summaryrefslogtreecommitdiff
path: root/src/jit/hwintrinsicxarch.cpp
blob: 88b0eda793c29d2935051c287be3fb26d4835f51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

#include "jitpch.h"

#if FEATURE_HW_INTRINSICS

struct HWIntrinsicInfo
{
    NamedIntrinsic      intrinsicID;
    const char*         intrinsicName;
    InstructionSet      isa;
    int                 ival;
    unsigned            simdSize;
    int                 numArgs;
    instruction         ins[10];
    HWIntrinsicCategory category;
    HWIntrinsicFlag     flags;
};

static const HWIntrinsicInfo hwIntrinsicInfoArray[] = {
#define HARDWARE_INTRINSIC(id, name, isa, ival, size, numarg, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, category, flag) \
    {NI_##id, name, InstructionSet_##isa, ival, size, numarg, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, category, flag},
#include "hwintrinsiclistxarch.h"
};

extern const char* getHWIntrinsicName(NamedIntrinsic intrinsic)
{
    return hwIntrinsicInfoArray[intrinsic - NI_HW_INTRINSIC_START - 1].intrinsicName;
}

//------------------------------------------------------------------------
// lookupHWIntrinsicISA: map class name to InstructionSet value
//
// Arguments:
//    className -- class name in System.Runtime.Intrinsics.X86
//
// Return Value:
//    Id for the ISA class.
//
InstructionSet Compiler::lookupHWIntrinsicISA(const char* className)
{
    if (className != nullptr)
    {
        if (className[0] == 'A')
        {
            if (strcmp(className, "Aes") == 0)
            {
                return InstructionSet_AES;
            }
            else if (strcmp(className, "Avx") == 0)
            {
                return InstructionSet_AVX;
            }
            else if (strcmp(className, "Avx2") == 0)
            {
                return InstructionSet_AVX2;
            }
        }
        if (className[0] == 'S')
        {
            if (strcmp(className, "Sse") == 0)
            {
                return InstructionSet_SSE;
            }
            else if (strcmp(className, "Sse2") == 0)
            {
                return InstructionSet_SSE2;
            }
            else if (strcmp(className, "Sse3") == 0)
            {
                return InstructionSet_SSE3;
            }
            else if (strcmp(className, "Ssse3") == 0)
            {
                return InstructionSet_SSSE3;
            }
            else if (strcmp(className, "Sse41") == 0)
            {
                return InstructionSet_SSE41;
            }
            else if (strcmp(className, "Sse42") == 0)
            {
                return InstructionSet_SSE42;
            }
        }

        if (strcmp(className, "Bmi1") == 0)
        {
            return InstructionSet_BMI1;
        }
        else if (strcmp(className, "Bmi2") == 0)
        {
            return InstructionSet_BMI2;
        }
        else if (strcmp(className, "Fma") == 0)
        {
            return InstructionSet_FMA;
        }
        else if (strcmp(className, "Lzcnt") == 0)
        {
            return InstructionSet_LZCNT;
        }
        else if (strcmp(className, "Pclmulqdq") == 0)
        {
            return InstructionSet_PCLMULQDQ;
        }
        else if (strcmp(className, "Popcnt") == 0)
        {
            return InstructionSet_POPCNT;
        }
    }

    JITDUMP("Unsupported ISA.\n");
    return InstructionSet_ILLEGAL;
}

//------------------------------------------------------------------------
// lookupHWIntrinsic: map intrinsic name to named intrinsic value
//
// Arguments:
//    methodName -- name of the intrinsic function.
//    isa        -- instruction set of the intrinsic.
//
// Return Value:
//    Id for the hardware intrinsic.
//
// TODO-Throughput: replace sequential search by binary search
NamedIntrinsic Compiler::lookupHWIntrinsic(const char* methodName, InstructionSet isa)
{
    NamedIntrinsic result = NI_Illegal;
    if (isa != InstructionSet_ILLEGAL)
    {
        for (int i = 0; i < NI_HW_INTRINSIC_END - NI_HW_INTRINSIC_START - 1; i++)
        {
            if (isa == hwIntrinsicInfoArray[i].isa && strcmp(methodName, hwIntrinsicInfoArray[i].intrinsicName) == 0)
            {
                result = hwIntrinsicInfoArray[i].intrinsicID;
            }
        }
    }
    return result;
}

//------------------------------------------------------------------------
// isaOfHWIntrinsic: map named intrinsic value to its instruction set
//
// Arguments:
//    intrinsic -- id of the intrinsic function.
//
// Return Value:
//    instruction set of the intrinsic.
//
InstructionSet Compiler::isaOfHWIntrinsic(NamedIntrinsic intrinsic)
{
    assert(intrinsic != NI_Illegal);
    assert(intrinsic > NI_HW_INTRINSIC_START && intrinsic < NI_HW_INTRINSIC_END);
    return hwIntrinsicInfoArray[intrinsic - NI_HW_INTRINSIC_START - 1].isa;
}

//------------------------------------------------------------------------
// ivalOfHWIntrinsic: get the imm8 value of this intrinsic from the hwIntrinsicInfoArray table
//
// Arguments:
//    intrinsic -- id of the intrinsic function.
//
// Return Value:
//     The imm8 value that is implicit for this intrinsic, or -1 for intrinsics that do not take an immediate, or for
//     which the immediate is an explicit argument.
//
int Compiler::ivalOfHWIntrinsic(NamedIntrinsic intrinsic)
{
    assert(intrinsic != NI_Illegal);
    assert(intrinsic > NI_HW_INTRINSIC_START && intrinsic < NI_HW_INTRINSIC_END);
    return hwIntrinsicInfoArray[intrinsic - NI_HW_INTRINSIC_START - 1].ival;
}

//------------------------------------------------------------------------
// simdSizeOfHWIntrinsic: get the SIMD size of this intrinsic
//
// Arguments:
//    intrinsic -- id of the intrinsic function.
//
// Return Value:
//     the SIMD size of this intrinsic
//         - from the hwIntrinsicInfoArray table if intrinsic has NO HW_Flag_UnfixedSIMDSize
//         - TODO-XArch-NYI - from the signature if intrinsic has HW_Flag_UnfixedSIMDSize
//
// Note - this function is only used by the importer
//        after importation (i.e., codegen), we can get the SIMD size from GenTreeHWIntrinsic IR
static unsigned simdSizeOfHWIntrinsic(NamedIntrinsic intrinsic, CORINFO_SIG_INFO* sig)
{
    assert(intrinsic > NI_HW_INTRINSIC_START && intrinsic < NI_HW_INTRINSIC_END);
    assert((hwIntrinsicInfoArray[intrinsic - NI_HW_INTRINSIC_START - 1].flags & HW_Flag_UnfixedSIMDSize) == 0);
    return hwIntrinsicInfoArray[intrinsic - NI_HW_INTRINSIC_START - 1].simdSize;
}

//------------------------------------------------------------------------
// numArgsOfHWIntrinsic: get the number of arguments
//
// Arguments:
//    intrinsic -- id of the intrinsic function.
//
// Return Value:
//     number of arguments
//
int Compiler::numArgsOfHWIntrinsic(NamedIntrinsic intrinsic)
{
    assert(intrinsic != NI_Illegal);
    assert(intrinsic > NI_HW_INTRINSIC_START && intrinsic < NI_HW_INTRINSIC_END);
    return hwIntrinsicInfoArray[intrinsic - NI_HW_INTRINSIC_START - 1].numArgs;
}

//------------------------------------------------------------------------
// insOfHWIntrinsic: get the instruction of the given intrinsic
//
// Arguments:
//    intrinsic -- id of the intrinsic function.
//    type      -- vector base type of this intrinsic
//
// Return Value:
//     the instruction of the given intrinsic on the base type
//     return INS_invalid for unsupported base types
//
instruction Compiler::insOfHWIntrinsic(NamedIntrinsic intrinsic, var_types type)
{
    assert(intrinsic != NI_Illegal);
    assert(intrinsic > NI_HW_INTRINSIC_START && intrinsic < NI_HW_INTRINSIC_END);
    assert(type >= TYP_BYTE && type <= TYP_DOUBLE);
    return hwIntrinsicInfoArray[intrinsic - NI_HW_INTRINSIC_START - 1].ins[type - TYP_BYTE];
}

//------------------------------------------------------------------------
// categoryOfHWIntrinsic: get the category of the given intrinsic
//
// Arguments:
//    intrinsic -- id of the intrinsic function.
//
// Return Value:
//     the category of the given intrinsic
//
HWIntrinsicCategory Compiler::categoryOfHWIntrinsic(NamedIntrinsic intrinsic)
{
    assert(intrinsic != NI_Illegal);
    assert(intrinsic > NI_HW_INTRINSIC_START && intrinsic < NI_HW_INTRINSIC_END);
    return hwIntrinsicInfoArray[intrinsic - NI_HW_INTRINSIC_START - 1].category;
}

//------------------------------------------------------------------------
// HWIntrinsicFlag: get the flags of the given intrinsic
//
// Arguments:
//    intrinsic -- id of the intrinsic function.
//
// Return Value:
//     the flags of the given intrinsic
//
HWIntrinsicFlag Compiler::flagsOfHWIntrinsic(NamedIntrinsic intrinsic)
{
    assert(intrinsic != NI_Illegal);
    assert(intrinsic > NI_HW_INTRINSIC_START && intrinsic < NI_HW_INTRINSIC_END);
    return hwIntrinsicInfoArray[intrinsic - NI_HW_INTRINSIC_START - 1].flags;
}

//------------------------------------------------------------------------
// getArgForHWIntrinsic: get the argument from the stack and match  the signature
//
// Arguments:
//    argType   -- the required type of argument
//    argClass  -- the class handle of argType
//
// Return Value:
//     get the argument at the given index from the stack and match  the signature
//
GenTree* Compiler::getArgForHWIntrinsic(var_types argType, CORINFO_CLASS_HANDLE argClass)
{
    GenTree* arg = nullptr;
    if (argType == TYP_STRUCT)
    {
        unsigned int argSizeBytes;
        var_types    base = getBaseTypeAndSizeOfSIMDType(argClass, &argSizeBytes);
        argType           = getSIMDTypeForSize(argSizeBytes);
        assert(argType == TYP_SIMD32 || argType == TYP_SIMD16);
        arg = impSIMDPopStack(argType);
        assert(arg->TypeGet() == TYP_SIMD16 || arg->TypeGet() == TYP_SIMD32);
    }
    else
    {
        assert(varTypeIsArithmetic(argType));
        arg = impPopStack().val;
        assert(varTypeIsArithmetic(arg->TypeGet()));
        assert(genActualType(arg->gtType) == genActualType(argType));
    }
    return arg;
}

//------------------------------------------------------------------------
// isFullyImplmentedISAClass: return true if all the hardware intrinsics
//    of this ISA are implemented in RyuJIT.
//
// Arguments:
//    isa - Instruction set
// Return Value:
//    true - all the hardware intrinsics of "isa" are implemented in RyuJIT.
//
bool Compiler::isFullyImplmentedISAClass(InstructionSet isa)
{
    switch (isa)
    {
        case InstructionSet_SSE2:
        case InstructionSet_SSE3:
        case InstructionSet_SSSE3:
        case InstructionSet_SSE41:
        case InstructionSet_SSE42:
        case InstructionSet_AVX:
        case InstructionSet_AVX2:
        case InstructionSet_AES:
        case InstructionSet_BMI1:
        case InstructionSet_BMI2:
        case InstructionSet_FMA:
        case InstructionSet_PCLMULQDQ:
            return false;

        case InstructionSet_SSE:
        case InstructionSet_LZCNT:
        case InstructionSet_POPCNT:
            return true;

        default:
            unreached();
    }
}

//------------------------------------------------------------------------
// isScalarISA:
//
// Arguments:
//    isa - Instruction set
// Return Value:
//    true - if "isa" only contains scalar instructions
//
bool Compiler::isScalarISA(InstructionSet isa)
{
    switch (isa)
    {
        case InstructionSet_BMI1:
        case InstructionSet_BMI2:
        case InstructionSet_LZCNT:
        case InstructionSet_POPCNT:
            return true;

        default:
            return false;
    }
}

//------------------------------------------------------------------------
// compSupportsHWIntrinsic: compiler support of hardware intrinsics
//
// Arguments:
//    isa - Instruction set
// Return Value:
//    true if
//    - isa is a scalar ISA
//    - isa is a SIMD ISA and featureSIMD=true
//    - isa is fully implemented or EnableIncompleteISAClass=true
bool Compiler::compSupportsHWIntrinsic(InstructionSet isa)
{
    return (featureSIMD || isScalarISA(isa)) && (
#ifdef DEBUG
                                                    JitConfig.EnableIncompleteISAClass() ||
#endif
                                                    isFullyImplmentedISAClass(isa));
}

static bool isTypeSupportedForIntrinsic(var_types type)
{
#ifdef _TARGET_X86_
    return !varTypeIsLong(type);
#else
    return true;
#endif
}

//------------------------------------------------------------------------
// impIsTableDrivenHWIntrinsic:
//
// Arguments:
//    category - category of a HW intrinsic
//
// Return Value:
//    returns true if this category can be table-driven in the importer
//
static bool impIsTableDrivenHWIntrinsic(HWIntrinsicCategory category, HWIntrinsicFlag flags)
{
    // HW_Flag_NoCodeGen implies this intrinsic should be manually morphed in the importer.
    return category != HW_Category_Special && category != HW_Category_Scalar && (flags & HW_Flag_NoCodeGen) == 0;
}

//------------------------------------------------------------------------
// impHWIntrinsic: dispatch hardware intrinsics to their own implementation
//
// Arguments:
//    intrinsic -- id of the intrinsic function.
//    method    -- method handle of the intrinsic function.
//    sig       -- signature of the intrinsic call
//
// Return Value:
//    the expanded intrinsic.
//
GenTree* Compiler::impHWIntrinsic(NamedIntrinsic        intrinsic,
                                  CORINFO_METHOD_HANDLE method,
                                  CORINFO_SIG_INFO*     sig,
                                  bool                  mustExpand)
{
    InstructionSet      isa      = isaOfHWIntrinsic(intrinsic);
    HWIntrinsicCategory category = categoryOfHWIntrinsic(intrinsic);
    HWIntrinsicFlag     flags    = flagsOfHWIntrinsic(intrinsic);
    int                 numArgs  = sig->numArgs;
    var_types           retType  = JITtype2varType(sig->retType);
    var_types           baseType = TYP_UNKNOWN;
    if (retType == TYP_STRUCT && featureSIMD)
    {
        unsigned int sizeBytes;
        baseType = getBaseTypeAndSizeOfSIMDType(sig->retTypeSigClass, &sizeBytes);
        retType  = getSIMDTypeForSize(sizeBytes);
        assert(sizeBytes != 0 && baseType != TYP_UNKNOWN);
    }

    // This intrinsic is supported if
    // - the ISA is available on the underlying hardware (compSupports returns true)
    // - the compiler supports this hardware intrinsics (compSupportsHWIntrinsic returns true)
    // - intrinsics do not require 64-bit registers (r64) on 32-bit platforms (isTypeSupportedForIntrinsic returns
    // true)
    bool issupported = compSupports(isa) && compSupportsHWIntrinsic(isa) && isTypeSupportedForIntrinsic(retType);

    if (category == HW_Category_IsSupportedProperty)
    {
        return gtNewIconNode(issupported);
    }
    // - calling to unsupported intrinsics must throw PlatforNotSupportedException
    else if (!issupported)
    {
        return impUnsupportedHWIntrinsic(CORINFO_HELP_THROW_PLATFORM_NOT_SUPPORTED, method, sig, mustExpand);
    }
    else if (category == HW_Category_IMM)
    {
        GenTree* lastOp = impStackTop().val;
        if (!lastOp->IsCnsIntOrI() && !mustExpand)
        {
            // When the imm-argument is not a constant and we are not being forced to expand, we need to
            // return nullptr so a GT_CALL to the intrinsic method is emitted instead. The
            // intrinsic method is recursive and will be forced to expand, at which point
            // we emit some less efficient fallback code.
            return nullptr;
        }
    }

    if ((flags & (HW_Flag_OneTypeGeneric | HW_Flag_TwoTypeGeneric)) != 0)
    {
        assert(baseType != TYP_UNKNOWN);
        // When the type argument is not a numeric type (and we are not being forced to expand), we need to
        // return nullptr so a GT_CALL to the intrinsic method is emitted that will throw NotSupportedException
        if (!varTypeIsArithmetic(baseType))
        {
            assert(!mustExpand);
            return nullptr;
        }

        if ((flags & HW_Flag_TwoTypeGeneric) != 0)
        {
            // StaticCast<T, U> has two type parameters.
            assert(!mustExpand);
            assert(numArgs == 1);
            var_types srcType = getBaseTypeOfSIMDType(info.compCompHnd->getArgClass(sig, sig->args));
            assert(srcType != TYP_UNKNOWN);
            if (!varTypeIsArithmetic(srcType))
            {
                return nullptr;
            }
        }
    }

    // table-driven importer of simple intrinsics
    if (impIsTableDrivenHWIntrinsic(category, flags))
    {
        if (!varTypeIsSIMD(retType) || (flags & HW_Flag_BaseTypeFromArg))
        {
            if (retType != TYP_VOID)
            {
                baseType = getBaseTypeOfSIMDType(info.compCompHnd->getArgClass(sig, sig->args));
            }
            else
            {
                assert(category == HW_Category_MemoryStore);
                baseType =
                    getBaseTypeOfSIMDType(info.compCompHnd->getArgClass(sig, info.compCompHnd->getArgNext(sig->args)));
            }

            assert(baseType != TYP_UNKNOWN);
        }

        unsigned                simdSize = simdSizeOfHWIntrinsic(intrinsic, sig);
        CORINFO_ARG_LIST_HANDLE argList  = sig->args;
        CORINFO_CLASS_HANDLE    argClass;
        var_types               argType = TYP_UNKNOWN;

        assert(numArgs >= 0);
        assert(insOfHWIntrinsic(intrinsic, baseType) != INS_invalid);
        assert(simdSize == 32 || simdSize == 16);

        GenTree* retNode = nullptr;
        GenTree* op1     = nullptr;
        GenTree* op2     = nullptr;

        switch (numArgs)
        {
            case 0:
                retNode = gtNewSimdHWIntrinsicNode(retType, intrinsic, baseType, simdSize);
                break;
            case 1:
                argType = JITtype2varType(strip(info.compCompHnd->getArgType(sig, argList, &argClass)));
                op1     = getArgForHWIntrinsic(argType, argClass);
                retNode = gtNewSimdHWIntrinsicNode(retType, op1, intrinsic, baseType, simdSize);
                break;
            case 2:
                argType = JITtype2varType(
                    strip(info.compCompHnd->getArgType(sig, info.compCompHnd->getArgNext(argList), &argClass)));
                op2 = getArgForHWIntrinsic(argType, argClass);

                argType = JITtype2varType(strip(info.compCompHnd->getArgType(sig, argList, &argClass)));
                op1     = getArgForHWIntrinsic(argType, argClass);

                retNode = gtNewSimdHWIntrinsicNode(retType, op1, op2, intrinsic, baseType, simdSize);
                break;

            case 3:
            {
                CORINFO_ARG_LIST_HANDLE arg2 = info.compCompHnd->getArgNext(argList);
                CORINFO_ARG_LIST_HANDLE arg3 = info.compCompHnd->getArgNext(arg2);

                argType      = JITtype2varType(strip(info.compCompHnd->getArgType(sig, arg3, &argClass)));
                GenTree* op3 = getArgForHWIntrinsic(argType, argClass);

                argType = JITtype2varType(strip(info.compCompHnd->getArgType(sig, arg2, &argClass)));
                op2     = getArgForHWIntrinsic(argType, argClass);

                argType = JITtype2varType(strip(info.compCompHnd->getArgType(sig, argList, &argClass)));
                op1     = getArgForHWIntrinsic(argType, argClass);

                retNode = gtNewSimdHWIntrinsicNode(retType, op1, op2, op3, intrinsic, baseType, simdSize);
                break;
            }
            default:
                unreached();
        }
        return retNode;
    }

    // other intrinsics need special importation
    switch (isa)
    {
        case InstructionSet_SSE:
            return impSSEIntrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_SSE2:
            return impSSE2Intrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_SSE3:
            return impSSE3Intrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_SSSE3:
            return impSSSE3Intrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_SSE41:
            return impSSE41Intrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_SSE42:
            return impSSE42Intrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_AVX:
            return impAVXIntrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_AVX2:
            return impAVX2Intrinsic(intrinsic, method, sig, mustExpand);

        case InstructionSet_AES:
            return impAESIntrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_BMI1:
            return impBMI1Intrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_BMI2:
            return impBMI2Intrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_FMA:
            return impFMAIntrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_LZCNT:
            return impLZCNTIntrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_PCLMULQDQ:
            return impPCLMULQDQIntrinsic(intrinsic, method, sig, mustExpand);
        case InstructionSet_POPCNT:
            return impPOPCNTIntrinsic(intrinsic, method, sig, mustExpand);
        default:
            return nullptr;
    }
}

GenTree* Compiler::impSSEIntrinsic(NamedIntrinsic        intrinsic,
                                   CORINFO_METHOD_HANDLE method,
                                   CORINFO_SIG_INFO*     sig,
                                   bool                  mustExpand)
{
    GenTree* retNode  = nullptr;
    GenTree* op1      = nullptr;
    GenTree* op2      = nullptr;
    GenTree* op3      = nullptr;
    GenTree* op4      = nullptr;
    int      simdSize = simdSizeOfHWIntrinsic(intrinsic, sig);
    assert(simdSize == 16);

    switch (intrinsic)
    {
        case NI_SSE_SetVector128:
        {
            assert(sig->numArgs == 4);
            assert(getBaseTypeOfSIMDType(sig->retTypeSigClass) == TYP_FLOAT);

            op4 = impPopStack().val;
            op3 = impPopStack().val;
            op2 = impPopStack().val;
            op1 = impPopStack().val;

            GenTree* left    = gtNewSimdHWIntrinsicNode(TYP_SIMD16, op4, op3, NI_SSE_UnpackLow, TYP_FLOAT, simdSize);
            GenTree* right   = gtNewSimdHWIntrinsicNode(TYP_SIMD16, op2, op1, NI_SSE_UnpackLow, TYP_FLOAT, simdSize);
            GenTree* control = gtNewIconNode(68, TYP_UBYTE);

            retNode = gtNewSimdHWIntrinsicNode(TYP_SIMD16, left, right, control, NI_SSE_Shuffle, TYP_FLOAT, simdSize);
            break;
        }

        case NI_SSE_ConvertScalarToVector128Single:
        {
            assert(sig->numArgs == 2);
            assert(getBaseTypeOfSIMDType(sig->retTypeSigClass) == TYP_FLOAT);

#ifdef _TARGET_X86_
            CORINFO_CLASS_HANDLE argClass;

            CORINFO_ARG_LIST_HANDLE argLst = info.compCompHnd->getArgNext(sig->args);
            CorInfoType             corType =
                strip(info.compCompHnd->getArgType(sig, argLst, &argClass)); // type of the second argument

            if (varTypeIsLong(JITtype2varType(corType)))
            {
                return impUnsupportedHWIntrinsic(CORINFO_HELP_THROW_PLATFORM_NOT_SUPPORTED, method, sig, mustExpand);
            }
#endif // _TARGET_X86_

            op2     = impPopStack().val;
            op1     = impSIMDPopStack(TYP_SIMD16);
            retNode = gtNewSimdHWIntrinsicNode(TYP_SIMD16, op1, op2, intrinsic, TYP_FLOAT, simdSize);
            break;
        }

        case NI_SSE_MoveMask:
            assert(sig->numArgs == 1);
            assert(JITtype2varType(sig->retType) == TYP_INT);
            assert(getBaseTypeOfSIMDType(info.compCompHnd->getArgClass(sig, sig->args)) == TYP_FLOAT);
            op1     = impSIMDPopStack(TYP_SIMD16);
            retNode = gtNewSimdHWIntrinsicNode(TYP_INT, op1, intrinsic, TYP_FLOAT, simdSize);
            break;

        case NI_SSE_SetAllVector128:
            assert(sig->numArgs == 1);
            assert(getBaseTypeOfSIMDType(sig->retTypeSigClass) == TYP_FLOAT);
            op1     = impPopStack().val;
            retNode = gtNewSimdHWIntrinsicNode(TYP_SIMD16, op1, gtCloneExpr(op1), gtNewIconNode(0), NI_SSE_Shuffle,
                                               TYP_FLOAT, simdSize);
            break;

        default:
            JITDUMP("Not implemented hardware intrinsic");
            break;
    }
    return retNode;
}

GenTree* Compiler::impSSE2Intrinsic(NamedIntrinsic        intrinsic,
                                    CORINFO_METHOD_HANDLE method,
                                    CORINFO_SIG_INFO*     sig,
                                    bool                  mustExpand)
{
    GenTree*  retNode  = nullptr;
    GenTree*  op1      = nullptr;
    GenTree*  op2      = nullptr;
    int       ival     = -1;
    int       simdSize = simdSizeOfHWIntrinsic(intrinsic, sig);
    var_types baseType = TYP_UNKNOWN;
    var_types retType  = TYP_UNKNOWN;

    switch (intrinsic)
    {
        case NI_SSE2_CompareLessThan:
            assert(sig->numArgs == 2);
            op2      = impSIMDPopStack(TYP_SIMD16);
            op1      = impSIMDPopStack(TYP_SIMD16);
            baseType = getBaseTypeOfSIMDType(sig->retTypeSigClass);
            if (baseType == TYP_DOUBLE)
            {
                retNode = gtNewSimdHWIntrinsicNode(TYP_SIMD16, op1, op2, intrinsic, baseType, simdSize);
            }
            else
            {
                retNode =
                    gtNewSimdHWIntrinsicNode(TYP_SIMD16, op2, op1, NI_SSE2_CompareGreaterThan, baseType, simdSize);
            }
            break;

        case NI_SSE2_MoveMask:
            assert(sig->numArgs == 1);
            retType = JITtype2varType(sig->retType);
            assert(retType == TYP_INT);
            op1      = impSIMDPopStack(TYP_SIMD16);
            baseType = getBaseTypeOfSIMDType(info.compCompHnd->getArgClass(sig, sig->args));
            retNode  = gtNewSimdHWIntrinsicNode(retType, op1, intrinsic, baseType, simdSize);
            break;

        default:
            JITDUMP("Not implemented hardware intrinsic");
            break;
    }
    return retNode;
}

GenTree* Compiler::impSSE3Intrinsic(NamedIntrinsic        intrinsic,
                                    CORINFO_METHOD_HANDLE method,
                                    CORINFO_SIG_INFO*     sig,
                                    bool                  mustExpand)
{
    return nullptr;
}

GenTree* Compiler::impSSSE3Intrinsic(NamedIntrinsic        intrinsic,
                                     CORINFO_METHOD_HANDLE method,
                                     CORINFO_SIG_INFO*     sig,
                                     bool                  mustExpand)
{
    return nullptr;
}

GenTree* Compiler::impSSE41Intrinsic(NamedIntrinsic        intrinsic,
                                     CORINFO_METHOD_HANDLE method,
                                     CORINFO_SIG_INFO*     sig,
                                     bool                  mustExpand)
{
    return nullptr;
}

GenTree* Compiler::impSSE42Intrinsic(NamedIntrinsic        intrinsic,
                                     CORINFO_METHOD_HANDLE method,
                                     CORINFO_SIG_INFO*     sig,
                                     bool                  mustExpand)
{
    GenTree*  retNode  = nullptr;
    GenTree*  op1      = nullptr;
    GenTree*  op2      = nullptr;
    var_types callType = JITtype2varType(sig->retType);

    CORINFO_ARG_LIST_HANDLE argList = sig->args;
    CORINFO_CLASS_HANDLE    argClass;
    CorInfoType             corType;
    switch (intrinsic)
    {
        case NI_SSE42_Crc32:
            assert(sig->numArgs == 2);
            op2     = impPopStack().val;
            op1     = impPopStack().val;
            argList = info.compCompHnd->getArgNext(argList);                        // the second argument
            corType = strip(info.compCompHnd->getArgType(sig, argList, &argClass)); // type of the second argument

            retNode = gtNewScalarHWIntrinsicNode(callType, op1, op2, NI_SSE42_Crc32);

            // TODO - currently we use the BaseType to bring the type of the second argument
            // to the code generator. May encode the overload info in other way.
            retNode->gtHWIntrinsic.gtSIMDBaseType = JITtype2varType(corType);
            break;

        default:
            JITDUMP("Not implemented hardware intrinsic");
            break;
    }
    return retNode;
}

GenTree* Compiler::impAVXIntrinsic(NamedIntrinsic        intrinsic,
                                   CORINFO_METHOD_HANDLE method,
                                   CORINFO_SIG_INFO*     sig,
                                   bool                  mustExpand)
{
    GenTree*  retNode  = nullptr;
    GenTree*  op1      = nullptr;
    GenTree*  op2      = nullptr;
    var_types baseType = TYP_UNKNOWN;
    switch (intrinsic)
    {
        default:
            JITDUMP("Not implemented hardware intrinsic");
            break;
    }
    return retNode;
}

GenTree* Compiler::impAVX2Intrinsic(NamedIntrinsic        intrinsic,
                                    CORINFO_METHOD_HANDLE method,
                                    CORINFO_SIG_INFO*     sig,
                                    bool                  mustExpand)
{
    GenTree*  retNode  = nullptr;
    GenTree*  op1      = nullptr;
    GenTree*  op2      = nullptr;
    var_types baseType = TYP_UNKNOWN;
    switch (intrinsic)
    {
        default:
            JITDUMP("Not implemented hardware intrinsic");
            break;
    }
    return retNode;
}

GenTree* Compiler::impAESIntrinsic(NamedIntrinsic        intrinsic,
                                   CORINFO_METHOD_HANDLE method,
                                   CORINFO_SIG_INFO*     sig,
                                   bool                  mustExpand)
{
    return nullptr;
}

GenTree* Compiler::impBMI1Intrinsic(NamedIntrinsic        intrinsic,
                                    CORINFO_METHOD_HANDLE method,
                                    CORINFO_SIG_INFO*     sig,
                                    bool                  mustExpand)
{
    return nullptr;
}

GenTree* Compiler::impBMI2Intrinsic(NamedIntrinsic        intrinsic,
                                    CORINFO_METHOD_HANDLE method,
                                    CORINFO_SIG_INFO*     sig,
                                    bool                  mustExpand)
{
    return nullptr;
}

GenTree* Compiler::impFMAIntrinsic(NamedIntrinsic        intrinsic,
                                   CORINFO_METHOD_HANDLE method,
                                   CORINFO_SIG_INFO*     sig,
                                   bool                  mustExpand)
{
    return nullptr;
}

GenTree* Compiler::impLZCNTIntrinsic(NamedIntrinsic        intrinsic,
                                     CORINFO_METHOD_HANDLE method,
                                     CORINFO_SIG_INFO*     sig,
                                     bool                  mustExpand)
{
    assert(sig->numArgs == 1);
    var_types callType = JITtype2varType(sig->retType);
    return gtNewScalarHWIntrinsicNode(callType, impPopStack().val, NI_LZCNT_LeadingZeroCount);
}

GenTree* Compiler::impPCLMULQDQIntrinsic(NamedIntrinsic        intrinsic,
                                         CORINFO_METHOD_HANDLE method,
                                         CORINFO_SIG_INFO*     sig,
                                         bool                  mustExpand)
{
    return nullptr;
}

GenTree* Compiler::impPOPCNTIntrinsic(NamedIntrinsic        intrinsic,
                                      CORINFO_METHOD_HANDLE method,
                                      CORINFO_SIG_INFO*     sig,
                                      bool                  mustExpand)
{
    assert(sig->numArgs == 1);
    var_types callType = JITtype2varType(sig->retType);
    return gtNewScalarHWIntrinsicNode(callType, impPopStack().val, NI_POPCNT_PopCount);
}

#endif // FEATURE_HW_INTRINSICS