R_INDIRECT_PARAM          REG_R11
  #define RBM_R2R_INDIRECT_PARAM          RBM_R11

  // Registers used by PInvoke frame setup
  #define REG_PINVOKE_FRAME        REG_R9
  #define RBM_PINVOKE_FRAME        RBM_R9
  #define REG_PINVOKE_TCB          REG_R10
  #define RBM_PINVOKE_TCB          RBM_R10
  #define REG_PINVOKE_SCRATCH      REG_R10
  #define RBM_PINVOKE_SCRATCH      RBM_R10

  // The following defines are useful for iterating a regNumber
  #define REG_FIRST                REG_R0
  #define REG_INT_FIRST            REG_R0
  #define REG_INT_LAST             REG_ZR
  #define REG_INT_COUNT            (REG_INT_LAST - REG_INT_FIRST + 1)
  #define REG_NEXT(reg)           ((regNumber)((unsigned)(reg) + 1))
  #define REG_PREV(reg)           ((regNumber)((unsigned)(reg) - 1))

  // genCodeForCall() moves the target address of the tailcall into this register, before pushing it on the stack
  #define REG_TAILCALL_ADDR        REG_R9

  // The following registers are used in emitting Enter/Leave/Tailcall profiler callbacks
  #define REG_PROFILER_ENTER_ARG           REG_R0
  #define RBM_PROFILER_ENTER_ARG           RBM_R0
  #define REG_PROFILER_RET_SCRATCH         REG_R2
  #define RBM_PROFILER_RET_SCRATCH         RBM_R2
  #define RBM_PROFILER_RET_USED            (RBM_R0 | RBM_R1 | RBM_R2)
  #define REG_PROFILER_JMP_ARG             REG_R0
  #define RBM_PROFILER_JMP_USED            RBM_R0
  #define RBM_PROFILER_TAIL_USED           (RBM_R0 | RBM_R12 | RBM_LR)
  

  // Which register are int and long values returned in ?
  #define REG_INTRET               REG_R0
  #define RBM_INTRET               RBM_R0
  #define REG_LNGRET               REG_R0
  #define RBM_LNGRET               RBM_R0
  // second return register for 16-byte structs
  #define REG_INTRET_1             REG_R1 
  #define RBM_INTRET_1             RBM_R1

  #define REG_FLOATRET             REG_V0
  #define RBM_FLOATRET             RBM_V0
  #define RBM_DOUBLERET            RBM_V0

  // The registers trashed by the CORINFO_HELP_STOP_FOR_GC helper
  #define RBM_STOP_FOR_GC_TRASH    RBM_CALLEE_TRASH

  // The registers trashed by the CORINFO_HELP_INIT_PINVOKE_FRAME helper.
  #define RBM_INIT_PINVOKE_FRAME_TRASH  RBM_CALLEE_TRASH

  #define REG_FPBASE               REG_FP
  #define RBM_FPBASE               RBM_FP
  #define STR_FPBASE               "fp"
  #define REG_SPBASE               REG_SP
  #define RBM_SPBASE               RBM_ZR     // reuse the RBM for REG_ZR
  #define STR_SPBASE               "sp"

  #define FIRST_ARG_STACK_OFFS    (2*REGSIZE_BYTES)   // Caller's saved FP and return address

  // On ARM64 the calling convention defines REG_R8 (x8) as an additional argument register
  // It isn't allocated for the normal user arguments, so it isn't counted by MAX_REG_ARG
  // whether we use this register to pass the RetBuff is controlled by the function hasFixedRetBuffReg()
  // it is consider to be the next integer argnum, which is 8 
  //
  #define REG_ARG_RET_BUFF         REG_R8
  #define RBM_ARG_RET_BUFF         RBM_R8
  #define RET_BUFF_ARGNUM          8

  #define MAX_REG_ARG              8
  #define MAX_FLOAT_REG_ARG        8

  #define REG_ARG_FIRST            REG_R0
  #define REG_ARG_LAST             REG_R7
  #define REG_ARG_FP_FIRST         REG_V0
  #define REG_ARG_FP_LAST          REG_V7
  #define INIT_ARG_STACK_SLOT      0                  // No outgoing reserved stack slots

  #define REG_ARG_0                REG_R0
  #define REG_ARG_1                REG_R1
  #define REG_ARG_2                REG_R2
  #define REG_ARG_3                REG_R3
  #define REG_ARG_4                REG_R4
  #define REG_ARG_5                REG_R5
  #define REG_ARG_6                REG_R6
  #define REG_ARG_7                REG_R7

  SELECTANY const regNumber intArgRegs [] = {REG_R0, REG_R1, REG_R2, REG_R3, REG_R4, REG_R5, REG_R6, REG_R7};
  SELECTANY const regMaskTP intArgMasks[] = {RBM_R0, RBM_R1, RBM_R2, RBM_R3, RBM_R4, RBM_R5, RBM_R6, RBM_R7};

  #define RBM_ARG_0                RBM_R0
  #define RBM_ARG_1                RBM_R1
  #define RBM_ARG_2                RBM_R2
  #define RBM_ARG_3                RBM_R3
  #define RBM_ARG_4                RBM_R4
  #define RBM_ARG_5                RBM_R5
  #define RBM_ARG_6                RBM_R6
  #define RBM_ARG_7                RBM_R7

  #define REG_FLTARG_0             REG_V0
  #define REG_FLTARG_1             REG_V1
  #define REG_FLTARG_2             REG_V2
  #define REG_FLTARG_3             REG_V3
  #define REG_FLTARG_4             REG_V4
  #define REG_FLTARG_5             REG_V5
  #define REG_FLTARG_6             REG_V6
  #define REG_FLTARG_7             REG_V7

  #define RBM_FLTARG_0             RBM_V0
  #define RBM_FLTARG_1             RBM_V1
  #define RBM_FLTARG_2             RBM_V2
  #define RBM_FLTARG_3             RBM_V3
  #define RBM_FLTARG_4             RBM_V4
  #define RBM_FLTARG_5             RBM_V5
  #define RBM_FLTARG_6             RBM_V6
  #define RBM_FLTARG_7             RBM_V7

  #define RBM_ARG_REGS            (RBM_ARG_0|RBM_ARG_1|RBM_ARG_2|RBM_ARG_3|RBM_ARG_4|RBM_ARG_5|RBM_ARG_6|RBM_ARG_7)
  #define RBM_FLTARG_REGS         (RBM_FLTARG_0|RBM_FLTARG_1|RBM_FLTARG_2|RBM_FLTARG_3|RBM_FLTARG_4|RBM_FLTARG_5|RBM_FLTARG_6|RBM_FLTARG_7)

  SELECTANY const regNumber fltArgRegs [] = {REG_V0, REG_V1, REG_V2, REG_V3, REG_V4, REG_V5, REG_V6, REG_V7 };
  SELECTANY const regMaskTP fltArgMasks[] = {RBM_V0, RBM_V1, RBM_V2, RBM_V3, RBM_V4, RBM_V5, RBM_V6, RBM_V7 };

  #define LBL_DIST_SMALL_MAX_NEG  (-1048576)
  #define LBL_DIST_SMALL_MAX_POS  (+1048575)

  #define LBL_SIZE_SMALL          (4)
  #define LBL_SIZE_LARGE          (8)

  #define JCC_DIST_SMALL_MAX_NEG  (-1048576)
  #define JCC_DIST_SMALL_MAX_POS  (+1048575)

  #define JCC_SIZE_SMALL          (4)
  #define JCC_SIZE_LARGE          (8)

  #define LDC_DIST_SMALL_MAX_NEG  (-1048576)
  #define LDC_DIST_SMALL_MAX_POS  (+1048575)

  #define LDC_SIZE_SMALL          (4)
  #define LDC_SIZE_LARGE          (8)

  #define JMP_SIZE_SMALL          (4)

#else
  #error Unsupported or unset target architecture
#endif

#ifdef _TARGET_XARCH_

  #define JMP_DIST_SMALL_MAX_NEG  (-128)
  #define JMP_DIST_SMALL_MAX_POS  (+127)

  #define JCC_DIST_SMALL_MAX_NEG  (-128)
  #define JCC_DIST_SMALL_MAX_POS  (+127)

  #define JMP_SIZE_SMALL          (2)
  #define JMP_SIZE_LARGE          (5)

  #define JCC_SIZE_SMALL          (2)
  #define JCC_SIZE_LARGE          (6)

  #define PUSH_INST_SIZE          (5)
  #define CALL_INST_SIZE          (5)

#endif // _TARGET_XARCH_

C_ASSERT(REG_FIRST == 0);
C_ASSERT(REG_INT_FIRST < REG_INT_LAST);
C_ASSERT(REG_FP_FIRST  < REG_FP_LAST);

// Opportunistic tail call feature converts non-tail prefixed calls into 
// tail calls where possible. It requires fast tail calling mechanism for
// performance. Otherwise, we are better off not converting non-tail prefixed
// calls into tail calls.
C_ASSERT((FEATURE_TAILCALL_OPT == 0) || (FEATURE_FASTTAILCALL == 1));

/*****************************************************************************/

#define BITS_PER_BYTE              8 
#define REGNUM_MASK              ((1 << REGNUM_BITS) - 1)     // a n-bit mask use to encode multiple REGNUMs into a unsigned int
#define RBM_ALL(type) (varTypeIsFloating(type) ? RBM_ALLFLOAT : RBM_ALLINT)

/*****************************************************************************/

#if CPU_HAS_BYTE_REGS
  #define RBM_BYTE_REGS           (RBM_EAX|RBM_ECX|RBM_EDX|RBM_EBX)
  #define RBM_NON_BYTE_REGS       (RBM_ESI|RBM_EDI)
  // We reuse the ESP register as a flag for byteable registers in lvPrefReg
  #define RBM_BYTE_REG_FLAG        RBM_ESP
#else
  #define RBM_BYTE_REGS            RBM_ALLINT
  #define RBM_NON_BYTE_REGS        RBM_NONE
  #define RBM_BYTE_REG_FLAG        RBM_NONE
#endif
// clang-format on

/*****************************************************************************/
class Target
{
public:
    static const char* g_tgtCPUName;
    static const char* g_tgtPlatformName;

    enum ArgOrder
    {
        ARG_ORDER_R2L,
        ARG_ORDER_L2R
    };
    static const enum ArgOrder g_tgtArgOrder;

#if NOGC_WRITE_BARRIERS
    static regMaskTP exclude_WriteBarrierReg(regMaskTP mask)
    {
        unsigned result = (mask & ~RBM_WRITE_BARRIER);
        if (result)
            return result;
        else
            return RBM_ALLINT & ~RBM_WRITE_BARRIER;
    }
#endif // NOGC_WRITE_BARRIERS
};

#if defined(DEBUG) || defined(LATE_DISASM)
const char* getRegName(unsigned reg, bool isFloat = false); // this is for gcencode.cpp and disasm.cpp that don't use
                                                            // the regNumber type
const char* getRegName(regNumber reg, bool isFloat = false);
#endif // defined(DEBUG) || defined(LATE_DISASM)

#ifdef DEBUG
const char* getRegNameFloat(regNumber reg, var_types type);
extern void dspRegMask(regMaskTP regMask, size_t minSiz = 0);
#endif

#if CPU_HAS_BYTE_REGS
inline BOOL isByteReg(regNumber reg)
{
    return (reg <= REG_EBX);
}
#else
inline BOOL isByteReg(regNumber reg)
{
    return true;
}
#endif

#ifdef LEGACY_BACKEND
extern const regNumber raRegTmpOrder[REG_TMP_ORDER_COUNT];
extern const regNumber rpRegTmpOrder[REG_TMP_ORDER_COUNT];
#if FEATURE_FP_REGALLOC
extern const regNumber raRegFltTmpOrder[REG_FLT_TMP_ORDER_COUNT];
#endif
#endif // LEGACY_BACKEND

inline regMaskTP genRegMask(regNumber reg);
inline regMaskTP genRegMaskFloat(regNumber reg, var_types type = TYP_DOUBLE);

/*****************************************************************************
 * Return true if the register number is valid
 */
inline bool genIsValidReg(regNumber reg)
{
    /* It's safest to perform an unsigned comparison in case reg is negative */
    return ((unsigned)reg < (unsigned)REG_COUNT);
}

/*****************************************************************************
 * Return true if the register is a valid integer register
 */
inline bool genIsValidIntReg(regNumber reg)
{
    return reg >= REG_INT_FIRST && reg <= REG_INT_LAST;
}

/*****************************************************************************
 * Return true if the register is a valid floating point register
 */
inline bool genIsValidFloatReg(regNumber reg)
{
    return reg >= REG_FP_FIRST && reg <= REG_FP_LAST;
}

#ifdef _TARGET_ARM_

/*****************************************************************************
 * Return true if the register is a valid floating point double register
 */
inline bool genIsValidDoubleReg(regNumber reg)
{
    return genIsValidFloatReg(reg) && (((reg - REG_FP_FIRST) & 0x1) == 0);
}

#endif // _TARGET_ARM_

//-------------------------------------------------------------------------------------------
// hasFixedRetBuffReg:
//     Returns true if our target architecture uses a fixed return buffer register
//
inline bool hasFixedRetBuffReg()
{
#ifdef _TARGET_ARM64_
    return true;
#else
    return false;
#endif
}

//-------------------------------------------------------------------------------------------
// theFixedRetBuffReg:
//     Returns the regNumber to use for the fixed return buffer
//
inline regNumber theFixedRetBuffReg()
{
    assert(hasFixedRetBuffReg()); // This predicate should be checked before calling this method
#ifdef _TARGET_ARM64_
    return REG_ARG_RET_BUFF;
#else
    return REG_NA;
#endif
}

//-------------------------------------------------------------------------------------------
// theFixedRetBuffMask:
//     Returns the regNumber to use for the fixed return buffer
//
inline regMaskTP theFixedRetBuffMask()
{
    assert(hasFixedRetBuffReg()); // This predicate should be checked before calling this method
#ifdef _TARGET_ARM64_
    return RBM_ARG_RET_BUFF;
#else
    return 0;
#endif
}

//-------------------------------------------------------------------------------------------
// theFixedRetBuffArgNum:
//     Returns the argNum to use for the fixed return buffer
//
inline unsigned theFixedRetBuffArgNum()
{
    assert(hasFixedRetBuffReg()); // This predicate should be checked before calling this method
#ifdef _TARGET_ARM64_
    return RET_BUFF_ARGNUM;
#else
    return BAD_VAR_NUM;
#endif
}

//-------------------------------------------------------------------------------------------
// fullIntArgRegMask:
//     Returns the full mask of all possible integer registers
//     Note this includes the fixed return buffer register on Arm64
//
inline regMaskTP fullIntArgRegMask()
{
    if (hasFixedRetBuffReg())
    {
        return RBM_ARG_REGS | theFixedRetBuffMask();
    }
    else
    {
        return RBM_ARG_REGS;
    }
}

//-------------------------------------------------------------------------------------------
// isValidIntArgReg:
//     Returns true if the register is a valid integer argument register
//     Note this method also returns true on Arm64 when 'reg' is the RetBuff register
//
inline bool isValidIntArgReg(regNumber reg)
{
    return (genRegMask(reg) & fullIntArgRegMask()) != 0;
}

//-------------------------------------------------------------------------------------------
// genRegArgNext:
//     Given a register that is an integer or floating point argument register
//     returns the next argument register
//
regNumber genRegArgNext(regNumber argReg);

//-------------------------------------------------------------------------------------------
// isValidFloatArgReg:
//     Returns true if the register is a valid floating-point argument register
//
inline bool isValidFloatArgReg(regNumber reg)
{
    if (reg == REG_NA)
    {
        return false;
    }
    else
    {
        return (reg >= FIRST_FP_ARGREG) && (reg <= LAST_FP_ARGREG);
    }
}

/*****************************************************************************
 *
 *  Can the register hold the argument type?
 */

#ifdef _TARGET_ARM_
inline bool floatRegCanHoldType(regNumber reg, var_types type)
{
    assert(genIsValidFloatReg(reg));
    if (type == TYP_DOUBLE)
    {
        return ((reg - REG_F0) % 2) == 0;
    }
    else
    {
        // Can be TYP_STRUCT for HFA. It's not clear that's correct; what about
        // HFA of double? We wouldn't be asserting the right alignment, and
        // callers like genRegMaskFloat() wouldn't be generating the right mask.

        assert((type == TYP_FLOAT) || (type == TYP_STRUCT));
        return true;
    }
}
#else
// AMD64: xmm registers can hold any float type
// x86: FP stack can hold any float type
// ARM64: Floating-point/SIMD registers can hold any type.
inline bool floatRegCanHoldType(regNumber reg, var_types type)
{
    return true;
}
#endif

/*****************************************************************************
 *
 *  Map a register number to a register mask.
 */

extern const regMaskSmall regMasks[REG_COUNT];

inline regMaskTP genRegMask(regNumber reg)
{
    assert((unsigned)reg < ArrLen(regMasks));
#ifdef _TARGET_AMD64_
    // shift is faster than a L1 hit on modern x86
    // (L1 latency on sandy bridge is 4 cycles for [base] and 5 for [base + index*c] )
    // the reason this is AMD-only is because the x86 BE will try to get reg masks for REG_STK
    // and the result needs to be zero.
    regMaskTP result = 1 << reg;
    assert(result == regMasks[reg]);
    return result;
#else
    return regMasks[reg];
#endif
}

/*****************************************************************************
 *
 *  Map a register number to a floating-point register mask.
 */

#if defined(_TARGET_X86_) && defined(LEGACY_BACKEND)
extern const regMaskSmall regFPMasks[REG_FPCOUNT];
#endif // defined(_TARGET_X86_) && defined(LEGACY_BACKEND)

inline regMaskTP genRegMaskFloat(regNumber reg, var_types type /* = TYP_DOUBLE */)
{
#if defined(_TARGET_X86_) && defined(LEGACY_BACKEND)
    assert(reg >= REG_FPV0 && reg < REG_FPCOUNT);
    assert((unsigned)reg < ArrLen(regFPMasks));
    return regFPMasks[reg];
#elif defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_) || defined(_TARGET_X86_)
    assert(genIsValidFloatReg(reg));
    assert((unsigned)reg < ArrLen(regMasks));
    return regMasks[reg];
#elif defined _TARGET_ARM_
    assert(floatRegCanHoldType(reg, type));
    assert(reg >= REG_F0 && reg <= REG_F31);

    if (type == TYP_DOUBLE)
    {
        return regMasks[reg] | regMasks[reg + 1];
    }
    else
    {
        return regMasks[reg];
    }
#else
#error Unsupported or unset target architecture
#endif
}

//------------------------------------------------------------------------
// genRegMask: Given a register, and its type, generate the appropriate regMask
//
// Arguments:
//    regNum   - the register of interest
//    type     - the type of regNum (i.e. the type it is being used as)
//
// Return Value:
//    This will usually return the same value as genRegMask(regNum), but
//    on architectures where multiple registers are used for certain types
//    (e.g. TYP_DOUBLE on ARM), it will return a regMask that includes
//    all the registers.
//    Registers that are used in pairs, but separately named (e.g. TYP_LONG
//    on ARM) will return just the regMask for the given register.
//
// Assumptions:
//    For registers that are used in pairs, the caller will be handling
//    each member of the pair separately.
//
inline regMaskTP genRegMask(regNumber regNum, var_types type)
{
#ifndef _TARGET_ARM_
    return genRegMask(regNum);
#else
    regMaskTP regMask = RBM_NONE;

    if (varTypeIsFloating(type))
    {
        regMask = genRegMaskFloat(regNum, type);
    }
    else
    {
        regMask = genRegMask(regNum);
    }
    return regMask;
#endif
}

/*****************************************************************************
 *
 *  These arrays list the callee-saved register numbers (and bitmaps, respectively) for
 *  the current architecture.
 */
extern const regNumber raRegCalleeSaveOrder[CNT_CALLEE_SAVED];
extern const regMaskTP raRbmCalleeSaveOrder[CNT_CALLEE_SAVED];

// This method takes a "compact" bitset of the callee-saved registers, and "expands" it to a full register mask.
regMaskSmall genRegMaskFromCalleeSavedMask(unsigned short);

/*****************************************************************************
 *
 *  Returns the register that holds the low  32 bits of the long value given
 *  by the register pair 'regPair'.
 */
inline regNumber genRegPairLo(regPairNo regPair)
{
    assert(regPair >= REG_PAIR_FIRST && regPair <= REG_PAIR_LAST);

    return (regNumber)((regPair - REG_PAIR_FIRST) & REG_PAIR_NMASK);
}

/*****************************************************************************
 *
 *  Returns the register that holds the high 32 bits of the long value given
 *  by the register pair 'regPair'.
 */
inline regNumber genRegPairHi(regPairNo regPair)
{
    assert(regPair >= REG_PAIR_FIRST && regPair <= REG_PAIR_LAST);

    return (regNumber)(((regPair - REG_PAIR_FIRST) >> REG_PAIR_NBITS) & REG_PAIR_NMASK);
}

/*****************************************************************************
 *
 *  Returns whether regPair is a combination of two "real" registers
 *  or whether it contains a pseudo register.
 *
 *  In debug it also asserts that reg1 and reg2 are not the same.
 */
bool genIsProperRegPair(regPairNo regPair);

/*****************************************************************************
 *
 *  Returns the register pair number that corresponds to the given two regs.
 */
inline regPairNo gen2regs2pair(regNumber regLo, regNumber regHi)
{
    assert(regLo != regHi || regLo == REG_STK);
    assert(genIsValidReg(regLo) && genIsValidReg(regHi));
    assert(regLo != REG_L_STK && regHi != REG_L_STK);

    regPairNo regPair = (regPairNo)(regLo + (regHi << REG_PAIR_NBITS) + REG_PAIR_FIRST);

    assert(regLo == genRegPairLo(regPair));
    assert(regHi == genRegPairHi(regPair));

    return regPair;
}

/*****************************************************************************/
inline regMaskTP genRegPairMask(regPairNo regPair)
{
    assert(regPair >= REG_PAIR_FIRST && regPair <= REG_PAIR_LAST);

    return genRegMask(genRegPairLo(regPair)) | genRegMask(genRegPairHi(regPair));
}

/*****************************************************************************
 *
 *  Assumes that "reg" is of the given "type". Return the next unused reg number after "reg"
 *  of this type, else REG_NA if there are no more.
 */

inline regNumber regNextOfType(regNumber reg, var_types type)
{
    regNumber regReturn;

#ifdef _TARGET_ARM_
    if (type == TYP_DOUBLE)
    {
        // Skip odd FP registers for double-precision types
        assert(floatRegCanHoldType(reg, type));
        regReturn = regNumber(reg + 2);
    }
    else
    {
        regReturn = REG_NEXT(reg);
    }
#else // _TARGET_ARM_
    regReturn = REG_NEXT(reg);
#endif

    if (varTypeIsFloating(type))
    {
        if (regReturn > REG_FP_LAST)
        {
            regReturn = REG_NA;
        }
    }
    else
    {
        if (regReturn > REG_INT_LAST)
        {
            regReturn = REG_NA;
        }
    }

    return regReturn;
}

/*****************************************************************************
 *
 *  Type checks
 */

inline bool isRegPairType(int /* s/b "var_types" */ type)
{
#if !CPU_LONG_USES_REGPAIR
    return false;
#else
#ifdef _TARGET_64BIT_
    return false;
#elif CPU_HAS_FP_SUPPORT
    return type == TYP_LONG;
#else
    return type == TYP_LONG || type == TYP_DOUBLE;
#endif
#endif // CPU_LONG_USES_REGPAIR
}

inline bool isFloatRegType(int /* s/b "var_types" */ type)
{
#if CPU_HAS_FP_SUPPORT
    return type == TYP_DOUBLE || type == TYP_FLOAT;
#else
    return false;
#endif
}

// If the WINDOWS_AMD64_ABI is defined make sure that _TARGET_AMD64_ is also defined.
#if defined(WINDOWS_AMD64_ABI)
#if !defined(_TARGET_AMD64_)
#error When WINDOWS_AMD64_ABI is defined you must define _TARGET_AMD64_ defined as well.
#endif
#endif

/*****************************************************************************/
// Some sanity checks on some of the register masks
// Stack pointer is never part of RBM_ALLINT
C_ASSERT((RBM_ALLINT & RBM_SPBASE) == RBM_NONE);
C_ASSERT((RBM_INT_CALLEE_SAVED & RBM_SPBASE) == RBM_NONE);

#if ETW_EBP_FRAMED
// Frame pointer isn't either if we're supporting ETW frame chaining
C_ASSERT((RBM_ALLINT & RBM_FPBASE) == RBM_NONE);
C_ASSERT((RBM_INT_CALLEE_SAVED & RBM_FPBASE) == RBM_NONE);
#endif
/*****************************************************************************/

/*****************************************************************************/
#endif // _TARGET_H_
/*****************************************************************************/