summaryrefslogtreecommitdiff
path: root/src/jit/lowerxarch.cpp
blob: 613f6cb9f8b7405c47215361e63044f153229f84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                           Lowering for AMD64, x86                         XX
XX                                                                           XX
XX  This encapsulates all the logic for lowering trees for the AMD64         XX
XX  architecture.  For a more detailed view of what is lowering, please      XX
XX  take a look at Lower.cpp                                                 XX
XX                                                                           XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/

#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif

#ifdef _TARGET_XARCH_ // This file is only used for xarch

#include "jit.h"
#include "sideeffects.h"
#include "lower.h"

// xarch supports both ROL and ROR instructions so no lowering is required.
void Lowering::LowerRotate(GenTree* tree)
{
    ContainCheckShiftRotate(tree->AsOp());
}

//------------------------------------------------------------------------
// LowerStoreLoc: Lower a store of a lclVar
//
// Arguments:
//    storeLoc - the local store (GT_STORE_LCL_FLD or GT_STORE_LCL_VAR)
//
// Notes:
//    This involves:
//    - Handling of contained immediates.
//    - Widening operations of unsigneds.

void Lowering::LowerStoreLoc(GenTreeLclVarCommon* storeLoc)
{
    // Try to widen the ops if they are going into a local var.
    if ((storeLoc->gtOper == GT_STORE_LCL_VAR) && (storeLoc->gtOp1->gtOper == GT_CNS_INT))
    {
        GenTreeIntCon* con  = storeLoc->gtOp1->AsIntCon();
        ssize_t        ival = con->gtIconVal;

        unsigned   varNum = storeLoc->gtLclNum;
        LclVarDsc* varDsc = comp->lvaTable + varNum;

        if (varDsc->lvIsSIMDType())
        {
            noway_assert(storeLoc->gtType != TYP_STRUCT);
        }
        unsigned size = genTypeSize(storeLoc);
        // If we are storing a constant into a local variable
        // we extend the size of the store here
        if ((size < 4) && !varTypeIsStruct(varDsc))
        {
            if (!varTypeIsUnsigned(varDsc))
            {
                if (genTypeSize(storeLoc) == 1)
                {
                    if ((ival & 0x7f) != ival)
                    {
                        ival = ival | 0xffffff00;
                    }
                }
                else
                {
                    assert(genTypeSize(storeLoc) == 2);
                    if ((ival & 0x7fff) != ival)
                    {
                        ival = ival | 0xffff0000;
                    }
                }
            }

            // A local stack slot is at least 4 bytes in size, regardless of
            // what the local var is typed as, so auto-promote it here
            // unless it is a field of a promoted struct
            // TODO-XArch-CQ: if the field is promoted shouldn't we also be able to do this?
            if (!varDsc->lvIsStructField)
            {
                storeLoc->gtType = TYP_INT;
                con->SetIconValue(ival);
            }
        }
    }
    if (storeLoc->OperIs(GT_STORE_LCL_FLD))
    {
        // We should only encounter this for lclVars that are lvDoNotEnregister.
        verifyLclFldDoNotEnregister(storeLoc->gtLclNum);
    }
    ContainCheckStoreLoc(storeLoc);
}

//------------------------------------------------------------------------
// LowerStoreIndir: Determine addressing mode for an indirection, and whether operands are contained.
//
// Arguments:
//    node       - The indirect store node (GT_STORE_IND) of interest
//
// Return Value:
//    None.
//
void Lowering::LowerStoreIndir(GenTreeIndir* node)
{
    // Mark all GT_STOREIND nodes to indicate that it is not known
    // whether it represents a RMW memory op.
    node->AsStoreInd()->SetRMWStatusDefault();

    if (!varTypeIsFloating(node))
    {
        // Perform recognition of trees with the following structure:
        //        StoreInd(addr, BinOp(expr, GT_IND(addr)))
        // to be able to fold this into an instruction of the form
        //        BINOP [addr], register
        // where register is the actual place where 'expr' is computed.
        //
        // SSE2 doesn't support RMW form of instructions.
        if (LowerRMWMemOp(node))
        {
            return;
        }
    }
    ContainCheckStoreIndir(node);
}

//------------------------------------------------------------------------
// LowerBlockStore: Set block store type
//
// Arguments:
//    blkNode       - The block store node of interest
//
// Return Value:
//    None.
//
void Lowering::LowerBlockStore(GenTreeBlk* blkNode)
{
    GenTree* dstAddr       = blkNode->Addr();
    unsigned size          = blkNode->gtBlkSize;
    GenTree* source        = blkNode->Data();
    GenTree* srcAddrOrFill = nullptr;
    bool     isInitBlk     = blkNode->OperIsInitBlkOp();

    if (!isInitBlk)
    {
        // CopyObj or CopyBlk
        if ((blkNode->OperGet() == GT_STORE_OBJ) && ((blkNode->AsObj()->gtGcPtrCount == 0) || blkNode->gtBlkOpGcUnsafe))
        {
            blkNode->SetOper(GT_STORE_BLK);
        }
        if (source->gtOper == GT_IND)
        {
            srcAddrOrFill = blkNode->Data()->gtGetOp1();
        }
    }

    if (isInitBlk)
    {
        GenTree* initVal = source;
        if (initVal->OperIsInitVal())
        {
            initVal->SetContained();
            initVal = initVal->gtGetOp1();
        }
        srcAddrOrFill = initVal;
        // If we have an InitBlk with constant block size we can optimize several ways:
        // a) If the size is smaller than a small memory page but larger than INITBLK_UNROLL_LIMIT bytes
        //    we use rep stosb since this reduces the register pressure in LSRA and we have
        //    roughly the same performance as calling the helper.
        // b) If the size is <= INITBLK_UNROLL_LIMIT bytes and the fill byte is a constant,
        //    we can speed this up by unrolling the loop using SSE2 stores.  The reason for
        //    this threshold is because our last investigation (Fall 2013), more than 95% of initblks
        //    in our framework assemblies are actually <= INITBLK_UNROLL_LIMIT bytes size, so this is the
        //    preferred code sequence for the vast majority of cases.

        // This threshold will decide from using the helper or let the JIT decide to inline
        // a code sequence of its choice.
        unsigned helperThreshold = max(INITBLK_STOS_LIMIT, INITBLK_UNROLL_LIMIT);

        // TODO-X86-CQ: Investigate whether a helper call would be beneficial on x86
        if (!blkNode->OperIs(GT_STORE_DYN_BLK) && size <= helperThreshold)
        {
            // Always favor unrolling vs rep stos.
            if (size <= INITBLK_UNROLL_LIMIT && initVal->IsCnsIntOrI())
            {
                // The fill value of an initblk is interpreted to hold a
                // value of (unsigned int8) however a constant of any size
                // may practically reside on the evaluation stack. So extract
                // the lower byte out of the initVal constant and replicate
                // it to a larger constant whose size is sufficient to support
                // the largest width store of the desired inline expansion.

                ssize_t fill = initVal->gtIntCon.gtIconVal & 0xFF;
#ifdef _TARGET_AMD64_
                if (size < REGSIZE_BYTES)
                {
                    initVal->gtIntCon.gtIconVal = 0x01010101 * fill;
                }
                else
                {
                    initVal->gtIntCon.gtIconVal = 0x0101010101010101LL * fill;
                    initVal->gtType             = TYP_LONG;
                    if ((fill == 0) && ((size & 0xf) == 0))
                    {
                        MakeSrcContained(blkNode, source);
                    }
                }
#else  // !_TARGET_AMD64_
                initVal->gtIntCon.gtIconVal = 0x01010101 * fill;
#endif // !_TARGET_AMD64_

                if ((fill == 0) && ((size & 0xf) == 0))
                {
                    MakeSrcContained(blkNode, source);
                }
                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll;
            }
            else
            {
                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr;
            }
        }
        else
        {
#ifdef _TARGET_AMD64_
            blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindHelper;
#else  // !_TARGET_AMD64_
            blkNode->gtBlkOpKind            = GenTreeBlk::BlkOpKindRepInstr;
#endif // !_TARGET_AMD64_
        }
    }
    else
    {
        if (blkNode->gtOper == GT_STORE_OBJ)
        {
            // CopyObj

            GenTreeObj* cpObjNode = blkNode->AsObj();

            unsigned slots = cpObjNode->gtSlots;

#ifdef DEBUG
            // CpObj must always have at least one GC-Pointer as a member.
            assert(cpObjNode->gtGcPtrCount > 0);

            assert(dstAddr->gtType == TYP_BYREF || dstAddr->gtType == TYP_I_IMPL);

            CORINFO_CLASS_HANDLE clsHnd    = cpObjNode->gtClass;
            size_t               classSize = comp->info.compCompHnd->getClassSize(clsHnd);
            size_t               blkSize   = roundUp(classSize, TARGET_POINTER_SIZE);

            // Currently, the EE always round up a class data structure so
            // we are not handling the case where we have a non multiple of pointer sized
            // struct. This behavior may change in the future so in order to keeps things correct
            // let's assert it just to be safe. Going forward we should simply
            // handle this case.
            assert(classSize == blkSize);
            assert((blkSize / TARGET_POINTER_SIZE) == slots);
            assert(cpObjNode->HasGCPtr());
#endif

            bool IsRepMovsProfitable = false;

            // If the destination is not on the stack, let's find out if we
            // can improve code size by using rep movsq instead of generating
            // sequences of movsq instructions.
            if (!dstAddr->OperIsLocalAddr())
            {
                // Let's inspect the struct/class layout and determine if it's profitable
                // to use rep movsq for copying non-gc memory instead of using single movsq
                // instructions for each memory slot.
                unsigned i      = 0;
                BYTE*    gcPtrs = cpObjNode->gtGcPtrs;

                do
                {
                    unsigned nonGCSlots = 0;
                    // Measure a contiguous non-gc area inside the struct and note the maximum.
                    while (i < slots && gcPtrs[i] == TYPE_GC_NONE)
                    {
                        nonGCSlots++;
                        i++;
                    }

                    while (i < slots && gcPtrs[i] != TYPE_GC_NONE)
                    {
                        i++;
                    }

                    if (nonGCSlots >= CPOBJ_NONGC_SLOTS_LIMIT)
                    {
                        IsRepMovsProfitable = true;
                        break;
                    }
                } while (i < slots);
            }
            else if (slots >= CPOBJ_NONGC_SLOTS_LIMIT)
            {
                IsRepMovsProfitable = true;
            }

            // There are two cases in which we need to materialize the
            // struct size:
            // a) When the destination is on the stack we don't need to use the
            //    write barrier, we can just simply call rep movsq and get a win in codesize.
            // b) If we determine we have contiguous non-gc regions in the struct where it's profitable
            //    to use rep movsq instead of a sequence of single movsq instructions.  According to the
            //    Intel Manual, the sweet spot for small structs is between 4 to 12 slots of size where
            //    the entire operation takes 20 cycles and encodes in 5 bytes (moving RCX, and calling rep movsq).
            if (IsRepMovsProfitable)
            {
                // We need the size of the contiguous Non-GC-region to be in RCX to call rep movsq.
                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr;
            }
            else
            {
                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll;
            }
        }
        else
        {
            assert(blkNode->OperIs(GT_STORE_BLK, GT_STORE_DYN_BLK));
            // CopyBlk
            // In case of a CpBlk with a constant size and less than CPBLK_MOVS_LIMIT size
            // we can use rep movs to generate code instead of the helper call.

            // This threshold will decide between using the helper or let the JIT decide to inline
            // a code sequence of its choice.
            unsigned helperThreshold = max(CPBLK_MOVS_LIMIT, CPBLK_UNROLL_LIMIT);

            // TODO-X86-CQ: Investigate whether a helper call would be beneficial on x86
            if ((!blkNode->OperIs(GT_STORE_DYN_BLK)) && (size <= helperThreshold))
            {
                // If we have a buffer between XMM_REGSIZE_BYTES and CPBLK_UNROLL_LIMIT bytes, we'll use SSE2.
                // Structs and buffer with sizes <= CPBLK_UNROLL_LIMIT bytes are occurring in more than 95% of
                // our framework assemblies, so this is the main code generation scheme we'll use.
                if ((size != 0) && (size <= CPBLK_UNROLL_LIMIT))
                {
                    blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll;

                    // If src or dst are on stack, we don't have to generate the address
                    // into a register because it's just some constant+SP.
                    if ((srcAddrOrFill != nullptr) && srcAddrOrFill->OperIsLocalAddr())
                    {
                        MakeSrcContained(blkNode, srcAddrOrFill);
                    }

                    if (dstAddr->OperIsLocalAddr())
                    {
                        MakeSrcContained(blkNode, dstAddr);
                    }
                }
                else
                {
                    blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr;
                }
            }
#ifdef _TARGET_AMD64_
            else
            {
                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindHelper;
            }
#elif defined(_TARGET_X86_)
            else
            {
                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr;
            }
#endif // _TARGET_X86_
            assert(blkNode->gtBlkOpKind != GenTreeBlk::BlkOpKindInvalid);
        }

        // CopyObj or CopyBlk
        if (source->gtOper == GT_IND)
        {
            // The GT_IND is contained, but the address must be in a register unless it is local.
            MakeSrcContained(blkNode, source);
            GenTree* addr = source->AsIndir()->Addr();
            if (!addr->OperIsLocalAddr())
            {
                addr->ClearContained();
            }
        }
        else if (!source->IsMultiRegCall() && !source->OperIsSimdOrHWintrinsic())
        {
            assert(source->IsLocal());
            MakeSrcContained(blkNode, source);
        }
    }
}

//------------------------------------------------------------------------
// LowerPutArgStk: Lower a GT_PUTARG_STK.
//
// Arguments:
//    tree      - The node of interest
//
// Return Value:
//    None.
//
void Lowering::LowerPutArgStk(GenTreePutArgStk* putArgStk)
{
#ifdef _TARGET_X86_
    if (putArgStk->gtOp1->gtOper == GT_FIELD_LIST)
    {
        putArgStk->gtNumberReferenceSlots = 0;
        putArgStk->gtPutArgStkKind        = GenTreePutArgStk::Kind::Invalid;

        GenTreeFieldList* fieldList = putArgStk->gtOp1->AsFieldList();

        // The code generator will push these fields in reverse order by offset. Reorder the list here s.t. the order
        // of uses is visible to LSRA.
        unsigned          fieldCount = 0;
        GenTreeFieldList* head       = nullptr;
        for (GenTreeFieldList *current = fieldList, *next; current != nullptr; current = next)
        {
            next = current->Rest();

            // First, insert the field node into the sorted list.
            GenTreeFieldList* prev = nullptr;
            for (GenTreeFieldList* cursor = head;; cursor = cursor->Rest())
            {
                // If the offset of the current list node is greater than the offset of the cursor or if we have
                // reached the end of the list, insert the current node before the cursor and terminate.
                if ((cursor == nullptr) || (current->gtFieldOffset > cursor->gtFieldOffset))
                {
                    if (prev == nullptr)
                    {
                        assert(cursor == head);
                        head = current;
                    }
                    else
                    {
                        prev->Rest() = current;
                    }

                    current->Rest() = cursor;
                    break;
                }
            }

            fieldCount++;
        }

        // In theory, the upper bound for the size of a field list is 8: these constructs only appear when passing the
        // collection of lclVars that represent the fields of a promoted struct lclVar, and we do not promote struct
        // lclVars with more than 4 fields. If each of these lclVars is of type long, decomposition will split the
        // corresponding field list nodes in two, giving an upper bound of 8.
        //
        // The reason that this is important is that the algorithm we use above to sort the field list is O(N^2): if
        // the maximum size of a field list grows significantly, we will need to reevaluate it.
        assert(fieldCount <= 8);

        // The sort above may have changed which node is at the head of the list. Update the PUTARG_STK node if
        // necessary.
        if (head != fieldList)
        {
            head->gtFlags |= GTF_FIELD_LIST_HEAD;
            head->SetContained();

            fieldList->ClearContained();
            fieldList->gtFlags &= ~GTF_FIELD_LIST_HEAD;

#ifdef DEBUG
            head->gtSeqNum = fieldList->gtSeqNum;
#endif // DEBUG

            BlockRange().InsertAfter(fieldList, head);
            BlockRange().Remove(fieldList);

            fieldList         = head;
            putArgStk->gtOp1  = fieldList;
            putArgStk->gtType = fieldList->gtType;
        }

        // Now that the fields have been sorted, the kind of code we will generate.
        bool     allFieldsAreSlots = true;
        unsigned prevOffset        = putArgStk->getArgSize();
        for (GenTreeFieldList* current = fieldList; current != nullptr; current = current->Rest())
        {
            GenTree* const  fieldNode   = current->Current();
            const var_types fieldType   = fieldNode->TypeGet();
            const unsigned  fieldOffset = current->gtFieldOffset;
            assert(fieldType != TYP_LONG);

            // We can treat as a slot any field that is stored at a slot boundary, where the previous
            // field is not in the same slot. (Note that we store the fields in reverse order.)
            const bool fieldIsSlot = ((fieldOffset % 4) == 0) && ((prevOffset - fieldOffset) >= 4);
            if (!fieldIsSlot)
            {
                allFieldsAreSlots = false;
            }

            if (varTypeIsGC(fieldType))
            {
                putArgStk->gtNumberReferenceSlots++;
            }

            // For x86 we must mark all integral fields as contained or reg-optional, and handle them
            // accordingly in code generation, since we may have up to 8 fields, which cannot all be in
            // registers to be consumed atomically by the call.
            if (varTypeIsIntegralOrI(fieldNode))
            {
                if (fieldNode->OperGet() == GT_LCL_VAR)
                {
                    LclVarDsc* varDsc = &(comp->lvaTable[fieldNode->AsLclVarCommon()->gtLclNum]);
                    if (!varDsc->lvDoNotEnregister)
                    {
                        fieldNode->SetRegOptional();
                    }
                    else
                    {
                        MakeSrcContained(putArgStk, fieldNode);
                    }
                }
                else if (fieldNode->IsIntCnsFitsInI32())
                {
                    MakeSrcContained(putArgStk, fieldNode);
                }
                else
                {
                    // For the case where we cannot directly push the value, if we run out of registers,
                    // it would be better to defer computation until we are pushing the arguments rather
                    // than spilling, but this situation is not all that common, as most cases of promoted
                    // structs do not have a large number of fields, and of those most are lclVars or
                    // copy-propagated constants.
                    fieldNode->SetRegOptional();
                }
            }

            prevOffset = fieldOffset;
        }

        // Set the copy kind.
        // TODO-X86-CQ: Even if we are using push, if there are contiguous floating point fields, we should
        // adjust the stack once for those fields. The latter is really best done in code generation, but
        // this tuning should probably be undertaken as a whole.
        // Also, if there are  floating point fields, it may be better to use the "Unroll" mode
        // of copying the struct as a whole, if the fields are not register candidates.
        if (allFieldsAreSlots)
        {
            putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::PushAllSlots;
        }
        else
        {
            putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Push;
        }
        return;
    }
#endif // _TARGET_X86_

    GenTree* src = putArgStk->gtOp1;

#ifdef FEATURE_PUT_STRUCT_ARG_STK
    if (src->TypeGet() != TYP_STRUCT)
#endif // FEATURE_PUT_STRUCT_ARG_STK
    {
        // If the child of GT_PUTARG_STK is a constant, we don't need a register to
        // move it to memory (stack location).
        //
        // On AMD64, we don't want to make 0 contained, because we can generate smaller code
        // by zeroing a register and then storing it. E.g.:
        //      xor rdx, rdx
        //      mov gword ptr [rsp+28H], rdx
        // is 2 bytes smaller than:
        //      mov gword ptr [rsp+28H], 0
        //
        // On x86, we push stack arguments; we don't use 'mov'. So:
        //      push 0
        // is 1 byte smaller than:
        //      xor rdx, rdx
        //      push rdx

        if (IsContainableImmed(putArgStk, src)
#if defined(_TARGET_AMD64_)
            && !src->IsIntegralConst(0)
#endif // _TARGET_AMD64_
                )
        {
            MakeSrcContained(putArgStk, src);
        }
        return;
    }

#ifdef FEATURE_PUT_STRUCT_ARG_STK
    GenTree* srcAddr = nullptr;

    bool haveLocalAddr = false;
    if ((src->OperGet() == GT_OBJ) || (src->OperGet() == GT_IND))
    {
        srcAddr = src->gtOp.gtOp1;
        assert(srcAddr != nullptr);
        haveLocalAddr = srcAddr->OperIsLocalAddr();
    }
    else
    {
        assert(varTypeIsSIMD(putArgStk));
    }

    // In case of a CpBlk we could use a helper call. In case of putarg_stk we
    // can't do that since the helper call could kill some already set up outgoing args.
    // TODO-Amd64-Unix: converge the code for putarg_stk with cpyblk/cpyobj.
    // The cpyXXXX code is rather complex and this could cause it to be more complex, but
    // it might be the right thing to do.

    // This threshold will decide from using the helper or let the JIT decide to inline
    // a code sequence of its choice, but currently we use CPBLK_UNROLL_LIMIT, see #20549.
    ssize_t helperThreshold = max(CPBLK_MOVS_LIMIT, CPBLK_UNROLL_LIMIT);
    ssize_t size            = putArgStk->gtNumSlots * TARGET_POINTER_SIZE;

    // TODO-X86-CQ: The helper call either is not supported on x86 or required more work
    // (I don't know which).

    // If we have a buffer between XMM_REGSIZE_BYTES and CPBLK_UNROLL_LIMIT bytes, we'll use SSE2.
    // Structs and buffer with sizes <= CPBLK_UNROLL_LIMIT bytes are occurring in more than 95% of
    // our framework assemblies, so this is the main code generation scheme we'll use.
    if (size <= CPBLK_UNROLL_LIMIT && putArgStk->gtNumberReferenceSlots == 0)
    {
#ifdef _TARGET_X86_
        if (size < XMM_REGSIZE_BYTES)
        {
            putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Push;
        }
        else
#endif // _TARGET_X86_
        {
            putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Unroll;
        }
    }
#ifdef _TARGET_X86_
    else if (putArgStk->gtNumberReferenceSlots != 0)
    {
        // On x86, we must use `push` to store GC references to the stack in order for the emitter to properly update
        // the function's GC info. These `putargstk` nodes will generate a sequence of `push` instructions.
        putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Push;
    }
#endif // _TARGET_X86_
    else
    {
        putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::RepInstr;
    }
    // Always mark the OBJ and ADDR as contained trees by the putarg_stk. The codegen will deal with this tree.
    MakeSrcContained(putArgStk, src);
    if (haveLocalAddr)
    {
        // If the source address is the address of a lclVar, make the source address contained to avoid unnecessary
        // copies.
        //
        MakeSrcContained(putArgStk, srcAddr);
    }
#endif // FEATURE_PUT_STRUCT_ARG_STK
}

/* Lower GT_CAST(srcType, DstType) nodes.
 *
 * Casts from small int type to float/double are transformed as follows:
 * GT_CAST(byte, float/double)     =   GT_CAST(GT_CAST(byte, int32), float/double)
 * GT_CAST(sbyte, float/double)    =   GT_CAST(GT_CAST(sbyte, int32), float/double)
 * GT_CAST(int16, float/double)    =   GT_CAST(GT_CAST(int16, int32), float/double)
 * GT_CAST(uint16, float/double)   =   GT_CAST(GT_CAST(uint16, int32), float/double)
 *
 * SSE2 conversion instructions operate on signed integers. casts from Uint32/Uint64
 * are morphed as follows by front-end and hence should not be seen here.
 * GT_CAST(uint32, float/double)   =   GT_CAST(GT_CAST(uint32, long), float/double)
 * GT_CAST(uint64, float)          =   GT_CAST(GT_CAST(uint64, double), float)
 *
 *
 * Similarly casts from float/double to a smaller int type are transformed as follows:
 * GT_CAST(float/double, byte)     =   GT_CAST(GT_CAST(float/double, int32), byte)
 * GT_CAST(float/double, sbyte)    =   GT_CAST(GT_CAST(float/double, int32), sbyte)
 * GT_CAST(float/double, int16)    =   GT_CAST(GT_CAST(double/double, int32), int16)
 * GT_CAST(float/double, uint16)   =   GT_CAST(GT_CAST(double/double, int32), uint16)
 *
 * SSE2 has instructions to convert a float/double vlaue into a signed 32/64-bit
 * integer.  The above transformations help us to leverage those instructions.
 *
 * Note that for the following conversions we still depend on helper calls and
 * don't expect to see them here.
 *  i) GT_CAST(float/double, uint64)
 * ii) GT_CAST(float/double, int type with overflow detection)
 *
 * TODO-XArch-CQ: (Low-pri): Jit64 generates in-line code of 8 instructions for (i) above.
 * There are hardly any occurrences of this conversion operation in platform
 * assemblies or in CQ perf benchmarks (1 occurrence in mscorlib, microsoft.jscript,
 * 1 occurence in Roslyn and no occurrences in system, system.core, system.numerics
 * system.windows.forms, scimark, fractals, bio mums). If we ever find evidence that
 * doing this optimization is a win, should consider generating in-lined code.
 */
void Lowering::LowerCast(GenTree* tree)
{
    assert(tree->OperGet() == GT_CAST);

    GenTree*  castOp     = tree->gtCast.CastOp();
    var_types castToType = tree->CastToType();
    var_types srcType    = castOp->TypeGet();
    var_types tmpType    = TYP_UNDEF;

    // force the srcType to unsigned if GT_UNSIGNED flag is set
    if (tree->gtFlags & GTF_UNSIGNED)
    {
        srcType = genUnsignedType(srcType);
    }

    // We should never see the following casts as they are expected to be lowered
    // apropriately or converted into helper calls by front-end.
    //   srcType = float/double                    castToType = * and overflow detecting cast
    //       Reason: must be converted to a helper call
    //   srcType = float/double,                   castToType = ulong
    //       Reason: must be converted to a helper call
    //   srcType = uint                            castToType = float/double
    //       Reason: uint -> float/double = uint -> long -> float/double
    //   srcType = ulong                           castToType = float
    //       Reason: ulong -> float = ulong -> double -> float
    if (varTypeIsFloating(srcType))
    {
        noway_assert(!tree->gtOverflow());
        noway_assert(castToType != TYP_ULONG);
    }
    else if (srcType == TYP_UINT)
    {
        noway_assert(!varTypeIsFloating(castToType));
    }
    else if (srcType == TYP_ULONG)
    {
        noway_assert(castToType != TYP_FLOAT);
    }

    // Case of src is a small type and dst is a floating point type.
    if (varTypeIsSmall(srcType) && varTypeIsFloating(castToType))
    {
        // These conversions can never be overflow detecting ones.
        noway_assert(!tree->gtOverflow());
        tmpType = TYP_INT;
    }
    // case of src is a floating point type and dst is a small type.
    else if (varTypeIsFloating(srcType) && varTypeIsSmall(castToType))
    {
        tmpType = TYP_INT;
    }

    if (tmpType != TYP_UNDEF)
    {
        GenTree* tmp = comp->gtNewCastNode(tmpType, castOp, tree->IsUnsigned(), tmpType);
        tmp->gtFlags |= (tree->gtFlags & (GTF_OVERFLOW | GTF_EXCEPT));

        tree->gtFlags &= ~GTF_UNSIGNED;
        tree->gtOp.gtOp1 = tmp;
        BlockRange().InsertAfter(castOp, tmp);
        ContainCheckCast(tmp->AsCast());
    }

    // Now determine if we have operands that should be contained.
    ContainCheckCast(tree->AsCast());
}

#ifdef FEATURE_SIMD
//----------------------------------------------------------------------------------------------
// Lowering::LowerSIMD: Perform containment analysis for a SIMD intrinsic node.
//
//  Arguments:
//     simdNode - The SIMD intrinsic node.
//
void Lowering::LowerSIMD(GenTreeSIMD* simdNode)
{
    if (simdNode->TypeGet() == TYP_SIMD12)
    {
        // GT_SIMD node requiring to produce TYP_SIMD12 in fact
        // produces a TYP_SIMD16 result
        simdNode->gtType = TYP_SIMD16;
    }

    if (simdNode->gtSIMDIntrinsicID == SIMDIntrinsicInitN)
    {
        assert(simdNode->gtSIMDBaseType == TYP_FLOAT);

        int   argCount      = 0;
        int   constArgCount = 0;
        float constArgValues[4]{0, 0, 0, 0};

        for (GenTreeArgList* list = simdNode->gtGetOp1()->AsArgList(); list != nullptr; list = list->Rest())
        {
            GenTree* arg = list->Current();

            assert(arg->TypeGet() == simdNode->gtSIMDBaseType);
            assert(argCount < _countof(constArgValues));

            if (arg->IsCnsFltOrDbl())
            {
                constArgValues[constArgCount] = static_cast<float>(arg->AsDblCon()->gtDconVal);
                constArgCount++;
            }

            argCount++;
        }

        if (constArgCount == argCount)
        {
            for (GenTreeArgList* list = simdNode->gtGetOp1()->AsArgList(); list != nullptr; list = list->Rest())
            {
                BlockRange().Remove(list->Current());
            }

            CORINFO_FIELD_HANDLE hnd =
                comp->getEmitter()->emitAnyConst(constArgValues, sizeof(constArgValues), emitDataAlignment::Required);
            GenTree* clsVarAddr = new (comp, GT_CLS_VAR_ADDR) GenTreeClsVar(GT_CLS_VAR_ADDR, TYP_I_IMPL, hnd, nullptr);
            BlockRange().InsertBefore(simdNode, clsVarAddr);
            simdNode->ChangeOper(GT_IND);
            simdNode->gtOp1 = clsVarAddr;
            ContainCheckIndir(simdNode->AsIndir());

            return;
        }
    }

#ifdef _TARGET_XARCH_
    if ((simdNode->gtSIMDIntrinsicID == SIMDIntrinsicGetItem) && (simdNode->gtGetOp1()->OperGet() == GT_IND))
    {
        // If SIMD vector is already in memory, we force its
        // addr to be evaluated into a reg.  This would allow
        // us to generate [regBase] or [regBase+offset] or
        // [regBase+sizeOf(SIMD vector baseType)*regIndex]
        // to access the required SIMD vector element directly
        // from memory.
        //
        // TODO-CQ-XARCH: If addr of GT_IND is GT_LEA, we
        // might be able update GT_LEA to fold the regIndex
        // or offset in some cases.  Instead with this
        // approach we always evaluate GT_LEA into a reg.
        // Ideally, we should be able to lower GetItem intrinsic
        // into GT_IND(newAddr) where newAddr combines
        // the addr of SIMD vector with the given index.
        simdNode->gtOp1->gtFlags |= GTF_IND_REQ_ADDR_IN_REG;
    }
    else if (simdNode->IsSIMDEqualityOrInequality())
    {
        LIR::Use simdUse;

        if (BlockRange().TryGetUse(simdNode, &simdUse))
        {
            //
            // Try to transform JTRUE(EQ|NE(SIMD<OpEquality|OpInEquality>(x, y), 0|1)) into
            // JCC(SIMD<OpEquality|OpInEquality>(x, y)). SIMD<OpEquality|OpInEquality>(x, y)
            // is expected to set the Zero flag appropriately.
            // All the involved nodes must form a continuous range, there's no other way to
            // guarantee that condition flags aren't changed between the SIMD node and the JCC
            // node.
            //

            bool     transformed = false;
            GenTree* simdUser    = simdUse.User();

            if (simdUser->OperIs(GT_EQ, GT_NE) && simdUser->gtGetOp2()->IsCnsIntOrI() &&
                (simdNode->gtNext == simdUser->gtGetOp2()) && (simdUser->gtGetOp2()->gtNext == simdUser))
            {
                ssize_t relopOp2Value = simdUser->gtGetOp2()->AsIntCon()->IconValue();

                if ((relopOp2Value == 0) || (relopOp2Value == 1))
                {
                    GenTree* jtrue = simdUser->gtNext;

                    if ((jtrue != nullptr) && jtrue->OperIs(GT_JTRUE) && (jtrue->gtGetOp1() == simdUser))
                    {
                        if ((simdNode->gtSIMDIntrinsicID == SIMDIntrinsicOpEquality) != simdUser->OperIs(GT_EQ))
                        {
                            relopOp2Value ^= 1;
                        }

                        jtrue->ChangeOper(GT_JCC);
                        GenTreeCC* jcc = jtrue->AsCC();
                        jcc->gtFlags |= GTF_USE_FLAGS;
                        jcc->gtCondition = (relopOp2Value == 0) ? GenCondition::NE : GenCondition::EQ;

                        BlockRange().Remove(simdUser->gtGetOp2());
                        BlockRange().Remove(simdUser);
                        transformed = true;
                    }
                }
            }

            if (!transformed)
            {
                //
                // The code generated for SIMD SIMD<OpEquality|OpInEquality>(x, y) nodes sets
                // the Zero flag like integer compares do so we can simply use SETCC<EQ|NE>
                // to produce the desired result. This avoids the need for subsequent phases
                // to have to handle 2 cases (set flags/set destination register).
                //

                GenCondition condition =
                    (simdNode->gtSIMDIntrinsicID == SIMDIntrinsicOpEquality) ? GenCondition::EQ : GenCondition::NE;
                GenTreeCC* setcc = new (comp, GT_SETCC) GenTreeCC(GT_SETCC, condition, simdNode->TypeGet());
                setcc->gtFlags |= GTF_USE_FLAGS;
                BlockRange().InsertAfter(simdNode, setcc);
                simdUse.ReplaceWith(comp, setcc);
            }
        }

        simdNode->gtFlags |= GTF_SET_FLAGS;
        simdNode->gtType = TYP_VOID;
    }
#endif
    ContainCheckSIMD(simdNode);
}
#endif // FEATURE_SIMD

#ifdef FEATURE_HW_INTRINSICS
//----------------------------------------------------------------------------------------------
// Lowering::LowerHWIntrinsic: Perform containment analysis for a hardware intrinsic node.
//
//  Arguments:
//     node - The hardware intrinsic node.
//
void Lowering::LowerHWIntrinsic(GenTreeHWIntrinsic* node)
{
    ContainCheckHWIntrinsic(node);
}
#endif // FEATURE_HW_INTRINSICS

//----------------------------------------------------------------------------------------------
// Lowering::IsRMWIndirCandidate:
//    Returns true if the given operand is a candidate indirection for a read-modify-write
//    operator.
//
//  Arguments:
//     operand - The operand to consider.
//     storeInd - The indirect store that roots the possible RMW operator.
//
bool Lowering::IsRMWIndirCandidate(GenTree* operand, GenTree* storeInd)
{
    // If the operand isn't an indirection, it's trivially not a candidate.
    if (operand->OperGet() != GT_IND)
    {
        return false;
    }

    // If the indirection's source address isn't equivalent to the destination address of the storeIndir, then the
    // indirection is not a candidate.
    GenTree* srcAddr = operand->gtGetOp1();
    GenTree* dstAddr = storeInd->gtGetOp1();
    if ((srcAddr->OperGet() != dstAddr->OperGet()) || !IndirsAreEquivalent(operand, storeInd))
    {
        return false;
    }

    // If it is not safe to contain the entire tree rooted at the indirection, then the indirection is not a
    // candidate. Crawl the IR from the node immediately preceding the storeIndir until the last node in the
    // indirection's tree is visited and check the side effects at each point.

    m_scratchSideEffects.Clear();

    assert((operand->gtLIRFlags & LIR::Flags::Mark) == 0);
    operand->gtLIRFlags |= LIR::Flags::Mark;

    unsigned markCount = 1;
    GenTree* node;
    for (node = storeInd->gtPrev; markCount > 0; node = node->gtPrev)
    {
        assert(node != nullptr);

        if ((node->gtLIRFlags & LIR::Flags::Mark) == 0)
        {
            m_scratchSideEffects.AddNode(comp, node);
        }
        else
        {
            node->gtLIRFlags &= ~LIR::Flags::Mark;
            markCount--;

            if (m_scratchSideEffects.InterferesWith(comp, node, false))
            {
                // The indirection's tree contains some node that can't be moved to the storeInder. The indirection is
                // not a candidate. Clear any leftover mark bits and return.
                for (; markCount > 0; node = node->gtPrev)
                {
                    if ((node->gtLIRFlags & LIR::Flags::Mark) != 0)
                    {
                        node->gtLIRFlags &= ~LIR::Flags::Mark;
                        markCount--;
                    }
                }
                return false;
            }

            node->VisitOperands([&markCount](GenTree* nodeOperand) -> GenTree::VisitResult {
                assert((nodeOperand->gtLIRFlags & LIR::Flags::Mark) == 0);
                nodeOperand->gtLIRFlags |= LIR::Flags::Mark;
                markCount++;
                return GenTree::VisitResult::Continue;
            });
        }
    }

    // At this point we've verified that the operand is an indirection, its address is equivalent to the storeIndir's
    // destination address, and that it and the transitive closure of its operand can be safely contained by the
    // storeIndir. This indirection is therefore a candidate for an RMW op.
    return true;
}

//----------------------------------------------------------------------------------------------
// Returns true if this tree is bin-op of a GT_STOREIND of the following form
//      storeInd(subTreeA, binOp(gtInd(subTreeA), subtreeB)) or
//      storeInd(subTreeA, binOp(subtreeB, gtInd(subTreeA)) in case of commutative bin-ops
//
// The above form for storeInd represents a read-modify-write memory binary operation.
//
// Parameters
//     tree   -   GentreePtr of binOp
//
// Return Value
//     True if 'tree' is part of a RMW memory operation pattern
//
bool Lowering::IsBinOpInRMWStoreInd(GenTree* tree)
{
    // Must be a non floating-point type binary operator since SSE2 doesn't support RMW memory ops
    assert(!varTypeIsFloating(tree));
    assert(GenTree::OperIsBinary(tree->OperGet()));

    // Cheap bail out check before more expensive checks are performed.
    // RMW memory op pattern requires that one of the operands of binOp to be GT_IND.
    if (tree->gtGetOp1()->OperGet() != GT_IND && tree->gtGetOp2()->OperGet() != GT_IND)
    {
        return false;
    }

    LIR::Use use;
    if (!BlockRange().TryGetUse(tree, &use) || use.User()->OperGet() != GT_STOREIND || use.User()->gtGetOp2() != tree)
    {
        return false;
    }

    // Since it is not relatively cheap to recognize RMW memory op pattern, we
    // cache the result in GT_STOREIND node so that while lowering GT_STOREIND
    // we can use the result.
    GenTree* indirCandidate = nullptr;
    GenTree* indirOpSource  = nullptr;
    return IsRMWMemOpRootedAtStoreInd(use.User(), &indirCandidate, &indirOpSource);
}

//----------------------------------------------------------------------------------------------
// This method recognizes the case where we have a treeNode with the following structure:
//         storeInd(IndirDst, binOp(gtInd(IndirDst), indirOpSource)) OR
//         storeInd(IndirDst, binOp(indirOpSource, gtInd(IndirDst)) in case of commutative operations OR
//         storeInd(IndirDst, unaryOp(gtInd(IndirDst)) in case of unary operations
//
// Terminology:
//         indirDst = memory write of an addr mode  (i.e. storeind destination)
//         indirSrc = value being written to memory (i.e. storeind source which could either be a binary or unary op)
//         indirCandidate = memory read i.e. a gtInd of an addr mode
//         indirOpSource = source operand used in binary/unary op (i.e. source operand of indirSrc node)
//
// In x86/x64 this storeInd pattern can be effectively encoded in a single instruction of the
// following form in case of integer operations:
//         binOp [addressing mode], RegIndirOpSource
//         binOp [addressing mode], immediateVal
// where RegIndirOpSource is the register where indirOpSource was computed.
//
// Right now, we recognize few cases:
//     a) The gtInd child is a lea/lclVar/lclVarAddr/clsVarAddr/constant
//     b) BinOp is either add, sub, xor, or, and, shl, rsh, rsz.
//     c) unaryOp is either not/neg
//
// Implementation Note: The following routines need to be in sync for RMW memory op optimization
// to be correct and functional.
//     IndirsAreEquivalent()
//     NodesAreEquivalentLeaves()
//     Codegen of GT_STOREIND and genCodeForShiftRMW()
//     emitInsRMW()
//
//  TODO-CQ: Enable support for more complex indirections (if needed) or use the value numbering
//  package to perform more complex tree recognition.
//
//  TODO-XArch-CQ: Add support for RMW of lcl fields (e.g. lclfield binop= source)
//
//  Parameters:
//     tree               -  GT_STOREIND node
//     outIndirCandidate  -  out param set to indirCandidate as described above
//     ouutIndirOpSource  -  out param set to indirOpSource as described above
//
//  Return value
//     True if there is a RMW memory operation rooted at a GT_STOREIND tree
//     and out params indirCandidate and indirOpSource are set to non-null values.
//     Otherwise, returns false with indirCandidate and indirOpSource set to null.
//     Also updates flags of GT_STOREIND tree with its RMW status.
//
bool Lowering::IsRMWMemOpRootedAtStoreInd(GenTree* tree, GenTree** outIndirCandidate, GenTree** outIndirOpSource)
{
    assert(!varTypeIsFloating(tree));
    assert(outIndirCandidate != nullptr);
    assert(outIndirOpSource != nullptr);

    *outIndirCandidate = nullptr;
    *outIndirOpSource  = nullptr;

    // Early out if storeInd is already known to be a non-RMW memory op
    GenTreeStoreInd* storeInd = tree->AsStoreInd();
    if (storeInd->IsNonRMWMemoryOp())
    {
        return false;
    }

    GenTree*   indirDst = storeInd->gtGetOp1();
    GenTree*   indirSrc = storeInd->gtGetOp2();
    genTreeOps oper     = indirSrc->OperGet();

    // Early out if it is already known to be a RMW memory op
    if (storeInd->IsRMWMemoryOp())
    {
        if (GenTree::OperIsBinary(oper))
        {
            if (storeInd->IsRMWDstOp1())
            {
                *outIndirCandidate = indirSrc->gtGetOp1();
                *outIndirOpSource  = indirSrc->gtGetOp2();
            }
            else
            {
                assert(storeInd->IsRMWDstOp2());
                *outIndirCandidate = indirSrc->gtGetOp2();
                *outIndirOpSource  = indirSrc->gtGetOp1();
            }
            assert(IndirsAreEquivalent(*outIndirCandidate, storeInd));
        }
        else
        {
            assert(GenTree::OperIsUnary(oper));
            assert(IndirsAreEquivalent(indirSrc->gtGetOp1(), storeInd));
            *outIndirCandidate = indirSrc->gtGetOp1();
            *outIndirOpSource  = indirSrc->gtGetOp1();
        }

        return true;
    }

    // If reached here means that we do not know RMW status of tree rooted at storeInd
    assert(storeInd->IsRMWStatusUnknown());

    // Early out if indirDst is not one of the supported memory operands.
    if (indirDst->OperGet() != GT_LEA && indirDst->OperGet() != GT_LCL_VAR && indirDst->OperGet() != GT_LCL_VAR_ADDR &&
        indirDst->OperGet() != GT_CLS_VAR_ADDR && indirDst->OperGet() != GT_CNS_INT)
    {
        storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR);
        return false;
    }

    // We can not use Read-Modify-Write instruction forms with overflow checking instructions
    // because we are not allowed to modify the target until after the overflow check.
    if (indirSrc->gtOverflowEx())
    {
        storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER);
        return false;
    }

    // At this point we can match one of two patterns:
    //
    //     t_ind = indir t_addr_0
    //       ...
    //     t_value = binop t_ind, t_other
    //       ...
    //     storeIndir t_addr_1, t_value
    //
    // or
    //
    //     t_ind = indir t_addr_0
    //       ...
    //     t_value = unop t_ind
    //       ...
    //     storeIndir t_addr_1, t_value
    //
    // In all cases, we will eventually make the binop that produces t_value and the entire dataflow tree rooted at
    // t_ind contained by t_value.

    GenTree*  indirCandidate = nullptr;
    GenTree*  indirOpSource  = nullptr;
    RMWStatus status         = STOREIND_RMW_STATUS_UNKNOWN;
    if (GenTree::OperIsBinary(oper))
    {
        // Return if binary op is not one of the supported operations for RMW of memory.
        if (!GenTree::OperIsRMWMemOp(oper))
        {
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER);
            return false;
        }

        if (GenTree::OperIsShiftOrRotate(oper) && varTypeIsSmall(storeInd))
        {
            // In ldind, Integer values smaller than 4 bytes, a boolean, or a character converted to 4 bytes
            // by sign or zero-extension as appropriate. If we directly shift the short type data using sar, we
            // will lose the sign or zero-extension bits.
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_TYPE);
            return false;
        }

        // In the common case, the second operand to the binop will be the indir candidate.
        GenTreeOp* binOp = indirSrc->AsOp();
        if (GenTree::OperIsCommutative(oper) && IsRMWIndirCandidate(binOp->gtOp2, storeInd))
        {
            indirCandidate = binOp->gtOp2;
            indirOpSource  = binOp->gtOp1;
            status         = STOREIND_RMW_DST_IS_OP2;
        }
        else if (IsRMWIndirCandidate(binOp->gtOp1, storeInd))
        {
            indirCandidate = binOp->gtOp1;
            indirOpSource  = binOp->gtOp2;
            status         = STOREIND_RMW_DST_IS_OP1;
        }
        else
        {
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR);
            return false;
        }
    }
    else if (GenTree::OperIsUnary(oper))
    {
        // Nodes other than GT_NOT and GT_NEG are not yet supported.
        if (oper != GT_NOT && oper != GT_NEG)
        {
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER);
            return false;
        }

        if (indirSrc->gtGetOp1()->OperGet() != GT_IND)
        {
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR);
            return false;
        }

        GenTreeUnOp* unOp = indirSrc->AsUnOp();
        if (IsRMWIndirCandidate(unOp->gtOp1, storeInd))
        {
            // src and dest are the same in case of unary ops
            indirCandidate = unOp->gtOp1;
            indirOpSource  = unOp->gtOp1;
            status         = STOREIND_RMW_DST_IS_OP1;
        }
        else
        {
            storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR);
            return false;
        }
    }
    else
    {
        storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER);
        return false;
    }

    // By this point we've verified that we have a supported operand with a supported address. Now we need to ensure
    // that we're able to move the destination address for the source indirection forwards.
    if (!IsSafeToContainMem(storeInd, indirDst))
    {
        storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR);
        return false;
    }

    assert(indirCandidate != nullptr);
    assert(indirOpSource != nullptr);
    assert(status != STOREIND_RMW_STATUS_UNKNOWN);

    *outIndirCandidate = indirCandidate;
    *outIndirOpSource  = indirOpSource;
    storeInd->SetRMWStatus(status);
    return true;
}

// anything is in range for AMD64
bool Lowering::IsCallTargetInRange(void* addr)
{
    return true;
}

// return true if the immediate can be folded into an instruction, for example small enough and non-relocatable
bool Lowering::IsContainableImmed(GenTree* parentNode, GenTree* childNode)
{
    if (!childNode->IsIntCnsFitsInI32())
    {
        return false;
    }

    // At this point we know that it is an int const fits within 4-bytes and hence can safely cast to IntConCommon.
    // Icons that need relocation should never be marked as contained immed
    if (childNode->AsIntConCommon()->ImmedValNeedsReloc(comp))
    {
        return false;
    }

    return true;
}

//-----------------------------------------------------------------------
// PreferredRegOptionalOperand: returns one of the operands of given
// binary oper that is to be preferred for marking as reg optional.
//
// Since only one of op1 or op2 can be a memory operand on xarch, only
// one of  them have to be marked as reg optional.  Since Lower doesn't
// know apriori which of op1 or op2 is not likely to get a register, it
// has to make a guess. This routine encapsulates heuristics that
// guess whether it is likely to be beneficial to mark op1 or op2 as
// reg optional.
//
//
// Arguments:
//     tree  -  a binary-op tree node that is either commutative
//              or a compare oper.
//
// Returns:
//     Returns op1 or op2 of tree node that is preferred for
//     marking as reg optional.
//
// Note: if the tree oper is neither commutative nor a compare oper
// then only op2 can be reg optional on xarch and hence no need to
// call this routine.
GenTree* Lowering::PreferredRegOptionalOperand(GenTree* tree)
{
    assert(GenTree::OperIsBinary(tree->OperGet()));
    assert(tree->OperIsCommutative() || tree->OperIsCompare() || tree->OperIs(GT_CMP));

    GenTree* op1 = tree->gtGetOp1();
    GenTree* op2 = tree->gtGetOp2();
    assert(!op1->IsRegOptional() && !op2->IsRegOptional());

    // We default to op1, as op2 is likely to have the shorter lifetime.
    GenTree* preferredOp = op1;

    // This routine uses the following heuristics:
    //
    // a) If both are register candidates, marking the one with lower weighted
    // ref count as reg-optional would likely be beneficial as it has
    // higher probability of not getting a register. Note that we use !lvDoNotEnregister
    // here because this is being done while we are adding lclVars for Lowering.
    //
    // b) op1 = tracked local and op2 = untracked local: LSRA creates two
    // ref positions for op2: a def and use position. op2's def position
    // requires a reg and it is allocated a reg by spilling another
    // interval (if required) and that could be even op1.  For this reason
    // it is beneficial to mark op1 as reg optional.
    //
    // TODO: It is not always mandatory for a def position of an untracked
    // local to be allocated a register if it is on rhs of an assignment
    // and its use position is reg-optional and has not been assigned a
    // register.  Reg optional def positions is currently not yet supported.
    //
    // c) op1 = untracked local and op2 = tracked local: marking op1 as
    // reg optional is beneficial, since its use position is less likely
    // to get a register.
    //
    // d) If both are untracked locals (i.e. treated like tree temps by
    // LSRA): though either of them could be marked as reg optional,
    // marking op1 as reg optional is likely to be beneficial because
    // while allocating op2's def position, there is a possibility of
    // spilling op1's def and in which case op1 is treated as contained
    // memory operand rather than requiring to reload.
    //
    // e) If only one of them is a local var, prefer to mark it as
    // reg-optional.  This is heuristic is based on the results
    // obtained against CQ perf benchmarks.
    //
    // f) If neither of them are local vars (i.e. tree temps), prefer to
    // mark op1 as reg optional for the same reason as mentioned in (d) above.
    if (op1->OperGet() == GT_LCL_VAR && op2->OperGet() == GT_LCL_VAR)
    {
        LclVarDsc* v1 = comp->lvaTable + op1->AsLclVarCommon()->GetLclNum();
        LclVarDsc* v2 = comp->lvaTable + op2->AsLclVarCommon()->GetLclNum();

        bool v1IsRegCandidate = !v1->lvDoNotEnregister;
        bool v2IsRegCandidate = !v2->lvDoNotEnregister;
        if (v1IsRegCandidate && v2IsRegCandidate)
        {
            // Both are enregisterable locals.  The one with lower weight is less likely
            // to get a register and hence beneficial to mark the one with lower
            // weight as reg optional.
            // If either is not tracked, it may be that it was introduced after liveness
            // was run, in which case we will always prefer op1 (should we use raw refcnt??).
            if (v1->lvTracked && v2->lvTracked && (v1->lvRefCntWtd() >= v2->lvRefCntWtd()))
            {
                preferredOp = op2;
            }
        }
    }
    else if (!(op1->OperGet() == GT_LCL_VAR) && (op2->OperGet() == GT_LCL_VAR))
    {
        preferredOp = op2;
    }

    return preferredOp;
}

//------------------------------------------------------------------------
// Containment analysis
//------------------------------------------------------------------------

//------------------------------------------------------------------------
// ContainCheckCallOperands: Determine whether operands of a call should be contained.
//
// Arguments:
//    call       - The call node of interest
//
// Return Value:
//    None.
//
void Lowering::ContainCheckCallOperands(GenTreeCall* call)
{
    GenTree* ctrlExpr = call->gtControlExpr;
    if (call->gtCallType == CT_INDIRECT)
    {
        // either gtControlExpr != null or gtCallAddr != null.
        // Both cannot be non-null at the same time.
        assert(ctrlExpr == nullptr);
        assert(call->gtCallAddr != nullptr);
        ctrlExpr = call->gtCallAddr;

#ifdef _TARGET_X86_
        // Fast tail calls aren't currently supported on x86, but if they ever are, the code
        // below that handles indirect VSD calls will need to be fixed.
        assert(!call->IsFastTailCall() || !call->IsVirtualStub());
#endif // _TARGET_X86_
    }

    // set reg requirements on call target represented as control sequence.
    if (ctrlExpr != nullptr)
    {
        // we should never see a gtControlExpr whose type is void.
        assert(ctrlExpr->TypeGet() != TYP_VOID);

        // In case of fast tail implemented as jmp, make sure that gtControlExpr is
        // computed into a register.
        if (!call->IsFastTailCall())
        {
#ifdef _TARGET_X86_
            // On x86, we need to generate a very specific pattern for indirect VSD calls:
            //
            //    3-byte nop
            //    call dword ptr [eax]
            //
            // Where EAX is also used as an argument to the stub dispatch helper. Make
            // sure that the call target address is computed into EAX in this case.
            if (call->IsVirtualStub() && (call->gtCallType == CT_INDIRECT))
            {
                assert(ctrlExpr->isIndir());
                MakeSrcContained(call, ctrlExpr);
            }
            else
#endif // _TARGET_X86_
                if (ctrlExpr->isIndir())
            {
                // We may have cases where we have set a register target on the ctrlExpr, but if it
                // contained we must clear it.
                ctrlExpr->gtRegNum = REG_NA;
                MakeSrcContained(call, ctrlExpr);
            }
        }
    }

    GenTree* args = call->gtCallArgs;
    while (args)
    {
        GenTree* arg = args->gtOp.gtOp1;
        if (arg->gtOper == GT_PUTARG_STK)
        {
            LowerPutArgStk(arg->AsPutArgStk());
        }
        args = args->gtOp.gtOp2;
    }
    args = call->gtCallLateArgs;
    while (args)
    {
        GenTree* arg = args->gtOp.gtOp1;
        if (arg->gtOper == GT_PUTARG_STK)
        {
            LowerPutArgStk(arg->AsPutArgStk());
        }
        args = args->gtOp.gtOp2;
    }
}

//------------------------------------------------------------------------
// ContainCheckIndir: Determine whether operands of an indir should be contained.
//
// Arguments:
//    node       - The indirection node of interest
//
// Notes:
//    This is called for both store and load indirections. In the former case, it is assumed that
//    LowerStoreIndir() has already been called to check for RMW opportunities.
//
// Return Value:
//    None.
//
void Lowering::ContainCheckIndir(GenTreeIndir* node)
{
    GenTree* addr = node->Addr();

    // If this is the rhs of a block copy it will be handled when we handle the store.
    if (node->TypeGet() == TYP_STRUCT)
    {
        return;
    }

#ifdef FEATURE_SIMD
    // If indirTree is of TYP_SIMD12, don't mark addr as contained
    // so that it always get computed to a register.  This would
    // mean codegen side logic doesn't need to handle all possible
    // addr expressions that could be contained.
    //
    // TODO-XArch-CQ: handle other addr mode expressions that could be marked
    // as contained.
    if (node->TypeGet() == TYP_SIMD12)
    {
        return;
    }
#endif // FEATURE_SIMD

    if ((node->gtFlags & GTF_IND_REQ_ADDR_IN_REG) != 0)
    {
        // The address of an indirection that requires its address in a reg.
        // Skip any further processing that might otherwise make it contained.
    }
    else if ((addr->OperGet() == GT_CLS_VAR_ADDR) || (addr->OperGet() == GT_LCL_VAR_ADDR))
    {
        // These nodes go into an addr mode:
        // - GT_CLS_VAR_ADDR turns into a constant.
        // - GT_LCL_VAR_ADDR is a stack addr mode.

        // make this contained, it turns into a constant that goes into an addr mode
        MakeSrcContained(node, addr);
    }
    else if (addr->IsCnsIntOrI() && addr->AsIntConCommon()->FitsInAddrBase(comp))
    {
        // Amd64:
        // We can mark any pc-relative 32-bit addr as containable, except for a direct VSD call address.
        // (i.e. those VSD calls for which stub addr is known during JIT compilation time).  In this case,
        // VM requires us to pass stub addr in VirtualStubParam.reg - see LowerVirtualStubCall().  For
        // that reason we cannot mark such an addr as contained.  Note that this is not an issue for
        // indirect VSD calls since morphArgs() is explicitly materializing hidden param as a non-standard
        // argument.
        //
        // Workaround:
        // Note that LowerVirtualStubCall() sets addr->gtRegNum to VirtualStubParam.reg and Lowering::doPhase()
        // sets destination candidates on such nodes and resets addr->gtRegNum to REG_NA.
        // Ideally we should set a flag on addr nodes that shouldn't be marked as contained
        // (in LowerVirtualStubCall()), but we don't have any GTF_* flags left for that purpose.  As a workaround
        // an explicit check is made here.
        //
        // On x86, direct VSD is done via a relative branch, and in fact it MUST be contained.
        MakeSrcContained(node, addr);
    }
    else if ((addr->OperGet() == GT_LEA) && IsSafeToContainMem(node, addr))
    {
        MakeSrcContained(node, addr);
    }
}

//------------------------------------------------------------------------
// ContainCheckStoreIndir: determine whether the sources of a STOREIND node should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckStoreIndir(GenTreeIndir* node)
{
    // If the source is a containable immediate, make it contained, unless it is
    // an int-size or larger store of zero to memory, because we can generate smaller code
    // by zeroing a register and then storing it.
    GenTree* src = node->gtOp.gtOp2;
    if (IsContainableImmed(node, src) &&
        (!src->IsIntegralConst(0) || varTypeIsSmall(node) || node->gtGetOp1()->OperGet() == GT_CLS_VAR_ADDR))
    {
        MakeSrcContained(node, src);
    }
    ContainCheckIndir(node);
}

//------------------------------------------------------------------------
// ContainCheckMul: determine whether the sources of a MUL node should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckMul(GenTreeOp* node)
{
#if defined(_TARGET_X86_)
    assert(node->OperIs(GT_MUL, GT_MULHI, GT_MUL_LONG));
#else
    assert(node->OperIs(GT_MUL, GT_MULHI));
#endif

    // Case of float/double mul.
    if (varTypeIsFloating(node->TypeGet()))
    {
        ContainCheckFloatBinary(node);
        return;
    }

    GenTree* op1 = node->gtOp.gtOp1;
    GenTree* op2 = node->gtOp.gtOp2;

    bool isSafeToContainOp1 = true;
    bool isSafeToContainOp2 = true;

    bool     isUnsignedMultiply    = ((node->gtFlags & GTF_UNSIGNED) != 0);
    bool     requiresOverflowCheck = node->gtOverflowEx();
    bool     useLeaEncoding        = false;
    GenTree* memOp                 = nullptr;

    bool                 hasImpliedFirstOperand = false;
    GenTreeIntConCommon* imm                    = nullptr;
    GenTree*             other                  = nullptr;

    // Multiply should never be using small types
    assert(!varTypeIsSmall(node->TypeGet()));

    // We do use the widening multiply to implement
    // the overflow checking for unsigned multiply
    //
    if (isUnsignedMultiply && requiresOverflowCheck)
    {
        hasImpliedFirstOperand = true;
    }
    else if (node->OperGet() == GT_MULHI)
    {
        hasImpliedFirstOperand = true;
    }
#if defined(_TARGET_X86_)
    else if (node->OperGet() == GT_MUL_LONG)
    {
        hasImpliedFirstOperand = true;
    }
#endif
    else if (IsContainableImmed(node, op2) || IsContainableImmed(node, op1))
    {
        if (IsContainableImmed(node, op2))
        {
            imm   = op2->AsIntConCommon();
            other = op1;
        }
        else
        {
            imm   = op1->AsIntConCommon();
            other = op2;
        }

        // CQ: We want to rewrite this into a LEA
        ssize_t immVal = imm->AsIntConCommon()->IconValue();
        if (!requiresOverflowCheck && (immVal == 3 || immVal == 5 || immVal == 9))
        {
            useLeaEncoding = true;
        }

        MakeSrcContained(node, imm); // The imm is always contained
        if (IsContainableMemoryOp(other))
        {
            memOp = other; // memOp may be contained below
        }
    }

    // We allow one operand to be a contained memory operand.
    // The memory op type must match with the 'node' type.
    // This is because during codegen we use 'node' type to derive EmitTypeSize.
    // E.g op1 type = byte, op2 type = byte but GT_MUL node type is int.
    //
    if (memOp == nullptr)
    {
        if ((op2->TypeGet() == node->TypeGet()) && IsContainableMemoryOp(op2))
        {
            isSafeToContainOp2 = IsSafeToContainMem(node, op2);
            if (isSafeToContainOp2)
            {
                memOp = op2;
            }
        }

        if ((memOp == nullptr) && (op1->TypeGet() == node->TypeGet()) && IsContainableMemoryOp(op1))
        {
            isSafeToContainOp1 = IsSafeToContainMem(node, op1);
            if (isSafeToContainOp1)
            {
                memOp = op1;
            }
        }
    }
    else
    {
        if ((memOp->TypeGet() != node->TypeGet()))
        {
            memOp = nullptr;
        }
        else if (!IsSafeToContainMem(node, memOp))
        {
            if (memOp == op1)
            {
                isSafeToContainOp1 = false;
            }
            else
            {
                isSafeToContainOp2 = false;
            }
            memOp = nullptr;
        }
    }
    // To generate an LEA we need to force memOp into a register
    // so don't allow memOp to be 'contained'
    //
    if (!useLeaEncoding)
    {
        if (memOp != nullptr)
        {
            MakeSrcContained(node, memOp);
        }
        else
        {
            // IsSafeToContainMem is expensive so we call it at most once for each operand
            // in this method. If we already called IsSafeToContainMem, it must have returned false;
            // otherwise, memOp would be set to the corresponding operand (op1 or op2).
            if (imm != nullptr)
            {
                // Has a contained immediate operand.
                // Only 'other' operand can be marked as reg optional.
                assert(other != nullptr);

                isSafeToContainOp1 = ((other == op1) && isSafeToContainOp1 && IsSafeToContainMem(node, op1));
                isSafeToContainOp2 = ((other == op2) && isSafeToContainOp2 && IsSafeToContainMem(node, op2));
            }
            else if (hasImpliedFirstOperand)
            {
                // Only op2 can be marked as reg optional.
                isSafeToContainOp1 = false;
                isSafeToContainOp2 = isSafeToContainOp2 && IsSafeToContainMem(node, op2);
            }
            else
            {
                // If there are no containable operands, we can make either of op1 or op2
                // as reg optional.
                isSafeToContainOp1 = isSafeToContainOp1 && IsSafeToContainMem(node, op1);
                isSafeToContainOp2 = isSafeToContainOp2 && IsSafeToContainMem(node, op2);
            }
            SetRegOptionalForBinOp(node, isSafeToContainOp1, isSafeToContainOp2);
        }
    }
}

//------------------------------------------------------------------------
// ContainCheckDivOrMod: determine which operands of a div/mod should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckDivOrMod(GenTreeOp* node)
{
    assert(node->OperIs(GT_DIV, GT_MOD, GT_UDIV, GT_UMOD));

    if (varTypeIsFloating(node->TypeGet()))
    {
        ContainCheckFloatBinary(node);
        return;
    }

    GenTree* divisor = node->gtGetOp2();

    bool divisorCanBeRegOptional = true;
#ifdef _TARGET_X86_
    GenTree* dividend = node->gtGetOp1();
    if (dividend->OperGet() == GT_LONG)
    {
        divisorCanBeRegOptional = false;
        MakeSrcContained(node, dividend);
    }
#endif

    // divisor can be an r/m, but the memory indirection must be of the same size as the divide
    if (IsContainableMemoryOp(divisor) && (divisor->TypeGet() == node->TypeGet()))
    {
        MakeSrcContained(node, divisor);
    }
    else if (divisorCanBeRegOptional)
    {
        // If there are no containable operands, we can make an operand reg optional.
        // Div instruction allows only divisor to be a memory op.
        divisor->SetRegOptional();
    }
}

//------------------------------------------------------------------------
// ContainCheckShiftRotate: determine whether the sources of a shift/rotate node should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckShiftRotate(GenTreeOp* node)
{
    assert(node->OperIsShiftOrRotate());
#ifdef _TARGET_X86_
    GenTree* source = node->gtOp1;
    if (node->OperIsShiftLong())
    {
        assert(source->OperGet() == GT_LONG);
        MakeSrcContained(node, source);
    }
#endif // !_TARGET_X86_

    GenTree* shiftBy = node->gtOp2;
    if (IsContainableImmed(node, shiftBy) && (shiftBy->gtIntConCommon.IconValue() <= 255) &&
        (shiftBy->gtIntConCommon.IconValue() >= 0))
    {
        MakeSrcContained(node, shiftBy);
    }
}

//------------------------------------------------------------------------
// ContainCheckStoreLoc: determine whether the source of a STORE_LCL* should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckStoreLoc(GenTreeLclVarCommon* storeLoc)
{
    assert(storeLoc->OperIsLocalStore());
    GenTree* op1 = storeLoc->gtGetOp1();

#ifdef FEATURE_SIMD
    if (varTypeIsSIMD(storeLoc))
    {
        if (op1->IsCnsIntOrI())
        {
            // For an InitBlk we want op1 to be contained; otherwise we want it to
            // be evaluated into an xmm register.
            MakeSrcContained(storeLoc, op1);
        }
        return;
    }
#endif // FEATURE_SIMD

    // If the source is a containable immediate, make it contained, unless it is
    // an int-size or larger store of zero to memory, because we can generate smaller code
    // by zeroing a register and then storing it.
    if (IsContainableImmed(storeLoc, op1) && (!op1->IsIntegralConst(0) || varTypeIsSmall(storeLoc)))
    {
        MakeSrcContained(storeLoc, op1);
    }
#ifdef _TARGET_X86_
    else if (op1->OperGet() == GT_LONG)
    {
        MakeSrcContained(storeLoc, op1);
    }
#endif // _TARGET_X86_
}

//------------------------------------------------------------------------
// ContainCheckCast: determine whether the source of a CAST node should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckCast(GenTreeCast* node)
{
    GenTree*  castOp     = node->CastOp();
    var_types castToType = node->CastToType();
    var_types srcType    = castOp->TypeGet();

    // force the srcType to unsigned if GT_UNSIGNED flag is set
    if (node->gtFlags & GTF_UNSIGNED)
    {
        srcType = genUnsignedType(srcType);
    }

    if (!node->gtOverflow() && (varTypeIsFloating(castToType) || varTypeIsFloating(srcType)))
    {
#ifdef DEBUG
        // If converting to float/double, the operand must be 4 or 8 byte in size.
        if (varTypeIsFloating(castToType))
        {
            unsigned opSize = genTypeSize(srcType);
            assert(opSize == 4 || opSize == 8);
        }
#endif // DEBUG

        // U8 -> R8 conversion requires that the operand be in a register.
        if (srcType != TYP_ULONG)
        {
            if (IsContainableMemoryOp(castOp) || castOp->IsCnsNonZeroFltOrDbl())
            {
                MakeSrcContained(node, castOp);
            }
            else
            {
                // Mark castOp as reg optional to indicate codegen
                // can still generate code if it is on stack.
                castOp->SetRegOptional();
            }
        }
    }
#if !defined(_TARGET_64BIT_)
    if (varTypeIsLong(srcType))
    {
        noway_assert(castOp->OperGet() == GT_LONG);
        castOp->SetContained();
    }
#endif // !defined(_TARGET_64BIT_)
}

//------------------------------------------------------------------------
// ContainCheckCompare: determine whether the sources of a compare node should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckCompare(GenTreeOp* cmp)
{
    assert(cmp->OperIsCompare() || cmp->OperIs(GT_CMP));

    GenTree*  op1     = cmp->gtOp.gtOp1;
    GenTree*  op2     = cmp->gtOp.gtOp2;
    var_types op1Type = op1->TypeGet();
    var_types op2Type = op2->TypeGet();

    // If either of op1 or op2 is floating point values, then we need to use
    // ucomiss or ucomisd to compare, both of which support the following form:
    //     ucomis[s|d] xmm, xmm/mem
    // That is only the second operand can be a memory op.
    //
    // Second operand is a memory Op:  Note that depending on comparison operator,
    // the operands of ucomis[s|d] need to be reversed.  Therefore, either op1 or
    // op2 can be a memory op depending on the comparison operator.
    if (varTypeIsFloating(op1Type))
    {
        // The type of the operands has to be the same and no implicit conversions at this stage.
        assert(op1Type == op2Type);

        GenTree* otherOp;
        if (GenCondition::FromFloatRelop(cmp).PreferSwap())
        {
            otherOp = op1;
        }
        else
        {
            otherOp = op2;
        }

        assert(otherOp != nullptr);
        bool isSafeToContainOtherOp = true;
        if (otherOp->IsCnsNonZeroFltOrDbl())
        {
            MakeSrcContained(cmp, otherOp);
        }
        else if (IsContainableMemoryOp(otherOp))
        {
            isSafeToContainOtherOp = IsSafeToContainMem(cmp, otherOp);
            if (isSafeToContainOtherOp)
            {
                MakeSrcContained(cmp, otherOp);
            }
        }

        if (!otherOp->isContained() && isSafeToContainOtherOp && IsSafeToContainMem(cmp, otherOp))
        {
            // SSE2 allows only otherOp to be a memory-op. Since otherOp is not
            // contained, we can mark it reg-optional.
            // IsSafeToContainMem is expensive so we call it at most once for otherOp.
            // If we already called IsSafeToContainMem, it must have returned false;
            // otherwise, otherOp would be contained.
            otherOp->SetRegOptional();
        }

        return;
    }

    // TODO-XArch-CQ: factor out cmp optimization in 'genCondSetFlags' to be used here
    // or in other backend.

    if (CheckImmedAndMakeContained(cmp, op2))
    {
        // If the types are the same, or if the constant is of the correct size,
        // we can treat the MemoryOp as contained.
        if (op1Type == op2Type)
        {
            if (IsContainableMemoryOp(op1))
            {
                MakeSrcContained(cmp, op1);
            }
            else
            {
                op1->SetRegOptional();
            }
        }
    }
    else if (op1Type == op2Type)
    {
        // Note that TEST does not have a r,rm encoding like CMP has but we can still
        // contain the second operand because the emitter maps both r,rm and rm,r to
        // the same instruction code. This avoids the need to special case TEST here.

        bool isSafeToContainOp1 = true;
        bool isSafeToContainOp2 = true;

        if (IsContainableMemoryOp(op2))
        {
            isSafeToContainOp2 = IsSafeToContainMem(cmp, op2);
            if (isSafeToContainOp2)
            {
                MakeSrcContained(cmp, op2);
            }
        }

        if (!op2->isContained() && IsContainableMemoryOp(op1))
        {
            isSafeToContainOp1 = IsSafeToContainMem(cmp, op1);
            if (isSafeToContainOp1)
            {
                MakeSrcContained(cmp, op1);
            }
        }

        if (!op1->isContained() && !op2->isContained())
        {
            // One of op1 or op2 could be marked as reg optional
            // to indicate that codegen can still generate code
            // if one of them is on stack.
            GenTree* regOptionalCandidate = op1->IsCnsIntOrI() ? op2 : PreferredRegOptionalOperand(cmp);

            // IsSafeToContainMem is expensive so we call it at most once for each operand
            // in this method. If we already called IsSafeToContainMem, it must have returned false;
            // otherwise, the corresponding operand (op1 or op2) would be contained.
            bool setRegOptional = (regOptionalCandidate == op1) ? isSafeToContainOp1 && IsSafeToContainMem(cmp, op1)
                                                                : isSafeToContainOp2 && IsSafeToContainMem(cmp, op2);
            if (setRegOptional)
            {
                regOptionalCandidate->SetRegOptional();
            }
        }
    }
}

//------------------------------------------------------------------------
// LowerRMWMemOp: Determine if this is a valid RMW mem op, and if so lower it accordingly
//
// Arguments:
//    node       - The indirect store node (GT_STORE_IND) of interest
//
// Return Value:
//    Returns true if 'node' is a valid RMW mem op; false otherwise.
//
bool Lowering::LowerRMWMemOp(GenTreeIndir* storeInd)
{
    assert(storeInd->OperGet() == GT_STOREIND);

    // SSE2 doesn't support RMW on float values
    assert(!varTypeIsFloating(storeInd));

    // Terminology:
    // indirDst = memory write of an addr mode  (i.e. storeind destination)
    // indirSrc = value being written to memory (i.e. storeind source which could a binary/unary op)
    // indirCandidate = memory read i.e. a gtInd of an addr mode
    // indirOpSource = source operand used in binary/unary op (i.e. source operand of indirSrc node)

    GenTree* indirCandidate = nullptr;
    GenTree* indirOpSource  = nullptr;

    if (!IsRMWMemOpRootedAtStoreInd(storeInd, &indirCandidate, &indirOpSource))
    {
        JITDUMP("Lower of StoreInd didn't mark the node as self contained for reason: %d\n",
                storeInd->AsStoreInd()->GetRMWStatus());
        DISPTREERANGE(BlockRange(), storeInd);
        return false;
    }

    GenTree*   indirDst = storeInd->gtGetOp1();
    GenTree*   indirSrc = storeInd->gtGetOp2();
    genTreeOps oper     = indirSrc->OperGet();

    // At this point we have successfully detected a RMW memory op of one of the following forms
    //         storeInd(indirDst, indirSrc(indirCandidate, indirOpSource)) OR
    //         storeInd(indirDst, indirSrc(indirOpSource, indirCandidate) in case of commutative operations OR
    //         storeInd(indirDst, indirSrc(indirCandidate) in case of unary operations
    //
    // Here indirSrc = one of the supported binary or unary operation for RMW of memory
    //      indirCandidate = a GT_IND node
    //      indirCandidateChild = operand of GT_IND indirCandidate
    //
    // The logic below does the following
    //      Make indirOpSource contained.
    //      Make indirSrc contained.
    //      Make indirCandidate contained.
    //      Make indirCandidateChild contained.
    //      Make indirDst contained except when it is a GT_LCL_VAR or GT_CNS_INT that doesn't fit within addr
    //      base.
    //

    // We have already done containment analysis on the indirSrc op.
    // If any of its operands are marked regOptional, reset that now.
    indirSrc->AsOp()->gtOp1->ClearRegOptional();
    if (GenTree::OperIsBinary(oper))
    {
        // On Xarch RMW operations require the source to be an immediate or in a register.
        // Therefore, if we have previously marked the indirOpSource as contained while lowering
        // the binary node, we need to reset that now.
        if (IsContainableMemoryOp(indirOpSource))
        {
            indirOpSource->ClearContained();
        }
        indirSrc->AsOp()->gtOp2->ClearRegOptional();
        JITDUMP("Lower succesfully detected an assignment of the form: *addrMode BinOp= source\n");
    }
    else
    {
        assert(GenTree::OperIsUnary(oper));
        JITDUMP("Lower succesfully detected an assignment of the form: *addrMode = UnaryOp(*addrMode)\n");
    }
    DISPTREERANGE(BlockRange(), storeInd);

    indirSrc->SetContained();
    indirCandidate->SetContained();

    GenTree* indirCandidateChild = indirCandidate->gtGetOp1();
    indirCandidateChild->SetContained();

    if (indirCandidateChild->OperGet() == GT_LEA)
    {
        GenTreeAddrMode* addrMode = indirCandidateChild->AsAddrMode();

        if (addrMode->HasBase())
        {
            assert(addrMode->Base()->OperIsLeaf());
            addrMode->Base()->SetContained();
        }

        if (addrMode->HasIndex())
        {
            assert(addrMode->Index()->OperIsLeaf());
            addrMode->Index()->SetContained();
        }

        indirDst->SetContained();
    }
    else
    {
        assert(indirCandidateChild->OperGet() == GT_LCL_VAR || indirCandidateChild->OperGet() == GT_LCL_VAR_ADDR ||
               indirCandidateChild->OperGet() == GT_CLS_VAR_ADDR || indirCandidateChild->OperGet() == GT_CNS_INT);

        // If it is a GT_LCL_VAR, it still needs the reg to hold the address.
        // We would still need a reg for GT_CNS_INT if it doesn't fit within addressing mode base.
        // For GT_CLS_VAR_ADDR, we don't need a reg to hold the address, because field address value is known at jit
        // time. Also, we don't need a reg for GT_CLS_VAR_ADDR.
        if (indirCandidateChild->OperGet() == GT_LCL_VAR_ADDR || indirCandidateChild->OperGet() == GT_CLS_VAR_ADDR)
        {
            indirDst->SetContained();
        }
        else if (indirCandidateChild->IsCnsIntOrI() && indirCandidateChild->AsIntConCommon()->FitsInAddrBase(comp))
        {
            indirDst->SetContained();
        }
    }
    return true;
}

//------------------------------------------------------------------------
// ContainCheckBinary: Determine whether a binary op's operands should be contained.
//
// Arguments:
//    node - the node we care about
//
void Lowering::ContainCheckBinary(GenTreeOp* node)
{
    assert(node->OperIsBinary());

    if (varTypeIsFloating(node))
    {
        assert(node->OperIs(GT_ADD, GT_SUB));
        ContainCheckFloatBinary(node);
        return;
    }

    GenTree* op1 = node->gtOp1;
    GenTree* op2 = node->gtOp2;

    // We can directly encode the second operand if it is either a containable constant or a memory-op.
    // In case of memory-op, we can encode it directly provided its type matches with 'tree' type.
    // This is because during codegen, type of 'tree' is used to determine emit Type size. If the types
    // do not match, they get normalized (i.e. sign/zero extended) on load into a register.
    bool     directlyEncodable  = false;
    bool     binOpInRMW         = false;
    GenTree* operand            = nullptr;
    bool     isSafeToContainOp1 = true;
    bool     isSafeToContainOp2 = true;

    if (IsContainableImmed(node, op2))
    {
        directlyEncodable = true;
        operand           = op2;
    }
    else
    {
        binOpInRMW = IsBinOpInRMWStoreInd(node);
        if (!binOpInRMW)
        {
            const unsigned operatorSize = genTypeSize(node->TypeGet());
            if ((genTypeSize(op2->TypeGet()) == operatorSize) && IsContainableMemoryOp(op2))
            {
                isSafeToContainOp2 = IsSafeToContainMem(node, op2);
                if (isSafeToContainOp2)
                {
                    directlyEncodable = true;
                    operand           = op2;
                }
            }

            if ((operand == nullptr) && node->OperIsCommutative())
            {
                // If it is safe, we can reverse the order of operands of commutative operations for efficient
                // codegen
                if (IsContainableImmed(node, op1))
                {
                    directlyEncodable = true;
                    operand           = op1;
                }
                else if ((genTypeSize(op1->TypeGet()) == operatorSize) && IsContainableMemoryOp(op1))
                {
                    isSafeToContainOp1 = IsSafeToContainMem(node, op1);
                    if (isSafeToContainOp1)
                    {
                        directlyEncodable = true;
                        operand           = op1;
                    }
                }
            }
        }
    }

    if (directlyEncodable)
    {
        assert(operand != nullptr);
        MakeSrcContained(node, operand);
    }
    else if (!binOpInRMW)
    {
        // If this binary op neither has contained operands, nor is a
        // Read-Modify-Write (RMW) operation, we can mark its operands
        // as reg optional.

        // IsSafeToContainMem is expensive so we call it at most once for each operand
        // in this method. If we already called IsSafeToContainMem, it must have returned false;
        // otherwise, directlyEncodable would be true.
        isSafeToContainOp1 = isSafeToContainOp1 && IsSafeToContainMem(node, op1);
        isSafeToContainOp2 = isSafeToContainOp2 && IsSafeToContainMem(node, op2);

        SetRegOptionalForBinOp(node, isSafeToContainOp1, isSafeToContainOp2);
    }
}

//------------------------------------------------------------------------
// ContainCheckBoundsChk: determine whether any source of a bounds check node should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckBoundsChk(GenTreeBoundsChk* node)
{
    assert(node->OperIsBoundsCheck());
    GenTree* other;
    if (CheckImmedAndMakeContained(node, node->gtIndex))
    {
        other = node->gtArrLen;
    }
    else if (CheckImmedAndMakeContained(node, node->gtArrLen))
    {
        other = node->gtIndex;
    }
    else if (IsContainableMemoryOp(node->gtIndex))
    {
        other = node->gtIndex;
    }
    else
    {
        other = node->gtArrLen;
    }

    if (node->gtIndex->TypeGet() == node->gtArrLen->TypeGet())
    {
        if (IsContainableMemoryOp(other))
        {
            MakeSrcContained(node, other);
        }
        else
        {
            // We can mark 'other' as reg optional, since it is not contained.
            other->SetRegOptional();
        }
    }
}

//------------------------------------------------------------------------
// ContainCheckIntrinsic: determine whether the source of an INTRINSIC node should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckIntrinsic(GenTreeOp* node)
{
    assert(node->OperIs(GT_INTRINSIC));

    CorInfoIntrinsics intrinsicId = node->gtIntrinsic.gtIntrinsicId;

    if (intrinsicId == CORINFO_INTRINSIC_Sqrt || intrinsicId == CORINFO_INTRINSIC_Round ||
        intrinsicId == CORINFO_INTRINSIC_Ceiling || intrinsicId == CORINFO_INTRINSIC_Floor)
    {
        GenTree* op1 = node->gtGetOp1();
        if (IsContainableMemoryOp(op1) || op1->IsCnsNonZeroFltOrDbl())
        {
            MakeSrcContained(node, op1);
        }
        else
        {
            // Mark the operand as reg optional since codegen can still
            // generate code if op1 is on stack.
            op1->SetRegOptional();
        }
    }
}

#ifdef FEATURE_SIMD
//----------------------------------------------------------------------------------------------
// ContainCheckSIMD: Perform containment analysis for a SIMD intrinsic node.
//
//  Arguments:
//     simdNode - The SIMD intrinsic node.
//
void Lowering::ContainCheckSIMD(GenTreeSIMD* simdNode)
{
    switch (simdNode->gtSIMDIntrinsicID)
    {
        GenTree* op1;
        GenTree* op2;

        case SIMDIntrinsicInit:
        {
            op1 = simdNode->gtOp.gtOp1;
#ifndef _TARGET_64BIT_
            if (op1->OperGet() == GT_LONG)
            {
                MakeSrcContained(simdNode, op1);
                GenTree* op1lo = op1->gtGetOp1();
                GenTree* op1hi = op1->gtGetOp2();

                if ((op1lo->IsIntegralConst(0) && op1hi->IsIntegralConst(0)) ||
                    (op1lo->IsIntegralConst(-1) && op1hi->IsIntegralConst(-1)))
                {
                    MakeSrcContained(op1, op1lo);
                    MakeSrcContained(op1, op1hi);
                }
            }
            else
#endif // !_TARGET_64BIT_
                if (op1->IsFPZero() || op1->IsIntegralConst(0) ||
                    (varTypeIsIntegral(simdNode->gtSIMDBaseType) && op1->IsIntegralConst(-1)))
            {
                MakeSrcContained(simdNode, op1);
            }
            else if ((comp->getSIMDSupportLevel() == SIMD_AVX2_Supported) &&
                     ((simdNode->gtSIMDSize == 16) || (simdNode->gtSIMDSize == 32)))
            {
                // Either op1 is a float or dbl constant or an addr
                if (op1->IsCnsFltOrDbl() || op1->OperIsLocalAddr())
                {
                    MakeSrcContained(simdNode, op1);
                }
            }
        }
        break;

        case SIMDIntrinsicInitArray:
            // We have an array and an index, which may be contained.
            CheckImmedAndMakeContained(simdNode, simdNode->gtGetOp2());
            break;

        case SIMDIntrinsicOpEquality:
        case SIMDIntrinsicOpInEquality:
            // On SSE4/AVX, we can generate optimal code for (in)equality
            // against zero using ptest. We can safely do this optimization
            // for integral vectors but not for floating-point for the reason
            // that we have +0.0 and -0.0 and +0.0 == -0.0
            op2 = simdNode->gtGetOp2();
            if ((comp->getSIMDSupportLevel() >= SIMD_SSE4_Supported) && op2->IsIntegralConstVector(0))
            {
                MakeSrcContained(simdNode, op2);
            }
            break;

        case SIMDIntrinsicGetItem:
        {
            // This implements get_Item method. The sources are:
            //  - the source SIMD struct
            //  - index (which element to get)
            // The result is baseType of SIMD struct.
            op1 = simdNode->gtOp.gtOp1;
            op2 = simdNode->gtOp.gtOp2;

            if (op1->OperGet() == GT_IND)
            {
                assert((op1->gtFlags & GTF_IND_REQ_ADDR_IN_REG) != 0);
                op1->AsIndir()->Addr()->ClearContained();
            }
            // If the index is a constant, mark it as contained.
            CheckImmedAndMakeContained(simdNode, op2);

            if (IsContainableMemoryOp(op1))
            {
                MakeSrcContained(simdNode, op1);
                if (op1->OperGet() == GT_IND)
                {
                    op1->AsIndir()->Addr()->ClearContained();
                }
            }
        }
        break;

        case SIMDIntrinsicShuffleSSE2:
            // Second operand is an integer constant and marked as contained.
            assert(simdNode->gtOp.gtOp2->IsCnsIntOrI());
            MakeSrcContained(simdNode, simdNode->gtOp.gtOp2);
            break;

        default:
            break;
    }
}
#endif // FEATURE_SIMD

#ifdef FEATURE_HW_INTRINSICS
//----------------------------------------------------------------------------------------------
// IsContainableHWIntrinsicOp: Return true if 'node' is a containable HWIntrinsic op.
//
//  Arguments:
//     containingNode - The hardware intrinsic node which contains 'node'
//     node - The node to check
//     [Out] supportsRegOptional - On return, this will be true if 'containingNode' supports regOptional operands;
//     otherwise, false.
//
// Return Value:
//    true if 'node' is a containable hardware intrinsic node; otherwise, false.
//
bool Lowering::IsContainableHWIntrinsicOp(GenTreeHWIntrinsic* containingNode, GenTree* node, bool* supportsRegOptional)
{
    NamedIntrinsic      containingIntrinsicId = containingNode->gtHWIntrinsicId;
    HWIntrinsicCategory category              = HWIntrinsicInfo::lookupCategory(containingIntrinsicId);

    // We shouldn't have called in here if containingNode doesn't support containment
    assert(HWIntrinsicInfo::SupportsContainment(containingIntrinsicId));

    // containingNode supports nodes that read from an aligned memory address
    //
    // This will generally be an explicit LoadAligned instruction and is generally
    // false for machines with VEX support. This is because there is currently no way
    // to guarantee that the address read from will always be aligned and we could silently
    // change the behavior of the program in the case where an Access Violation would have
    // otherwise occurred.
    bool supportsAlignedSIMDLoads = false;

    // containingNode supports nodes that read from general memory
    //
    // We currently have to assume all "general" loads are unaligned. As such, this is
    // generally used to determine if we can mark the node as `regOptional` in the case
    // where `node` is not containable. However, this can also be used to determine whether
    // we can mark other types of reads as contained (such as when directly reading a local).
    bool supportsGeneralLoads = false;

    // containingNode supports nodes that read from a scalar memory address
    //
    // This will generally be an explicit LoadScalar instruction but is also used to determine
    // whether we can read an address of type T (we don't support this when the load would
    // read more than sizeof(T) bytes).
    bool supportsSIMDScalarLoads = false;

    // containingNode supports nodes that read from an unaligned memory address
    //
    // This will generally be an explicit Load instruction and is generally false for machines
    // without VEX support. This is because older hardware required that the SIMD operand always
    // be aligned to the 'natural alignment' of the type.
    bool supportsUnalignedSIMDLoads = false;

    switch (category)
    {
        case HW_Category_MemoryLoad:
            supportsGeneralLoads = (!node->OperIsHWIntrinsic());
            break;

        case HW_Category_SimpleSIMD:
        {
            switch (containingIntrinsicId)
            {
                case NI_SSE41_ConvertToVector128Int16:
                case NI_SSE41_ConvertToVector128Int32:
                case NI_SSE41_ConvertToVector128Int64:
                case NI_AVX2_ConvertToVector256Int16:
                case NI_AVX2_ConvertToVector256Int32:
                case NI_AVX2_ConvertToVector256Int64:
                {
                    supportsGeneralLoads = (!node->OperIsHWIntrinsic());
                    break;
                }

                default:
                {
                    // These intrinsics only expect 16 or 32-byte nodes for containment
                    assert((genTypeSize(node->TypeGet()) == 16) || (genTypeSize(node->TypeGet()) == 32));
                    supportsAlignedSIMDLoads =
                        !comp->canUseVexEncoding() && (containingIntrinsicId != NI_SSE2_ConvertToVector128Double);
                    supportsUnalignedSIMDLoads = !supportsAlignedSIMDLoads;
                    supportsGeneralLoads       = supportsUnalignedSIMDLoads;
                    break;
                }
            }

            assert(supportsSIMDScalarLoads == false);
            break;
        }

        case HW_Category_IMM:
        {
            switch (containingIntrinsicId)
            {
                case NI_SSE_Shuffle:
                case NI_SSE2_CompareLessThan:
                case NI_SSE2_ShiftLeftLogical:
                case NI_SSE2_ShiftRightArithmetic:
                case NI_SSE2_ShiftRightLogical:
                case NI_SSE2_Shuffle:
                case NI_SSE2_ShuffleHigh:
                case NI_SSE2_ShuffleLow:
                case NI_SSSE3_AlignRight:
                case NI_SSE41_Blend:
                case NI_SSE41_DotProduct:
                case NI_SSE41_MultipleSumAbsoluteDifferences:
                case NI_AES_KeygenAssist:
                case NI_PCLMULQDQ_CarrylessMultiply:
                case NI_AVX_Blend:
                case NI_AVX_Compare:
                case NI_AVX_DotProduct:
                case NI_AVX_InsertVector128:
                case NI_AVX_Permute:
                case NI_AVX_Permute2x128:
                case NI_AVX2_Blend:
                case NI_AVX2_InsertVector128:
                case NI_AVX2_MultipleSumAbsoluteDifferences:
                case NI_AVX2_Permute2x128:
                case NI_AVX2_Permute4x64:
                case NI_AVX2_ShiftLeftLogical:
                case NI_AVX2_ShiftRightArithmetic:
                case NI_AVX2_ShiftRightLogical:
                case NI_AVX2_ShuffleHigh:
                case NI_AVX2_ShuffleLow:
                {
                    // These intrinsics only expect 16 or 32-byte nodes for containment
                    assert((genTypeSize(node->TypeGet()) == 16) || (genTypeSize(node->TypeGet()) == 32));
                    assert(supportsSIMDScalarLoads == false);

                    supportsAlignedSIMDLoads   = !comp->canUseVexEncoding();
                    supportsUnalignedSIMDLoads = !supportsAlignedSIMDLoads;
                    supportsGeneralLoads       = supportsUnalignedSIMDLoads;

                    break;
                }

                case NI_SSE2_Insert:
                case NI_SSE41_Insert:
                case NI_SSE41_X64_Insert:
                {
                    if (containingNode->gtSIMDBaseType == TYP_FLOAT)
                    {
                        assert(containingIntrinsicId == NI_SSE41_Insert);
                        assert(genTypeSize(node->TypeGet()) == 16);

                        // Sse41.Insert(V128<float>, V128<float>, byte) is a bit special
                        // in that it has different behavior depending on whether the
                        // second operand is coming from a register or memory. When coming
                        // from a register, all 4 elements of the vector can be used and it
                        // is effectively a regular `SimpleSIMD` operation; but when loading
                        // from memory, it only works with the lowest element and is effectively
                        // a `SIMDScalar`.

                        assert(supportsAlignedSIMDLoads == false);
                        assert(supportsUnalignedSIMDLoads == false);
                        assert(supportsGeneralLoads == false);
                        assert(supportsSIMDScalarLoads == false);

                        GenTree* op1 = containingNode->gtGetOp1();
                        GenTree* op2 = nullptr;
                        GenTree* op3 = nullptr;

                        assert(op1->OperIsList());
                        assert(containingNode->gtGetOp2() == nullptr);

                        GenTreeArgList* argList = op1->AsArgList();

                        op1     = argList->Current();
                        argList = argList->Rest();

                        op2     = argList->Current();
                        argList = argList->Rest();

                        assert(node == op2);

                        op3 = argList->Current();

                        // The upper two bits of the immediate value are ignored if
                        // op2 comes from memory. In order to support using the upper
                        // bits, we need to disable containment support if op3 is not
                        // constant or if the constant is greater than 0x3F (which means
                        // at least one of the upper two bits is set).

                        if (op3->IsCnsIntOrI())
                        {
                            ssize_t ival = op3->AsIntCon()->IconValue();
                            assert((ival >= 0) && (ival <= 255));

                            supportsSIMDScalarLoads = (ival <= 0x3F);
                            supportsGeneralLoads    = supportsSIMDScalarLoads;
                        }
                        break;
                    }

                    // We should only get here for integral nodes.
                    assert(varTypeIsIntegral(node->TypeGet()));

                    assert(supportsAlignedSIMDLoads == false);
                    assert(supportsUnalignedSIMDLoads == false);
                    assert(supportsSIMDScalarLoads == false);

                    const unsigned expectedSize = genTypeSize(containingNode->gtSIMDBaseType);
                    const unsigned operandSize  = genTypeSize(node->TypeGet());

                    supportsGeneralLoads = (operandSize >= expectedSize);
                    break;
                }

                case NI_AVX_CompareScalar:
                {
                    // These intrinsics only expect 16 or 32-byte nodes for containment
                    assert((genTypeSize(node->TypeGet()) == 16) || (genTypeSize(node->TypeGet()) == 32));

                    assert(supportsAlignedSIMDLoads == false);
                    assert(supportsUnalignedSIMDLoads == false);

                    supportsSIMDScalarLoads = true;
                    supportsGeneralLoads    = supportsSIMDScalarLoads;
                    break;
                }

                default:
                {
                    assert(supportsAlignedSIMDLoads == false);
                    assert(supportsGeneralLoads == false);
                    assert(supportsSIMDScalarLoads == false);
                    assert(supportsUnalignedSIMDLoads == false);
                    break;
                }
            }
            break;
        }

        case HW_Category_SIMDScalar:
        {
            assert(supportsAlignedSIMDLoads == false);
            assert(supportsUnalignedSIMDLoads == false);

            switch (containingIntrinsicId)
            {
                case NI_Vector128_CreateScalarUnsafe:
                case NI_Vector256_CreateScalarUnsafe:
                {
                    assert(supportsSIMDScalarLoads == false);

                    const unsigned expectedSize = genTypeSize(genActualType(containingNode->gtSIMDBaseType));
                    const unsigned operandSize  = genTypeSize(node->TypeGet());

                    supportsGeneralLoads = (operandSize == expectedSize);
                    break;
                }

                case NI_AVX2_BroadcastScalarToVector128:
                case NI_AVX2_BroadcastScalarToVector256:
                {
                    // The memory form of this already takes a pointer, and cannot be further contained.
                    // The containable form is the one that takes a SIMD value, that may be in memory.
                    supportsGeneralLoads = (node->TypeGet() == TYP_SIMD16);
                    break;
                }

                case NI_SSE_ConvertScalarToVector128Single:
                case NI_SSE2_ConvertScalarToVector128Double:
                case NI_SSE2_ConvertScalarToVector128Int32:
                case NI_SSE2_ConvertScalarToVector128UInt32:
                case NI_SSE_X64_ConvertScalarToVector128Single:
                case NI_SSE2_X64_ConvertScalarToVector128Double:
                case NI_SSE2_X64_ConvertScalarToVector128Int64:
                case NI_SSE2_X64_ConvertScalarToVector128UInt64:
                {
                    if (!varTypeIsIntegral(node->TypeGet()))
                    {
                        // The floating-point overload doesn't require any special semantics
                        assert(containingIntrinsicId == NI_SSE2_ConvertScalarToVector128Double);
                        supportsSIMDScalarLoads = true;
                        supportsGeneralLoads    = supportsSIMDScalarLoads;
                        break;
                    }

                    assert(supportsSIMDScalarLoads == false);

                    const unsigned expectedSize = genTypeSize(genActualType(containingNode->gtSIMDBaseType));
                    const unsigned operandSize  = genTypeSize(node->TypeGet());

                    supportsGeneralLoads = (operandSize == expectedSize);
                    break;
                }

                default:
                {
                    // These intrinsics only expect 16 or 32-byte nodes for containment
                    assert((genTypeSize(node->TypeGet()) == 16) || (genTypeSize(node->TypeGet()) == 32));

                    supportsSIMDScalarLoads = true;
                    supportsGeneralLoads    = supportsSIMDScalarLoads;
                    break;
                }
            }
            break;
        }

        case HW_Category_Scalar:
        {
            // We should only get here for integral nodes.
            assert(varTypeIsIntegral(node->TypeGet()));

            assert(supportsAlignedSIMDLoads == false);
            assert(supportsUnalignedSIMDLoads == false);
            assert(supportsSIMDScalarLoads == false);

            unsigned       expectedSize = genTypeSize(containingNode->TypeGet());
            const unsigned operandSize  = genTypeSize(node->TypeGet());

            // CRC32 codegen depends on its second oprand's type.
            // Currently, we are using SIMDBaseType to store the op2Type info.
            if (containingIntrinsicId == NI_SSE42_Crc32)
            {
                var_types op2Type = containingNode->gtSIMDBaseType;
                expectedSize      = genTypeSize(op2Type);
            }

            supportsGeneralLoads = (operandSize >= expectedSize);
            break;
        }

        default:
        {
            assert(supportsAlignedSIMDLoads == false);
            assert(supportsGeneralLoads == false);
            assert(supportsSIMDScalarLoads == false);
            assert(supportsUnalignedSIMDLoads == false);
            break;
        }
    }

    noway_assert(supportsRegOptional != nullptr);
    *supportsRegOptional = supportsGeneralLoads;

    if (!node->OperIsHWIntrinsic())
    {
        return supportsGeneralLoads && IsContainableMemoryOp(node);
    }

    // TODO-XArch: Update this to be table driven, if possible.

    NamedIntrinsic intrinsicId = node->AsHWIntrinsic()->gtHWIntrinsicId;

    switch (intrinsicId)
    {
        case NI_SSE_LoadAlignedVector128:
        case NI_SSE2_LoadAlignedVector128:
        case NI_AVX_LoadAlignedVector256:
        {
            return supportsAlignedSIMDLoads;
        }

        case NI_SSE_LoadScalarVector128:
        case NI_SSE2_LoadScalarVector128:
        {
            return supportsSIMDScalarLoads;
        }

        // VEX encoding supports unaligned memory ops, so we can fold them
        case NI_SSE_LoadVector128:
        case NI_SSE2_LoadVector128:
        case NI_AVX_LoadVector256:
        {
            return supportsUnalignedSIMDLoads;
        }

        default:
        {
            assert(!node->isContainableHWIntrinsic());
            return false;
        }
    }
}

//----------------------------------------------------------------------------------------------
// ContainCheckHWIntrinsicAddr: Perform containment analysis for an address operand of a hardware
//                              intrinsic node.
//
//  Arguments:
//     node  - The hardware intrinsic node
//     pAddr - The "parent" pointer to the address operand, so that we can update the operand
//             of the parent as needed.
//
void Lowering::ContainCheckHWIntrinsicAddr(GenTreeHWIntrinsic* node, GenTree** pAddr)
{
    assert(((*pAddr)->TypeGet() == TYP_I_IMPL) || ((*pAddr)->TypeGet() == TYP_BYREF));
    TryCreateAddrMode(LIR::Use(BlockRange(), pAddr, node), true);
    GenTree* addr = *pAddr;
    if ((addr->OperIs(GT_CLS_VAR_ADDR, GT_LCL_VAR_ADDR) ||
         (addr->IsCnsIntOrI() && addr->AsIntConCommon()->FitsInAddrBase(comp)) || (addr->OperGet() == GT_LEA)) &&
        IsSafeToContainMem(node, addr))
    {
        MakeSrcContained(node, addr);
    }
}

//----------------------------------------------------------------------------------------------
// ContainCheckHWIntrinsic: Perform containment analysis for a hardware intrinsic node.
//
//  Arguments:
//     node - The hardware intrinsic node.
//
void Lowering::ContainCheckHWIntrinsic(GenTreeHWIntrinsic* node)
{
    NamedIntrinsic      intrinsicId = node->gtHWIntrinsicId;
    HWIntrinsicCategory category    = HWIntrinsicInfo::lookupCategory(intrinsicId);
    int                 numArgs     = HWIntrinsicInfo::lookupNumArgs(node);
    var_types           baseType    = node->gtSIMDBaseType;

    GenTree* op1 = node->gtGetOp1();
    GenTree* op2 = node->gtGetOp2();
    GenTree* op3 = nullptr;

    if (!HWIntrinsicInfo::SupportsContainment(intrinsicId))
    {
        // AVX2 gather are not containable and always have constant IMM argument
        if (HWIntrinsicInfo::isAVX2GatherIntrinsic(intrinsicId))
        {
            GenTree* lastOp = HWIntrinsicInfo::lookupLastOp(node);
            assert(lastOp != nullptr);
            MakeSrcContained(node, lastOp);
        }
        // Exit early if containment isn't supported
        return;
    }

    // TODO-XArch-CQ: Non-VEX encoded instructions can have both ops contained

    const bool isCommutative = HWIntrinsicInfo::IsCommutative(intrinsicId);

    if (numArgs == 1)
    {
        // One argument intrinsics cannot be commutative
        assert(!isCommutative);

        assert(!op1->OperIsList());
        assert(op2 == nullptr);

        switch (category)
        {
            case HW_Category_MemoryLoad:
            {
                GenTree** pAddr = &node->gtOp1;
                ContainCheckHWIntrinsicAddr(node, pAddr);
                break;
            }
            case HW_Category_SimpleSIMD:
            case HW_Category_SIMDScalar:
            case HW_Category_Scalar:
            {
                switch (intrinsicId)
                {
                    case NI_SSE_ReciprocalScalar:
                    case NI_SSE_ReciprocalSqrtScalar:
                    case NI_SSE_SqrtScalar:
                    case NI_SSE2_SqrtScalar:
                    case NI_SSE41_CeilingScalar:
                    case NI_SSE41_FloorScalar:
                    case NI_SSE41_RoundCurrentDirectionScalar:
                    case NI_SSE41_RoundToNearestIntegerScalar:
                    case NI_SSE41_RoundToNegativeInfinityScalar:
                    case NI_SSE41_RoundToPositiveInfinityScalar:
                    case NI_SSE41_RoundToZeroScalar:
                    {
                        // These intrinsics have both 1 and 2-operand overloads.
                        //
                        // The 1-operand overload basically does `intrinsic(op1, op1)`
                        //
                        // Because of this, the operand must be loaded into a register
                        // and cannot be contained.
                        return;
                    }

                    case NI_SSE2_ConvertToInt32:
                    case NI_SSE2_X64_ConvertToInt64:
                    case NI_SSE2_ConvertToUInt32:
                    case NI_SSE2_X64_ConvertToUInt64:
                    case NI_AVX2_ConvertToInt32:
                    case NI_AVX2_ConvertToUInt32:
                    {
                        if (varTypeIsIntegral(baseType))
                        {
                            // These intrinsics are "ins reg/mem, xmm" and don't
                            // currently support containment.
                            return;
                        }

                        break;
                    }

                    case NI_SSE41_ConvertToVector128Int16:
                    case NI_SSE41_ConvertToVector128Int32:
                    case NI_SSE41_ConvertToVector128Int64:
                    case NI_AVX2_ConvertToVector256Int16:
                    case NI_AVX2_ConvertToVector256Int32:
                    case NI_AVX2_ConvertToVector256Int64:
                    {
                        if (!varTypeIsSIMD(op1->gtType))
                        {
                            GenTree** pAddr = &node->gtOp1;
                            ContainCheckHWIntrinsicAddr(node, pAddr);
                            return;
                        }
                        break;
                    }

                    default:
                    {
                        break;
                    }
                }

                bool supportsRegOptional = false;

                if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional))
                {
                    MakeSrcContained(node, op1);
                }
                else if (supportsRegOptional)
                {
                    op1->SetRegOptional();
                }
                break;
            }

            default:
            {
                unreached();
                break;
            }
        }
    }
    else
    {
        if (numArgs == 2)
        {
            assert(!op1->OperIsList());
            assert(op2 != nullptr);
            assert(!op2->OperIsList());

            switch (category)
            {
                case HW_Category_MemoryLoad:
                {
                    GenTree** pAddr = nullptr;
                    if ((intrinsicId == NI_AVX_MaskLoad) || (intrinsicId == NI_AVX2_MaskLoad))
                    {
                        pAddr = &node->gtOp.gtOp1;
                    }
                    else
                    {
                        pAddr = &node->gtOp.gtOp2;
                    }
                    ContainCheckHWIntrinsicAddr(node, pAddr);
                    break;
                }
                case HW_Category_MemoryStore:
                {
                    GenTree** pAddr = &node->gtOp1;
                    ContainCheckHWIntrinsicAddr(node, pAddr);
                    break;
                }
                case HW_Category_SimpleSIMD:
                case HW_Category_SIMDScalar:
                case HW_Category_Scalar:
                {
                    if (HWIntrinsicInfo::GeneratesMultipleIns(intrinsicId))
                    {
                        switch (intrinsicId)
                        {
                            case NI_SSE_CompareScalarOrderedLessThan:
                            case NI_SSE_CompareScalarUnorderedLessThan:
                            case NI_SSE_CompareScalarOrderedLessThanOrEqual:
                            case NI_SSE_CompareScalarUnorderedLessThanOrEqual:
                            case NI_SSE2_CompareScalarOrderedLessThan:
                            case NI_SSE2_CompareScalarUnorderedLessThan:
                            case NI_SSE2_CompareScalarOrderedLessThanOrEqual:
                            case NI_SSE2_CompareScalarUnorderedLessThanOrEqual:
                            {
                                // We need to swap the operands for CompareLessThanOrEqual
                                node->gtOp1 = op2;
                                node->gtOp2 = op1;
                                op2         = op1;
                                break;
                            }

                            default:
                            {
                                // TODO-XArch-CQ: The CompareScalarOrdered* and CompareScalarUnordered* methods
                                //                are commutative if you also inverse the intrinsic.
                                break;
                            }
                        }
                    }

                    bool supportsRegOptional = false;

                    if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional))
                    {
                        MakeSrcContained(node, op2);
                    }
                    else if ((isCommutative || (intrinsicId == NI_BMI2_MultiplyNoFlags) ||
                              (intrinsicId == NI_BMI2_X64_MultiplyNoFlags)) &&
                             IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional))
                    {
                        MakeSrcContained(node, op1);

                        // Swap the operands here to make the containment checks in codegen significantly simpler
                        node->gtOp1 = op2;
                        node->gtOp2 = op1;
                    }
                    else if (supportsRegOptional)
                    {
                        op2->SetRegOptional();

                        // TODO-XArch-CQ: For commutative nodes, either operand can be reg-optional.
                        //                https://github.com/dotnet/coreclr/issues/6361
                    }
                    break;
                }

                case HW_Category_IMM:
                {
                    // We don't currently have any IMM intrinsics which are also commutative
                    assert(!isCommutative);
                    bool supportsRegOptional = false;

                    switch (intrinsicId)
                    {
                        case NI_SSE2_ShiftLeftLogical:
                        case NI_SSE2_ShiftRightArithmetic:
                        case NI_SSE2_ShiftRightLogical:
                        case NI_AVX2_ShiftLeftLogical:
                        case NI_AVX2_ShiftRightArithmetic:
                        case NI_AVX2_ShiftRightLogical:
                        {
                            // These intrinsics can have op2 be imm or reg/mem

                            if (!HWIntrinsicInfo::isImmOp(intrinsicId, op2))
                            {
                                if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional))
                                {
                                    MakeSrcContained(node, op2);
                                }
                                else if (supportsRegOptional)
                                {
                                    op2->SetRegOptional();
                                }
                            }
                            break;
                        }

                        case NI_SSE2_Shuffle:
                        case NI_SSE2_ShuffleHigh:
                        case NI_SSE2_ShuffleLow:
                        case NI_AVX2_Permute4x64:
                        {
                            // These intrinsics have op2 as an imm and op1 as a reg/mem

                            if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional))
                            {
                                MakeSrcContained(node, op1);
                            }
                            else if (supportsRegOptional)
                            {
                                op1->SetRegOptional();
                            }
                            break;
                        }

                        case NI_AVX_Permute:
                        {
                            // These intrinsics can have op2 be imm or reg/mem
                            // They also can have op1 be reg/mem and op2 be imm

                            if (HWIntrinsicInfo::isImmOp(intrinsicId, op2))
                            {
                                if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional))
                                {
                                    MakeSrcContained(node, op1);
                                }
                                else if (supportsRegOptional)
                                {
                                    op1->SetRegOptional();
                                }
                            }
                            else if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional))
                            {
                                MakeSrcContained(node, op2);
                            }
                            else if (supportsRegOptional)
                            {
                                op2->SetRegOptional();
                            }
                            break;
                        }

                        case NI_AES_KeygenAssist:
                        {
                            if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional))
                            {
                                MakeSrcContained(node, op1);
                            }
                            else if (supportsRegOptional)
                            {
                                op1->SetRegOptional();
                            }
                            break;
                        }

                        default:
                        {
                            break;
                        }
                    }

                    break;
                }

                case HW_Category_Special:
                {
                    if (intrinsicId == NI_SSE2_CompareLessThan)
                    {
                        bool supportsRegOptional = false;

                        if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional))
                        {
                            MakeSrcContained(node, op2);
                        }
                        else if (supportsRegOptional)
                        {
                            op2->SetRegOptional();
                        }
                    }
                    else
                    {
                        unreached();
                    }
                    break;
                }

                default:
                {
                    unreached();
                    break;
                }
            }
        }
        else if (numArgs == 3)
        {
            // three argument intrinsics should not be marked commutative
            assert(!isCommutative);

            assert(op1->OperIsList());
            assert(op2 == nullptr);

            GenTreeArgList* argList         = op1->AsArgList();
            GenTreeArgList* originalArgList = argList;

            op1     = argList->Current();
            argList = argList->Rest();

            op2     = argList->Current();
            argList = argList->Rest();

            op3 = argList->Current();
            assert(argList->Rest() == nullptr);

            switch (category)
            {
                case HW_Category_MemoryStore:
                {
                    GenTree** pAddr = &node->gtOp.gtOp1->gtOp.gtOp1;
                    ContainCheckHWIntrinsicAddr(node, pAddr);
                    break;
                }
                case HW_Category_SimpleSIMD:
                case HW_Category_SIMDScalar:
                case HW_Category_Scalar:
                {
                    if ((intrinsicId >= NI_FMA_MultiplyAdd) && (intrinsicId <= NI_FMA_MultiplySubtractNegatedScalar))
                    {
                        bool supportsRegOptional = false;

                        if (IsContainableHWIntrinsicOp(node, op3, &supportsRegOptional))
                        {
                            // 213 form: op1 = (op2 * op1) + [op3]
                            MakeSrcContained(node, op3);
                        }
                        else if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional))
                        {
                            // 132 form: op1 = (op1 * op3) + [op2]
                            MakeSrcContained(node, op2);
                        }
                        else if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional))
                        {
                            // Intrinsics with CopyUpperBits semantics cannot have op1 be contained

                            if (!HWIntrinsicInfo::CopiesUpperBits(intrinsicId))
                            {
                                // 231 form: op3 = (op2 * op3) + [op1]
                                MakeSrcContained(node, op1);
                            }
                        }
                        else
                        {
                            assert(supportsRegOptional);

                            // TODO-XArch-CQ: Technically any one of the three operands can
                            //                be reg-optional. With a limitation on op1 where
                            //                it can only be so if CopyUpperBits is off.
                            //                https://github.com/dotnet/coreclr/issues/6361

                            // 213 form: op1 = (op2 * op1) + op3
                            op3->SetRegOptional();
                        }
                    }
                    else
                    {
                        bool supportsRegOptional = false;

                        switch (intrinsicId)
                        {
                            case NI_SSE41_BlendVariable:
                            case NI_AVX_BlendVariable:
                            case NI_AVX2_BlendVariable:
                            {
                                if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional))
                                {
                                    MakeSrcContained(node, op2);
                                }
                                else if (supportsRegOptional)
                                {
                                    op2->SetRegOptional();
                                }
                                break;
                            }

                            case NI_BMI2_MultiplyNoFlags:
                            case NI_BMI2_X64_MultiplyNoFlags:
                            {
                                if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional))
                                {
                                    MakeSrcContained(node, op2);
                                }
                                else if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional))
                                {
                                    MakeSrcContained(node, op1);
                                    // MultiplyNoFlags is a Commutative operation, so swap the first two operands here
                                    // to make the containment checks in codegen significantly simpler
                                    *(originalArgList->pCurrent())         = op2;
                                    *(originalArgList->Rest()->pCurrent()) = op1;
                                }
                                else if (supportsRegOptional)
                                {
                                    op2->SetRegOptional();
                                }
                                break;
                            }

                            default:
                            {
                                unreached();
                                break;
                            }
                        }
                    }
                }

                case HW_Category_IMM:
                {
                    bool supportsRegOptional = false;

                    switch (intrinsicId)
                    {
                        case NI_SSE_Shuffle:
                        case NI_SSE2_Insert:
                        case NI_SSE2_Shuffle:
                        case NI_SSSE3_AlignRight:
                        case NI_SSE41_Blend:
                        case NI_SSE41_DotProduct:
                        case NI_SSE41_Insert:
                        case NI_SSE41_X64_Insert:
                        case NI_SSE41_MultipleSumAbsoluteDifferences:
                        case NI_AVX_Blend:
                        case NI_AVX_Compare:
                        case NI_AVX_CompareScalar:
                        case NI_AVX_DotProduct:
                        case NI_AVX_Permute2x128:
                        case NI_AVX_Shuffle:
                        case NI_AVX2_Blend:
                        case NI_AVX2_MultipleSumAbsoluteDifferences:
                        case NI_AVX2_Permute2x128:
                        case NI_PCLMULQDQ_CarrylessMultiply:
                        {
                            if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional))
                            {
                                MakeSrcContained(node, op2);
                            }
                            else if (supportsRegOptional)
                            {
                                op2->SetRegOptional();
                            }
                            break;
                        }

                        default:
                        {
                            break;
                        }
                    }

                    break;
                }

                default:
                {
                    unreached();
                    break;
                }
            }
        }
        else
        {
            unreached();
        }

        if (HWIntrinsicInfo::lookupCategory(intrinsicId) == HW_Category_IMM)
        {
            GenTree* lastOp = HWIntrinsicInfo::lookupLastOp(node);
            assert(lastOp != nullptr);

            if (HWIntrinsicInfo::isImmOp(intrinsicId, lastOp) && lastOp->IsCnsIntOrI())
            {
                MakeSrcContained(node, lastOp);
            }
        }
    }
}
#endif // FEATURE_HW_INTRINSICS

//------------------------------------------------------------------------
// ContainCheckFloatBinary: determine whether the sources of a floating point binary node should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckFloatBinary(GenTreeOp* node)
{
    assert(node->OperIs(GT_ADD, GT_SUB, GT_MUL, GT_DIV) && varTypeIsFloating(node));

    // overflow operations aren't supported on float/double types.
    assert(!node->gtOverflowEx());

    GenTree* op1 = node->gtGetOp1();
    GenTree* op2 = node->gtGetOp2();

    // No implicit conversions at this stage as the expectation is that
    // everything is made explicit by adding casts.
    assert(op1->TypeGet() == op2->TypeGet());

    bool isSafeToContainOp1 = true;
    bool isSafeToContainOp2 = true;

    if (op2->IsCnsNonZeroFltOrDbl())
    {
        MakeSrcContained(node, op2);
    }
    else if (IsContainableMemoryOp(op2))
    {
        isSafeToContainOp2 = IsSafeToContainMem(node, op2);
        if (isSafeToContainOp2)
        {
            MakeSrcContained(node, op2);
        }
    }

    if (!op2->isContained() && node->OperIsCommutative())
    {
        // Though we have GT_ADD(op1=memOp, op2=non-memOp, we try to reorder the operands
        // as long as it is safe so that the following efficient code sequence is generated:
        //      addss/sd targetReg, memOp    (if op1Reg == targetReg) OR
        //      movaps targetReg, op2Reg; addss/sd targetReg, [memOp]
        //
        // Instead of
        //      movss op1Reg, [memOp]; addss/sd targetReg, Op2Reg  (if op1Reg == targetReg) OR
        //      movss op1Reg, [memOp]; movaps targetReg, op1Reg, addss/sd targetReg, Op2Reg

        if (op1->IsCnsNonZeroFltOrDbl())
        {
            MakeSrcContained(node, op1);
        }
        else if (IsContainableMemoryOp(op1))
        {
            isSafeToContainOp1 = IsSafeToContainMem(node, op1);
            if (isSafeToContainOp1)
            {
                MakeSrcContained(node, op1);
            }
        }
    }

    if (!op1->isContained() && !op2->isContained())
    {
        // If there are no containable operands, we can make an operand reg optional.
        // IsSafeToContainMem is expensive so we call it at most once for each operand
        // in this method. If we already called IsSafeToContainMem, it must have returned false;
        // otherwise, the corresponding operand (op1 or op2) would be contained.
        isSafeToContainOp1 = isSafeToContainOp1 && IsSafeToContainMem(node, op1);
        isSafeToContainOp2 = isSafeToContainOp2 && IsSafeToContainMem(node, op2);
        SetRegOptionalForBinOp(node, isSafeToContainOp1, isSafeToContainOp2);
    }
}

#endif // _TARGET_XARCH_