summaryrefslogtreecommitdiff
path: root/src/jit/hwintrinsicxarch.cpp
blob: 39482739bc5bfecad4c64978fc0f2cf1b9882ba0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

#include "jitpch.h"
#include "hwintrinsic.h"

#ifdef FEATURE_HW_INTRINSICS

static const HWIntrinsicInfo hwIntrinsicInfoArray[] = {
// clang-format off
#define HARDWARE_INTRINSIC(id, name, isa, ival, size, numarg, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, category, flag) \
    {NI_##id, name, InstructionSet_##isa, ival, size, numarg, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, category, static_cast<HWIntrinsicFlag>(flag)},
// clang-format on
#include "hwintrinsiclistxarch.h"
};

//------------------------------------------------------------------------
// lookup: Gets the HWIntrinsicInfo associated with a given NamedIntrinsic
//
// Arguments:
//    id -- The NamedIntrinsic associated with the HWIntrinsic to lookup
//
// Return Value:
//    The HWIntrinsicInfo associated with id
const HWIntrinsicInfo& HWIntrinsicInfo::lookup(NamedIntrinsic id)
{
    assert(id != NI_Illegal);

    assert(id > NI_HW_INTRINSIC_START);
    assert(id < NI_HW_INTRINSIC_END);

    return hwIntrinsicInfoArray[id - NI_HW_INTRINSIC_START - 1];
}

//------------------------------------------------------------------------
// lookupId: Gets the NamedIntrinsic for a given method name and InstructionSet
//
// Arguments:
//    className  -- The name of the class associated with the HWIntrinsic to lookup
//    methodName -- The name of the method associated with the HWIntrinsic to lookup
//
// Return Value:
//    The NamedIntrinsic associated with methodName and isa
NamedIntrinsic HWIntrinsicInfo::lookupId(const char* className, const char* methodName)
{
    // TODO-Throughput: replace sequential search by binary search

    InstructionSet isa = lookupIsa(className);
    assert(isa != InstructionSet_ILLEGAL);

    assert(methodName != nullptr);

    for (int i = 0; i < (NI_HW_INTRINSIC_END - NI_HW_INTRINSIC_START - 1); i++)
    {
        if (isa != hwIntrinsicInfoArray[i].isa)
        {
            continue;
        }

        if (strcmp(methodName, hwIntrinsicInfoArray[i].name) == 0)
        {
            return hwIntrinsicInfoArray[i].id;
        }
    }

    // There are several helper intrinsics that are implemented in managed code
    // Those intrinsics will hit this code path and need to return NI_Illegal
    return NI_Illegal;
}

//------------------------------------------------------------------------
// lookupIsa: Gets the InstructionSet for a given class name
//
// Arguments:
//    className -- The name of the class associated with the InstructionSet to lookup
//
// Return Value:
//    The InstructionSet associated with className
InstructionSet HWIntrinsicInfo::lookupIsa(const char* className)
{
    assert(className != nullptr);

    if (className[0] == 'A')
    {
        if (strcmp(className, "Aes") == 0)
        {
            return InstructionSet_AES;
        }
        if (strcmp(className, "Avx") == 0)
        {
            return InstructionSet_AVX;
        }
        if (strcmp(className, "Avx2") == 0)
        {
            return InstructionSet_AVX2;
        }
    }
    else if (className[0] == 'S')
    {
        if (strcmp(className, "Sse") == 0)
        {
            return InstructionSet_SSE;
        }
        if (strcmp(className, "Sse2") == 0)
        {
            return InstructionSet_SSE2;
        }
        if (strcmp(className, "Sse3") == 0)
        {
            return InstructionSet_SSE3;
        }
        if (strcmp(className, "Ssse3") == 0)
        {
            return InstructionSet_SSSE3;
        }
        if (strcmp(className, "Sse41") == 0)
        {
            return InstructionSet_SSE41;
        }
        if (strcmp(className, "Sse42") == 0)
        {
            return InstructionSet_SSE42;
        }
    }
    else if (className[0] == 'B')
    {
        if (strcmp(className, "Bmi1") == 0)
        {
            return InstructionSet_BMI1;
        }
        if (strcmp(className, "Bmi2") == 0)
        {
            return InstructionSet_BMI2;
        }
    }
    else if (className[0] == 'P')
    {
        if (strcmp(className, "Pclmulqdq") == 0)
        {
            return InstructionSet_PCLMULQDQ;
        }
        if (strcmp(className, "Popcnt") == 0)
        {
            return InstructionSet_POPCNT;
        }
    }
    else if (strcmp(className, "Fma") == 0)
    {
        return InstructionSet_FMA;
    }
    else if (strcmp(className, "Lzcnt") == 0)
    {
        return InstructionSet_LZCNT;
    }

    unreached();
    return InstructionSet_ILLEGAL;
}

//------------------------------------------------------------------------
// lookupSimdSize: Gets the SimdSize for a given HWIntrinsic and signature
//
// Arguments:
//    id -- The ID associated with the HWIntrinsic to lookup
//   sig -- The signature of the HWIntrinsic to lookup
//
// Return Value:
//    The SIMD size for the HWIntrinsic associated with id and sig
//
// Remarks:
//    This function is only used by the importer. After importation, we can
//    get the SIMD size from the GenTreeHWIntrinsic node.
unsigned HWIntrinsicInfo::lookupSimdSize(Compiler* comp, NamedIntrinsic id, CORINFO_SIG_INFO* sig)
{
    if (HWIntrinsicInfo::HasFixedSimdSize(id))
    {
        return lookupSimdSize(id);
    }

    CORINFO_CLASS_HANDLE typeHnd = nullptr;

    if (JITtype2varType(sig->retType) == TYP_STRUCT)
    {
        typeHnd = sig->retTypeSigClass;
    }
    else if (HWIntrinsicInfo::BaseTypeFromFirstArg(id))
    {
        typeHnd = comp->info.compCompHnd->getArgClass(sig, sig->args);
    }
    else
    {
        assert(HWIntrinsicInfo::BaseTypeFromSecondArg(id));
        CORINFO_ARG_LIST_HANDLE secondArg = comp->info.compCompHnd->getArgNext(sig->args);
        typeHnd                           = comp->info.compCompHnd->getArgClass(sig, secondArg);
    }

    unsigned  simdSize = 0;
    var_types baseType = comp->getBaseTypeAndSizeOfSIMDType(typeHnd, &simdSize);
    assert((simdSize > 0) && (baseType != TYP_UNKNOWN));
    return simdSize;
}

//------------------------------------------------------------------------
// lookupNumArgs: Gets the number of args for a given HWIntrinsic node
//
// Arguments:
//    node -- The HWIntrinsic node to get the number of args for
//
// Return Value:
//    The number of args for the HWIntrinsic associated with node
int HWIntrinsicInfo::lookupNumArgs(const GenTreeHWIntrinsic* node)
{
    assert(node != nullptr);

    NamedIntrinsic id      = node->gtHWIntrinsicId;
    int            numArgs = lookupNumArgs(id);

    if (numArgs >= 0)
    {
        return numArgs;
    }

    assert(numArgs == -1);

    GenTree* op1 = node->gtGetOp1();

    if (op1 == nullptr)
    {
        return 0;
    }

    if (op1->OperIsList())
    {
        GenTreeArgList* list = op1->AsArgList();
        numArgs              = 0;

        do
        {
            numArgs++;
            list = list->Rest();
        } while (list != nullptr);

        return numArgs;
    }

    GenTree* op2 = node->gtGetOp2();

    return (op2 == nullptr) ? 1 : 2;
}

//------------------------------------------------------------------------
// lookupLastOp: Gets the last operand for a given HWIntrinsic node
//
// Arguments:
//    node   -- The HWIntrinsic node to get the last operand for
//
// Return Value:
//     The last operand for node
GenTree* HWIntrinsicInfo::lookupLastOp(const GenTreeHWIntrinsic* node)
{
    int numArgs = lookupNumArgs(node);

    switch (numArgs)
    {
        case 0:
        {
            assert(node->gtGetOp1() == nullptr);
            assert(node->gtGetOp2() == nullptr);
            return nullptr;
        }

        case 1:
        {
            assert(node->gtGetOp1() != nullptr);
            assert(!node->gtGetOp1()->OperIsList());
            assert(node->gtGetOp2() == nullptr);

            return node->gtGetOp1();
        }

        case 2:
        {
            assert(node->gtGetOp1() != nullptr);
            assert(!node->gtGetOp1()->OperIsList());
            assert(node->gtGetOp2() != nullptr);

            return node->gtGetOp2();
        }

        case 3:
        {
            assert(node->gtGetOp1() != nullptr);
            assert(node->gtGetOp1()->OperIsList());
            assert(node->gtGetOp2() == nullptr);
            assert(node->gtGetOp1()->AsArgList()->Rest()->Rest()->Current() != nullptr);
            assert(node->gtGetOp1()->AsArgList()->Rest()->Rest()->Rest() == nullptr);

            return node->gtGetOp1()->AsArgList()->Rest()->Rest()->Current();
        }

        case 5:
        {
            assert(node->gtGetOp1() != nullptr);
            assert(node->gtGetOp1()->OperIsList());
            assert(node->gtGetOp2() == nullptr);
            assert(node->gtGetOp1()->AsArgList()->Rest()->Rest()->Rest()->Rest()->Current() != nullptr);
            assert(node->gtGetOp1()->AsArgList()->Rest()->Rest()->Rest()->Rest()->Rest() == nullptr);

            return node->gtGetOp1()->AsArgList()->Rest()->Rest()->Rest()->Rest()->Current();
        }

        default:
        {
            unreached();
            return nullptr;
        }
    }
}

//------------------------------------------------------------------------
// isImmOp: Gets a value that indicates whether the HWIntrinsic node has an imm operand
//
// Arguments:
//    id -- The NamedIntrinsic associated with the HWIntrinsic to lookup
//    op -- The operand to check
//
// Return Value:
//     true if the node has an imm operand; otherwise, false
bool HWIntrinsicInfo::isImmOp(NamedIntrinsic id, const GenTree* op)
{
    if (HWIntrinsicInfo::lookupCategory(id) != HW_Category_IMM)
    {
        return false;
    }

    if (!HWIntrinsicInfo::MaybeImm(id))
    {
        return true;
    }

    if (genActualType(op->TypeGet()) != TYP_INT)
    {
        return false;
    }

    return true;
}

//------------------------------------------------------------------------
// lookupImmUpperBound: Gets the upper bound for the imm-value of a given NamedIntrinsic
//
// Arguments:
//    id -- The NamedIntrinsic associated with the HWIntrinsic to lookup
//
// Return Value:
//     The upper bound for the imm-value of the intrinsic associated with id
//
int HWIntrinsicInfo::lookupImmUpperBound(NamedIntrinsic id)
{
    assert(HWIntrinsicInfo::lookupCategory(id) == HW_Category_IMM);

    switch (id)
    {
        case NI_AVX_Compare:
        case NI_AVX_CompareScalar:
        {
            assert(!HWIntrinsicInfo::HasFullRangeImm(id));
            return 31; // enum FloatComparisonMode has 32 values
        }

        case NI_AVX2_GatherVector128:
        case NI_AVX2_GatherVector256:
        case NI_AVX2_GatherMaskVector128:
        case NI_AVX2_GatherMaskVector256:
            return 8;

        default:
        {
            assert(HWIntrinsicInfo::HasFullRangeImm(id));
            return 255;
        }
    }
}

//------------------------------------------------------------------------
// isInImmRange: Check if ival is valid for the intrinsic
//
// Arguments:
//    id   -- The NamedIntrinsic associated with the HWIntrinsic to lookup
//    ival -- the imm value to be checked
//
// Return Value:
//     true if ival is valid for the intrinsic
//
bool HWIntrinsicInfo::isInImmRange(NamedIntrinsic id, int ival)
{
    assert(HWIntrinsicInfo::lookupCategory(id) == HW_Category_IMM);

    if (isAVX2GatherIntrinsic(id))
    {
        return ival == 1 || ival == 2 || ival == 4 || ival == 8;
    }
    else
    {
        return ival <= lookupImmUpperBound(id) && ival >= 0;
    }
}

//------------------------------------------------------------------------
// isAVX2GatherIntrinsic: Check if the intrinsic is AVX Gather*
//
// Arguments:
//    id   -- The NamedIntrinsic associated with the HWIntrinsic to lookup
//
// Return Value:
//     true if id is AVX Gather* intrinsic
//
bool HWIntrinsicInfo::isAVX2GatherIntrinsic(NamedIntrinsic id)
{
    switch (id)
    {
        case NI_AVX2_GatherVector128:
        case NI_AVX2_GatherVector256:
        case NI_AVX2_GatherMaskVector128:
        case NI_AVX2_GatherMaskVector256:
            return true;
        default:
            return false;
    }
}

//------------------------------------------------------------------------
// isFullyImplementedIsa: Gets a value that indicates whether the InstructionSet is fully implemented
//
// Arguments:
//    isa - The InstructionSet to check
//
// Return Value:
//    true if isa is supported; otherwise, false
bool HWIntrinsicInfo::isFullyImplementedIsa(InstructionSet isa)
{
    switch (isa)
    {
        // These ISAs are partially implemented
        case InstructionSet_AVX2:
        case InstructionSet_BMI1:
        case InstructionSet_BMI2:
        case InstructionSet_SSE42:
        {
            return true;
        }

        // These ISAs are fully implemented
        case InstructionSet_AES:
        case InstructionSet_AVX:
        case InstructionSet_FMA:
        case InstructionSet_LZCNT:
        case InstructionSet_PCLMULQDQ:
        case InstructionSet_POPCNT:
        case InstructionSet_SSE:
        case InstructionSet_SSE2:
        case InstructionSet_SSE3:
        case InstructionSet_SSSE3:
        case InstructionSet_SSE41:
        {
            return true;
        }

        default:
        {
            unreached();
        }
    }
}

//------------------------------------------------------------------------
// isScalarIsa: Gets a value that indicates whether the InstructionSet is scalar
//
// Arguments:
//    isa - The InstructionSet to check
//
// Return Value:
//    true if isa is scalar; otherwise, false
bool HWIntrinsicInfo::isScalarIsa(InstructionSet isa)
{
    switch (isa)
    {
        case InstructionSet_BMI1:
        case InstructionSet_BMI2:
        case InstructionSet_LZCNT:
        case InstructionSet_POPCNT:
        {
            return true;
        }

        default:
        {
            return false;
        }
    }
}

//------------------------------------------------------------------------
// getArgForHWIntrinsic: get the argument from the stack and match  the signature
//
// Arguments:
//    argType   -- the required type of argument
//    argClass  -- the class handle of argType
//
// Return Value:
//     get the argument at the given index from the stack and match  the signature
//
GenTree* Compiler::getArgForHWIntrinsic(var_types argType, CORINFO_CLASS_HANDLE argClass)
{
    GenTree* arg = nullptr;
    if (argType == TYP_STRUCT)
    {
        unsigned int argSizeBytes;
        var_types    base = getBaseTypeAndSizeOfSIMDType(argClass, &argSizeBytes);
        argType           = getSIMDTypeForSize(argSizeBytes);
        assert((argType == TYP_SIMD32) || (argType == TYP_SIMD16));
        arg = impSIMDPopStack(argType);
        assert((arg->TypeGet() == TYP_SIMD16) || (arg->TypeGet() == TYP_SIMD32));
    }
    else
    {
        assert(varTypeIsArithmetic(argType));
        arg = impPopStack().val;
        assert(varTypeIsArithmetic(arg->TypeGet()));
        assert(genActualType(arg->gtType) == genActualType(argType));
    }
    return arg;
}

//------------------------------------------------------------------------
// impNonConstFallback: convert certain SSE2/AVX2 shift intrinsic to its semantic alternative when the imm-arg is
// not a compile-time constant
//
// Arguments:
//    intrinsic  -- intrinsic ID
//    simdType   -- Vector type
//    baseType   -- base type of the Vector128/256<T>
//
// Return Value:
//     return the IR of semantic alternative on non-const imm-arg
//
GenTree* Compiler::impNonConstFallback(NamedIntrinsic intrinsic, var_types simdType, var_types baseType)
{
    assert(HWIntrinsicInfo::NoJmpTableImm(intrinsic));
    switch (intrinsic)
    {
        case NI_SSE2_ShiftLeftLogical:
        case NI_SSE2_ShiftRightArithmetic:
        case NI_SSE2_ShiftRightLogical:
        case NI_AVX2_ShiftLeftLogical:
        case NI_AVX2_ShiftRightArithmetic:
        case NI_AVX2_ShiftRightLogical:
        {
            GenTree* op2 = impPopStack().val;
            GenTree* op1 = impSIMDPopStack(simdType);
            GenTree* tmpOp =
                gtNewSimdHWIntrinsicNode(TYP_SIMD16, op2, NI_SSE2_ConvertScalarToVector128Int32, TYP_INT, 16);
            return gtNewSimdHWIntrinsicNode(simdType, op1, tmpOp, intrinsic, baseType, genTypeSize(simdType));
        }

        default:
            unreached();
            return nullptr;
    }
}

//------------------------------------------------------------------------
// addRangeCheckIfNeeded: add a GT_HW_INTRINSIC_CHK node for non-full-range imm-intrinsic
//
// Arguments:
//    intrinsic  -- intrinsic ID
//    lastOp     -- the last operand of the intrinsic that points to the imm-arg
//    mustExpand -- true if the compiler is compiling the fallback(GT_CALL) of this intrinsics
//
// Return Value:
//     add a GT_HW_INTRINSIC_CHK node for non-full-range imm-intrinsic, which would throw ArgumentOutOfRangeException
//     when the imm-argument is not in the valid range
//
GenTree* Compiler::addRangeCheckIfNeeded(NamedIntrinsic intrinsic, GenTree* lastOp, bool mustExpand)
{
    assert(lastOp != nullptr);
    // Full-range imm-intrinsics do not need the range-check
    // because the imm-parameter of the intrinsic method is a byte.
    // AVX2 Gather intrinsics no not need the range-check
    // because their imm-parameter have discrete valid values that are handle by managed code
    if (mustExpand && !HWIntrinsicInfo::HasFullRangeImm(intrinsic) && HWIntrinsicInfo::isImmOp(intrinsic, lastOp) &&
        !HWIntrinsicInfo::isAVX2GatherIntrinsic(intrinsic))
    {
        assert(!lastOp->IsCnsIntOrI());
        GenTree* upperBoundNode =
            new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, HWIntrinsicInfo::lookupImmUpperBound(intrinsic));
        GenTree* index = nullptr;
        if ((lastOp->gtFlags & GTF_SIDE_EFFECT) != 0)
        {
            index = fgInsertCommaFormTemp(&lastOp);
        }
        else
        {
            index = gtCloneExpr(lastOp);
        }
        GenTreeBoundsChk* hwIntrinsicChk = new (this, GT_HW_INTRINSIC_CHK)
            GenTreeBoundsChk(GT_HW_INTRINSIC_CHK, TYP_VOID, index, upperBoundNode, SCK_RNGCHK_FAIL);
        hwIntrinsicChk->gtThrowKind = SCK_ARG_RNG_EXCPN;
        return gtNewOperNode(GT_COMMA, lastOp->TypeGet(), hwIntrinsicChk, lastOp);
    }
    else
    {
        return lastOp;
    }
}

//------------------------------------------------------------------------
// compSupportsHWIntrinsic: compiler support of hardware intrinsics
//
// Arguments:
//    isa - Instruction set
// Return Value:
//    true if
//    - isa is a scalar ISA
//    - isa is a SIMD ISA and featureSIMD=true
//    - isa is fully implemented or EnableIncompleteISAClass=true
bool Compiler::compSupportsHWIntrinsic(InstructionSet isa)
{
    return (featureSIMD || HWIntrinsicInfo::isScalarIsa(isa)) && (
#ifdef DEBUG
                                                                     JitConfig.EnableIncompleteISAClass() ||
#endif
                                                                     HWIntrinsicInfo::isFullyImplementedIsa(isa));
}

//------------------------------------------------------------------------
// hwIntrinsicSignatureTypeSupported: platform support of hardware intrinsics
//
// Arguments:
//    retType - return type
//    sig     - intrinsic signature
//
// Return Value:
//    Returns true iff the given type signature is supported
// Notes:
//    - This is only used on 32-bit systems to determine whether the signature uses no 64-bit registers.
//    - The `retType` is passed to avoid another call to the type system, as it has already been retrieved.
bool Compiler::hwIntrinsicSignatureTypeSupported(var_types retType, CORINFO_SIG_INFO* sig, NamedIntrinsic intrinsic)
{
#ifdef _TARGET_X86_
    CORINFO_CLASS_HANDLE argClass;

    if (HWIntrinsicInfo::Is64BitOnly(intrinsic))
    {
        return false;
    }
    else if (HWIntrinsicInfo::SecondArgMaybe64Bit(intrinsic))
    {
        assert(sig->numArgs >= 2);
        CorInfoType corType =
            strip(info.compCompHnd->getArgType(sig, info.compCompHnd->getArgNext(sig->args), &argClass));
        return !varTypeIsLong(JITtype2varType(corType));
    }

    return !varTypeIsLong(retType);
#else
    return true;
#endif
}

//------------------------------------------------------------------------
// impIsTableDrivenHWIntrinsic:
//
// Arguments:
//    category - category of a HW intrinsic
//
// Return Value:
//    returns true if this category can be table-driven in the importer
//
static bool impIsTableDrivenHWIntrinsic(NamedIntrinsic intrinsicId, HWIntrinsicCategory category)
{
    // HW_Flag_NoCodeGen implies this intrinsic should be manually morphed in the importer.
    return (category != HW_Category_Special) && (category != HW_Category_Scalar) &&
           HWIntrinsicInfo::RequiresCodegen(intrinsicId) && !HWIntrinsicInfo::HasSpecialImport(intrinsicId);
}

//------------------------------------------------------------------------
// impHWIntrinsic: dispatch hardware intrinsics to their own implementation
//
// Arguments:
//    intrinsic -- id of the intrinsic function.
//    method    -- method handle of the intrinsic function.
//    sig       -- signature of the intrinsic call
//
// Return Value:
//    the expanded intrinsic.
//
GenTree* Compiler::impHWIntrinsic(NamedIntrinsic        intrinsic,
                                  CORINFO_METHOD_HANDLE method,
                                  CORINFO_SIG_INFO*     sig,
                                  bool                  mustExpand)
{
    InstructionSet      isa      = HWIntrinsicInfo::lookupIsa(intrinsic);
    HWIntrinsicCategory category = HWIntrinsicInfo::lookupCategory(intrinsic);
    int                 numArgs  = sig->numArgs;
    var_types           retType  = JITtype2varType(sig->retType);
    var_types           baseType = TYP_UNKNOWN;

    if ((retType == TYP_STRUCT) && featureSIMD)
    {
        unsigned int sizeBytes;
        baseType = getBaseTypeAndSizeOfSIMDType(sig->retTypeSigClass, &sizeBytes);
        retType  = getSIMDTypeForSize(sizeBytes);
        assert(sizeBytes != 0);
    }

    // This intrinsic is supported if
    // - the ISA is available on the underlying hardware (compSupports returns true)
    // - the compiler supports this hardware intrinsics (compSupportsHWIntrinsic returns true)
    // - intrinsics do not require 64-bit registers (r64) on 32-bit platforms (signatureTypeSupproted returns
    // true)
    bool issupported =
        compSupports(isa) && compSupportsHWIntrinsic(isa) && hwIntrinsicSignatureTypeSupported(retType, sig, intrinsic);

    if (category == HW_Category_IsSupportedProperty)
    {
        return gtNewIconNode(issupported);
    }
    // - calling to unsupported intrinsics must throw PlatforNotSupportedException
    else if (!issupported)
    {
        return impUnsupportedHWIntrinsic(CORINFO_HELP_THROW_PLATFORM_NOT_SUPPORTED, method, sig, mustExpand);
    }
    // Avoid checking stacktop for 0-op intrinsics
    if (sig->numArgs > 0 && HWIntrinsicInfo::isImmOp(intrinsic, impStackTop().val))
    {
        GenTree* lastOp = impStackTop().val;
        // The imm-HWintrinsics that do not accept all imm8 values may throw
        // ArgumentOutOfRangeException when the imm argument is not in the valid range
        if (!HWIntrinsicInfo::HasFullRangeImm(intrinsic))
        {
            if (!mustExpand && lastOp->IsCnsIntOrI() &&
                !HWIntrinsicInfo::isInImmRange(intrinsic, (int)lastOp->AsIntCon()->IconValue()))
            {
                return nullptr;
            }
        }

        if (!lastOp->IsCnsIntOrI())
        {
            if (HWIntrinsicInfo::NoJmpTableImm(intrinsic))
            {
                return impNonConstFallback(intrinsic, retType, baseType);
            }

            if (!mustExpand)
            {
                // When the imm-argument is not a constant and we are not being forced to expand, we need to
                // return nullptr so a GT_CALL to the intrinsic method is emitted instead. The
                // intrinsic method is recursive and will be forced to expand, at which point
                // we emit some less efficient fallback code.
                return nullptr;
            }
        }
    }

    bool isTableDriven = impIsTableDrivenHWIntrinsic(intrinsic, category);

    if (isTableDriven && ((category == HW_Category_MemoryStore) || HWIntrinsicInfo::BaseTypeFromFirstArg(intrinsic) ||
                          HWIntrinsicInfo::BaseTypeFromSecondArg(intrinsic)))
    {
        if (HWIntrinsicInfo::BaseTypeFromFirstArg(intrinsic))
        {
            baseType = getBaseTypeOfSIMDType(info.compCompHnd->getArgClass(sig, sig->args));
        }
        else
        {
            assert((category == HW_Category_MemoryStore) || HWIntrinsicInfo::BaseTypeFromSecondArg(intrinsic));
            CORINFO_ARG_LIST_HANDLE secondArg      = info.compCompHnd->getArgNext(sig->args);
            CORINFO_CLASS_HANDLE    secondArgClass = info.compCompHnd->getArgClass(sig, secondArg);
            baseType                               = getBaseTypeOfSIMDType(secondArgClass);

            if (baseType == TYP_UNKNOWN) // the second argument is not a vector
            {
                baseType = JITtype2varType(strip(info.compCompHnd->getArgType(sig, secondArg, &secondArgClass)));
            }
        }
    }

    if ((HWIntrinsicInfo::IsOneTypeGeneric(intrinsic) || HWIntrinsicInfo::IsTwoTypeGeneric(intrinsic)) &&
        !HWIntrinsicInfo::HasSpecialImport(intrinsic))
    {
        if (!varTypeIsArithmetic(baseType))
        {
            return impUnsupportedHWIntrinsic(CORINFO_HELP_THROW_TYPE_NOT_SUPPORTED, method, sig, mustExpand);
        }

        if (HWIntrinsicInfo::IsTwoTypeGeneric(intrinsic))
        {
            // StaticCast<T, U> has two type parameters.
            assert(numArgs == 1);
            var_types srcType = getBaseTypeOfSIMDType(info.compCompHnd->getArgClass(sig, sig->args));
            if (!varTypeIsArithmetic(srcType))
            {
                return impUnsupportedHWIntrinsic(CORINFO_HELP_THROW_TYPE_NOT_SUPPORTED, method, sig, mustExpand);
            }
        }
    }

    if (HWIntrinsicInfo::IsFloatingPointUsed(intrinsic))
    {
        // Set `compFloatingPointUsed` to cover the scenario where an intrinsic is being on SIMD fields, but
        // where no SIMD local vars are in use. This is the same logic as is used for FEATURE_SIMD.
        compFloatingPointUsed = true;
    }

    // table-driven importer of simple intrinsics
    if (isTableDriven)
    {
        unsigned                simdSize = HWIntrinsicInfo::lookupSimdSize(this, intrinsic, sig);
        CORINFO_ARG_LIST_HANDLE argList  = sig->args;
        CORINFO_CLASS_HANDLE    argClass;
        var_types               argType = TYP_UNKNOWN;

        assert(numArgs >= 0);
        assert(HWIntrinsicInfo::lookupIns(intrinsic, baseType) != INS_invalid);
        assert(simdSize == 32 || simdSize == 16);

        GenTreeHWIntrinsic* retNode = nullptr;
        GenTree*            op1     = nullptr;
        GenTree*            op2     = nullptr;

        switch (numArgs)
        {
            case 0:
                retNode = gtNewSimdHWIntrinsicNode(retType, intrinsic, baseType, simdSize);
                break;
            case 1:
                argType = JITtype2varType(strip(info.compCompHnd->getArgType(sig, argList, &argClass)));
                op1     = getArgForHWIntrinsic(argType, argClass);
                retNode = gtNewSimdHWIntrinsicNode(retType, op1, intrinsic, baseType, simdSize);
                break;
            case 2:
                argType = JITtype2varType(
                    strip(info.compCompHnd->getArgType(sig, info.compCompHnd->getArgNext(argList), &argClass)));
                op2 = getArgForHWIntrinsic(argType, argClass);

                op2 = addRangeCheckIfNeeded(intrinsic, op2, mustExpand);

                argType = JITtype2varType(strip(info.compCompHnd->getArgType(sig, argList, &argClass)));
                op1     = getArgForHWIntrinsic(argType, argClass);

                retNode = gtNewSimdHWIntrinsicNode(retType, op1, op2, intrinsic, baseType, simdSize);
                break;

            case 3:
            {
                CORINFO_ARG_LIST_HANDLE arg2 = info.compCompHnd->getArgNext(argList);
                CORINFO_ARG_LIST_HANDLE arg3 = info.compCompHnd->getArgNext(arg2);

                argType      = JITtype2varType(strip(info.compCompHnd->getArgType(sig, arg3, &argClass)));
                GenTree* op3 = getArgForHWIntrinsic(argType, argClass);

                op3 = addRangeCheckIfNeeded(intrinsic, op3, mustExpand);

                argType = JITtype2varType(strip(info.compCompHnd->getArgType(sig, arg2, &argClass)));
                op2     = getArgForHWIntrinsic(argType, argClass);
                var_types op2Type;
                if (intrinsic == NI_AVX2_GatherVector128 || intrinsic == NI_AVX2_GatherVector256)
                {
                    assert(varTypeIsSIMD(op2->TypeGet()));
                    op2Type = getBaseTypeOfSIMDType(argClass);
                }

                argType = JITtype2varType(strip(info.compCompHnd->getArgType(sig, argList, &argClass)));
                op1     = getArgForHWIntrinsic(argType, argClass);

                retNode = gtNewSimdHWIntrinsicNode(retType, op1, op2, op3, intrinsic, baseType, simdSize);

                if (intrinsic == NI_AVX2_GatherVector128 || intrinsic == NI_AVX2_GatherVector256)
                {
                    assert(varTypeIsSIMD(op2->TypeGet()));
                    retNode->AsHWIntrinsic()->gtIndexBaseType = op2Type;
                }
                break;
            }

            default:
                unreached();
        }

        bool isMemoryStore = retNode->OperIsMemoryStore();
        if (isMemoryStore || retNode->OperIsMemoryLoad())
        {
            if (isMemoryStore)
            {
                // A MemoryStore operation is an assignment
                retNode->gtFlags |= GTF_ASG;
            }

            // This operation contains an implicit indirection
            //   it could point into the gloabal heap or
            //   it could throw a null reference exception.
            //
            retNode->gtFlags |= (GTF_GLOB_REF | GTF_EXCEPT);
        }
        return retNode;
    }

    // other intrinsics need special importation
    switch (isa)
    {
        case InstructionSet_SSE:
            return impSSEIntrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_SSE2:
            return impSSE2Intrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_SSE42:
            return impSSE42Intrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_AVX:
        case InstructionSet_AVX2:
            return impAvxOrAvx2Intrinsic(intrinsic, method, sig, mustExpand);

        case InstructionSet_AES:
            return impAESIntrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_BMI1:
            return impBMI1Intrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_BMI2:
            return impBMI2Intrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_FMA:
            return impFMAIntrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_LZCNT:
            return impLZCNTIntrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_PCLMULQDQ:
            return impPCLMULQDQIntrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_POPCNT:
            return impPOPCNTIntrinsic(intrinsic, method, sig, mustExpand);
        default:
            return nullptr;
    }
}

GenTree* Compiler::impSSEIntrinsic(NamedIntrinsic        intrinsic,
                                   CORINFO_METHOD_HANDLE method,
                                   CORINFO_SIG_INFO*     sig,
                                   bool                  mustExpand)
{
    GenTree* retNode  = nullptr;
    GenTree* op1      = nullptr;
    GenTree* op2      = nullptr;
    GenTree* op3      = nullptr;
    GenTree* op4      = nullptr;
    int      simdSize = HWIntrinsicInfo::lookupSimdSize(this, intrinsic, sig);

    // The Prefetch and StoreFence intrinsics don't take any SIMD operands
    // and have a simdSize of 0
    assert((simdSize == 16) || (simdSize == 0));

    switch (intrinsic)
    {
        case NI_SSE_MoveMask:
            assert(sig->numArgs == 1);
            assert(JITtype2varType(sig->retType) == TYP_INT);
            assert(getBaseTypeOfSIMDType(info.compCompHnd->getArgClass(sig, sig->args)) == TYP_FLOAT);
            op1     = impSIMDPopStack(TYP_SIMD16);
            retNode = gtNewSimdHWIntrinsicNode(TYP_INT, op1, intrinsic, TYP_FLOAT, simdSize);
            break;

        case NI_SSE_Prefetch0:
        case NI_SSE_Prefetch1:
        case NI_SSE_Prefetch2:
        case NI_SSE_PrefetchNonTemporal:
        {
            assert(sig->numArgs == 1);
            assert(JITtype2varType(sig->retType) == TYP_VOID);
            op1     = impPopStack().val;
            retNode = gtNewSimdHWIntrinsicNode(TYP_VOID, op1, intrinsic, TYP_UBYTE, 0);
            break;
        }

        case NI_SSE_StaticCast:
        {
            // We fold away the static cast here, as it only exists to satisfy
            // the type system. It is safe to do this here since the retNode type
            // and the signature return type are both TYP_SIMD16.
            assert(sig->numArgs == 1);
            retNode = impSIMDPopStack(TYP_SIMD16, false, sig->retTypeClass);
            SetOpLclRelatedToSIMDIntrinsic(retNode);
            assert(retNode->gtType == getSIMDTypeForSize(getSIMDTypeSizeInBytes(sig->retTypeSigClass)));
            break;
        }

        case NI_SSE_StoreFence:
            assert(sig->numArgs == 0);
            assert(JITtype2varType(sig->retType) == TYP_VOID);
            retNode = gtNewSimdHWIntrinsicNode(TYP_VOID, intrinsic, TYP_VOID, 0);
            break;

        default:
            JITDUMP("Not implemented hardware intrinsic");
            break;
    }
    return retNode;
}

GenTree* Compiler::impSSE2Intrinsic(NamedIntrinsic        intrinsic,
                                    CORINFO_METHOD_HANDLE method,
                                    CORINFO_SIG_INFO*     sig,
                                    bool                  mustExpand)
{
    GenTree*  retNode  = nullptr;
    GenTree*  op1      = nullptr;
    GenTree*  op2      = nullptr;
    int       ival     = -1;
    int       simdSize = HWIntrinsicInfo::lookupSimdSize(this, intrinsic, sig);
    var_types baseType = TYP_UNKNOWN;
    var_types retType  = TYP_UNKNOWN;

    // The  fencing intrinsics don't take any operands and simdSize is 0
    assert((simdSize == 16) || (simdSize == 0));

    CORINFO_ARG_LIST_HANDLE argList = sig->args;
    var_types               argType = TYP_UNKNOWN;

    switch (intrinsic)
    {
        case NI_SSE2_CompareLessThan:
        {
            assert(sig->numArgs == 2);
            op2      = impSIMDPopStack(TYP_SIMD16);
            op1      = impSIMDPopStack(TYP_SIMD16);
            baseType = getBaseTypeOfSIMDType(sig->retTypeSigClass);
            if (baseType == TYP_DOUBLE)
            {
                retNode = gtNewSimdHWIntrinsicNode(TYP_SIMD16, op1, op2, intrinsic, baseType, simdSize);
            }
            else
            {
                retNode =
                    gtNewSimdHWIntrinsicNode(TYP_SIMD16, op2, op1, NI_SSE2_CompareGreaterThan, baseType, simdSize);
            }
            break;
        }

        case NI_SSE2_LoadFence:
        case NI_SSE2_MemoryFence:
        {
            assert(sig->numArgs == 0);
            assert(JITtype2varType(sig->retType) == TYP_VOID);
            assert(simdSize == 0);

            retNode = gtNewSimdHWIntrinsicNode(TYP_VOID, intrinsic, TYP_VOID, simdSize);
            break;
        }

        case NI_SSE2_MoveMask:
        {
            assert(sig->numArgs == 1);
            retType = JITtype2varType(sig->retType);
            assert(retType == TYP_INT);
            op1      = impSIMDPopStack(TYP_SIMD16);
            baseType = getBaseTypeOfSIMDType(info.compCompHnd->getArgClass(sig, sig->args));
            retNode  = gtNewSimdHWIntrinsicNode(retType, op1, intrinsic, baseType, simdSize);
            break;
        }

        case NI_SSE2_StoreNonTemporal:
        {
            assert(sig->numArgs == 2);
            assert(JITtype2varType(sig->retType) == TYP_VOID);
            op2     = impPopStack().val;
            op1     = impPopStack().val;
            retNode = gtNewSimdHWIntrinsicNode(TYP_VOID, op1, op2, NI_SSE2_StoreNonTemporal, op2->TypeGet(), 0);
            break;
        }

        default:
            JITDUMP("Not implemented hardware intrinsic");
            break;
    }
    return retNode;
}

GenTree* Compiler::impSSE42Intrinsic(NamedIntrinsic        intrinsic,
                                     CORINFO_METHOD_HANDLE method,
                                     CORINFO_SIG_INFO*     sig,
                                     bool                  mustExpand)
{
    GenTree*  retNode  = nullptr;
    GenTree*  op1      = nullptr;
    GenTree*  op2      = nullptr;
    var_types callType = JITtype2varType(sig->retType);

    CORINFO_ARG_LIST_HANDLE argList = sig->args;
    CORINFO_CLASS_HANDLE    argClass;
    CorInfoType             corType;
    switch (intrinsic)
    {
        case NI_SSE42_Crc32:
            assert(sig->numArgs == 2);
            op2     = impPopStack().val;
            op1     = impPopStack().val;
            argList = info.compCompHnd->getArgNext(argList);                        // the second argument
            corType = strip(info.compCompHnd->getArgType(sig, argList, &argClass)); // type of the second argument

            retNode = gtNewScalarHWIntrinsicNode(callType, op1, op2, NI_SSE42_Crc32);

            // TODO - currently we use the BaseType to bring the type of the second argument
            // to the code generator. May encode the overload info in other way.
            retNode->gtHWIntrinsic.gtSIMDBaseType = JITtype2varType(corType);
            break;

        default:
            JITDUMP("Not implemented hardware intrinsic");
            break;
    }
    return retNode;
}

//------------------------------------------------------------------------
// normalizeAndGetHalfIndex: compute the half index of a Vector256<baseType>
//                           and normalize the index to the specific range
//
// Arguments:
//    indexPtr   -- OUT paramter, the pointer to the original index value
//    baseType   -- the base type of the Vector256<T>
//
// Return Value:
//    retuen the middle index of a Vector256<baseType>
//    return the normalized index via indexPtr
//
static int normalizeAndGetHalfIndex(int* indexPtr, var_types baseType)
{
    assert(varTypeIsArithmetic(baseType));
    // clear the unused bits to normalize the index into the range of [0, length of Vector256<baseType>)
    *indexPtr = (*indexPtr) & (32 / genTypeSize(baseType) - 1);
    return (16 / genTypeSize(baseType));
}

GenTree* Compiler::impAvxOrAvx2Intrinsic(NamedIntrinsic        intrinsic,
                                         CORINFO_METHOD_HANDLE method,
                                         CORINFO_SIG_INFO*     sig,
                                         bool                  mustExpand)
{
    GenTree*  retNode  = nullptr;
    GenTree*  op1      = nullptr;
    GenTree*  op2      = nullptr;
    var_types baseType = TYP_UNKNOWN;
    int       simdSize = HWIntrinsicInfo::lookupSimdSize(this, intrinsic, sig);

    switch (intrinsic)
    {
        case NI_AVX_Extract:
        {
            // Avx.Extract executes software implementation when the imm8 argument is not compile-time constant
            assert(!mustExpand);

            GenTree* lastOp   = impPopStack().val;
            GenTree* vectorOp = impSIMDPopStack(TYP_SIMD32);
            assert(lastOp->IsCnsIntOrI());
            int ival          = (int)lastOp->AsIntCon()->IconValue();
            baseType          = getBaseTypeOfSIMDType(info.compCompHnd->getArgClass(sig, sig->args));
            var_types retType = JITtype2varType(sig->retType);
            assert(varTypeIsArithmetic(baseType));

            int            midIndex         = normalizeAndGetHalfIndex(&ival, baseType);
            NamedIntrinsic extractIntrinsic = varTypeIsShort(baseType) ? NI_SSE2_Extract : NI_SSE41_Extract;
            GenTree*       half             = nullptr;

            if (ival >= midIndex)
            {
                half = gtNewSimdHWIntrinsicNode(TYP_SIMD16, vectorOp, gtNewIconNode(1), NI_AVX_ExtractVector128,
                                                baseType, 32);
                ival -= midIndex;
            }
            else
            {
                half = gtNewSimdHWIntrinsicNode(TYP_SIMD16, vectorOp, NI_AVX_GetLowerHalf, baseType, 32);
            }

            retNode = gtNewSimdHWIntrinsicNode(retType, half, gtNewIconNode(ival), extractIntrinsic, baseType, 16);
            break;
        }

        case NI_AVX_Insert:
        {
            // Avx.Extract executes software implementation when the imm8 argument is not compile-time constant
            assert(!mustExpand);

            GenTree* lastOp   = impPopStack().val;
            GenTree* dataOp   = impPopStack().val;
            GenTree* vectorOp = impSIMDPopStack(TYP_SIMD32);
            assert(lastOp->IsCnsIntOrI());
            int ival = (int)lastOp->AsIntCon()->IconValue();
            baseType = getBaseTypeOfSIMDType(sig->retTypeSigClass);
            assert(varTypeIsArithmetic(baseType));

            int            midIndex        = normalizeAndGetHalfIndex(&ival, baseType);
            NamedIntrinsic insertIntrinsic = varTypeIsShort(baseType) ? NI_SSE2_Insert : NI_SSE41_Insert;

            GenTree* clonedVectorOp;
            vectorOp =
                impCloneExpr(vectorOp, &clonedVectorOp, info.compCompHnd->getArgClass(sig, sig->args),
                             (unsigned)CHECK_SPILL_ALL, nullptr DEBUGARG("AVX Insert clones the vector operand"));

            if (ival >= midIndex)
            {
                GenTree* halfVector = gtNewSimdHWIntrinsicNode(TYP_SIMD16, vectorOp, gtNewIconNode(1),
                                                               NI_AVX_ExtractVector128, baseType, 32);
                GenTree* ModifiedHalfVector =
                    gtNewSimdHWIntrinsicNode(TYP_SIMD16, halfVector, dataOp, gtNewIconNode(ival - midIndex),
                                             insertIntrinsic, baseType, 16);
                retNode = gtNewSimdHWIntrinsicNode(TYP_SIMD32, clonedVectorOp, ModifiedHalfVector, gtNewIconNode(1),
                                                   NI_AVX_InsertVector128, baseType, 32);
            }
            else
            {
                GenTree* halfVector = gtNewSimdHWIntrinsicNode(TYP_SIMD16, vectorOp, NI_AVX_GetLowerHalf, baseType, 32);
                GenTree* ModifiedHalfVector =
                    gtNewSimdHWIntrinsicNode(TYP_SIMD32, halfVector, dataOp, gtNewIconNode(ival), insertIntrinsic,
                                             baseType, 16);
                retNode = gtNewSimdHWIntrinsicNode(TYP_SIMD32, clonedVectorOp, ModifiedHalfVector, gtNewIconNode(15),
                                                   NI_AVX_Blend, TYP_FLOAT, 32);
            }
            break;
        }

        case NI_AVX_SetVector256:
        {
            // TODO-XARCH: support long/ulong on 32-bit platfroms (remove HW_Flag_SecondArgMaybe64Bit)
            int numArgs = sig->numArgs;
            assert(numArgs >= 4);
            assert(numArgs <= 32);
            baseType                  = getBaseTypeOfSIMDType(sig->retTypeSigClass);
            GenTree* higherHalfVector = gtNewSimdHWIntrinsicNode(TYP_SIMD16, NI_SSE_SetZeroVector128, TYP_FLOAT, 16);
            GenTree* lowerHalfVector  = gtNewSimdHWIntrinsicNode(TYP_SIMD16, NI_SSE_SetZeroVector128, TYP_FLOAT, 16);
            NamedIntrinsic insertIntrinsic = varTypeIsShort(baseType) ? NI_SSE2_Insert : NI_SSE41_Insert;
            int            ival            = 0;

            if (baseType != TYP_DOUBLE)
            {
                assert(varTypeIsIntegral(baseType) || baseType == TYP_FLOAT);

                for (int i = 0; i < numArgs / 2; i++)
                {
                    GenTree* arg = impPopStack().val;
                    // SSE4.1 insertps has different semantics from integral insert
                    ival            = baseType == TYP_FLOAT ? i * 16 : i;
                    lowerHalfVector = gtNewSimdHWIntrinsicNode(TYP_SIMD16, lowerHalfVector, arg, gtNewIconNode(ival),
                                                               insertIntrinsic, baseType, 16);
                }

                for (int i = 0; i < numArgs / 2; i++)
                {
                    GenTree* arg = impPopStack().val;
                    // SSE4.1 insertps has different semantics from integral insert
                    ival             = baseType == TYP_FLOAT ? i * 16 : i;
                    higherHalfVector = gtNewSimdHWIntrinsicNode(TYP_SIMD16, higherHalfVector, arg, gtNewIconNode(ival),
                                                                insertIntrinsic, baseType, 16);
                }
            }
            else
            {
                GenTree* op4     = impPopStack().val;
                GenTree* op3     = impPopStack().val;
                GenTree* op2     = impPopStack().val;
                GenTree* op1     = impPopStack().val;
                lowerHalfVector  = gtNewSimdHWIntrinsicNode(TYP_SIMD16, op4, op3, NI_SSE2_UnpackLow, TYP_DOUBLE, 16);
                higherHalfVector = gtNewSimdHWIntrinsicNode(TYP_SIMD16, op2, op1, NI_SSE2_UnpackLow, TYP_DOUBLE, 16);
            }

            retNode = gtNewSimdHWIntrinsicNode(TYP_SIMD32, lowerHalfVector, higherHalfVector, gtNewIconNode(1),
                                               NI_AVX_InsertVector128, baseType, 32);
            break;
        }

        case NI_AVX_SetAllVector256:
        {
            baseType = getBaseTypeOfSIMDType(sig->retTypeSigClass);
            if (!varTypeIsArithmetic(baseType))
            {
                retNode = impUnsupportedHWIntrinsic(CORINFO_HELP_THROW_TYPE_NOT_SUPPORTED, method, sig, mustExpand);
            }
#ifdef _TARGET_X86_
            // TODO-XARCH: support long/ulong on 32-bit platfroms
            else if (varTypeIsLong(baseType))
            {
                return impUnsupportedHWIntrinsic(CORINFO_HELP_THROW_PLATFORM_NOT_SUPPORTED, method, sig, mustExpand);
            }
#endif
            else
            {
                GenTree* arg = impPopStack().val;
                retNode      = gtNewSimdHWIntrinsicNode(TYP_SIMD32, arg, NI_AVX_SetAllVector256, baseType, 32);
            }
            break;
        }

        case NI_AVX_SetHighLow:
        {
            baseType              = getBaseTypeOfSIMDType(sig->retTypeSigClass);
            GenTree* lowerVector  = impSIMDPopStack(TYP_SIMD16);
            GenTree* higherVector = impSIMDPopStack(TYP_SIMD16);
            retNode               = gtNewSimdHWIntrinsicNode(TYP_SIMD32, lowerVector, higherVector, gtNewIconNode(1),
                                               NI_AVX_InsertVector128, baseType, 32);
            break;
        }

        case NI_AVX_StaticCast:
        {
            // We fold away the static cast here, as it only exists to satisfy
            // the type system. It is safe to do this here since the retNode type
            // and the signature return type are both TYP_SIMD32.
            assert(sig->numArgs == 1);
            retNode = impSIMDPopStack(TYP_SIMD32, false, sig->retTypeClass);
            SetOpLclRelatedToSIMDIntrinsic(retNode);
            assert(retNode->gtType == getSIMDTypeForSize(getSIMDTypeSizeInBytes(sig->retTypeSigClass)));
            break;
        }

        case NI_AVX_ExtractVector128:
        case NI_AVX2_ExtractVector128:
        {
            GenTree* lastOp = impPopStack().val;
            assert(lastOp->IsCnsIntOrI() || mustExpand);
            GenTree* vectorOp = impSIMDPopStack(TYP_SIMD32);
            if (sig->numArgs == 2)
            {
                baseType = getBaseTypeOfSIMDType(sig->retTypeSigClass);
                if (!varTypeIsArithmetic(baseType))
                {
                    retNode = impUnsupportedHWIntrinsic(CORINFO_HELP_THROW_TYPE_NOT_SUPPORTED, method, sig, mustExpand);
                }
                else
                {
                    retNode = gtNewSimdHWIntrinsicNode(TYP_SIMD16, vectorOp, lastOp, intrinsic, baseType, 32);
                }
            }
            else
            {
                assert(sig->numArgs == 3);
                op1                                    = impPopStack().val;
                CORINFO_ARG_LIST_HANDLE secondArg      = info.compCompHnd->getArgNext(sig->args);
                CORINFO_CLASS_HANDLE    secondArgClass = info.compCompHnd->getArgClass(sig, secondArg);
                baseType                               = getBaseTypeOfSIMDType(secondArgClass);
                retNode = gtNewSimdHWIntrinsicNode(TYP_VOID, op1, vectorOp, lastOp, intrinsic, baseType, 32);
            }
            break;
        }

        case NI_AVX2_PermuteVar8x32:
        {
            baseType = getBaseTypeOfSIMDType(sig->retTypeSigClass);
            // swap the two operands
            GenTree* indexVector  = impSIMDPopStack(TYP_SIMD32);
            GenTree* sourceVector = impSIMDPopStack(TYP_SIMD32);
            retNode =
                gtNewSimdHWIntrinsicNode(TYP_SIMD32, indexVector, sourceVector, NI_AVX2_PermuteVar8x32, baseType, 32);
            break;
        }

        case NI_AVX2_GatherMaskVector128:
        case NI_AVX2_GatherMaskVector256:
        {
            CORINFO_ARG_LIST_HANDLE argList = sig->args;
            CORINFO_CLASS_HANDLE    argClass;
            var_types               argType = TYP_UNKNOWN;
            unsigned int            sizeBytes;
            baseType          = getBaseTypeAndSizeOfSIMDType(sig->retTypeSigClass, &sizeBytes);
            var_types retType = getSIMDTypeForSize(sizeBytes);

            assert(sig->numArgs == 5);
            CORINFO_ARG_LIST_HANDLE arg2 = info.compCompHnd->getArgNext(argList);
            CORINFO_ARG_LIST_HANDLE arg3 = info.compCompHnd->getArgNext(arg2);
            CORINFO_ARG_LIST_HANDLE arg4 = info.compCompHnd->getArgNext(arg3);
            CORINFO_ARG_LIST_HANDLE arg5 = info.compCompHnd->getArgNext(arg4);

            argType      = JITtype2varType(strip(info.compCompHnd->getArgType(sig, arg5, &argClass)));
            GenTree* op5 = getArgForHWIntrinsic(argType, argClass);
            SetOpLclRelatedToSIMDIntrinsic(op5);

            argType      = JITtype2varType(strip(info.compCompHnd->getArgType(sig, arg4, &argClass)));
            GenTree* op4 = getArgForHWIntrinsic(argType, argClass);
            SetOpLclRelatedToSIMDIntrinsic(op4);

            argType                 = JITtype2varType(strip(info.compCompHnd->getArgType(sig, arg3, &argClass)));
            var_types indexbaseType = getBaseTypeOfSIMDType(argClass);
            GenTree*  op3           = getArgForHWIntrinsic(argType, argClass);
            SetOpLclRelatedToSIMDIntrinsic(op3);

            argType = JITtype2varType(strip(info.compCompHnd->getArgType(sig, arg2, &argClass)));
            op2     = getArgForHWIntrinsic(argType, argClass);
            SetOpLclRelatedToSIMDIntrinsic(op2);

            argType = JITtype2varType(strip(info.compCompHnd->getArgType(sig, argList, &argClass)));
            op1     = getArgForHWIntrinsic(argType, argClass);
            SetOpLclRelatedToSIMDIntrinsic(op1);

            GenTree* opList = new (this, GT_LIST) GenTreeArgList(op1, gtNewArgList(op2, op3, op4, op5));
            retNode = new (this, GT_HWIntrinsic) GenTreeHWIntrinsic(retType, opList, intrinsic, baseType, simdSize);
            retNode->AsHWIntrinsic()->gtIndexBaseType = indexbaseType;
            break;
        }

        default:
            JITDUMP("Not implemented hardware intrinsic");
            break;
    }
    return retNode;
}

GenTree* Compiler::impAESIntrinsic(NamedIntrinsic        intrinsic,
                                   CORINFO_METHOD_HANDLE method,
                                   CORINFO_SIG_INFO*     sig,
                                   bool                  mustExpand)
{
    return nullptr;
}

GenTree* Compiler::impBMI1Intrinsic(NamedIntrinsic        intrinsic,
                                    CORINFO_METHOD_HANDLE method,
                                    CORINFO_SIG_INFO*     sig,
                                    bool                  mustExpand)
{
    var_types callType = JITtype2varType(sig->retType);

    switch (intrinsic)
    {
        case NI_BMI1_AndNot:
        {
            assert(sig->numArgs == 2);

            GenTree* op2 = impPopStack().val;
            GenTree* op1 = impPopStack().val;

            return gtNewScalarHWIntrinsicNode(callType, op1, op2, intrinsic);
        }

        case NI_BMI1_ExtractLowestSetBit:
        case NI_BMI1_GetMaskUpToLowestSetBit:
        case NI_BMI1_ResetLowestSetBit:
        case NI_BMI1_TrailingZeroCount:
        {
            assert(sig->numArgs == 1);
            GenTree* op1 = impPopStack().val;
            return gtNewScalarHWIntrinsicNode(callType, op1, intrinsic);
        }

        default:
        {
            unreached();
            return nullptr;
        }
    }
}

GenTree* Compiler::impBMI2Intrinsic(NamedIntrinsic        intrinsic,
                                    CORINFO_METHOD_HANDLE method,
                                    CORINFO_SIG_INFO*     sig,
                                    bool                  mustExpand)
{
    var_types callType = JITtype2varType(sig->retType);

    switch (intrinsic)
    {
        case NI_BMI2_ParallelBitDeposit:
        case NI_BMI2_ParallelBitExtract:
        {
            assert(sig->numArgs == 2);

            GenTree* op2 = impPopStack().val;
            GenTree* op1 = impPopStack().val;

            return gtNewScalarHWIntrinsicNode(callType, op1, op2, intrinsic);
        }

        default:
        {
            unreached();
            return nullptr;
        }
    }
}

GenTree* Compiler::impFMAIntrinsic(NamedIntrinsic        intrinsic,
                                   CORINFO_METHOD_HANDLE method,
                                   CORINFO_SIG_INFO*     sig,
                                   bool                  mustExpand)
{
    return nullptr;
}

GenTree* Compiler::impLZCNTIntrinsic(NamedIntrinsic        intrinsic,
                                     CORINFO_METHOD_HANDLE method,
                                     CORINFO_SIG_INFO*     sig,
                                     bool                  mustExpand)
{
    assert(sig->numArgs == 1);
    var_types callType = JITtype2varType(sig->retType);
    return gtNewScalarHWIntrinsicNode(callType, impPopStack().val, NI_LZCNT_LeadingZeroCount);
}

GenTree* Compiler::impPCLMULQDQIntrinsic(NamedIntrinsic        intrinsic,
                                         CORINFO_METHOD_HANDLE method,
                                         CORINFO_SIG_INFO*     sig,
                                         bool                  mustExpand)
{
    return nullptr;
}

GenTree* Compiler::impPOPCNTIntrinsic(NamedIntrinsic        intrinsic,
                                      CORINFO_METHOD_HANDLE method,
                                      CORINFO_SIG_INFO*     sig,
                                      bool                  mustExpand)
{
    assert(sig->numArgs == 1);
    var_types callType = JITtype2varType(sig->retType);
    return gtNewScalarHWIntrinsicNode(callType, impPopStack().val, NI_POPCNT_PopCount);
}

#endif // FEATURE_HW_INTRINSICS