summaryrefslogtreecommitdiff
path: root/src/jit/lowerxarch.cpp
blob: f89a3dfc7b9a5119888cf1dfaedbf0803e852aa8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                           Lowering for AMD64                              XX
XX                                                                           XX
XX  This encapsulates all the logic for lowering trees for the AMD64         XX
XX  architecture.  For a more detailed view of what is lowering, please      XX
XX  take a look at Lower.cpp                                                 XX
XX                                                                           XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/

#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif

#ifndef LEGACY_BACKEND // This file is ONLY used for the RyuJIT backend that uses the linear scan register allocator

#ifdef _TARGET_XARCH_

#include "jit.h"
#include "sideeffects.h"
#include "lower.h"

// xarch supports both ROL and ROR instructions so no lowering is required.
void Lowering::LowerRotate(GenTreePtr tree)
{
}

//------------------------------------------------------------------------
// LowerStoreLoc: Lower a store of a lclVar
//
// Arguments:
//    storeLoc - the local store (GT_STORE_LCL_FLD or GT_STORE_LCL_VAR)
//
// Notes:
//    This involves:
//    - Widening operations of unsigneds.

void Lowering::LowerStoreLoc(GenTreeLclVarCommon* storeLoc)
{
    GenTree* op1 = storeLoc->gtGetOp1();

    // Try to widen the ops if they are going into a local var.
    if ((storeLoc->gtOper == GT_STORE_LCL_VAR) && (storeLoc->gtOp1->gtOper == GT_CNS_INT))
    {
        GenTreeIntCon* con  = storeLoc->gtOp1->AsIntCon();
        ssize_t        ival = con->gtIconVal;

        unsigned   varNum = storeLoc->gtLclNum;
        LclVarDsc* varDsc = comp->lvaTable + varNum;

        if (varDsc->lvIsSIMDType())
        {
            noway_assert(storeLoc->gtType != TYP_STRUCT);
        }
        unsigned size = genTypeSize(storeLoc);
        // If we are storing a constant into a local variable
        // we extend the size of the store here
        if ((size < 4) && !varTypeIsStruct(varDsc))
        {
            if (!varTypeIsUnsigned(varDsc))
            {
                if (genTypeSize(storeLoc) == 1)
                {
                    if ((ival & 0x7f) != ival)
                    {
                        ival = ival | 0xffffff00;
                    }
                }
                else
                {
                    assert(genTypeSize(storeLoc) == 2);
                    if ((ival & 0x7fff) != ival)
                    {
                        ival = ival | 0xffff0000;
                    }
                }
            }

            // A local stack slot is at least 4 bytes in size, regardless of
            // what the local var is typed as, so auto-promote it here
            // unless it is a field of a promoted struct
            // TODO-XArch-CQ: if the field is promoted shouldn't we also be able to do this?
            if (!varDsc->lvIsStructField)
            {
                storeLoc->gtType = TYP_INT;
                con->SetIconValue(ival);
            }
        }
    }
}

//------------------------------------------------------------------------
// LowerBlockStore: Set block store type
//
// Arguments:
//    blkNode       - The block store node of interest
//
// Return Value:
//    None.
//
void Lowering::LowerBlockStore(GenTreeBlk* blkNode)
{
    GenTree*   dstAddr       = blkNode->Addr();
    unsigned   size          = blkNode->gtBlkSize;
    GenTree*   source        = blkNode->Data();
    Compiler*  compiler      = comp;
    GenTreePtr srcAddrOrFill = nullptr;
    bool       isInitBlk     = blkNode->OperIsInitBlkOp();

    if (!isInitBlk)
    {
        // CopyObj or CopyBlk
        if ((blkNode->OperGet() == GT_STORE_OBJ) && ((blkNode->AsObj()->gtGcPtrCount == 0) || blkNode->gtBlkOpGcUnsafe))
        {
            blkNode->SetOper(GT_STORE_BLK);
        }
        if (source->gtOper == GT_IND)
        {
            srcAddrOrFill = blkNode->Data()->gtGetOp1();
        }
    }

    if (isInitBlk)
    {
        GenTree* initVal = source;
        if (initVal->OperIsInitVal())
        {
            initVal = initVal->gtGetOp1();
        }
        srcAddrOrFill = initVal;
        // If we have an InitBlk with constant block size we can optimize several ways:
        // a) If the size is smaller than a small memory page but larger than INITBLK_UNROLL_LIMIT bytes
        //    we use rep stosb since this reduces the register pressure in LSRA and we have
        //    roughly the same performance as calling the helper.
        // b) If the size is <= INITBLK_UNROLL_LIMIT bytes and the fill byte is a constant,
        //    we can speed this up by unrolling the loop using SSE2 stores.  The reason for
        //    this threshold is because our last investigation (Fall 2013), more than 95% of initblks
        //    in our framework assemblies are actually <= INITBLK_UNROLL_LIMIT bytes size, so this is the
        //    preferred code sequence for the vast majority of cases.

        // This threshold will decide from using the helper or let the JIT decide to inline
        // a code sequence of its choice.
        unsigned helperThreshold = max(INITBLK_STOS_LIMIT, INITBLK_UNROLL_LIMIT);

        // TODO-X86-CQ: Investigate whether a helper call would be beneficial on x86
        if (size != 0 && size <= helperThreshold)
        {
            // Always favor unrolling vs rep stos.
            if (size <= INITBLK_UNROLL_LIMIT && initVal->IsCnsIntOrI())
            {
                // The fill value of an initblk is interpreted to hold a
                // value of (unsigned int8) however a constant of any size
                // may practically reside on the evaluation stack. So extract
                // the lower byte out of the initVal constant and replicate
                // it to a larger constant whose size is sufficient to support
                // the largest width store of the desired inline expansion.

                ssize_t fill = initVal->gtIntCon.gtIconVal & 0xFF;
#ifdef _TARGET_AMD64_
                if (size < REGSIZE_BYTES)
                {
                    initVal->gtIntCon.gtIconVal = 0x01010101 * fill;
                }
                else
                {
                    initVal->gtIntCon.gtIconVal = 0x0101010101010101LL * fill;
                    initVal->gtType             = TYP_LONG;
                }
#else  // !_TARGET_AMD64_
                initVal->gtIntCon.gtIconVal = 0x01010101 * fill;
#endif // !_TARGET_AMD64_

                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll;
            }
            else
            {
                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr;
            }
        }
        else
        {
#ifdef _TARGET_AMD64_
            blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindHelper;
#else  // !_TARGET_AMD64_
            blkNode->gtBlkOpKind            = GenTreeBlk::BlkOpKindRepInstr;
#endif // !_TARGET_AMD64_
        }
    }
    else if (blkNode->gtOper == GT_STORE_OBJ)
    {
        // CopyObj

        GenTreeObj* cpObjNode = blkNode->AsObj();

        unsigned slots = cpObjNode->gtSlots;

#ifdef DEBUG
        // CpObj must always have at least one GC-Pointer as a member.
        assert(cpObjNode->gtGcPtrCount > 0);

        assert(dstAddr->gtType == TYP_BYREF || dstAddr->gtType == TYP_I_IMPL);

        CORINFO_CLASS_HANDLE clsHnd    = cpObjNode->gtClass;
        size_t               classSize = comp->info.compCompHnd->getClassSize(clsHnd);
        size_t               blkSize   = roundUp(classSize, TARGET_POINTER_SIZE);

        // Currently, the EE always round up a class data structure so
        // we are not handling the case where we have a non multiple of pointer sized
        // struct. This behavior may change in the future so in order to keeps things correct
        // let's assert it just to be safe. Going forward we should simply
        // handle this case.
        assert(classSize == blkSize);
        assert((blkSize / TARGET_POINTER_SIZE) == slots);
        assert(cpObjNode->HasGCPtr());
#endif

        bool IsRepMovsProfitable = false;

        // If the destination is not on the stack, let's find out if we
        // can improve code size by using rep movsq instead of generating
        // sequences of movsq instructions.
        if (!dstAddr->OperIsLocalAddr())
        {
            // Let's inspect the struct/class layout and determine if it's profitable
            // to use rep movsq for copying non-gc memory instead of using single movsq
            // instructions for each memory slot.
            unsigned i      = 0;
            BYTE*    gcPtrs = cpObjNode->gtGcPtrs;

            do
            {
                unsigned nonGCSlots = 0;
                // Measure a contiguous non-gc area inside the struct and note the maximum.
                while (i < slots && gcPtrs[i] == TYPE_GC_NONE)
                {
                    nonGCSlots++;
                    i++;
                }

                while (i < slots && gcPtrs[i] != TYPE_GC_NONE)
                {
                    i++;
                }

                if (nonGCSlots >= CPOBJ_NONGC_SLOTS_LIMIT)
                {
                    IsRepMovsProfitable = true;
                    break;
                }
            } while (i < slots);
        }
        else if (slots >= CPOBJ_NONGC_SLOTS_LIMIT)
        {
            IsRepMovsProfitable = true;
        }

        // There are two cases in which we need to materialize the
        // struct size:
        // a) When the destination is on the stack we don't need to use the
        //    write barrier, we can just simply call rep movsq and get a win in codesize.
        // b) If we determine we have contiguous non-gc regions in the struct where it's profitable
        //    to use rep movsq instead of a sequence of single movsq instructions.  According to the
        //    Intel Manual, the sweet spot for small structs is between 4 to 12 slots of size where
        //    the entire operation takes 20 cycles and encodes in 5 bytes (moving RCX, and calling rep movsq).
        if (IsRepMovsProfitable)
        {
            // We need the size of the contiguous Non-GC-region to be in RCX to call rep movsq.
            blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr;
        }
        else
        {
            blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll;
        }
    }
    else
    {
        assert((blkNode->OperGet() == GT_STORE_BLK) || (blkNode->OperGet() == GT_STORE_DYN_BLK));
        // CopyBlk
        // In case of a CpBlk with a constant size and less than CPBLK_MOVS_LIMIT size
        // we can use rep movs to generate code instead of the helper call.

        // This threshold will decide between using the helper or let the JIT decide to inline
        // a code sequence of its choice.
        unsigned helperThreshold = max(CPBLK_MOVS_LIMIT, CPBLK_UNROLL_LIMIT);

        // TODO-X86-CQ: Investigate whether a helper call would be beneficial on x86
        if ((size != 0) && (size <= helperThreshold))
        {
            // If we have a buffer between XMM_REGSIZE_BYTES and CPBLK_UNROLL_LIMIT bytes, we'll use SSE2.
            // Structs and buffer with sizes <= CPBLK_UNROLL_LIMIT bytes are occurring in more than 95% of
            // our framework assemblies, so this is the main code generation scheme we'll use.
            if (size <= CPBLK_UNROLL_LIMIT)
            {
                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll;
            }
            else
            {
                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr;
            }
        }
#ifdef _TARGET_AMD64_
        else
        {
            blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindHelper;
        }
#elif defined(_TARGET_X86_)
        else
        {
            blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr;
        }
#endif // _TARGET_X86_
        assert(blkNode->gtBlkOpKind != GenTreeBlk::BlkOpKindInvalid);
    }
}

#ifdef FEATURE_PUT_STRUCT_ARG_STK
//------------------------------------------------------------------------
// LowerPutArgStk: Lower a GT_PUTARG_STK.
//
// Arguments:
//    tree      - The node of interest
//
// Return Value:
//    None.
//
void Lowering::LowerPutArgStk(GenTreePutArgStk* putArgStk)
{
#ifdef _TARGET_X86_
    if (putArgStk->gtOp1->gtOper == GT_FIELD_LIST)
    {
        putArgStk->gtNumberReferenceSlots = 0;
        putArgStk->gtPutArgStkKind        = GenTreePutArgStk::Kind::Invalid;

        GenTreeFieldList* fieldList = putArgStk->gtOp1->AsFieldList();

        // The code generator will push these fields in reverse order by offset. Reorder the list here s.t. the order
        // of uses is visible to LSRA.
        unsigned          fieldCount = 0;
        GenTreeFieldList* head       = nullptr;
        for (GenTreeFieldList *current = fieldList, *next; current != nullptr; current = next)
        {
            next = current->Rest();

            // First, insert the field node into the sorted list.
            GenTreeFieldList* prev = nullptr;
            for (GenTreeFieldList* cursor = head;; cursor = cursor->Rest())
            {
                // If the offset of the current list node is greater than the offset of the cursor or if we have
                // reached the end of the list, insert the current node before the cursor and terminate.
                if ((cursor == nullptr) || (current->gtFieldOffset > cursor->gtFieldOffset))
                {
                    if (prev == nullptr)
                    {
                        assert(cursor == head);
                        head = current;
                    }
                    else
                    {
                        prev->Rest() = current;
                    }

                    current->Rest() = cursor;
                    break;
                }
            }

            fieldCount++;
        }

        // In theory, the upper bound for the size of a field list is 8: these constructs only appear when passing the
        // collection of lclVars that represent the fields of a promoted struct lclVar, and we do not promote struct
        // lclVars with more than 4 fields. If each of these lclVars is of type long, decomposition will split the
        // corresponding field list nodes in two, giving an upper bound of 8.
        //
        // The reason that this is important is that the algorithm we use above to sort the field list is O(N^2): if
        // the maximum size of a field list grows significantly, we will need to reevaluate it.
        assert(fieldCount <= 8);

        // The sort above may have changed which node is at the head of the list. Update the PUTARG_STK node if
        // necessary.
        if (head != fieldList)
        {
            head->gtFlags |= GTF_FIELD_LIST_HEAD;
            fieldList->gtFlags &= ~GTF_FIELD_LIST_HEAD;

#ifdef DEBUG
            head->gtSeqNum = fieldList->gtSeqNum;
#endif // DEBUG

            head->gtLsraInfo = fieldList->gtLsraInfo;
            head->gtClearReg(comp);

            BlockRange().InsertAfter(fieldList, head);
            BlockRange().Remove(fieldList);

            fieldList        = head;
            putArgStk->gtOp1 = fieldList;
        }

        // Now that the fields have been sorted, the kind of code we will generate.
        bool     allFieldsAreSlots = true;
        unsigned prevOffset        = putArgStk->getArgSize();
        for (GenTreeFieldList* current = fieldList; current != nullptr; current = current->Rest())
        {
            GenTree* const  fieldNode   = current->Current();
            const var_types fieldType   = fieldNode->TypeGet();
            const unsigned  fieldOffset = current->gtFieldOffset;
            assert(fieldType != TYP_LONG);

            // We can treat as a slot any field that is stored at a slot boundary, where the previous
            // field is not in the same slot. (Note that we store the fields in reverse order.)
            const bool fieldIsSlot = ((fieldOffset % 4) == 0) && ((prevOffset - fieldOffset) >= 4);
            if (!fieldIsSlot)
            {
                allFieldsAreSlots = false;
            }

            if (varTypeIsGC(fieldType))
            {
                putArgStk->gtNumberReferenceSlots++;
            }

            prevOffset = fieldOffset;
        }

        // Set the copy kind.
        // TODO-X86-CQ: Even if we are using push, if there are contiguous floating point fields, we should
        // adjust the stack once for those fields. The latter is really best done in code generation, but
        // this tuning should probably be undertaken as a whole.
        // Also, if there are  floating point fields, it may be better to use the "Unroll" mode
        // of copying the struct as a whole, if the fields are not register candidates.
        if (allFieldsAreSlots)
        {
            putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::PushAllSlots;
        }
        else
        {
            putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Push;
        }
        return;
    }
#endif // _TARGET_X86_

    if (putArgStk->TypeGet() != TYP_STRUCT)
    {
        return;
    }

    GenTreePtr dst     = putArgStk;
    GenTreePtr src     = putArgStk->gtOp1;
    GenTreePtr srcAddr = nullptr;

    // In case of a CpBlk we could use a helper call. In case of putarg_stk we
    // can't do that since the helper call could kill some already set up outgoing args.
    // TODO-Amd64-Unix: converge the code for putarg_stk with cpyblk/cpyobj.
    // The cpyXXXX code is rather complex and this could cause it to be more complex, but
    // it might be the right thing to do.

    // This threshold will decide from using the helper or let the JIT decide to inline
    // a code sequence of its choice.
    ssize_t helperThreshold = max(CPBLK_MOVS_LIMIT, CPBLK_UNROLL_LIMIT);
    ssize_t size            = putArgStk->gtNumSlots * TARGET_POINTER_SIZE;

    // TODO-X86-CQ: The helper call either is not supported on x86 or required more work
    // (I don't know which).

    // If we have a buffer between XMM_REGSIZE_BYTES and CPBLK_UNROLL_LIMIT bytes, we'll use SSE2.
    // Structs and buffer with sizes <= CPBLK_UNROLL_LIMIT bytes are occurring in more than 95% of
    // our framework assemblies, so this is the main code generation scheme we'll use.
    if (size <= CPBLK_UNROLL_LIMIT && putArgStk->gtNumberReferenceSlots == 0)
    {
#ifdef _TARGET_X86_
        if (size < XMM_REGSIZE_BYTES)
        {
            putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Push;
        }
        else
#endif // _TARGET_X86_
        {
            putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Unroll;
        }
    }
#ifdef _TARGET_X86_
    else if (putArgStk->gtNumberReferenceSlots != 0)
    {
        // On x86, we must use `push` to store GC references to the stack in order for the emitter to properly update
        // the function's GC info. These `putargstk` nodes will generate a sequence of `push` instructions.
        putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Push;
    }
#endif // _TARGET_X86_
    else
    {
        putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::RepInstr;
    }
}
#endif // FEATURE_PUT_STRUCT_ARG_STK

/* Lower GT_CAST(srcType, DstType) nodes.
 *
 * Casts from small int type to float/double are transformed as follows:
 * GT_CAST(byte, float/double)     =   GT_CAST(GT_CAST(byte, int32), float/double)
 * GT_CAST(sbyte, float/double)    =   GT_CAST(GT_CAST(sbyte, int32), float/double)
 * GT_CAST(int16, float/double)    =   GT_CAST(GT_CAST(int16, int32), float/double)
 * GT_CAST(uint16, float/double)   =   GT_CAST(GT_CAST(uint16, int32), float/double)
 *
 * SSE2 conversion instructions operate on signed integers. casts from Uint32/Uint64
 * are morphed as follows by front-end and hence should not be seen here.
 * GT_CAST(uint32, float/double)   =   GT_CAST(GT_CAST(uint32, long), float/double)
 * GT_CAST(uint64, float)          =   GT_CAST(GT_CAST(uint64, double), float)
 *
 *
 * Similarly casts from float/double to a smaller int type are transformed as follows:
 * GT_CAST(float/double, byte)     =   GT_CAST(GT_CAST(float/double, int32), byte)
 * GT_CAST(float/double, sbyte)    =   GT_CAST(GT_CAST(float/double, int32), sbyte)
 * GT_CAST(float/double, int16)    =   GT_CAST(GT_CAST(double/double, int32), int16)
 * GT_CAST(float/double, uint16)   =   GT_CAST(GT_CAST(double/double, int32), uint16)
 *
 * SSE2 has instructions to convert a float/double vlaue into a signed 32/64-bit
 * integer.  The above transformations help us to leverage those instructions.
 *
 * Note that for the following conversions we still depend on helper calls and
 * don't expect to see them here.
 *  i) GT_CAST(float/double, uint64)
 * ii) GT_CAST(float/double, int type with overflow detection)
 *
 * TODO-XArch-CQ: (Low-pri): Jit64 generates in-line code of 8 instructions for (i) above.
 * There are hardly any occurrences of this conversion operation in platform
 * assemblies or in CQ perf benchmarks (1 occurrence in mscorlib, microsoft.jscript,
 * 1 occurence in Roslyn and no occurrences in system, system.core, system.numerics
 * system.windows.forms, scimark, fractals, bio mums). If we ever find evidence that
 * doing this optimization is a win, should consider generating in-lined code.
 */
void Lowering::LowerCast(GenTree* tree)
{
    assert(tree->OperGet() == GT_CAST);

    GenTreePtr op1     = tree->gtOp.gtOp1;
    var_types  dstType = tree->CastToType();
    var_types  srcType = op1->TypeGet();
    var_types  tmpType = TYP_UNDEF;

    // force the srcType to unsigned if GT_UNSIGNED flag is set
    if (tree->gtFlags & GTF_UNSIGNED)
    {
        srcType = genUnsignedType(srcType);
    }

    // We should never see the following casts as they are expected to be lowered
    // apropriately or converted into helper calls by front-end.
    //   srcType = float/double                    dstType = * and overflow detecting cast
    //       Reason: must be converted to a helper call
    //   srcType = float/double,                   dstType = ulong
    //       Reason: must be converted to a helper call
    //   srcType = uint                            dstType = float/double
    //       Reason: uint -> float/double = uint -> long -> float/double
    //   srcType = ulong                           dstType = float
    //       Reason: ulong -> float = ulong -> double -> float
    if (varTypeIsFloating(srcType))
    {
        noway_assert(!tree->gtOverflow());
        noway_assert(dstType != TYP_ULONG);
    }
    else if (srcType == TYP_UINT)
    {
        noway_assert(!varTypeIsFloating(dstType));
    }
    else if (srcType == TYP_ULONG)
    {
        noway_assert(dstType != TYP_FLOAT);
    }

    // Case of src is a small type and dst is a floating point type.
    if (varTypeIsSmall(srcType) && varTypeIsFloating(dstType))
    {
        // These conversions can never be overflow detecting ones.
        noway_assert(!tree->gtOverflow());
        tmpType = TYP_INT;
    }
    // case of src is a floating point type and dst is a small type.
    else if (varTypeIsFloating(srcType) && varTypeIsSmall(dstType))
    {
        tmpType = TYP_INT;
    }

    if (tmpType != TYP_UNDEF)
    {
        GenTreePtr tmp = comp->gtNewCastNode(tmpType, op1, tmpType);
        tmp->gtFlags |= (tree->gtFlags & (GTF_UNSIGNED | GTF_OVERFLOW | GTF_EXCEPT));

        tree->gtFlags &= ~GTF_UNSIGNED;
        tree->gtOp.gtOp1 = tmp;
        BlockRange().InsertAfter(op1, tmp);
    }
}

//----------------------------------------------------------------------------------------------
// Lowering::IsRMWIndirCandidate:
//    Returns true if the given operand is a candidate indirection for a read-modify-write
//    operator.
//
//  Arguments:
//     operand - The operand to consider.
//     storeInd - The indirect store that roots the possible RMW operator.
//
bool Lowering::IsRMWIndirCandidate(GenTree* operand, GenTree* storeInd)
{
    // If the operand isn't an indirection, it's trivially not a candidate.
    if (operand->OperGet() != GT_IND)
    {
        return false;
    }

    // If the indirection's source address isn't equivalent to the destination address of the storeIndir, then the
    // indirection is not a candidate.
    GenTree* srcAddr = operand->gtGetOp1();
    GenTree* dstAddr = storeInd->gtGetOp1();
    if ((srcAddr->OperGet() != dstAddr->OperGet()) || !IndirsAreEquivalent(operand, storeInd))
    {
        return false;
    }

    // If it is not safe to contain the entire tree rooted at the indirection, then the indirection is not a
    // candidate. Crawl the IR from the node immediately preceding the storeIndir until the last node in the
    // indirection's tree is visited and check the side effects at each point.

    m_scratchSideEffects.Clear();

    assert((operand->gtLIRFlags & LIR::Flags::Mark) == 0);
    operand->gtLIRFlags |= LIR::Flags::Mark;

    unsigned markCount = 1;
    GenTree* node;
    for (node = storeInd->gtPrev; markCount > 0; node = node->gtPrev)
    {
        assert(node != nullptr);

        if ((node->gtLIRFlags & LIR::Flags::Mark) == 0)
        {
            m_scratchSideEffects.AddNode(comp, node);
        }
        else
        {
            node->gtLIRFlags &= ~LIR::Flags::Mark;
            markCount--;

            if (m_scratchSideEffects.InterferesWith(comp, node, false))
            {
                // The indirection's tree contains some node that can't be moved to the storeInder. The indirection is
                // not a candidate. Clear any leftover mark bits and return.
                for (; markCount > 0; node = node->gtPrev)
                {
                    if ((node->gtLIRFlags & LIR::Flags::Mark) != 0)
                    {
                        node->gtLIRFlags &= ~LIR::Flags::Mark;
                        markCount--;
                    }
                }
                return false;
            }

            for (GenTree* nodeOperand : node->Operands())
            {
                assert((nodeOperand->gtLIRFlags & LIR::Flags::Mark) == 0);
                nodeOperand->gtLIRFlags |= LIR::Flags::Mark;
                markCount++;
            }
        }
    }

    // At this point we've verified that the operand is an indirection, its address is equivalent to the storeIndir's
    // destination address, and that it and the transitive closure of its operand can be safely contained by the
    // storeIndir. This indirection is therefore a candidate for an RMW op.
    return true;
}

//----------------------------------------------------------------------------------------------
// Returns true if this tree is bin-op of a GT_STOREIND of the following form
//      storeInd(subTreeA, binOp(gtInd(subTreeA), subtreeB)) or
//      storeInd(subTreeA, binOp(subtreeB, gtInd(subTreeA)) in case of commutative bin-ops
//
// The above form for storeInd represents a read-modify-write memory binary operation.
//
// Parameters
//     tree   -   GentreePtr of binOp
//
// Return Value
//     True if 'tree' is part of a RMW memory operation pattern
//
bool Lowering::IsBinOpInRMWStoreInd(GenTreePtr tree)
{
    // Must be a non floating-point type binary operator since SSE2 doesn't support RMW memory ops
    assert(!varTypeIsFloating(tree));
    assert(GenTree::OperIsBinary(tree->OperGet()));

    // Cheap bail out check before more expensive checks are performed.
    // RMW memory op pattern requires that one of the operands of binOp to be GT_IND.
    if (tree->gtGetOp1()->OperGet() != GT_IND && tree->gtGetOp2()->OperGet() != GT_IND)
    {
        return false;
    }

    LIR::Use use;
    if (!BlockRange().TryGetUse(tree, &use) || use.User()->OperGet() != GT_STOREIND || use.User()->gtGetOp2() != tree)
    {
        return false;
    }

    // Since it is not relatively cheap to recognize RMW memory op pattern, we
    // cache the result in GT_STOREIND node so that while lowering GT_STOREIND
    // we can use the result.
    GenTreePtr indirCandidate = nullptr;
    GenTreePtr indirOpSource  = nullptr;
    return IsRMWMemOpRootedAtStoreInd(use.User(), &indirCandidate, &indirOpSource);
}

//----------------------------------------------------------------------------------------------
// This method recognizes the case where we have a treeNode with the following structure:
//         storeInd(IndirDst, binOp(gtInd(IndirDst), indirOpSource)) OR
//         storeInd(IndirDst, binOp(indirOpSource, gtInd(IndirDst)) in case of commutative operations OR
//         storeInd(IndirDst, unaryOp(gtInd(IndirDst)) in case of unary operations
//
// Terminology:
//         indirDst = memory write of an addr mode  (i.e. storeind destination)
//         indirSrc = value being written to memory (i.e. storeind source which could either be a binary or unary op)
//         indirCandidate = memory read i.e. a gtInd of an addr mode
//         indirOpSource = source operand used in binary/unary op (i.e. source operand of indirSrc node)
//
// In x86/x64 this storeInd pattern can be effectively encoded in a single instruction of the
// following form in case of integer operations:
//         binOp [addressing mode], RegIndirOpSource
//         binOp [addressing mode], immediateVal
// where RegIndirOpSource is the register where indirOpSource was computed.
//
// Right now, we recognize few cases:
//     a) The gtInd child is a lea/lclVar/lclVarAddr/clsVarAddr/constant
//     b) BinOp is either add, sub, xor, or, and, shl, rsh, rsz.
//     c) unaryOp is either not/neg
//
// Implementation Note: The following routines need to be in sync for RMW memory op optimization
// to be correct and functional.
//     IndirsAreEquivalent()
//     NodesAreEquivalentLeaves()
//     Codegen of GT_STOREIND and genCodeForShiftRMW()
//     emitInsRMW()
//
//  TODO-CQ: Enable support for more complex indirections (if needed) or use the value numbering
//  package to perform more complex tree recognition.
//
//  TODO-XArch-CQ: Add support for RMW of lcl fields (e.g. lclfield binop= source)
//
//  Parameters:
//     tree               -  GT_STOREIND node
//     outIndirCandidate  -  out param set to indirCandidate as described above
//     ouutIndirOpSource  -  out param set to indirOpSource as described above
//
//  Return value
//     True if there is a RMW memory operation rooted at a GT_STOREIND tree
//     and out params indirCandidate and indirOpSource are set to non-null values.
//     Otherwise, returns false with indirCandidate and indirOpSource set to null.
//     Also updates flags of GT_STOREIND tree with its RMW status.
//
bool Lowering::IsRMWMemOpRootedAtStoreInd(GenTreePtr tree, GenTreePtr* outIndirCandidate, GenTreePtr* outIndirOpSource)
{
    assert(!varTypeIsFloating(tree));
    assert(outIndirCandidate != nullptr);
    assert(outIndirOpSource != nullptr);

    *outIndirCandidate = nullptr;
    *outIndirOpSource  = nullptr;

    // Early out if storeInd is already known to be a non-RMW memory op
    GenTreeStoreInd* storeInd = tree->AsStoreInd();
    if (storeInd->IsNonRMWMemoryOp())
    {
        return false;
    }

    GenTreePtr indirDst = storeInd->gtGetOp1();
    GenTreePtr indirSrc = storeInd->gtGetOp2();
    genTreeOps oper     = indirSrc->OperGet();

    // Early out if it is already known to be a RMW memory op
    if (storeInd->IsRMWMemoryOp())
    {
        if (GenTree::OperIsBinary(oper))
        {
            if (storeInd->IsRMWDstOp1())
            {
                *outIndirCandidate = indirSrc->gtGetOp1();
                *outIndirOpSource  = indirSrc->gtGetOp2();
            }
            else
            {
                assert(storeInd->IsRMWDstOp2());
                *outIndirCandidate = indirSrc->gtGetOp2();
                *outIndirOpSource  = indirSrc->gtGetOp1();
            }
            assert(IndirsAreEquivalent(*outIndirCandidate, storeInd));
        }
        else
        {
            assert(GenTree::OperIsUnary(oper));
            assert(IndirsAreEquivalent(indirSrc->gtGetOp1(), storeInd));
            *outIndirCandidate = indirSrc->gtGetOp1();
            *outIndirOpSource  = indirSrc->gtGetOp1();
        }

        return true;
    }

    // If reached here means that we do not know RMW status of tree rooted at storeInd
    assert(storeInd->IsRMWStatusUnknown());

    // Early out if indirDst is not one of the supported memory operands.
    if (indirDst->OperGet() != GT_LEA && indirDst->OperGet() != GT_LCL_VAR && indirDst->OperGet() != GT_LCL_VAR_ADDR &&
        indirDst->OperGet() != GT_CLS_VAR_ADDR && indirDst->OperGet() != GT_CNS_INT)
    {
        storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR);
        return false;
    }

    // We can not use Read-Modify-Write instruction forms with overflow checking instructions
    // because we are not allowed to modify the target until after the overflow check.
    if (indirSrc->gtOverflowEx())
    {
        storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER);
        return false;
    }

    // At this point we can match one of two patterns:
    //
    //     t_ind = indir t_addr_0
    //       ...
    //     t_value = binop t_ind, t_other
    //       ...
    //     storeIndir t_addr_1, t_value
    //
    // or
    //
    //     t_ind = indir t_addr_0
    //       ...
    //     t_value = unop t_ind
    //       ...
    //     storeIndir t_addr_1, t_value
    //
    // In all cases, we will eventually make the binop that produces t_value and the entire dataflow tree rooted at
    // t_ind contained by t_value.

    GenTree*  indirCandidate = nullptr;
    GenTree*  indirOpSource  = nullptr;
    RMWStatus status         = STOREIND_RMW_STATUS_UNKNOWN;
    if (GenTree::OperIsBinary(oper))
    {
        // Return if binary op is not one of the supported operations for RMW of memory.
        if (oper != GT_ADD && oper != GT_SUB && oper != GT_AND && oper != GT_OR && oper != GT_XOR &&
            !GenTree::OperIsShiftOrRotate(oper))
        {
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER);
            return false;
        }

        if (GenTree::OperIsShiftOrRotate(oper) && varTypeIsSmall(storeInd))
        {
            // In ldind, Integer values smaller than 4 bytes, a boolean, or a character converted to 4 bytes
            // by sign or zero-extension as appropriate. If we directly shift the short type data using sar, we
            // will lose the sign or zero-extension bits.
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_TYPE);
            return false;
        }

        // In the common case, the second operand to the binop will be the indir candidate.
        GenTreeOp* binOp = indirSrc->AsOp();
        if (GenTree::OperIsCommutative(oper) && IsRMWIndirCandidate(binOp->gtOp2, storeInd))
        {
            indirCandidate = binOp->gtOp2;
            indirOpSource  = binOp->gtOp1;
            status         = STOREIND_RMW_DST_IS_OP2;
        }
        else if (IsRMWIndirCandidate(binOp->gtOp1, storeInd))
        {
            indirCandidate = binOp->gtOp1;
            indirOpSource  = binOp->gtOp2;
            status         = STOREIND_RMW_DST_IS_OP1;
        }
        else
        {
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR);
            return false;
        }
    }
    else if (GenTree::OperIsUnary(oper))
    {
        // Nodes other than GT_NOT and GT_NEG are not yet supported.
        if (oper != GT_NOT && oper != GT_NEG)
        {
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER);
            return false;
        }

        if (indirSrc->gtGetOp1()->OperGet() != GT_IND)
        {
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR);
            return false;
        }

        GenTreeUnOp* unOp = indirSrc->AsUnOp();
        if (IsRMWIndirCandidate(unOp->gtOp1, storeInd))
        {
            // src and dest are the same in case of unary ops
            indirCandidate = unOp->gtOp1;
            indirOpSource  = unOp->gtOp1;
            status         = STOREIND_RMW_DST_IS_OP1;
        }
        else
        {
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR);
            return false;
        }
    }
    else
    {
        storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER);
        return false;
    }

    // By this point we've verified that we have a supported operand with a supported address. Now we need to ensure
    // that we're able to move the destination address for the source indirection forwards.
    if (!IsSafeToContainMem(storeInd, indirDst))
    {
        storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR);
        return false;
    }

    assert(indirCandidate != nullptr);
    assert(indirOpSource != nullptr);
    assert(status != STOREIND_RMW_STATUS_UNKNOWN);

    *outIndirCandidate = indirCandidate;
    *outIndirOpSource  = indirOpSource;
    storeInd->SetRMWStatus(status);
    return true;
}

//------------------------------------------------------------------------------
// isRMWRegOper: Can this binary tree node be used in a Read-Modify-Write format
//
// Arguments:
//    tree      - a binary tree node
//
// Return Value:
//    Returns true if we can use the read-modify-write instruction form
//
// Notes:
//    This is used to determine whether to preference the source to the destination register.
//
bool Lowering::isRMWRegOper(GenTreePtr tree)
{
    // TODO-XArch-CQ: Make this more accurate.
    // For now, We assume that most binary operators are of the RMW form.
    assert(tree->OperIsBinary());

    if (tree->OperIsCompare())
    {
        return false;
    }

    switch (tree->OperGet())
    {
        // These Opers either support a three op form (i.e. GT_LEA), or do not read/write their first operand
        case GT_LEA:
        case GT_STOREIND:
        case GT_ARR_INDEX:
        case GT_STORE_BLK:
        case GT_STORE_OBJ:
            return false;

        // x86/x64 does support a three op multiply when op2|op1 is a contained immediate
        case GT_MUL:
            return (!IsContainableImmed(tree, tree->gtOp.gtOp2) && !IsContainableImmed(tree, tree->gtOp.gtOp1));

        default:
            return true;
    }
}

// anything is in range for AMD64
bool Lowering::IsCallTargetInRange(void* addr)
{
    return true;
}

// return true if the immediate can be folded into an instruction, for example small enough and non-relocatable
bool Lowering::IsContainableImmed(GenTree* parentNode, GenTree* childNode)
{
    if (!childNode->IsIntCnsFitsInI32())
    {
        return false;
    }

    // At this point we know that it is an int const fits within 4-bytes and hence can safely cast to IntConCommon.
    // Icons that need relocation should never be marked as contained immed
    if (childNode->AsIntConCommon()->ImmedValNeedsReloc(comp))
    {
        return false;
    }

    return true;
}

//-----------------------------------------------------------------------
// PreferredRegOptionalOperand: returns one of the operands of given
// binary oper that is to be preferred for marking as reg optional.
//
// Since only one of op1 or op2 can be a memory operand on xarch, only
// one of  them have to be marked as reg optional.  Since Lower doesn't
// know apriori which of op1 or op2 is not likely to get a register, it
// has to make a guess. This routine encapsulates heuristics that
// guess whether it is likely to be beneficial to mark op1 or op2 as
// reg optional.
//
//
// Arguments:
//     tree  -  a binary-op tree node that is either commutative
//              or a compare oper.
//
// Returns:
//     Returns op1 or op2 of tree node that is preferred for
//     marking as reg optional.
//
// Note: if the tree oper is neither commutative nor a compare oper
// then only op2 can be reg optional on xarch and hence no need to
// call this routine.
GenTree* Lowering::PreferredRegOptionalOperand(GenTree* tree)
{
    assert(GenTree::OperIsBinary(tree->OperGet()));
    assert(tree->OperIsCommutative() || tree->OperIsCompare());

    GenTree* op1         = tree->gtGetOp1();
    GenTree* op2         = tree->gtGetOp2();
    GenTree* preferredOp = nullptr;

    // This routine uses the following heuristics:
    //
    // a) If both are tracked locals, marking the one with lower weighted
    // ref count as reg-optional would likely be beneficial as it has
    // higher probability of not getting a register.
    //
    // b) op1 = tracked local and op2 = untracked local: LSRA creates two
    // ref positions for op2: a def and use position. op2's def position
    // requires a reg and it is allocated a reg by spilling another
    // interval (if required) and that could be even op1.  For this reason
    // it is beneficial to mark op1 as reg optional.
    //
    // TODO: It is not always mandatory for a def position of an untracked
    // local to be allocated a register if it is on rhs of an assignment
    // and its use position is reg-optional and has not been assigned a
    // register.  Reg optional def positions is currently not yet supported.
    //
    // c) op1 = untracked local and op2 = tracked local: marking op1 as
    // reg optional is beneficial, since its use position is less likely
    // to get a register.
    //
    // d) If both are untracked locals (i.e. treated like tree temps by
    // LSRA): though either of them could be marked as reg optional,
    // marking op1 as reg optional is likely to be beneficial because
    // while allocating op2's def position, there is a possibility of
    // spilling op1's def and in which case op1 is treated as contained
    // memory operand rather than requiring to reload.
    //
    // e) If only one of them is a local var, prefer to mark it as
    // reg-optional.  This is heuristic is based on the results
    // obtained against CQ perf benchmarks.
    //
    // f) If neither of them are local vars (i.e. tree temps), prefer to
    // mark op1 as reg optional for the same reason as mentioned in (d) above.
    if (op1->OperGet() == GT_LCL_VAR && op2->OperGet() == GT_LCL_VAR)
    {
        LclVarDsc* v1 = comp->lvaTable + op1->AsLclVarCommon()->GetLclNum();
        LclVarDsc* v2 = comp->lvaTable + op2->AsLclVarCommon()->GetLclNum();

        if (v1->lvTracked && v2->lvTracked)
        {
            // Both are tracked locals.  The one with lower weight is less likely
            // to get a register and hence beneficial to mark the one with lower
            // weight as reg optional.
            if (v1->lvRefCntWtd < v2->lvRefCntWtd)
            {
                preferredOp = op1;
            }
            else
            {
                preferredOp = op2;
            }
        }
        else if (v2->lvTracked)
        {
            // v1 is an untracked lcl and it is use position is less likely to
            // get a register.
            preferredOp = op1;
        }
        else if (v1->lvTracked)
        {
            // v2 is an untracked lcl and its def position always
            // needs a reg.  Hence it is better to mark v1 as
            // reg optional.
            preferredOp = op1;
        }
        else
        {
            preferredOp = op1;
            ;
        }
    }
    else if (op1->OperGet() == GT_LCL_VAR)
    {
        preferredOp = op1;
    }
    else if (op2->OperGet() == GT_LCL_VAR)
    {
        preferredOp = op2;
    }
    else
    {
        // Neither of the operands is a local, prefer marking
        // operand that is evaluated first as reg optional
        // since its use position is less likely to get a register.
        bool reverseOps = ((tree->gtFlags & GTF_REVERSE_OPS) != 0);
        preferredOp     = reverseOps ? op2 : op1;
    }

    return preferredOp;
}

#endif // _TARGET_XARCH_

#endif // !LEGACY_BACKEND