summaryrefslogtreecommitdiff
path: root/src/jit/regset.cpp
blob: 44312dab42f38d07ebed3d55cd772fb1a0ac5419 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                           RegSet                                          XX
XX                                                                           XX
XX  Represents the register set, and their states during code generation     XX
XX  Can select an unused register, keeps track of the contents of the        XX
XX  registers, and can spill registers                                       XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/

#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif

#include "emit.h"

/*****************************************************************************/

#ifdef _TARGET_ARM64_
const regMaskSmall regMasks[] = {
#define REGDEF(name, rnum, mask, xname, wname) mask,
#include "register.h"
};
#else // !_TARGET_ARM64_
const regMaskSmall regMasks[] = {
#define REGDEF(name, rnum, mask, sname) mask,
#include "register.h"
};
#endif

#ifdef _TARGET_X86_
const regMaskSmall regFPMasks[] = {
#define REGDEF(name, rnum, mask, sname) mask,
#include "registerfp.h"
};
#endif // _TARGET_X86_

/*
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                          RegSet                                           XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/

void RegSet::rsClearRegsModified()
{
#ifndef LEGACY_BACKEND
    assert(m_rsCompiler->lvaDoneFrameLayout < Compiler::FINAL_FRAME_LAYOUT);
#endif // !LEGACY_BACKEND

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("Clearing modified regs.\n");
    }
    rsModifiedRegsMaskInitialized = true;
#endif // DEBUG

    rsModifiedRegsMask = RBM_NONE;
}

void RegSet::rsSetRegsModified(regMaskTP mask DEBUGARG(bool suppressDump))
{
    assert(mask != RBM_NONE);
    assert(rsModifiedRegsMaskInitialized);

#ifndef LEGACY_BACKEND
    // We can't update the modified registers set after final frame layout (that is, during code
    // generation and after). Ignore prolog and epilog generation: they call register tracking to
    // modify rbp, for example, even in functions that use rbp as a frame pointer. Make sure normal
    // code generation isn't actually adding to set of modified registers.
    // Frame layout is only affected by callee-saved registers, so only ensure that callee-saved
    // registers aren't modified after final frame layout.
    assert((m_rsCompiler->lvaDoneFrameLayout < Compiler::FINAL_FRAME_LAYOUT) || m_rsCompiler->compGeneratingProlog ||
           m_rsCompiler->compGeneratingEpilog ||
           (((rsModifiedRegsMask | mask) & RBM_CALLEE_SAVED) == (rsModifiedRegsMask & RBM_CALLEE_SAVED)));
#endif // !LEGACY_BACKEND

#ifdef DEBUG
    if (m_rsCompiler->verbose && !suppressDump)
    {
        if (rsModifiedRegsMask != (rsModifiedRegsMask | mask))
        {
            printf("Marking regs modified: ");
            dspRegMask(mask);
            printf(" (");
            dspRegMask(rsModifiedRegsMask);
            printf(" => ");
            dspRegMask(rsModifiedRegsMask | mask);
            printf(")\n");
        }
    }
#endif // DEBUG

    rsModifiedRegsMask |= mask;
}

void RegSet::rsRemoveRegsModified(regMaskTP mask)
{
    assert(mask != RBM_NONE);
    assert(rsModifiedRegsMaskInitialized);

#ifndef LEGACY_BACKEND
    // See comment in rsSetRegsModified().
    assert((m_rsCompiler->lvaDoneFrameLayout < Compiler::FINAL_FRAME_LAYOUT) || m_rsCompiler->compGeneratingProlog ||
           m_rsCompiler->compGeneratingEpilog ||
           (((rsModifiedRegsMask & ~mask) & RBM_CALLEE_SAVED) == (rsModifiedRegsMask & RBM_CALLEE_SAVED)));
#endif // !LEGACY_BACKEND

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("Removing modified regs: ");
        dspRegMask(mask);
        if (rsModifiedRegsMask == (rsModifiedRegsMask & ~mask))
        {
            printf(" (unchanged)");
        }
        else
        {
            printf(" (");
            dspRegMask(rsModifiedRegsMask);
            printf(" => ");
            dspRegMask(rsModifiedRegsMask & ~mask);
            printf(")");
        }
        printf("\n");
    }
#endif // DEBUG

    rsModifiedRegsMask &= ~mask;
}

void RegSet::SetMaskVars(regMaskTP newMaskVars)
{
#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("\t\t\t\t\t\t\tLive regs: ");
        if (_rsMaskVars == newMaskVars)
        {
            printf("(unchanged) ");
        }
        else
        {
            printRegMaskInt(_rsMaskVars);
            m_rsCompiler->getEmitter()->emitDispRegSet(_rsMaskVars);
            printf(" => ");
        }
        printRegMaskInt(newMaskVars);
        m_rsCompiler->getEmitter()->emitDispRegSet(newMaskVars);
        printf("\n");
    }
#endif // DEBUG

    _rsMaskVars = newMaskVars;
}

#ifdef DEBUG

RegSet::rsStressRegsType RegSet::rsStressRegs()
{
#ifndef LEGACY_BACKEND
    return RS_STRESS_NONE;
#else  // LEGACY_BACKEND
    rsStressRegsType val = (rsStressRegsType)JitConfig.JitStressRegs();
    if (val == RS_STRESS_NONE && m_rsCompiler->compStressCompile(Compiler::STRESS_REGS, 15))
        val = RS_PICK_BAD_REG;
    return val;
#endif // LEGACY_BACKEND
}
#endif // DEBUG

#ifdef LEGACY_BACKEND
/*****************************************************************************
 *  Includes 'includeHint' if 'regs' is empty
 */

regMaskTP RegSet::rsUseIfZero(regMaskTP regs, regMaskTP includeHint)
{
    return regs ? regs : includeHint;
}

/*****************************************************************************
 *  Excludes 'excludeHint' if it results in a non-empty mask
 */

regMaskTP RegSet::rsExcludeHint(regMaskTP regs, regMaskTP excludeHint)
{
    regMaskTP OKmask = regs & ~excludeHint;
    return OKmask ? OKmask : regs;
}

/*****************************************************************************
 *  Narrows choice by 'narrowHint' if it results in a non-empty mask
 */

regMaskTP RegSet::rsNarrowHint(regMaskTP regs, regMaskTP narrowHint)
{
    regMaskTP narrowed = regs & narrowHint;
    return narrowed ? narrowed : regs;
}

/*****************************************************************************
 *  Excludes 'exclude' from regs if non-zero, or from RBM_ALLINT
 */

regMaskTP RegSet::rsMustExclude(regMaskTP regs, regMaskTP exclude)
{
    // Try to exclude from current set
    regMaskTP OKmask = regs & ~exclude;

    // If current set wont work, exclude from RBM_ALLINT
    if (OKmask == RBM_NONE)
        OKmask = (RBM_ALLINT & ~exclude);

    assert(OKmask);

    return OKmask;
}

/*****************************************************************************
 *
 *  The following returns a mask that yields all free registers.
 */

// inline
regMaskTP RegSet::rsRegMaskFree()
{
    /* Any register that is locked must also be marked as 'used' */

    assert((rsMaskUsed & rsMaskLock) == rsMaskLock);

    /* Any register that isn't used and doesn't hold a variable is free */

    return RBM_ALLINT & ~(rsMaskUsed | rsMaskVars | rsMaskResvd);
}

/*****************************************************************************
 *
 *  The following returns a mask of registers that may be grabbed.
 */

// inline
regMaskTP RegSet::rsRegMaskCanGrab()
{
    /* Any register that is locked must also be marked as 'used' */

    assert((rsMaskUsed & rsMaskLock) == rsMaskLock);

    /* Any register that isn't locked and doesn't hold a var can be grabbed */

    regMaskTP result = (RBM_ALLINT & ~(rsMaskLock | rsMaskVars));

#ifdef _TARGET_ARM_

    // On the ARM when we pass structs in registers we set the rsUsedTree[]
    // to be the full TYP_STRUCT tree, which doesn't allow us to spill/unspill
    // these argument registers.  To fix JitStress issues that can occur
    // when rsPickReg tries to spill one of these registers we just remove them
    // from the set of registers that we can grab
    //
    regMaskTP structArgMask = RBM_NONE;
    // Load all the variable arguments in registers back to their registers.
    for (regNumber reg = REG_ARG_FIRST; reg <= REG_ARG_LAST; reg = REG_NEXT(reg))
    {
        GenTreePtr regHolds = rsUsedTree[reg];
        if ((regHolds != NULL) && (regHolds->TypeGet() == TYP_STRUCT))
        {
            structArgMask |= genRegMask(reg);
        }
    }
    result &= ~structArgMask;
#endif

    return result;
}

/*****************************************************************************
 *
 *  Pick a free register. It is guaranteed that a register is available.
 *  Note that rsPickReg() can spill a register, whereas rsPickFreeReg() will not.
 */

// inline
regNumber RegSet::rsPickFreeReg(regMaskTP regMaskHint)
{
    regMaskTP freeRegs = rsRegMaskFree();
    assert(freeRegs != RBM_NONE);

    regMaskTP regs = rsNarrowHint(freeRegs, regMaskHint);

    return rsGrabReg(regs);
}

/*****************************************************************************
 *
 *  Mark the given set of registers as used and locked.
 */

// inline
void RegSet::rsLockReg(regMaskTP regMask)
{
    /* Must not be already marked as either used or locked */

    assert((rsMaskUsed & regMask) == 0);
    rsMaskUsed |= regMask;
    assert((rsMaskLock & regMask) == 0);
    rsMaskLock |= regMask;
}

/*****************************************************************************
 *
 *  Mark an already used set of registers as locked.
 */

// inline
void RegSet::rsLockUsedReg(regMaskTP regMask)
{
    /* Must not be already marked as locked. Must be already marked as used. */

    assert((rsMaskLock & regMask) == 0);
    assert((rsMaskUsed & regMask) == regMask);

    rsMaskLock |= regMask;
}

/*****************************************************************************
 *
 *  Mark the given set of registers as no longer used/locked.
 */

// inline
void RegSet::rsUnlockReg(regMaskTP regMask)
{
    /* Must be currently marked as both used and locked */

    assert((rsMaskUsed & regMask) == regMask);
    rsMaskUsed -= regMask;
    assert((rsMaskLock & regMask) == regMask);
    rsMaskLock -= regMask;
}

/*****************************************************************************
 *
 *  Mark the given set of registers as no longer locked.
 */

// inline
void RegSet::rsUnlockUsedReg(regMaskTP regMask)
{
    /* Must be currently marked as both used and locked */

    assert((rsMaskUsed & regMask) == regMask);
    assert((rsMaskLock & regMask) == regMask);
    rsMaskLock -= regMask;
}

/*****************************************************************************
 *
 *  Mark the given set of registers as used and locked. It may already have
 *  been marked as used.
 */

// inline
void RegSet::rsLockReg(regMaskTP regMask, regMaskTP* usedMask)
{
    /* Is it already marked as used? */

    regMaskTP used   = (rsMaskUsed & regMask);
    regMaskTP unused = (regMask & ~used);

    if (used)
        rsLockUsedReg(used);

    if (unused)
        rsLockReg(unused);

    *usedMask = used;
}

/*****************************************************************************
 *
 *  Mark the given set of registers as no longer
 */

// inline
void RegSet::rsUnlockReg(regMaskTP regMask, regMaskTP usedMask)
{
    regMaskTP unused = (regMask & ~usedMask);

    if (usedMask)
        rsUnlockUsedReg(usedMask);

    if (unused)
        rsUnlockReg(unused);
}
#endif // LEGACY_BACKEND

/*****************************************************************************
 *
 *  Assume all registers contain garbage (called at start of codegen and when
 *  we encounter a code label).
 */

// inline
void RegTracker::rsTrackRegClr()
{
    assert(RV_TRASH == 0);
    memset(rsRegValues, 0, sizeof(rsRegValues));
}

/*****************************************************************************
 *
 *  Trash the rsRegValues associated with a register
 */

// inline
void RegTracker::rsTrackRegTrash(regNumber reg)
{
    /* Keep track of which registers we ever touch */

    regSet->rsSetRegsModified(genRegMask(reg));

    /* Record the new value for the register */

    rsRegValues[reg].rvdKind = RV_TRASH;
}

/*****************************************************************************
 *
 *  calls rsTrackRegTrash on the set of registers in regmask
 */

// inline
void RegTracker::rsTrackRegMaskTrash(regMaskTP regMask)
{
    regMaskTP regBit = 1;

    for (regNumber regNum = REG_FIRST; regNum < REG_COUNT; regNum = REG_NEXT(regNum), regBit <<= 1)
    {
        if (regBit > regMask)
        {
            break;
        }

        if (regBit & regMask)
        {
            rsTrackRegTrash(regNum);
        }
    }
}

/*****************************************************************************/

// inline
void RegTracker::rsTrackRegIntCns(regNumber reg, ssize_t val)
{
    assert(genIsValidIntReg(reg));

    /* Keep track of which registers we ever touch */

    regSet->rsSetRegsModified(genRegMask(reg));

    /* Record the new value for the register */

    rsRegValues[reg].rvdKind      = RV_INT_CNS;
    rsRegValues[reg].rvdIntCnsVal = val;
}

/*****************************************************************************/

// inline
void RegTracker::rsTrackRegLclVarLng(regNumber reg, unsigned var, bool low)
{
    assert(genIsValidIntReg(reg));

    if (compiler->lvaTable[var].lvAddrExposed)
    {
        return;
    }

    /* Keep track of which registers we ever touch */

    regSet->rsSetRegsModified(genRegMask(reg));

    /* Record the new value for the register */

    rsRegValues[reg].rvdKind      = (low ? RV_LCL_VAR_LNG_LO : RV_LCL_VAR_LNG_HI);
    rsRegValues[reg].rvdLclVarNum = var;
}

/*****************************************************************************/

// inline
bool RegTracker::rsTrackIsLclVarLng(regValKind rvKind)
{
    if (compiler->opts.MinOpts() || compiler->opts.compDbgCode)
    {
        return false;
    }

    if (rvKind == RV_LCL_VAR_LNG_LO || rvKind == RV_LCL_VAR_LNG_HI)
    {
        return true;
    }
    else
    {
        return false;
    }
}

/*****************************************************************************/

// inline
void RegTracker::rsTrackRegClsVar(regNumber reg, GenTreePtr clsVar)
{
    rsTrackRegTrash(reg);
}

/*****************************************************************************/

// inline
void RegTracker::rsTrackRegAssign(GenTree* op1, GenTree* op2)
{
    /* Constant/bitvalue has precedence over local */
    switch (rsRegValues[op2->gtRegNum].rvdKind)
    {
        case RV_INT_CNS:
            break;

        default:

            /* Mark RHS register as containing the value */

            switch (op1->gtOper)
            {
                case GT_LCL_VAR:
                    rsTrackRegLclVar(op2->gtRegNum, op1->gtLclVarCommon.gtLclNum);
                    break;
                case GT_CLS_VAR:
                    rsTrackRegClsVar(op2->gtRegNum, op1);
                    break;
                default:
                    break;
            }
    }
}

#ifdef LEGACY_BACKEND

/*****************************************************************************
 *
 *  Given a regmask, find the best regPairNo that can be formed
 *  or return REG_PAIR_NONE if no register pair can be formed
 */

regPairNo RegSet::rsFindRegPairNo(regMaskTP regAllowedMask)
{
    regPairNo regPair;

    // Remove any special purpose registers such as SP, EBP, etc...
    regMaskTP specialUseMask = (rsMaskResvd | RBM_SPBASE);
#if ETW_EBP_FRAMED
    specialUseMask |= RBM_FPBASE;
#else
    if (m_rsCompiler->codeGen->isFramePointerUsed())
        specialUseMask |= RBM_FPBASE;
#endif

    regAllowedMask &= ~specialUseMask;

    /* Check if regAllowedMask has zero or one bits set */
    if ((regAllowedMask & (regAllowedMask - 1)) == 0)
    {
        /* If so we won't be able to find a reg pair */
        return REG_PAIR_NONE;
    }

#ifdef _TARGET_X86_
    if (regAllowedMask & RBM_EAX)
    {
        /* EAX is available, see if we can pair it with another reg */

        if (regAllowedMask & RBM_EDX)
        {
            regPair = REG_PAIR_EAXEDX;
            goto RET;
        }
        if (regAllowedMask & RBM_ECX)
        {
            regPair = REG_PAIR_EAXECX;
            goto RET;
        }
        if (regAllowedMask & RBM_EBX)
        {
            regPair = REG_PAIR_EAXEBX;
            goto RET;
        }
        if (regAllowedMask & RBM_ESI)
        {
            regPair = REG_PAIR_EAXESI;
            goto RET;
        }
        if (regAllowedMask & RBM_EDI)
        {
            regPair = REG_PAIR_EAXEDI;
            goto RET;
        }
        if (regAllowedMask & RBM_EBP)
        {
            regPair = REG_PAIR_EAXEBP;
            goto RET;
        }
    }

    if (regAllowedMask & RBM_ECX)
    {
        /* ECX is available, see if we can pair it with another reg */

        if (regAllowedMask & RBM_EDX)
        {
            regPair = REG_PAIR_ECXEDX;
            goto RET;
        }
        if (regAllowedMask & RBM_EBX)
        {
            regPair = REG_PAIR_ECXEBX;
            goto RET;
        }
        if (regAllowedMask & RBM_ESI)
        {
            regPair = REG_PAIR_ECXESI;
            goto RET;
        }
        if (regAllowedMask & RBM_EDI)
        {
            regPair = REG_PAIR_ECXEDI;
            goto RET;
        }
        if (regAllowedMask & RBM_EBP)
        {
            regPair = REG_PAIR_ECXEBP;
            goto RET;
        }
    }

    if (regAllowedMask & RBM_EDX)
    {
        /* EDX is available, see if we can pair it with another reg */

        if (regAllowedMask & RBM_EBX)
        {
            regPair = REG_PAIR_EDXEBX;
            goto RET;
        }
        if (regAllowedMask & RBM_ESI)
        {
            regPair = REG_PAIR_EDXESI;
            goto RET;
        }
        if (regAllowedMask & RBM_EDI)
        {
            regPair = REG_PAIR_EDXEDI;
            goto RET;
        }
        if (regAllowedMask & RBM_EBP)
        {
            regPair = REG_PAIR_EDXEBP;
            goto RET;
        }
    }

    if (regAllowedMask & RBM_EBX)
    {
        /* EBX is available, see if we can pair it with another reg */

        if (regAllowedMask & RBM_ESI)
        {
            regPair = REG_PAIR_EBXESI;
            goto RET;
        }
        if (regAllowedMask & RBM_EDI)
        {
            regPair = REG_PAIR_EBXEDI;
            goto RET;
        }
        if (regAllowedMask & RBM_EBP)
        {
            regPair = REG_PAIR_EBXEBP;
            goto RET;
        }
    }

    if (regAllowedMask & RBM_ESI)
    {
        /* ESI is available, see if we can pair it with another reg */

        if (regAllowedMask & RBM_EDI)
        {
            regPair = REG_PAIR_ESIEDI;
            goto RET;
        }
        if (regAllowedMask & RBM_EBP)
        {
            regPair = REG_PAIR_EBPESI;
            goto RET;
        }
    }

    if (regAllowedMask & RBM_EDI)
    {
        /* EDI is available, see if we can pair it with another reg */

        if (regAllowedMask & RBM_EBP)
        {
            regPair = REG_PAIR_EBPEDI;
            goto RET;
        }
    }
#endif

#ifdef _TARGET_ARM_
    // ARM is symmetric, so don't bother to prefer some pairs to others
    //
    // Iterate the registers in the order specified by rpRegTmpOrder/raRegTmpOrder

    for (unsigned index1 = 0; index1 < REG_TMP_ORDER_COUNT; index1++)
    {
        regNumber reg1;
        if (m_rsCompiler->rpRegAllocDone)
            reg1 = raRegTmpOrder[index1];
        else
            reg1 = rpRegTmpOrder[index1];

        regMaskTP reg1Mask = genRegMask(reg1);

        if ((regAllowedMask & reg1Mask) == 0)
            continue;

        for (unsigned index2 = index1 + 1; index2 < REG_TMP_ORDER_COUNT; index2++)
        {
            regNumber reg2;
            if (m_rsCompiler->rpRegAllocDone)
                reg2 = raRegTmpOrder[index2];
            else
                reg2 = rpRegTmpOrder[index2];

            regMaskTP reg2Mask = genRegMask(reg2);

            if ((regAllowedMask & reg2Mask) == 0)
                continue;

            regMaskTP pairMask = genRegMask(reg1) | genRegMask(reg2);

            // if reg1 is larger than reg2 then swap the registers
            if (reg1 > reg2)
            {
                regNumber regT = reg1;
                reg1           = reg2;
                reg2           = regT;
            }

            regPair = gen2regs2pair(reg1, reg2);
            return regPair;
        }
    }
#endif

    assert(!"Unreachable code");
    regPair = REG_PAIR_NONE;

#ifdef _TARGET_X86_
RET:
#endif

    return regPair;
}

#endif // LEGACY_BACKEND

/*****************************************************************************/

RegSet::RegSet(Compiler* compiler, GCInfo& gcInfo) : m_rsCompiler(compiler), m_rsGCInfo(gcInfo)
{
    /* Initialize the spill logic */

    rsSpillInit();

    /* Initialize the argument register count */
    // TODO-Cleanup: Consider moving intRegState and floatRegState to RegSet.  They used
    // to be initialized here, but are now initialized in the CodeGen constructor.
    // intRegState.rsCurRegArgNum   = 0;
    // loatRegState.rsCurRegArgNum = 0;

    rsMaskResvd = RBM_NONE;

#ifdef LEGACY_BACKEND
    rsMaskMult = RBM_NONE;
    rsMaskUsed = RBM_NONE;
    rsMaskLock = RBM_NONE;
#endif // LEGACY_BACKEND

#ifdef _TARGET_ARMARCH_
    rsMaskCalleeSaved = RBM_NONE;
#endif // _TARGET_ARMARCH_

#ifdef _TARGET_ARM_
    rsMaskPreSpillRegArg = RBM_NONE;
    rsMaskPreSpillAlign  = RBM_NONE;
#endif

#ifdef DEBUG
    rsModifiedRegsMaskInitialized = false;
#endif // DEBUG
}

#ifdef LEGACY_BACKEND
/*****************************************************************************
 *
 *  Marks the register that holds the given operand value as 'used'. If 'addr'
 *  is non-zero, the register is part of a complex address mode that needs to
 *  be marked if the register is ever spilled.
 */

void RegSet::rsMarkRegUsed(GenTreePtr tree, GenTreePtr addr)
{
    var_types type;
    regNumber regNum;
    regMaskTP regMask;

    /* The value must be sitting in a register */

    assert(tree);
    assert(tree->InReg());

    type   = tree->TypeGet();
    regNum = tree->gtRegNum;

    if (isFloatRegType(type))
        regMask = genRegMaskFloat(regNum, type);
    else
        regMask = genRegMask(regNum);

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("\t\t\t\t\t\t\tThe register %s currently holds ", m_rsCompiler->compRegVarName(regNum));
        Compiler::printTreeID(tree);
        if (addr != NULL)
        {
            printf("/");
            Compiler::printTreeID(addr);
        }
        else if (tree->gtOper == GT_CNS_INT)
        {
            if (tree->IsIconHandle())
                printf(" / Handle(0x%08p)", dspPtr(tree->gtIntCon.gtIconVal));
            else
                printf(" / Constant(0x%X)", tree->gtIntCon.gtIconVal);
        }
        printf("\n");
    }
#endif // DEBUG

    /* Remember whether the register holds a pointer */

    m_rsGCInfo.gcMarkRegPtrVal(regNum, type);

    /* No locked register may ever be marked as free */

    assert((rsMaskLock & rsRegMaskFree()) == 0);

    /* Is the register used by two different values simultaneously? */

    if (regMask & rsMaskUsed)
    {
        /* Save the preceding use information */

        rsRecMultiReg(regNum, type);
    }

    /* Set the register's bit in the 'used' bitset */

    rsMaskUsed |= regMask;

    /* Remember what values are in what registers, in case we have to spill */
    assert(regNum != REG_SPBASE);
    assert(rsUsedTree[regNum] == NULL);
    rsUsedTree[regNum] = tree;
    assert(rsUsedAddr[regNum] == NULL);
    rsUsedAddr[regNum] = addr;
}

void RegSet::rsMarkArgRegUsedByPromotedFieldArg(GenTreePtr promotedStructArg, regNumber regNum, bool isGCRef)
{
    regMaskTP regMask;

    /* The value must be sitting in a register */

    assert(promotedStructArg);
    assert(promotedStructArg->TypeGet() == TYP_STRUCT);

    assert(regNum < MAX_REG_ARG);
    regMask = genRegMask(regNum);
    assert((regMask & RBM_ARG_REGS) != RBM_NONE);

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("\t\t\t\t\t\t\tThe register %s currently holds ", m_rsCompiler->compRegVarName(regNum));
        Compiler::printTreeID(promotedStructArg);
        if (promotedStructArg->gtOper == GT_CNS_INT)
        {
            if (promotedStructArg->IsIconHandle())
                printf(" / Handle(0x%08p)", dspPtr(promotedStructArg->gtIntCon.gtIconVal));
            else
                printf(" / Constant(0x%X)", promotedStructArg->gtIntCon.gtIconVal);
        }
        printf("\n");
    }
#endif

    /* Remember whether the register holds a pointer */

    m_rsGCInfo.gcMarkRegPtrVal(regNum, (isGCRef ? TYP_REF : TYP_INT));

    /* No locked register may ever be marked as free */

    assert((rsMaskLock & rsRegMaskFree()) == 0);

    /* Is the register used by two different values simultaneously? */

    if (regMask & rsMaskUsed)
    {
        /* Save the preceding use information */

        assert(isValidIntArgReg(regNum)); // We are expecting only integer argument registers here
        rsRecMultiReg(regNum, TYP_I_IMPL);
    }

    /* Set the register's bit in the 'used' bitset */

    rsMaskUsed |= regMask;

    /* Remember what values are in what registers, in case we have to spill */
    assert(regNum != REG_SPBASE);
    assert(rsUsedTree[regNum] == 0);
    rsUsedTree[regNum] = promotedStructArg;
}

/*****************************************************************************
 *
 *  Marks the register pair that holds the given operand value as 'used'.
 */

void RegSet::rsMarkRegPairUsed(GenTreePtr tree)
{
    regNumber regLo;
    regNumber regHi;
    regPairNo regPair;
    regMaskTP regMask;

    /* The value must be sitting in a register */

    assert(tree);
#if CPU_HAS_FP_SUPPORT
    assert(tree->gtType == TYP_LONG);
#else
    assert(tree->gtType == TYP_LONG || tree->gtType == TYP_DOUBLE);
#endif
    assert(tree->InReg());

    regPair = tree->gtRegPair;
    regMask = genRegPairMask(regPair);

    regLo = genRegPairLo(regPair);
    regHi = genRegPairHi(regPair);

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("\t\t\t\t\t\t\tThe register %s currently holds ", m_rsCompiler->compRegVarName(regLo));
        Compiler::printTreeID(tree);
        printf("/lo32\n");
        printf("\t\t\t\t\t\t\tThe register %s currently holds ", m_rsCompiler->compRegVarName(regHi));
        Compiler::printTreeID(tree);
        printf("/hi32\n");
    }
#endif

    /* Neither register obviously holds a pointer value */

    m_rsGCInfo.gcMarkRegSetNpt(regMask);

    /* No locked register may ever be marked as free */

    assert((rsMaskLock & rsRegMaskFree()) == 0);

    /* Are the registers used by two different values simultaneously? */

    if (rsMaskUsed & genRegMask(regLo))
    {
        /* Save the preceding use information */

        rsRecMultiReg(regLo, TYP_INT);
    }

    if (rsMaskUsed & genRegMask(regHi))
    {
        /* Save the preceding use information */

        rsRecMultiReg(regHi, TYP_INT);
    }

    /* Can't mark a register pair more than once as used */

    // assert((regMask & rsMaskUsed) == 0);

    /* Mark the registers as 'used' */

    rsMaskUsed |= regMask;

    /* Remember what values are in what registers, in case we have to spill */

    if (regLo != REG_STK)
    {
        assert(rsUsedTree[regLo] == 0);
        assert(regLo != REG_SPBASE);
        rsUsedTree[regLo] = tree;
    }

    if (regHi != REG_STK)
    {
        assert(rsUsedTree[regHi] == 0);
        assert(regHi != REG_SPBASE);
        rsUsedTree[regHi] = tree;
    }
}

/*****************************************************************************
 *
 *  Returns true if the given tree is currently held in reg.
 *  Note that reg may by used by multiple trees, in which case we have
 *  to search rsMultiDesc[reg].
 */

bool RegSet::rsIsTreeInReg(regNumber reg, GenTreePtr tree)
{
    /* First do the trivial check */

    if (rsUsedTree[reg] == tree)
        return true;

    /* If the register is used by multiple trees, we have to search the list
       in rsMultiDesc[reg] */

    if (genRegMask(reg) & rsMaskMult)
    {
        SpillDsc* multiDesc = rsMultiDesc[reg];
        assert(multiDesc);

        for (/**/; multiDesc; multiDesc = multiDesc->spillNext)
        {
            if (multiDesc->spillTree == tree)
                return true;

            assert((!multiDesc->spillNext) == (!multiDesc->spillMoreMultis));
        }
    }

    /* Not found. It must be spilled */

    return false;
}
#endif // LEGACY_BACKEND

/*****************************************************************************
 *
 *  Finds the SpillDsc corresponding to 'tree' assuming it was spilled from 'reg'.
 */

RegSet::SpillDsc* RegSet::rsGetSpillInfo(GenTreePtr tree,
                                         regNumber  reg,
                                         SpillDsc** pPrevDsc
#ifdef LEGACY_BACKEND
                                         ,
                                         SpillDsc** pMultiDsc
#endif // LEGACY_BACKEND
                                         )
{
    /* Normally, trees are unspilled in the order of being spilled due to
       the post-order walking of trees during code-gen. However, this will
       not be true for something like a GT_ARR_ELEM node */
    CLANG_FORMAT_COMMENT_ANCHOR;

#ifdef LEGACY_BACKEND
    SpillDsc* multi = rsSpillDesc[reg];
#endif // LEGACY_BACKEND

    SpillDsc* prev;
    SpillDsc* dsc;
    for (prev = nullptr, dsc = rsSpillDesc[reg]; dsc != nullptr; prev = dsc, dsc = dsc->spillNext)
    {
#ifdef LEGACY_BACKEND
        if (prev && !prev->spillMoreMultis)
            multi = dsc;
#endif // LEGACY_BACKEND

        if (dsc->spillTree == tree)
        {
            break;
        }
    }

    if (pPrevDsc)
    {
        *pPrevDsc = prev;
    }
#ifdef LEGACY_BACKEND
    if (pMultiDsc)
        *pMultiDsc = multi;
#endif // LEGACY_BACKEND

    return dsc;
}

#ifdef LEGACY_BACKEND
/*****************************************************************************
 *
 *  Mark the register set given by the register mask as not used.
 */

void RegSet::rsMarkRegFree(regMaskTP regMask)
{
    /* Are we freeing any multi-use registers? */

    if (regMask & rsMaskMult)
    {
        rsMultRegFree(regMask);
        return;
    }

    m_rsGCInfo.gcMarkRegSetNpt(regMask);

    regMaskTP regBit = 1;

    for (regNumber regNum = REG_FIRST; regNum < REG_COUNT; regNum = REG_NEXT(regNum), regBit <<= 1)
    {
        if (regBit > regMask)
            break;

        if (regBit & regMask)
        {
#ifdef DEBUG
            if (m_rsCompiler->verbose)
            {
                printf("\t\t\t\t\t\t\tThe register %s no longer holds ", m_rsCompiler->compRegVarName(regNum));
                Compiler::printTreeID(rsUsedTree[regNum]);
                if (rsUsedAddr[regNum] != nullptr)
                {
                    Compiler::printTreeID(rsUsedAddr[regNum]);
                }

                printf("\n");
            }
#endif
            GenTreePtr usedTree = rsUsedTree[regNum];
            assert(usedTree != NULL);
            rsUsedTree[regNum] = NULL;
            rsUsedAddr[regNum] = NULL;
#ifdef _TARGET_ARM_
            if (usedTree->TypeGet() == TYP_DOUBLE)
            {
                regNum = REG_NEXT(regNum);
                regBit <<= 1;

                assert(regBit & regMask);
                assert(rsUsedTree[regNum] == NULL);
                assert(rsUsedAddr[regNum] == NULL);
            }
#endif
        }
    }

    /* Remove the register set from the 'used' set */

    assert((regMask & rsMaskUsed) == regMask);
    rsMaskUsed -= regMask;

    /* No locked register may ever be marked as free */

    assert((rsMaskLock & rsRegMaskFree()) == 0);
}

/*****************************************************************************
 *
 *  Free the register from the given tree. If the register holds other tree,
 *  it will still be marked as used, else it will be completely free.
 */

void RegSet::rsMarkRegFree(regNumber reg, GenTreePtr tree)
{
    assert(rsIsTreeInReg(reg, tree));
    regMaskTP regMask = genRegMask(reg);

    /* If the register is not multi-used, it's easy. Just do the default work */

    if (!(regMask & rsMaskMult))
    {
        rsMarkRegFree(regMask);
        return;
    }

    /* The tree is multi-used. We just have to free it off the given tree but
       leave other trees which use the register as they are. The register may
       not be multi-used after freeing it from the given tree */

    /* Is the tree in rsUsedTree[] or in rsMultiDesc[]?
       If it is in rsUsedTree[], update rsUsedTree[] */

    if (rsUsedTree[reg] == tree)
    {
        rsRmvMultiReg(reg);
        return;
    }

    /* The tree is in rsMultiDesc[] instead of in rsUsedTree[]. Find the desc
       corresponding to the tree and just remove it from there */

    for (SpillDsc *multiDesc = rsMultiDesc[reg], *prevDesc = NULL; multiDesc;
         prevDesc = multiDesc, multiDesc = multiDesc->spillNext)
    {
        /* If we find the descriptor with the tree we are looking for,
           discard it */

        if (multiDesc->spillTree != tree)
            continue;

        if (prevDesc == NULL)
        {
            /* The very first desc in rsMultiDesc[] matched. If there are
               no further descs, then the register is no longer multi-used */

            if (!multiDesc->spillMoreMultis)
                rsMaskMult -= regMask;

            rsMultiDesc[reg] = multiDesc->spillNext;
        }
        else
        {
            /* There are a couple of other descs before the match. So the
               register is still multi-used. However, we may have to
               update spillMoreMultis for the previous desc. */

            if (!multiDesc->spillMoreMultis)
                prevDesc->spillMoreMultis = false;

            prevDesc->spillNext = multiDesc->spillNext;
        }

        SpillDsc::freeDsc(this, multiDesc);

#ifdef DEBUG
        if (m_rsCompiler->verbose)
        {
            printf("\t\t\t\t\t\t\tRegister %s multi-use dec for ", m_rsCompiler->compRegVarName(reg));
            Compiler::printTreeID(tree);
            printf(" - now ");
            Compiler::printTreeID(rsUsedTree[reg]);
            printf(" multMask=" REG_MASK_ALL_FMT "\n", rsMaskMult);
        }
#endif

        return;
    }

    assert(!"Didn't find the spilled tree in rsMultiDesc[]");
}

/*****************************************************************************
 *
 *  Mark the register set given by the register mask as not used; there may
 *  be some 'multiple-use' registers in the set.
 */

void RegSet::rsMultRegFree(regMaskTP regMask)
{
    /* Free any multiple-use registers first */
    regMaskTP nonMultMask = regMask & ~rsMaskMult;
    regMaskTP myMultMask  = regMask & rsMaskMult;

    if (myMultMask)
    {
        regNumber regNum;
        regMaskTP regBit;

        for (regNum = REG_FIRST, regBit = 1; regNum < REG_COUNT; regNum = REG_NEXT(regNum), regBit <<= 1)
        {
            if (regBit > myMultMask)
                break;

            if (regBit & myMultMask)
            {
                /* Free the multi-use register 'regNum' */
                var_types type = rsRmvMultiReg(regNum);
#ifdef _TARGET_ARM_
                if (genIsValidFloatReg(regNum) && (type == TYP_DOUBLE))
                {
                    // On ARM32, We skip the second register for a TYP_DOUBLE
                    regNum = REG_NEXT(regNum);
                    regBit <<= 1;
                }
#endif // _TARGET_ARM_
            }
        }
    }

    /* If there are any single-use registers, free them */

    if (nonMultMask)
        rsMarkRegFree(nonMultMask);
}

/*****************************************************************************
 *
 *  Returns the number of registers that are currently free which appear in needReg.
 */

unsigned RegSet::rsFreeNeededRegCount(regMaskTP needReg)
{
    regMaskTP regNeededFree = rsRegMaskFree() & needReg;
    unsigned  cntFree       = 0;

    /* While some registers are free ... */

    while (regNeededFree)
    {
        /* Remove the next register bit and bump the count */

        regNeededFree -= genFindLowestBit(regNeededFree);
        cntFree += 1;
    }

    return cntFree;
}
#endif // LEGACY_BACKEND

/*****************************************************************************
 *
 *  Record the fact that the given register now contains the given local
 *  variable. Pointers are handled specially since reusing the register
 *  will extend the lifetime of a pointer register which is not a register
 *  variable.
 */

void RegTracker::rsTrackRegLclVar(regNumber reg, unsigned var)
{
    LclVarDsc* varDsc = &compiler->lvaTable[var];
    assert(reg != REG_STK);
#if CPU_HAS_FP_SUPPORT
    assert(varTypeIsFloating(varDsc->TypeGet()) == false);
#endif
    // Kill the register before doing anything in case we take a
    // shortcut out of here
    rsRegValues[reg].rvdKind = RV_TRASH;

    if (compiler->lvaTable[var].lvAddrExposed)
    {
        return;
    }

    /* Keep track of which registers we ever touch */

    regSet->rsSetRegsModified(genRegMask(reg));

#if REDUNDANT_LOAD

    /* Is the variable a pointer? */

    if (varTypeIsGC(varDsc->TypeGet()))
    {
        /* Don't track pointer register vars */

        if (varDsc->lvRegister)
        {
            return;
        }

        /* Don't track when fully interruptible */

        if (compiler->genInterruptible)
        {
            return;
        }
    }
    else if (varDsc->lvNormalizeOnLoad())
    {
        return;
    }

#endif

#ifdef DEBUG
    if (compiler->verbose)
    {
        printf("\t\t\t\t\t\t\tThe register %s now holds V%02u\n", compiler->compRegVarName(reg), var);
    }
#endif

    /* Record the new value for the register. ptr var needed for
     * lifetime extension
     */

    rsRegValues[reg].rvdKind = RV_LCL_VAR;

    // If this is a cast of a 64 bit int, then we must have the low 32 bits.
    if (genActualType(varDsc->TypeGet()) == TYP_LONG)
    {
        rsRegValues[reg].rvdKind = RV_LCL_VAR_LNG_LO;
    }

    rsRegValues[reg].rvdLclVarNum = var;
}

/*****************************************************************************/

void RegTracker::rsTrackRegSwap(regNumber reg1, regNumber reg2)
{
    RegValDsc tmp;

    tmp               = rsRegValues[reg1];
    rsRegValues[reg1] = rsRegValues[reg2];
    rsRegValues[reg2] = tmp;
}

void RegTracker::rsTrackRegCopy(regNumber reg1, regNumber reg2)
{
    /* Keep track of which registers we ever touch */

    assert(reg1 < REG_COUNT);
    assert(reg2 < REG_COUNT);

    regSet->rsSetRegsModified(genRegMask(reg1));

    rsRegValues[reg1] = rsRegValues[reg2];
}

#ifdef LEGACY_BACKEND

/*****************************************************************************
 *  One of the operands of this complex address mode has been spilled
 */

void rsAddrSpillOper(GenTreePtr addr)
{
    if (addr)
    {
        assert(addr->gtOper == GT_IND || addr->gtOper == GT_ARR_ELEM || addr->gtOper == GT_LEA ||
               addr->gtOper == GT_CMPXCHG);

        // GTF_SPILLED_OP2 says "both operands have been spilled"
        assert((addr->gtFlags & GTF_SPILLED_OP2) == 0);

        if ((addr->gtFlags & GTF_SPILLED_OPER) == 0)
            addr->gtFlags |= GTF_SPILLED_OPER;
        else
            addr->gtFlags |= GTF_SPILLED_OP2;
    }
}

void rsAddrUnspillOper(GenTreePtr addr)
{
    if (addr)
    {
        assert(addr->gtOper == GT_IND || addr->gtOper == GT_ARR_ELEM || addr->gtOper == GT_LEA ||
               addr->gtOper == GT_CMPXCHG);

        assert((addr->gtFlags & GTF_SPILLED_OPER) != 0);

        // Both operands spilled? */
        if ((addr->gtFlags & GTF_SPILLED_OP2) != 0)
            addr->gtFlags &= ~GTF_SPILLED_OP2;
        else
            addr->gtFlags &= ~GTF_SPILLED_OPER;
    }
}

void RegSet::rsSpillRegIfUsed(regNumber reg)
{
    if (rsMaskUsed & genRegMask(reg))
    {
        rsSpillReg(reg);
    }
}

#endif // LEGACY_BACKEND

//------------------------------------------------------------
// rsSpillTree: Spill the tree held in 'reg'.
//
// Arguments:
//   reg     -   Register of tree node that is to be spilled
//   tree    -   GenTree node that is being spilled
//   regIdx  -   Register index identifying the specific result
//               register of a multi-reg call node. For single-reg
//               producing tree nodes its value is zero.
//
// Return Value:
//   None.
//
// Assumption:
//    RyuJIT backend specific: in case of multi-reg call nodes, GTF_SPILL
//    flag associated with the reg that is being spilled is cleared.  The
//    caller of this method is expected to clear GTF_SPILL flag on call
//    node after all of its registers marked for spilling are spilled.
//
void RegSet::rsSpillTree(regNumber reg, GenTreePtr tree, unsigned regIdx /* =0 */)
{
    assert(tree != nullptr);

    GenTreeCall* call = nullptr;
    var_types    treeType;
#if !defined(LEGACY_BACKEND) && defined(_TARGET_ARM_)
    GenTreePutArgSplit* splitArg = nullptr;
    GenTreeMultiRegOp*  multiReg = nullptr;
#endif

#ifndef LEGACY_BACKEND
    if (tree->IsMultiRegCall())
    {
        call                        = tree->AsCall();
        ReturnTypeDesc* retTypeDesc = call->GetReturnTypeDesc();
        treeType                    = retTypeDesc->GetReturnRegType(regIdx);
    }
#ifdef _TARGET_ARM_
    else if (tree->OperIsPutArgSplit())
    {
        splitArg = tree->AsPutArgSplit();
        treeType = splitArg->GetRegType(regIdx);
    }
    else if (tree->OperIsMultiRegOp())
    {
        multiReg = tree->AsMultiRegOp();
        treeType = multiReg->GetRegType(regIdx);
    }
#endif // _TARGET_ARM_
    else
#endif // !LEGACY_BACKEND
    {
        treeType = tree->TypeGet();
    }

    var_types tempType = Compiler::tmpNormalizeType(treeType);
    regMaskTP mask;
    bool      floatSpill = false;

    if (isFloatRegType(treeType))
    {
        floatSpill = true;
        mask       = genRegMaskFloat(reg, treeType);
    }
    else
    {
        mask = genRegMask(reg);
    }

    rsNeededSpillReg = true;

#ifdef LEGACY_BACKEND
    // The register we're spilling must be used but not locked
    // or an enregistered variable.

    assert((mask & rsMaskUsed) == mask);
    assert((mask & rsMaskLock) == 0);
    assert((mask & rsMaskVars) == 0);
#endif // LEGACY_BACKEND

#ifndef LEGACY_BACKEND
    // We should only be spilling nodes marked for spill,
    // vars should be handled elsewhere, and to prevent
    // spilling twice clear GTF_SPILL flag on tree node.
    //
    // In case of multi-reg call nodes only the spill flag
    // associated with the reg is cleared. Spill flag on
    // call node should be cleared by the caller of this method.
    assert(tree->gtOper != GT_REG_VAR);
    assert((tree->gtFlags & GTF_SPILL) != 0);

    unsigned regFlags = 0;
    if (call != nullptr)
    {
        regFlags = call->GetRegSpillFlagByIdx(regIdx);
        assert((regFlags & GTF_SPILL) != 0);
        regFlags &= ~GTF_SPILL;
    }
#ifdef _TARGET_ARM_
    else if (splitArg != nullptr)
    {
        regFlags = splitArg->GetRegSpillFlagByIdx(regIdx);
        assert((regFlags & GTF_SPILL) != 0);
        regFlags &= ~GTF_SPILL;
    }
    else if (multiReg != nullptr)
    {
        regFlags = multiReg->GetRegSpillFlagByIdx(regIdx);
        assert((regFlags & GTF_SPILL) != 0);
        regFlags &= ~GTF_SPILL;
    }
#endif // _TARGET_ARM_
    else
    {
        assert(!varTypeIsMultiReg(tree));
        tree->gtFlags &= ~GTF_SPILL;
    }
#endif // !LEGACY_BACKEND

#if CPU_LONG_USES_REGPAIR
    // Are we spilling a part of a register pair?
    if (treeType == TYP_LONG)
    {
        tempType = TYP_I_IMPL;
        assert(genRegPairLo(tree->gtRegPair) == reg || genRegPairHi(tree->gtRegPair) == reg);
    }
    else
    {
        assert(tree->InReg());
        assert(tree->gtRegNum == reg);
    }
#elif defined(_TARGET_ARM_)
    assert(tree->gtRegNum == reg || (call != nullptr && call->GetRegNumByIdx(regIdx) == reg) ||
           (splitArg != nullptr && splitArg->GetRegNumByIdx(regIdx) == reg) ||
           (multiReg != nullptr && multiReg->GetRegNumByIdx(regIdx) == reg));
#else
    assert(tree->gtRegNum == reg || (call != nullptr && call->GetRegNumByIdx(regIdx) == reg));
#endif // !CPU_LONG_USES_REGPAIR && !_TARGET_ARM_

    // Are any registers free for spillage?
    SpillDsc* spill = SpillDsc::alloc(m_rsCompiler, this, tempType);

    // Grab a temp to store the spilled value
    TempDsc* temp    = m_rsCompiler->tmpGetTemp(tempType);
    spill->spillTemp = temp;
    tempType         = temp->tdTempType();

    // Remember what it is we have spilled
    spill->spillTree = tree;
#ifdef LEGACY_BACKEND
    spill->spillAddr = rsUsedAddr[reg];
#endif // LEGACY_BACKEND

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("\t\t\t\t\t\t\tThe register %s spilled with    ", m_rsCompiler->compRegVarName(reg));
        Compiler::printTreeID(spill->spillTree);
#ifdef LEGACY_BACKEND
        if (spill->spillAddr != nullptr)
        {
            Compiler::printTreeID(spill->spillAddr);
        }
#endif // LEGACY_BACKEND
    }
#endif

#ifdef LEGACY_BACKEND
    // Is the register part of a complex address mode?
    rsAddrSpillOper(rsUsedAddr[reg]);
#endif // LEGACY_BACKEND

    // 'lastDsc' is 'spill' for simple cases, and will point to the last
    // multi-use descriptor if 'reg' is being multi-used
    SpillDsc* lastDsc = spill;

#ifdef LEGACY_BACKEND
    if ((rsMaskMult & mask) == 0)
    {
        spill->spillMoreMultis = false;
    }
    else
    {
        // The register is being multi-used and will have entries in
        // rsMultiDesc[reg]. Spill all of them (ie. move them to
        // rsSpillDesc[reg]).
        // When we unspill the reg, they will all be moved back to
        // rsMultiDesc[].

        spill->spillMoreMultis = true;

        SpillDsc* nextDsc = rsMultiDesc[reg];

        do
        {
            assert(nextDsc != nullptr);

            // Is this multi-use part of a complex address mode?
            rsAddrSpillOper(nextDsc->spillAddr);

            // Mark the tree node as having been spilled
            rsMarkSpill(nextDsc->spillTree, reg);

            // lastDsc points to the last of the multi-spill descrs for 'reg'
            nextDsc->spillTemp = temp;

#ifdef DEBUG
            if (m_rsCompiler->verbose)
            {
                printf(", ");
                Compiler::printTreeID(nextDsc->spillTree);
                printf("/");
                Compiler::printTreeID(nextDsc->spillAddr);
            }
#endif

            lastDsc->spillNext = nextDsc;
            lastDsc            = nextDsc;

            nextDsc = nextDsc->spillNext;
        } while (lastDsc->spillMoreMultis);

        rsMultiDesc[reg] = nextDsc;

        // 'reg' is no longer considered to be multi-used. We will set this
        // mask again when this value gets unspilled
        rsMaskMult &= ~mask;
    }
#endif // LEGACY_BACKEND

    // Insert the spill descriptor(s) in the list
    lastDsc->spillNext = rsSpillDesc[reg];
    rsSpillDesc[reg]   = spill;

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("\n");
    }
#endif

    // Generate the code to spill the register
    var_types storeType = floatSpill ? treeType : tempType;

    m_rsCompiler->codeGen->spillReg(storeType, temp, reg);

    // Mark the tree node as having been spilled
    rsMarkSpill(tree, reg);

#ifdef LEGACY_BACKEND
    // The register is now free
    rsMarkRegFree(mask);
#else
    // In case of multi-reg call node also mark the specific
    // result reg as spilled.
    if (call != nullptr)
    {
        regFlags |= GTF_SPILLED;
        call->SetRegSpillFlagByIdx(regFlags, regIdx);
    }
#ifdef _TARGET_ARM_
    else if (splitArg != nullptr)
    {
        regFlags |= GTF_SPILLED;
        splitArg->SetRegSpillFlagByIdx(regFlags, regIdx);
    }
    else if (multiReg != nullptr)
    {
        regFlags |= GTF_SPILLED;
        multiReg->SetRegSpillFlagByIdx(regFlags, regIdx);
    }
#endif // _TARGET_ARM_
#endif //! LEGACY_BACKEND
}

#if defined(_TARGET_X86_) && !FEATURE_STACK_FP_X87
/*****************************************************************************
*
*  Spill the top of the FP x87 stack.
*/
void RegSet::rsSpillFPStack(GenTreeCall* call)
{
    SpillDsc* spill;
    TempDsc*  temp;
    var_types treeType = call->TypeGet();

    spill = SpillDsc::alloc(m_rsCompiler, this, treeType);

    /* Grab a temp to store the spilled value */

    spill->spillTemp = temp = m_rsCompiler->tmpGetTemp(treeType);

    /* Remember what it is we have spilled */

    spill->spillTree  = call;
    SpillDsc* lastDsc = spill;

    regNumber reg      = call->gtRegNum;
    lastDsc->spillNext = rsSpillDesc[reg];
    rsSpillDesc[reg]   = spill;

#ifdef DEBUG
    if (m_rsCompiler->verbose)
        printf("\n");
#endif
    // m_rsCompiler->codeGen->inst_FS_ST(INS_fstp, emitActualTypeSize(treeType), temp, 0);
    m_rsCompiler->codeGen->getEmitter()->emitIns_S(INS_fstp, emitActualTypeSize(treeType), temp->tdTempNum(), 0);

    /* Mark the tree node as having been spilled */

    rsMarkSpill(call, reg);
}
#endif // defined(_TARGET_X86_) && !FEATURE_STACK_FP_X87

#ifdef LEGACY_BACKEND

/*****************************************************************************
 *
 *  Spill the given register (which we assume to be currently marked as used).
 */

void RegSet::rsSpillReg(regNumber reg)
{
    /* We must know the value in the register that we are spilling */
    GenTreePtr tree = rsUsedTree[reg];

#ifdef _TARGET_ARM_
    if (tree == NULL && genIsValidFloatReg(reg) && !genIsValidDoubleReg(reg))
    {
        reg = REG_PREV(reg);
        assert(rsUsedTree[reg]);
        assert(rsUsedTree[reg]->TypeGet() == TYP_DOUBLE);
        tree = rsUsedTree[reg];
    }
#endif

    rsSpillTree(reg, tree);

    /* The register no longer holds its original value */

    rsUsedTree[reg] = NULL;
}

/*****************************************************************************
 *
 *  Spill all registers in 'regMask' that are currently marked as used.
 */

void RegSet::rsSpillRegs(regMaskTP regMask)
{
    /* The registers we're spilling must not be locked,
       or enregistered variables */

    assert((regMask & rsMaskLock) == 0);
    assert((regMask & rsMaskVars) == 0);

    /* Only spill what's currently marked as used */

    regMask &= rsMaskUsed;
    assert(regMask);

    regNumber regNum;
    regMaskTP regBit;

    for (regNum = REG_FIRST, regBit = 1; regNum < REG_COUNT; regNum = REG_NEXT(regNum), regBit <<= 1)
    {
        if (regMask & regBit)
        {
            rsSpillReg(regNum);

            regMask &= rsMaskUsed;

            if (!regMask)
                break;
        }
    }
}

/*****************************************************************************
 *
 *  The following table determines the order in which registers are considered
 *  for internal tree temps to live in
 */

extern const regNumber raRegTmpOrder[] = {REG_TMP_ORDER};
extern const regNumber rpRegTmpOrder[] = {REG_PREDICT_ORDER};
#if FEATURE_FP_REGALLOC
extern const regNumber raRegFltTmpOrder[] = {REG_FLT_TMP_ORDER};
#endif

/*****************************************************************************
 *
 *  Choose a register from the given set in the preferred order (see above);
 *  if no registers are in the set return REG_STK.
 */

regNumber RegSet::rsPickRegInTmpOrder(regMaskTP regMask)
{
    if (regMask == RBM_NONE)
        return REG_STK;

    bool      firstPass = true;
    regMaskTP avoidMask =
        ~rsGetModifiedRegsMask() & RBM_CALLEE_SAVED; // We want to avoid using any new callee saved register

    while (true)
    {
        /* Iterate the registers in the order specified by raRegTmpOrder */

        for (unsigned index = 0; index < REG_TMP_ORDER_COUNT; index++)
        {
            regNumber candidateReg  = raRegTmpOrder[index];
            regMaskTP candidateMask = genRegMask(candidateReg);

            // For a FP base frame, don't use FP register.
            if (m_rsCompiler->codeGen->isFramePointerUsed() && (candidateMask == RBM_FPBASE))
                continue;

            // For the first pass avoid selecting a never used register when there are other registers available
            if (firstPass && ((candidateMask & avoidMask) != 0))
                continue;

            if (regMask & candidateMask)
                return candidateReg;
        }

        if (firstPass == true)
            firstPass = false; // OK, now we are willing to select a never used register
        else
            break;
    }

    return REG_STK;
}

/*****************************************************************************
 *  Choose a register from the 'regMask' set and return it. If no registers in
 *  the set are currently free, one of them will be spilled (even if other
 *  registers - not in the set - are currently free).
 *
 *  If you don't require a register from a particular set, you should use rsPickReg() instead.
 *
 *  rsModifiedRegsMask is modified to include the returned register.
 */

regNumber RegSet::rsGrabReg(regMaskTP regMask)
{
    regMaskTP OKmask;
    regNumber regNum;
    regMaskTP regBit;

    assert(regMask);
    regMask &= ~rsMaskLock;
    assert(regMask);

    /* See if one of the desired registers happens to be free */

    OKmask = regMask & rsRegMaskFree();

    regNum = rsPickRegInTmpOrder(OKmask);
    if (REG_STK != regNum)
    {
        goto RET;
    }

    /* We'll have to spill one of the registers in 'regMask' */

    OKmask = regMask & rsRegMaskCanGrab();
    assert(OKmask);

    for (regNum = REG_FIRST, regBit = 1; (regBit & OKmask) == 0; regNum = REG_NEXT(regNum), regBit <<= 1)
    {
        if (regNum >= REG_COUNT)
        {
            assert(!"no register to grab!");
            NO_WAY("Could not grab a register, Predictor should have prevented this!");
        }
    }

    /* This will be the victim -- spill it */
    rsSpillReg(regNum);

    /* Make sure we did find a register to spill */
    assert(genIsValidReg(regNum));

RET:
    /* Keep track of which registers we ever touch */
    rsSetRegsModified(genRegMask(regNum));
    return regNum;
}

/*****************************************************************************
 *  Find a register to use and return it, spilling if necessary.
 *
 *  Look for a register in the following order: First, try and find a free register
 *  in 'regBest' (if 'regBest' is RBM_NONE, skip this step). Second, try to find a
 *  free register in 'regMask' (if 'regMask' is RBM_NONE, skip this step). Note that
 *  'regBest' doesn't need to be a subset of 'regMask'. Third, find any free
 *  register. Fourth, spill a register. The register to spill will be in 'regMask',
 *  if 'regMask' is not RBM_NONE.
 *
 *  Note that 'regMask' and 'regBest' are purely recommendations, and can be ignored;
 *  the caller can't expect that the returned register will be in those sets. In
 *  particular, under register stress, we specifically will pick registers not in
 *  these sets to ensure that callers don't require a register from those sets
 *  (and to ensure callers can handle the spilling that might ensue).
 *
 *  Calling rsPickReg() with the default arguments (which sets 'regMask' and 'regBest' to RBM_NONE)
 *  is equivalent to calling rsGrabReg(rsRegMaskFree()).
 *
 *  rsModifiedRegsMask is modified to include the returned register.
 */

regNumber RegSet::rsPickReg(regMaskTP regMask, regMaskTP regBest)
{
    regNumber regNum;
    regMaskTP spillMask;
    regMaskTP canGrabMask;

#ifdef DEBUG
    if (rsStressRegs() >= 1)
    {
        /* 'regMask' is purely a recommendation, and callers should be
           able to handle the case where it is not satisfied.
           The logic here tries to return ~regMask to check that all callers
           are prepared to handle such a case */

        regMaskTP badRegs = rsMaskMult & rsRegMaskCanGrab();

        badRegs = rsUseIfZero(badRegs, rsMaskUsed & rsRegMaskCanGrab());
        badRegs = rsUseIfZero(badRegs, rsRegMaskCanGrab());
        badRegs = rsExcludeHint(badRegs, regMask);

        assert(badRegs != RBM_NONE);

        return rsGrabReg(badRegs);
    }

#endif

    regMaskTP freeMask = rsRegMaskFree();

AGAIN:

    /* By default we'd prefer to accept all available registers */

    regMaskTP OKmask = freeMask;

    // OKmask = rsNarrowHint(OKmask, rsUselessRegs());

    /* Is there a 'best' register set? */

    if (regBest)
    {
        OKmask &= regBest;
        if (OKmask)
            goto TRY_REG;
        else
            goto TRY_ALL;
    }

    /* Was a register set recommended by the caller? */

    if (regMask)
    {
        OKmask &= regMask;
        if (!OKmask)
            goto TRY_ALL;
    }

TRY_REG:

    /* Iterate the registers in the order specified by raRegTmpOrder */

    regNum = rsPickRegInTmpOrder(OKmask);
    if (REG_STK != regNum)
    {
        goto RET;
    }

TRY_ALL:

    /* Were we considering 'regBest' ? */

    if (regBest)
    {
        /* 'regBest' is no good -- ignore it and try 'regMask' instead */

        regBest = RBM_NONE;
        goto AGAIN;
    }

    /* Now let's consider all available registers */

    /* Were we limited in our consideration? */

    if (!regMask)
    {
        /* We need to spill one of the free registers */

        spillMask = freeMask;
    }
    else
    {
        /* Did we not consider all free registers? */

        if ((regMask & freeMask) != freeMask)
        {
            /* The recommended regset didn't work, so try all available regs */

            regNum = rsPickRegInTmpOrder(freeMask);
            if (REG_STK != regNum)
                goto RET;
        }

        /* If we're going to spill, might as well go for the right one */

        spillMask = regMask;
    }

    /* Make sure we can spill some register. */

    canGrabMask = rsRegMaskCanGrab();
    if ((spillMask & canGrabMask) == 0)
        spillMask = canGrabMask;

    assert(spillMask);

    /* We have no choice but to spill one of the regs */

    return rsGrabReg(spillMask);

RET:

    rsSetRegsModified(genRegMask(regNum));
    return regNum;
}

#endif // LEGACY_BACKEND

/*****************************************************************************
 *
 *  Get the temp that was spilled from the given register (and free its
 *  spill descriptor while we're at it). Returns the temp (i.e. local var)
 */

TempDsc* RegSet::rsGetSpillTempWord(regNumber reg, SpillDsc* dsc, SpillDsc* prevDsc)
{
    assert((prevDsc == nullptr) || (prevDsc->spillNext == dsc));

#ifdef LEGACY_BACKEND
    /* Is dsc the last of a set of multi-used values */

    if (prevDsc && prevDsc->spillMoreMultis && !dsc->spillMoreMultis)
        prevDsc->spillMoreMultis = false;
#endif // LEGACY_BACKEND

    /* Remove this spill entry from the register's list */

    (prevDsc ? prevDsc->spillNext : rsSpillDesc[reg]) = dsc->spillNext;

    /* Remember which temp the value is in */

    TempDsc* temp = dsc->spillTemp;

    SpillDsc::freeDsc(this, dsc);

    /* return the temp variable */

    return temp;
}

#ifdef LEGACY_BACKEND
/*****************************************************************************
 *
 *  Reload the value that was spilled from the given register (and free its
 *  spill descriptor while we're at it). Returns the new register (which will
 *  be a member of 'needReg' if that value is non-zero).
 *
 *  'willKeepNewReg' indicates if the caller intends to mark newReg as used.
 *      If not, then we can't unspill the other multi-used descriptor (if any).
 *      Instead, we will just hold on to the temp and unspill them
 *      again as needed.
 */

regNumber RegSet::rsUnspillOneReg(GenTreePtr tree, regNumber oldReg, KeepReg willKeepNewReg, regMaskTP needReg)
{
    /* Was oldReg multi-used when it was spilled? */

    SpillDsc *prevDsc, *multiDsc;
    SpillDsc* spillDsc = rsGetSpillInfo(tree, oldReg, &prevDsc, &multiDsc);
    noway_assert((spillDsc != NULL) && (multiDsc != NULL));

    bool multiUsed = multiDsc->spillMoreMultis;

    /* We will use multiDsc to walk the rest of the spill list (if it's
       multiUsed). As we're going to remove spillDsc from the multiDsc
       list in the rsGetSpillTempWord() call we have to take care of the
       case where multiDsc==spillDsc. We will set multiDsc as spillDsc->spillNext */
    if (multiUsed && multiDsc == spillDsc)
    {
        assert(spillDsc->spillNext);
        multiDsc = spillDsc->spillNext;
    }

    /* Get the temp and free the spill-descriptor */

    TempDsc* temp = rsGetSpillTempWord(oldReg, spillDsc, prevDsc);

    //  Pick a new home for the value:
    //    This must be a register matching the 'needReg' mask, if it is non-zero.
    //    Additionally, if 'oldReg' is in 'needMask' and it is free we will select oldReg.
    //    Also note that the rsGrabReg() call below may cause the chosen register to be spilled.
    //
    regMaskTP prefMask;
    regMaskTP freeMask;
    regNumber newReg;
    var_types regType;
    var_types loadType;

    bool floatUnspill = false;

#if FEATURE_FP_REGALLOC
    floatUnspill = genIsValidFloatReg(oldReg);
#endif

    if (floatUnspill)
    {
        if (temp->tdTempType() == TYP_DOUBLE)
            regType = TYP_DOUBLE;
        else
            regType = TYP_FLOAT;
        loadType    = regType;
        prefMask    = genRegMaskFloat(oldReg, regType);
        freeMask    = RegFreeFloat();
    }
    else
    {
        regType  = TYP_I_IMPL;
        loadType = temp->tdTempType();
        prefMask = genRegMask(oldReg);
        freeMask = rsRegMaskFree();
    }

    if ((((prefMask & needReg) != 0) || (needReg == 0)) && ((prefMask & freeMask) != 0))
    {
        needReg = prefMask;
    }

    if (floatUnspill)
    {
        RegisterPreference pref(RBM_ALLFLOAT, needReg);
        newReg = PickRegFloat(regType, &pref, true);
    }
    else
    {
        newReg = rsGrabReg(rsUseIfZero(needReg, RBM_ALLINT));
    }

    m_rsCompiler->codeGen->trashReg(newReg);

    /* Reload the value from the saved location into the new register */

    m_rsCompiler->codeGen->reloadReg(loadType, temp, newReg);

    if (multiUsed && (willKeepNewReg == KEEP_REG))
    {
        /* We will unspill all the other multi-use trees if the register
           is going to be marked as used. If it is not going to be marked
           as used, we will have a problem if the new register gets spilled
           again.
         */

        /* We don't do the extra unspilling for complex address modes,
           since someone up the call chain may have a different idea about
           what registers are used to form the complex address mode (the
           addrReg return value from genMakeAddressable).

           Also, it is not safe to unspill all the multi-uses with a TYP_LONG.

           Finally, it is not safe to unspill into a different register, because
           the caller of genMakeAddressable caches the addrReg return value
           (register mask), but when unspilling into a different register it's
           not possible to inform the caller that addrReg is now different.
           See bug #89946 for an example of this.  There is an assert for this
           in rsMarkRegFree via genDoneAddressable.
         */

        for (SpillDsc* dsc = multiDsc; /**/; dsc = dsc->spillNext)
        {
            if ((oldReg != newReg) || (dsc->spillAddr != NULL) || (dsc->spillTree->gtType == TYP_LONG))
            {
                return newReg;
            }

            if (!dsc->spillMoreMultis)
            {
                /* All the remaining multi-uses are fine. We will now
                   unspill them all */
                break;
            }
        }

        bool       bFound = false;
        SpillDsc*  pDsc;
        SpillDsc** ppPrev;

        for (pDsc = rsSpillDesc[oldReg], ppPrev = &rsSpillDesc[oldReg];; pDsc = pDsc->spillNext)
        {
            if (pDsc == multiDsc)
            {
                // We've found the sequence we were searching for
                bFound = true;
            }

            if (bFound)
            {
                rsAddrUnspillOper(pDsc->spillAddr);

                // Mark the tree node as having been unspilled into newReg
                rsMarkUnspill(pDsc->spillTree, newReg);
            }

            if (!pDsc->spillMoreMultis)
            {
                if (bFound)
                {
                    // End of sequence

                    // We link remaining sides of list
                    *ppPrev = pDsc->spillNext;

                    // Exit walk
                    break;
                }
                else
                {
                    ppPrev = &(pDsc->spillNext);
                }
            }
        }

        /* pDsc points to the last multi-used descriptor from the spill-list
           for the current value (pDsc->spillMoreMultis == false) */

        pDsc->spillNext     = rsMultiDesc[newReg];
        rsMultiDesc[newReg] = multiDsc;

        if (floatUnspill)
            rsMaskMult |= genRegMaskFloat(newReg, regType);
        else
            rsMaskMult |= genRegMask(newReg);
    }

    if (!multiUsed || (willKeepNewReg == KEEP_REG))
    {
        // Free the temp, it's no longer used.
        // For multi-used regs that aren't (willKeepNewReg == KEEP_REG), we didn't unspill everything, so
        // we need to leave the temp for future unspilling.
        m_rsCompiler->tmpRlsTemp(temp);
    }

    return newReg;
}
#endif // LEGACY_BACKEND

//---------------------------------------------------------------------
//  rsUnspillInPlace: The given tree operand has been spilled; just mark
//  it as unspilled so that we can use it as "normal" local.
//
//  Arguments:
//     tree    -  GenTree that needs to be marked as unspilled.
//     oldReg  -  reg of tree that was spilled.
//
//  Return Value:
//     None.
//
//  Assumptions:
//  1. It is the responsibility of the caller to free the spill temp.
//  2. RyuJIT backend specific: In case of multi-reg call node
//     GTF_SPILLED flag associated with reg is cleared.  It is the
//     responsibility of caller to clear GTF_SPILLED flag on call node
//     itself after ensuring there are no outstanding regs in GTF_SPILLED
//     state.
//
TempDsc* RegSet::rsUnspillInPlace(GenTreePtr tree, regNumber oldReg, unsigned regIdx /* =0 */)
{
    assert(!isRegPairType(tree->gtType));

    // Get the tree's SpillDsc
    SpillDsc* prevDsc;
    SpillDsc* spillDsc = rsGetSpillInfo(tree, oldReg, &prevDsc);
    PREFIX_ASSUME(spillDsc != nullptr);

    // Get the temp
    TempDsc* temp = rsGetSpillTempWord(oldReg, spillDsc, prevDsc);

    // The value is now unspilled
    if (tree->IsMultiRegCall())
    {
        GenTreeCall* call  = tree->AsCall();
        unsigned     flags = call->GetRegSpillFlagByIdx(regIdx);
        flags &= ~GTF_SPILLED;
        call->SetRegSpillFlagByIdx(flags, regIdx);
    }
#if !defined(LEGACY_BACKEND) && defined(_TARGET_ARM_)
    else if (tree->OperIsPutArgSplit())
    {
        GenTreePutArgSplit* splitArg = tree->AsPutArgSplit();
        unsigned            flags    = splitArg->GetRegSpillFlagByIdx(regIdx);
        flags &= ~GTF_SPILLED;
        splitArg->SetRegSpillFlagByIdx(flags, regIdx);
    }
    else if (tree->OperIsMultiRegOp())
    {
        GenTreeMultiRegOp* multiReg = tree->AsMultiRegOp();
        unsigned           flags    = multiReg->GetRegSpillFlagByIdx(regIdx);
        flags &= ~GTF_SPILLED;
        multiReg->SetRegSpillFlagByIdx(flags, regIdx);
    }
#endif // !LEGACY_BACKEND && _TARGET_ARM_
    else
    {
        tree->gtFlags &= ~GTF_SPILLED;
    }

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("\t\t\t\t\t\t\tTree-Node marked unspilled from  ");
        Compiler::printTreeID(tree);
        printf("\n");
    }
#endif

    return temp;
}

#ifdef LEGACY_BACKEND

/*****************************************************************************
 *
 *  The given tree operand has been spilled; reload it into a register that
 *  is in 'needReg' (if 'needReg' is RBM_NONE, any register will do). If 'keepReg'
 *  is set to KEEP_REG, we'll mark the new register as used.
 */

void RegSet::rsUnspillReg(GenTreePtr tree, regMaskTP needReg, KeepReg keepReg)
{
    assert(!isRegPairType(tree->gtType)); // use rsUnspillRegPair()
    regNumber oldReg = tree->gtRegNum;

    /* Get the SpillDsc for the tree */

    SpillDsc* spillDsc = rsGetSpillInfo(tree, oldReg);
    PREFIX_ASSUME(spillDsc != NULL);

    /* Before spillDsc is stomped on by rsUnspillOneReg(), note whether
     * the reg was part of an address mode
     */

    GenTreePtr unspillAddr = spillDsc->spillAddr;

    /* Pick a new home for the value */

    regNumber newReg = rsUnspillOneReg(tree, oldReg, keepReg, needReg);

    /* Mark the tree node as having been unspilled into newReg */

    rsMarkUnspill(tree, newReg);

    // If this reg was part of a complex address mode, need to clear this flag which
    // tells address mode building that a component has been spilled

    rsAddrUnspillOper(unspillAddr);

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("\t\t\t\t\t\t\tThe register %s unspilled from  ", m_rsCompiler->compRegVarName(newReg));
        Compiler::printTreeID(tree);
        printf("\n");
    }
#endif

    /* Mark the new value as used, if the caller desires so */

    if (keepReg == KEEP_REG)
        rsMarkRegUsed(tree, unspillAddr);
}
#endif // LEGACY_BACKEND

void RegSet::rsMarkSpill(GenTreePtr tree, regNumber reg)
{
#ifdef LEGACY_BACKEND
    tree->SetInReg(false);
#endif
    tree->gtFlags |= GTF_SPILLED;
}

#ifdef LEGACY_BACKEND

void RegSet::rsMarkUnspill(GenTreePtr tree, regNumber reg)
{
#ifndef _TARGET_AMD64_
    assert(tree->gtType != TYP_LONG);
#endif // _TARGET_AMD64_

    tree->gtFlags &= ~GTF_SPILLED;
    tree->gtRegNum = reg;
    tree->SetInReg();
}

/*****************************************************************************
 *
 *  Choose a register pair from the given set (note: only registers in the
 *  given set will be considered).
 */

regPairNo RegSet::rsGrabRegPair(regMaskTP regMask)
{
    regPairNo regPair;
    regMaskTP OKmask;
    regNumber reg1;
    regNumber reg2;

    assert(regMask);
    regMask &= ~rsMaskLock;
    assert(regMask);

    /* We'd prefer to choose a free register pair if possible */

    OKmask = regMask & rsRegMaskFree();

    /* Any takers in the recommended/free set? */

    regPair = rsFindRegPairNo(OKmask);

    if (regPair != REG_PAIR_NONE)
    {
        // The normal early exit

        /* Keep track of which registers we ever touch */
        rsSetRegsModified(genRegPairMask(regPair));

        return regPair;
    }

    /* We have no choice but to spill one or two used regs */

    if (OKmask)
    {
        /* One (and only one) register is free and acceptable - grab it */

        assert(genMaxOneBit(OKmask));

        for (reg1 = REG_INT_FIRST; reg1 <= REG_INT_LAST; reg1 = REG_NEXT(reg1))
        {
            if (OKmask & genRegMask(reg1))
                break;
        }
        assert(OKmask & genRegMask(reg1));
    }
    else
    {
        /* No register is free and acceptable - we'll have to spill two */

        reg1 = rsGrabReg(regMask);
    }

    /* Temporarily lock the first register so it doesn't go away */

    rsLockReg(genRegMask(reg1));

    /* Now grab another register */

    reg2 = rsGrabReg(regMask);

    /* We can unlock the first register now */

    rsUnlockReg(genRegMask(reg1));

    /* Convert the two register numbers into a pair */

    if (reg1 < reg2)
        regPair = gen2regs2pair(reg1, reg2);
    else
        regPair = gen2regs2pair(reg2, reg1);

    return regPair;
}

/*****************************************************************************
 *
 *  Choose a register pair from the given set (if non-zero) or from the set of
 *  currently available registers (if 'regMask' is zero).
 */

regPairNo RegSet::rsPickRegPair(regMaskTP regMask)
{
    regMaskTP OKmask;
    regPairNo regPair;

    int repeat = 0;

    /* By default we'd prefer to accept all available registers */

    OKmask = rsRegMaskFree();

    if (regMask)
    {
        /* A register set was recommended by the caller */

        OKmask &= regMask;
    }

AGAIN:

    regPair = rsFindRegPairNo(OKmask);

    if (regPair != REG_PAIR_NONE)
    {
        return regPair; // Normal early exit
    }

    regMaskTP freeMask;
    regMaskTP spillMask;

    /* Now let's consider all available registers */

    freeMask = rsRegMaskFree();

    /* Were we limited in our consideration? */

    if (!regMask)
    {
        /* We need to spill two of the free registers */

        spillMask = freeMask;
    }
    else
    {
        /* Did we not consider all free registers? */

        if ((regMask & freeMask) != freeMask && repeat == 0)
        {
            /* The recommended regset didn't work, so try all available regs */

            OKmask = freeMask;
            repeat++;
            goto AGAIN;
        }

        /* If we're going to spill, might as well go for the right one */

        spillMask = regMask;
    }

    /* Make sure that we have at least two bits set */

    if (genMaxOneBit(spillMask & rsRegMaskCanGrab()))
        spillMask = rsRegMaskCanGrab();

    assert(!genMaxOneBit(spillMask));

    /* We have no choice but to spill 1/2 of the regs */

    return rsGrabRegPair(spillMask);
}

/*****************************************************************************
 *
 *  The given tree operand has been spilled; reload it into a register pair
 *  that is in 'needReg' (if 'needReg' is RBM_NONE, any register pair will do). If
 *  'keepReg' is KEEP_REG, we'll mark the new register pair as used. It is
 *  assumed that the current register pair has been marked as used (modulo
 *  any spillage, of course).
 */

void RegSet::rsUnspillRegPair(GenTreePtr tree, regMaskTP needReg, KeepReg keepReg)
{
    assert(isRegPairType(tree->gtType));

    regPairNo regPair = tree->gtRegPair;
    regNumber regLo   = genRegPairLo(regPair);
    regNumber regHi   = genRegPairHi(regPair);

    /* Has the register holding the lower half been spilled? */

    if (!rsIsTreeInReg(regLo, tree))
    {
        /* Is the upper half already in the right place? */

        if (rsIsTreeInReg(regHi, tree))
        {
            // Temporarily lock the high part if necessary. If this register is a multi-use register that is shared
            // with another tree, the register may already be locked.
            const regMaskTP regHiMask = genRegMask(regHi);
            const bool      lockReg   = (rsMaskLock & regHiMask) == 0;
            if (lockReg)
            {
                rsLockUsedReg(regHiMask);
            }

            /* Pick a new home for the lower half */

            regLo = rsUnspillOneReg(tree, regLo, keepReg, needReg);

            /* We can unlock the high part now */
            if (lockReg)
            {
                rsUnlockUsedReg(regHiMask);
            }
        }
        else
        {
            /* Pick a new home for the lower half */

            regLo = rsUnspillOneReg(tree, regLo, keepReg, needReg);
        }
    }
    else
    {
        /* Free the register holding the lower half */

        rsMarkRegFree(genRegMask(regLo));
    }

    if (regHi != REG_STK)
    {
        /* Has the register holding the upper half been spilled? */

        if (!rsIsTreeInReg(regHi, tree))
        {
            regMaskTP regLoUsed = RBM_NONE;

            // Temporarily lock the low part if necessary. If this register is a multi-use register that is shared
            // with another tree, the register may already be locked.
            const regMaskTP regLoMask = genRegMask(regLo);
            const bool      lockReg   = (rsMaskLock & regLoMask) == 0;
            if (lockReg)
            {
                rsLockReg(regLoMask, &regLoUsed);
            }

            /* Pick a new home for the upper half */

            regHi = rsUnspillOneReg(tree, regHi, keepReg, needReg);

            /* We can unlock the low register now */
            if (lockReg)
            {
                rsUnlockReg(regLoMask, regLoUsed);
            }
        }
        else
        {
            /* Free the register holding the upper half */

            rsMarkRegFree(genRegMask(regHi));
        }
    }

    /* The value is now residing in the new register */

    tree->SetInReg();
    tree->gtFlags &= ~GTF_SPILLED;
    tree->gtRegPair = gen2regs2pair(regLo, regHi);

    /* Mark the new value as used, if the caller desires so */

    if (keepReg == KEEP_REG)
        rsMarkRegPairUsed(tree);
}

/*****************************************************************************
 *
 *  The given register is being used by multiple trees (all of which represent
 *  the same logical value). Happens mainly because of REDUNDANT_LOAD;
 *  We don't want to really spill the register as it actually holds the
 *  value we want. But the multiple trees may be part of different
 *  addressing modes.
 *  Save the previous 'use' info so that when we return the register will
 *  appear unused.
 */

void RegSet::rsRecMultiReg(regNumber reg, var_types type)
{
    SpillDsc* spill;
    regMaskTP regMask;

    if (genIsValidFloatReg(reg) && isFloatRegType(type))
        regMask = genRegMaskFloat(reg, type);
    else
        regMask = genRegMask(reg);

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("\t\t\t\t\t\t\tRegister %s multi-use inc for   ", m_rsCompiler->compRegVarName(reg));
        Compiler::printTreeID(rsUsedTree[reg]);
        printf(" multMask=" REG_MASK_ALL_FMT "\n", rsMaskMult | regMask);
    }
#endif

    /* The register is supposed to be already used */

    assert(regMask & rsMaskUsed);

    assert(rsUsedTree[reg]);

    /* Allocate/reuse a spill descriptor */

    spill = SpillDsc::alloc(m_rsCompiler, this, rsUsedTree[reg]->TypeGet());

    /* Record the current 'use' info in the spill descriptor */

    spill->spillTree = rsUsedTree[reg];
    rsUsedTree[reg]  = 0;
    spill->spillAddr = rsUsedAddr[reg];
    rsUsedAddr[reg]  = 0;

    /* Remember whether the register is already 'multi-use' */

    spill->spillMoreMultis = ((rsMaskMult & regMask) != 0);

    /* Insert the new multi-use record in the list for the register */

    spill->spillNext = rsMultiDesc[reg];
    rsMultiDesc[reg] = spill;

    /* This register is now 'multi-use' */

    rsMaskMult |= regMask;
}

/*****************************************************************************
 *
 *  Free the given register, which is known to have multiple uses.
 */

var_types RegSet::rsRmvMultiReg(regNumber reg)
{
    SpillDsc* dsc;

    assert(rsMaskMult & genRegMask(reg));

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("\t\t\t\t\t\t\tRegister %s multi-use dec for   ", m_rsCompiler->compRegVarName(reg));
        Compiler::printTreeID(rsUsedTree[reg]);
        printf(" multMask=" REG_MASK_ALL_FMT "\n", rsMaskMult);
    }
#endif

    /* Get hold of the spill descriptor for the register */

    dsc = rsMultiDesc[reg];
    assert(dsc);
    rsMultiDesc[reg] = dsc->spillNext;

    /* Copy the previous 'use' info from the descriptor */

    assert(reg != REG_SPBASE);
    rsUsedTree[reg] = dsc->spillTree;
    rsUsedAddr[reg] = dsc->spillAddr;

    if (!(dsc->spillTree->gtFlags & GTF_SPILLED))
        m_rsGCInfo.gcMarkRegPtrVal(reg, dsc->spillTree->TypeGet());

    var_types type = dsc->spillTree->TypeGet();
    regMaskTP regMask;

    if (genIsValidFloatReg(reg) && isFloatRegType(type))
        regMask = genRegMaskFloat(reg, type);
    else
        regMask = genRegMask(reg);

    /* Is only one use of the register left? */

    if (!dsc->spillMoreMultis)
    {
        rsMaskMult -= regMask;
    }

#ifdef DEBUG
    if (m_rsCompiler->verbose)
    {
        printf("\t\t\t\t\t\t\tRegister %s multi-use dec - now ", m_rsCompiler->compRegVarName(reg));
        Compiler::printTreeID(rsUsedTree[reg]);
        printf(" multMask=" REG_MASK_ALL_FMT "\n", rsMaskMult);
    }
#endif

    SpillDsc::freeDsc(this, dsc);
    return type;
}
#endif // LEGACY_BACKEND

/*****************************************************************************/
#if REDUNDANT_LOAD
/*****************************************************************************
 *
 *  Search for a register which contains the given constant value.
 *  Return success/failure and set the register if success.
 *  If the closeDelta argument is non-NULL then look for a
 *  register that has a close constant value. For ARM, find
 *  the closest register value, independent of constant delta.
 *  For non-ARM, only consider values that are within -128..+127.
 *  If one is found, *closeDelta is set to the difference that needs
 *  to be added to the register returned. On x86/amd64, an lea instruction
 *  is used to set the target register using the register that
 *  contains the close integer constant.
 */

regNumber RegTracker::rsIconIsInReg(ssize_t val, ssize_t* closeDelta /* = NULL */)
{
    regNumber closeReg = REG_NA;

    if (compiler->opts.MinOpts() || compiler->opts.compDbgCode)
    {
        return REG_NA;
    }

    for (regNumber reg = REG_INT_FIRST; reg <= REG_INT_LAST; reg = REG_NEXT(reg))
    {
        if (rsRegValues[reg].rvdKind == RV_INT_CNS)
        {
            ssize_t regCnsVal = rsRegValues[reg].rvdIntCnsVal;
            if (regCnsVal == val)
            {
                if (closeDelta)
                {
                    *closeDelta = 0;
                }
                return reg;
            }
            if (closeDelta)
            {
#ifdef _TARGET_ARM_
                // Find the smallest delta; the caller checks the size
                // TODO-CQ: find the smallest delta from a low register?
                //       That is, is it better to return a high register with a
                //       small constant delta, or a low register with
                //       a larger offset? It's better to have a low register with an offset within the low register
                //       range, or a high register otherwise...

                ssize_t regCnsDelta = val - regCnsVal;
                if ((closeReg == REG_NA) || (unsigned_abs(regCnsDelta) < unsigned_abs(*closeDelta)))
                {
                    closeReg    = reg;
                    *closeDelta = regCnsDelta;
                }
#else
                if (closeReg == REG_NA)
                {
                    ssize_t regCnsDelta = val - regCnsVal;
                    /* Does delta fit inside a byte [-128..127] */
                    if (regCnsDelta == (signed char)regCnsDelta)
                    {
                        closeReg    = reg;
                        *closeDelta = (int)regCnsDelta;
                    }
                }
#endif
            }
        }
    }

    /* There was not an exact match */

    return closeReg; /* will always be REG_NA when closeDelta is NULL */
}

/*****************************************************************************
 *
 *  Assume all non-integer registers contain garbage (this is called when
 *  we encounter a code label that isn't jumped by any block; we need to
 *  clear pointer values out of the table lest the GC pointer tables get
 *  out of date).
 */

void RegTracker::rsTrackRegClrPtr()
{
    for (regNumber reg = REG_FIRST; reg < REG_COUNT; reg = REG_NEXT(reg))
    {
        /* Preserve constant values */

        if (rsRegValues[reg].rvdKind == RV_INT_CNS)
        {
            /* Make sure we don't preserve NULL (it's a pointer) */

            if (rsRegValues[reg].rvdIntCnsVal != NULL)
            {
                continue;
            }
        }

        /* Preserve variables known to not be pointers */

        if (rsRegValues[reg].rvdKind == RV_LCL_VAR)
        {
            if (!varTypeIsGC(compiler->lvaTable[rsRegValues[reg].rvdLclVarNum].TypeGet()))
            {
                continue;
            }
        }

        rsRegValues[reg].rvdKind = RV_TRASH;
    }
}

/*****************************************************************************
 *
 *  This routine trashes the registers that hold stack GCRef/ByRef variables. (VSW: 561129)
 *  It should be called at each gc-safe point.
 *
 *  It returns a mask of the registers that used to contain tracked stack variables that
 *  were trashed.
 *
 */

regMaskTP RegTracker::rsTrashRegsForGCInterruptability()
{
    regMaskTP result = RBM_NONE;
    for (regNumber reg = REG_FIRST; reg < REG_COUNT; reg = REG_NEXT(reg))
    {
        if (rsRegValues[reg].rvdKind == RV_LCL_VAR)
        {
            LclVarDsc* varDsc = &compiler->lvaTable[rsRegValues[reg].rvdLclVarNum];

            if (!varTypeIsGC(varDsc->TypeGet()))
            {
                continue;
            }

            // Only stack locals got tracked.
            assert(!varDsc->lvRegister);

            rsRegValues[reg].rvdKind = RV_TRASH;

            result |= genRegMask(reg);
        }
    }

    return result;
}

/*****************************************************************************
 *
 *  Search for a register which contains the given local var.
 *  Return success/failure and set the register if success.
 *  Return FALSE on register variables, because otherwise their lifetimes
 *  can get bungled with respect to pointer tracking.
 */

regNumber RegTracker::rsLclIsInReg(unsigned var)
{
    assert(var < compiler->lvaCount);

    if (compiler->opts.MinOpts() || compiler->opts.compDbgCode)
    {
        return REG_NA;
    }

    /* return false if register var so genMarkLclVar can do its job */

    if (compiler->lvaTable[var].lvRegister)
    {
        return REG_NA;
    }

    for (regNumber reg = REG_FIRST; reg < REG_COUNT; reg = REG_NEXT(reg))
    {
        if (rsRegValues[reg].rvdLclVarNum == var && rsRegValues[reg].rvdKind == RV_LCL_VAR)
        {
            return reg;
        }
    }

    return REG_NA;
}

/*****************************************************************************/

regPairNo RegTracker::rsLclIsInRegPair(unsigned var)
{
    assert(var < compiler->lvaCount);

    if (compiler->opts.MinOpts() || compiler->opts.compDbgCode)
    {
        return REG_PAIR_NONE;
    }

    regValKind rvKind = RV_TRASH;
    regNumber  regNo  = DUMMY_INIT(REG_NA);

    for (regNumber reg = REG_FIRST; reg < REG_COUNT; reg = REG_NEXT(reg))
    {
        if (rvKind != rsRegValues[reg].rvdKind && rsTrackIsLclVarLng(rsRegValues[reg].rvdKind) &&
            rsRegValues[reg].rvdLclVarNum == var)
        {
            /* first occurrence of this variable ? */

            if (rvKind == RV_TRASH)
            {
                regNo  = reg;
                rvKind = rsRegValues[reg].rvdKind;
            }
            else if (rvKind == RV_LCL_VAR_LNG_HI)
            {
                /* We found the lower half of the long */

                return gen2regs2pair(reg, regNo);
            }
            else
            {
                /* We found the upper half of the long */

                assert(rvKind == RV_LCL_VAR_LNG_LO);
                return gen2regs2pair(regNo, reg);
            }
        }
    }

    return REG_PAIR_NONE;
}

/*****************************************************************************/

void RegTracker::rsTrashLclLong(unsigned var)
{
    if (compiler->opts.MinOpts() || compiler->opts.compDbgCode)
    {
        return;
    }

    for (regNumber reg = REG_FIRST; reg < REG_COUNT; reg = REG_NEXT(reg))
    {
        if (rsTrackIsLclVarLng(rsRegValues[reg].rvdKind) && rsRegValues[reg].rvdLclVarNum == var)
        {
            rsRegValues[reg].rvdKind = RV_TRASH;
        }
    }
}

/*****************************************************************************
 *
 *  Local's value has changed, mark all regs which contained it as trash.
 */

void RegTracker::rsTrashLcl(unsigned var)
{
    if (compiler->opts.MinOpts() || compiler->opts.compDbgCode)
    {
        return;
    }

    for (regNumber reg = REG_FIRST; reg < REG_COUNT; reg = REG_NEXT(reg))
    {
        if (rsRegValues[reg].rvdKind == RV_LCL_VAR && rsRegValues[reg].rvdLclVarNum == var)
        {
            rsRegValues[reg].rvdKind = RV_TRASH;
        }
    }
}

/*****************************************************************************
 *
 *  A little helper to trash the given set of registers.
 *  Usually used after a call has been generated.
 */

void RegTracker::rsTrashRegSet(regMaskTP regMask)
{
    if (compiler->opts.MinOpts() || compiler->opts.compDbgCode)
    {
        return;
    }
    regMaskTP regBit = 1;
    for (regNumber regNum = REG_FIRST; regMask != 0; regNum = REG_NEXT(regNum), regBit <<= 1)
    {
        if (regBit & regMask)
        {
            rsTrackRegTrash(regNum);
            regMask -= regBit;
        }
    }
}

/*****************************************************************************
 *
 *  Return a mask of registers that hold no useful value.
 */

regMaskTP RegTracker::rsUselessRegs()
{
    if (compiler->opts.MinOpts() || compiler->opts.compDbgCode)
    {
        return RBM_ALLINT;
    }

    regMaskTP mask = RBM_NONE;
    for (regNumber reg = REG_FIRST; reg < REG_COUNT; reg = REG_NEXT(reg))
    {
        if (rsRegValues[reg].rvdKind == RV_TRASH)
        {
            mask |= genRegMask(reg);
        }
    }

    return mask;
}

/*****************************************************************************/
#endif // REDUNDANT_LOAD
/*****************************************************************************/

/*
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                           TempsInfo                                       XX
XX                                                                           XX
XX  The temporary lclVars allocated by the compiler for code generation      XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/

void Compiler::tmpInit()
{
#ifdef LEGACY_BACKEND
    tmpDoubleSpillMax = 0;
    tmpIntSpillMax    = 0;
#endif // LEGACY_BACKEND

    tmpCount = 0;
    tmpSize  = 0;
#ifdef DEBUG
    tmpGetCount = 0;
#endif

    memset(tmpFree, 0, sizeof(tmpFree));
    memset(tmpUsed, 0, sizeof(tmpUsed));
}

/* static */
var_types Compiler::tmpNormalizeType(var_types type)
{
#ifndef LEGACY_BACKEND

    type = genActualType(type);

#if defined(FEATURE_SIMD) && !defined(_TARGET_64BIT_)
    // For SIMD on 32-bit platforms, we always spill SIMD12 to a 16-byte SIMD16 temp.
    // This is because we don't have a single instruction to store 12 bytes. We also
    // allocate non-argument locals as 16 bytes; see lvSize().
    if (type == TYP_SIMD12)
    {
        type = TYP_SIMD16;
    }
#endif // defined(FEATURE_SIMD) && !defined(_TARGET_64BIT_)

#else  // LEGACY_BACKEND
    if (!varTypeIsGC(type))
    {
        switch (genTypeStSz(type))
        {
            case 1:
                type = TYP_INT; // Maps all 4-byte non-GC types to TYP_INT temps
                break;
            case 2:
                type = TYP_DOUBLE; // Maps all 8-byte types to TYP_DOUBLE temps
                break;
            default:
                assert(!"unexpected type");
        }
    }
#endif // LEGACY_BACKEND

    return type;
}

/*****************************************************************************
 *
 *  Allocate a temp of the given size (and type, if tracking pointers for
 *  the garbage collector).
 */

TempDsc* Compiler::tmpGetTemp(var_types type)
{
    type          = tmpNormalizeType(type);
    unsigned size = genTypeSize(type);

    // If TYP_STRUCT ever gets in here we do bad things (tmpSlot returns -1)
    noway_assert(size >= sizeof(int));

    /* Find the slot to search for a free temp of the right size */

    unsigned slot = tmpSlot(size);

    /* Look for a temp with a matching type */

    TempDsc** last = &tmpFree[slot];
    TempDsc*  temp;

    for (temp = *last; temp; last = &temp->tdNext, temp = *last)
    {
        /* Does the type match? */

        if (temp->tdTempType() == type)
        {
            /* We have a match -- remove it from the free list */

            *last = temp->tdNext;
            break;
        }
    }

#ifdef DEBUG
    /* Do we need to allocate a new temp */
    bool isNewTemp = false;
#endif // DEBUG

#ifndef LEGACY_BACKEND

    noway_assert(temp != nullptr);

#else // LEGACY_BACKEND

    if (temp == nullptr)
    {
#ifdef DEBUG
        isNewTemp = true;
#endif // DEBUG
        tmpCount++;
        tmpSize += (unsigned)size;

#ifdef _TARGET_ARM_
        if (type == TYP_DOUBLE)
        {
            // Adjust tmpSize in case it needs alignment
            tmpSize += TARGET_POINTER_SIZE;
        }
#endif // _TARGET_ARM_

        genEmitter->emitTmpSizeChanged(tmpSize);

        temp = new (this, CMK_Unknown) TempDsc(-((int)tmpCount), size, type);
    }

#endif // LEGACY_BACKEND

#ifdef DEBUG
    if (verbose)
    {
        printf("%s temp #%u, slot %u, size = %u\n", isNewTemp ? "created" : "reused", -temp->tdTempNum(), slot,
               temp->tdTempSize());
    }
    tmpGetCount++;
#endif // DEBUG

    temp->tdNext  = tmpUsed[slot];
    tmpUsed[slot] = temp;

    return temp;
}

#ifndef LEGACY_BACKEND

/*****************************************************************************
 * Preallocate 'count' temps of type 'type'. This type must be a normalized
 * type (by the definition of tmpNormalizeType()).
 *
 * This is used at the end of LSRA, which knows precisely the maximum concurrent
 * number of each type of spill temp needed, before code generation. Code generation
 * then uses these preallocated temp. If code generation ever asks for more than
 * has been preallocated, it is a fatal error.
 */

void Compiler::tmpPreAllocateTemps(var_types type, unsigned count)
{
    assert(type == tmpNormalizeType(type));
    unsigned size = genTypeSize(type);

    // If TYP_STRUCT ever gets in here we do bad things (tmpSlot returns -1)
    noway_assert(size >= sizeof(int));

    // Find the slot to search for a free temp of the right size.
    // Note that slots are shared by types of the identical size (e.g., TYP_REF and TYP_LONG on AMD64),
    // so we can't assert that the slot is empty when we get here.

    unsigned slot = tmpSlot(size);

    for (unsigned i = 0; i < count; i++)
    {
        tmpCount++;
        tmpSize += size;

#ifdef _TARGET_ARM_
        if (type == TYP_DOUBLE)
        {
            // Adjust tmpSize to accommodate possible alignment padding.
            // Note that at this point the offsets aren't yet finalized, so we don't yet know if it will be required.
            tmpSize += TARGET_POINTER_SIZE;
        }
#endif // _TARGET_ARM_

        TempDsc* temp = new (this, CMK_Unknown) TempDsc(-((int)tmpCount), size, type);

#ifdef DEBUG
        if (verbose)
        {
            printf("pre-allocated temp #%u, slot %u, size = %u\n", -temp->tdTempNum(), slot, temp->tdTempSize());
        }
#endif // DEBUG

        // Add it to the front of the appropriate slot list.
        temp->tdNext  = tmpFree[slot];
        tmpFree[slot] = temp;
    }
}

#endif // !LEGACY_BACKEND

/*****************************************************************************
 *
 *  Release the given temp.
 */

void Compiler::tmpRlsTemp(TempDsc* temp)
{
    assert(temp != nullptr);

    unsigned slot;

    /* Add the temp to the 'free' list */

    slot = tmpSlot(temp->tdTempSize());

#ifdef DEBUG
    if (verbose)
    {
        printf("release temp #%u, slot %u, size = %u\n", -temp->tdTempNum(), slot, temp->tdTempSize());
    }
    assert(tmpGetCount);
    tmpGetCount--;
#endif

    // Remove it from the 'used' list.

    TempDsc** last = &tmpUsed[slot];
    TempDsc*  t;
    for (t = *last; t != nullptr; last = &t->tdNext, t = *last)
    {
        if (t == temp)
        {
            /* Found it! -- remove it from the 'used' list */

            *last = t->tdNext;
            break;
        }
    }
    assert(t != nullptr); // We better have found it!

    // Add it to the free list.

    temp->tdNext  = tmpFree[slot];
    tmpFree[slot] = temp;
}

/*****************************************************************************
 *  Given a temp number, find the corresponding temp.
 *
 *  When looking for temps on the "free" list, this can only be used after code generation. (This is
 *  simply because we have an assert to that effect in tmpListBeg(); we could relax that, or hoist
 *  the assert to the appropriate callers.)
 *
 *  When looking for temps on the "used" list, this can be used any time.
 */
TempDsc* Compiler::tmpFindNum(int tnum, TEMP_USAGE_TYPE usageType /* = TEMP_USAGE_FREE */) const
{
    assert(tnum < 0); // temp numbers are negative

    for (TempDsc* temp = tmpListBeg(usageType); temp != nullptr; temp = tmpListNxt(temp, usageType))
    {
        if (temp->tdTempNum() == tnum)
        {
            return temp;
        }
    }

    return nullptr;
}

/*****************************************************************************
 *
 *  A helper function is used to iterate over all the temps.
 */

TempDsc* Compiler::tmpListBeg(TEMP_USAGE_TYPE usageType /* = TEMP_USAGE_FREE */) const
{
    TempDsc* const* tmpLists;
    if (usageType == TEMP_USAGE_FREE)
    {
        tmpLists = tmpFree;
    }
    else
    {
        tmpLists = tmpUsed;
    }

    // Return the first temp in the slot for the smallest size
    unsigned slot = 0;
    while (slot < (TEMP_SLOT_COUNT - 1) && tmpLists[slot] == nullptr)
    {
        slot++;
    }
    TempDsc* temp = tmpLists[slot];

    return temp;
}

/*****************************************************************************
 * Used with tmpListBeg() to iterate over the list of temps.
 */

TempDsc* Compiler::tmpListNxt(TempDsc* curTemp, TEMP_USAGE_TYPE usageType /* = TEMP_USAGE_FREE */) const
{
    assert(curTemp != nullptr);

    TempDsc* temp = curTemp->tdNext;
    if (temp == nullptr)
    {
        unsigned size = curTemp->tdTempSize();

        // If there are no more temps in the list, check if there are more
        // slots (for bigger sized temps) to walk.

        TempDsc* const* tmpLists;
        if (usageType == TEMP_USAGE_FREE)
        {
            tmpLists = tmpFree;
        }
        else
        {
            tmpLists = tmpUsed;
        }

        while (size < TEMP_MAX_SIZE && temp == nullptr)
        {
            size += sizeof(int);
            unsigned slot = tmpSlot(size);
            temp          = tmpLists[slot];
        }

        assert((temp == nullptr) || (temp->tdTempSize() == size));
    }

    return temp;
}

#ifdef DEBUG
/*****************************************************************************
 * Return 'true' if all allocated temps are free (not in use).
 */
bool Compiler::tmpAllFree() const
{
    // The 'tmpGetCount' should equal the number of things in the 'tmpUsed' lists. This is a convenient place
    // to assert that.
    unsigned usedCount = 0;
    for (TempDsc* temp = tmpListBeg(TEMP_USAGE_USED); temp != nullptr; temp = tmpListNxt(temp, TEMP_USAGE_USED))
    {
        ++usedCount;
    }
    assert(usedCount == tmpGetCount);

    if (tmpGetCount != 0)
    {
        return false;
    }

    for (unsigned i = 0; i < sizeof(tmpUsed) / sizeof(tmpUsed[0]); i++)
    {
        if (tmpUsed[i] != nullptr)
        {
            return false;
        }
    }

    return true;
}

#endif // DEBUG

/*
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX  Register-related utility functions                                       XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/

/*****************************************************************************
 *
 *  Returns whether regPair is a combination of two x86 registers or
 *  contains a pseudo register.
 *  In debug it also asserts that reg1 and reg2 are not the same.
 */

bool genIsProperRegPair(regPairNo regPair)
{
    regNumber rlo = genRegPairLo(regPair);
    regNumber rhi = genRegPairHi(regPair);

    assert(regPair >= REG_PAIR_FIRST && regPair <= REG_PAIR_LAST);

    if (rlo == rhi)
    {
        return false;
    }

    if (rlo == REG_L_STK || rhi == REG_L_STK)
    {
        return false;
    }

    if (rlo >= REG_COUNT || rhi >= REG_COUNT)
    {
        return false;
    }

    return (rlo != REG_STK && rhi != REG_STK);
}

/*****************************************************************************
 *
 *  Given a register that is an argument register
 *   returns the next argument register
 *
 *  Note: that this method will return a non arg register
 *   when given REG_ARG_LAST
 *
 */

regNumber genRegArgNext(regNumber argReg)
{
    assert(isValidIntArgReg(argReg) || isValidFloatArgReg(argReg));

    switch (argReg)
    {

#ifdef _TARGET_AMD64_
#ifdef UNIX_AMD64_ABI

        // Linux x64 ABI: REG_RDI, REG_RSI, REG_RDX, REG_RCX, REG_R8, REG_R9
        case REG_ARG_0:       // REG_RDI
            return REG_ARG_1; // REG_RSI
        case REG_ARG_1:       // REG_RSI
            return REG_ARG_2; // REG_RDX
        case REG_ARG_2:       // REG_RDX
            return REG_ARG_3; // REG_RCX
        case REG_ARG_3:       // REG_RCX
            return REG_ARG_4; // REG_R8

#else // !UNIX_AMD64_ABI

        // Windows x64 ABI: REG_RCX, REG_RDX, REG_R8, REG_R9
        case REG_ARG_1:       // REG_RDX
            return REG_ARG_2; // REG_R8

#endif // !UNIX_AMD64_ABI
#endif // _TARGET_AMD64_

        default:
            return REG_NEXT(argReg);
    }
}

/*****************************************************************************
 *
 *  The following table determines the order in which callee-saved registers
 *  are encoded in GC information at call sites (perhaps among other things).
 *  In any case, they establish a mapping from ordinal callee-save reg "indices" to
 *  register numbers and corresponding bitmaps.
 */

const regNumber raRegCalleeSaveOrder[] = {REG_CALLEE_SAVED_ORDER};
const regMaskTP raRbmCalleeSaveOrder[] = {RBM_CALLEE_SAVED_ORDER};

regMaskSmall genRegMaskFromCalleeSavedMask(unsigned short calleeSaveMask)
{
    regMaskSmall res = 0;
    for (int i = 0; i < CNT_CALLEE_SAVED; i++)
    {
        if ((calleeSaveMask & ((regMaskTP)1 << i)) != 0)
        {
            res |= raRbmCalleeSaveOrder[i];
        }
    }
    return res;
}

/*****************************************************************************
 *
 *  Initializes the spill code. Should be called once per function compiled.
 */

// inline
void RegSet::rsSpillInit()
{
    /* Clear out the spill and multi-use tables */

    memset(rsSpillDesc, 0, sizeof(rsSpillDesc));

#ifdef LEGACY_BACKEND
    memset(rsUsedTree, 0, sizeof(rsUsedTree));
    memset(rsUsedAddr, 0, sizeof(rsUsedAddr));
    memset(rsMultiDesc, 0, sizeof(rsMultiDesc));
    rsSpillFloat = nullptr;
#endif // LEGACY_BACKEND

    rsNeededSpillReg = false;

    /* We don't have any descriptors allocated */

    rsSpillFree = nullptr;
}

/*****************************************************************************
 *
 *  Shuts down the spill code. Should be called once per function compiled.
 */

// inline
void RegSet::rsSpillDone()
{
    rsSpillChk();
}

/*****************************************************************************
 *
 *  Begin tracking spills - should be called each time before a pass is made
 *  over a function body.
 */

// inline
void RegSet::rsSpillBeg()
{
    rsSpillChk();
}

/*****************************************************************************
 *
 *  Finish tracking spills - should be called each time after a pass is made
 *  over a function body.
 */

// inline
void RegSet::rsSpillEnd()
{
    rsSpillChk();
}

//****************************************************************************
//  Create a new SpillDsc or get one off the free list
//

// inline
RegSet::SpillDsc* RegSet::SpillDsc::alloc(Compiler* pComp, RegSet* regSet, var_types type)
{
    RegSet::SpillDsc*  spill;
    RegSet::SpillDsc** pSpill;

    pSpill = &(regSet->rsSpillFree);

    // Allocate spill structure
    if (*pSpill)
    {
        spill   = *pSpill;
        *pSpill = spill->spillNext;
    }
    else
    {
        spill = (RegSet::SpillDsc*)pComp->compGetMem(sizeof(SpillDsc));
    }
    return spill;
}

//****************************************************************************
//  Free a SpillDsc and return it to the rsSpillFree list
//

// inline
void RegSet::SpillDsc::freeDsc(RegSet* regSet, RegSet::SpillDsc* spillDsc)
{
    spillDsc->spillNext = regSet->rsSpillFree;
    regSet->rsSpillFree = spillDsc;
}

/*****************************************************************************
 *
 *  Make sure no spills are currently active - used for debugging of the code
 *  generator.
 */

#ifdef DEBUG

// inline
void RegSet::rsSpillChk()
{
    // All grabbed temps should have been released
    assert(m_rsCompiler->tmpGetCount == 0);

    for (regNumber reg = REG_FIRST; reg < REG_COUNT; reg = REG_NEXT(reg))
    {
        assert(rsSpillDesc[reg] == nullptr);

#ifdef LEGACY_BACKEND
        assert(rsUsedTree[reg] == NULL);
        assert(rsMultiDesc[reg] == NULL);
#endif // LEGACY_BACKEND
    }
}

#else

// inline
void RegSet::rsSpillChk()
{
}

#endif

/*****************************************************************************/
#if REDUNDANT_LOAD

// inline
bool RegTracker::rsIconIsInReg(ssize_t val, regNumber reg)
{
    if (compiler->opts.MinOpts() || compiler->opts.compDbgCode)
    {
        return false;
    }

    if (rsRegValues[reg].rvdKind == RV_INT_CNS && rsRegValues[reg].rvdIntCnsVal == val)
    {
        return true;
    }
    return false;
}

#endif // REDUNDANT_LOAD
/*****************************************************************************/