summaryrefslogtreecommitdiff
path: root/src/jit/emitarm64.cpp
blob: a632ec12c8473112a0af30890fa1008cfcf08b53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                             emitArm64.cpp                                 XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/

#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif

#if defined(_TARGET_ARM64_)

/*****************************************************************************/
/*****************************************************************************/

#include "instr.h"
#include "emit.h"
#include "codegen.h"

/* static */ bool emitter::strictArmAsm = true;

/*****************************************************************************/

const instruction emitJumpKindInstructions[] = {
    INS_nop,

#define JMP_SMALL(en, rev, ins) INS_##ins,
#include "emitjmps.h"
};

const emitJumpKind emitReverseJumpKinds[] = {
    EJ_NONE,

#define JMP_SMALL(en, rev, ins) EJ_##rev,
#include "emitjmps.h"
};

/*****************************************************************************
 * Look up the instruction for a jump kind
 */

/*static*/ instruction emitter::emitJumpKindToIns(emitJumpKind jumpKind)
{
    assert((unsigned)jumpKind < ArrLen(emitJumpKindInstructions));
    return emitJumpKindInstructions[jumpKind];
}

/*****************************************************************************
* Look up the jump kind for an instruction. It better be a conditional
* branch instruction with a jump kind!
*/

/*static*/ emitJumpKind emitter::emitInsToJumpKind(instruction ins)
{
    for (unsigned i = 0; i < ArrLen(emitJumpKindInstructions); i++)
    {
        if (ins == emitJumpKindInstructions[i])
        {
            emitJumpKind ret = (emitJumpKind)i;
            assert(EJ_NONE < ret && ret < EJ_COUNT);
            return ret;
        }
    }
    unreached();
}

/*****************************************************************************
 * Reverse the conditional jump
 */

/*static*/ emitJumpKind emitter::emitReverseJumpKind(emitJumpKind jumpKind)
{
    assert(jumpKind < EJ_COUNT);
    return emitReverseJumpKinds[jumpKind];
}

/*****************************************************************************
 *
 *  Return the allocated size (in bytes) of the given instruction descriptor.
 */

size_t emitter::emitSizeOfInsDsc(instrDesc* id)
{
    assert(!emitIsTinyInsDsc(id));

    if (emitIsScnsInsDsc(id))
        return SMALL_IDSC_SIZE;

    assert((unsigned)id->idInsFmt() < emitFmtCount);

    ID_OPS idOp      = (ID_OPS)emitFmtToOps[id->idInsFmt()];
    bool   isCallIns = (id->idIns() == INS_bl) || (id->idIns() == INS_blr) || (id->idIns() == INS_b_tail) ||
                     (id->idIns() == INS_br_tail);
    bool maybeCallIns = (id->idIns() == INS_b) || (id->idIns() == INS_br);

    switch (idOp)
    {
        case ID_OP_NONE:
            break;

        case ID_OP_JMP:
            return sizeof(instrDescJmp);

        case ID_OP_CALL:
            assert(isCallIns || maybeCallIns);
            if (id->idIsLargeCall())
            {
                /* Must be a "fat" call descriptor */
                return sizeof(instrDescCGCA);
            }
            else
            {
                assert(!id->idIsLargeDsp());
                assert(!id->idIsLargeCns());
                return sizeof(instrDesc);
            }
            break;

        default:
            NO_WAY("unexpected instruction descriptor format");
            break;
    }

    if (id->idIsLargeCns())
    {
        if (id->idIsLargeDsp())
            return sizeof(instrDescCnsDsp);
        else
            return sizeof(instrDescCns);
    }
    else
    {
        if (id->idIsLargeDsp())
            return sizeof(instrDescDsp);
        else
            return sizeof(instrDesc);
    }
}

#ifdef DEBUG
/*****************************************************************************
 *
 *  The following called for each recorded instruction -- use for debugging.
 */
void emitter::emitInsSanityCheck(instrDesc* id)
{
    /* What instruction format have we got? */

    switch (id->idInsFmt())
    {
        instruction ins;
        emitAttr    elemsize;
        emitAttr    datasize;
        emitAttr    dstsize;
        emitAttr    srcsize;
        ssize_t     imm;
        unsigned    immShift;
        ssize_t     index;
        ssize_t     index2;

        case IF_BI_0A: // BI_0A   ......iiiiiiiiii iiiiiiiiiiiiiiii               simm26:00
            break;

        case IF_BI_0B: // BI_0B   ......iiiiiiiiii iiiiiiiiiiii....               simm19:00
            break;

        case IF_LARGEJMP:
        case IF_LARGEADR:
        case IF_LARGELDC:
            break;

        case IF_BI_0C: // BI_0C   ......iiiiiiiiii iiiiiiiiiiiiiiii               simm26:00
            break;

        case IF_BI_1A: // BI_1A   ......iiiiiiiiii iiiiiiiiiiittttt      Rt       simm19:00
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            break;

        case IF_BI_1B: // BI_1B   B.......bbbbbiii iiiiiiiiiiittttt      Rt imm6, simm14:00
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isValidImmShift(emitGetInsSC(id), id->idOpSize()));
            break;

        case IF_BR_1A: // BR_1A   ................ ......nnnnn.....         Rn
            assert(isGeneralRegister(id->idReg1()));
            break;

        case IF_BR_1B: // BR_1B   ................ ......nnnnn.....         Rn
            assert(isGeneralRegister(id->idReg3()));
            break;

        case IF_LS_1A: // LS_1A   .X......iiiiiiii iiiiiiiiiiittttt      Rt    PC imm(1MB)
            assert(isGeneralRegister(id->idReg1()) || isVectorRegister(id->idReg1()));
            assert(insOptsNone(id->idInsOpt()));
            break;

        case IF_LS_2A:                                // LS_2A   .X.......X...... ......nnnnnttttt      Rt Rn
            assert(isIntegerRegister(id->idReg1()) || // ZR
                   isVectorRegister(id->idReg1()));
            assert(isIntegerRegister(id->idReg2())); // SP
            assert(emitGetInsSC(id) == 0);
            assert(insOptsNone(id->idInsOpt()));
            break;

        case IF_LS_2B: // LS_2B   .X.......Xiiiiii iiiiiinnnnnttttt      Rt Rn    imm(0-4095)
            assert(isIntegerRegister(id->idReg1()) || // ZR
                   isVectorRegister(id->idReg1()));
            assert(isIntegerRegister(id->idReg2())); // SP
            assert(isValidUimm12(emitGetInsSC(id)));
            assert(insOptsNone(id->idInsOpt()));
            break;

        case IF_LS_2C: // LS_2C   .X.......X.iiiii iiiiPPnnnnnttttt      Rt Rn    imm(-256..+255) no/pre/post inc
            assert(isIntegerRegister(id->idReg1()) || // ZR
                   isVectorRegister(id->idReg1()));
            assert(isIntegerRegister(id->idReg2())); // SP
            assert(emitGetInsSC(id) >= -0x100);
            assert(emitGetInsSC(id) < 0x100);
            assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt()));
            break;

        case IF_LS_3A: // LS_3A   .X.......X.mmmmm oooS..nnnnnttttt      Rt Rn Rm ext(Rm) LSL {}
            assert(isIntegerRegister(id->idReg1()) || // ZR
                   isVectorRegister(id->idReg1()));
            assert(isIntegerRegister(id->idReg2())); // SP
            if (id->idIsLclVar())
            {
                assert(isGeneralRegister(codeGen->rsGetRsvdReg()));
            }
            else
            {
                assert(isGeneralRegister(id->idReg3()));
            }
            assert(insOptsLSExtend(id->idInsOpt()));
            break;

        case IF_LS_3B: // LS_3B   X............... .aaaaannnnnttttt      Rt Ra Rn
            assert((isValidGeneralDatasize(id->idOpSize()) && isIntegerRegister(id->idReg1())) ||
                   (isValidVectorLSPDatasize(id->idOpSize()) && isVectorRegister(id->idReg1())));
            assert(isIntegerRegister(id->idReg1()) || // ZR
                   isVectorRegister(id->idReg1()));
            assert(isIntegerRegister(id->idReg2()) || // ZR
                   isVectorRegister(id->idReg2()));
            assert(isIntegerRegister(id->idReg3())); // SP
            assert(emitGetInsSC(id) == 0);
            assert(insOptsNone(id->idInsOpt()));
            break;

        case IF_LS_3C: // LS_3C   X.........iiiiii iaaaaannnnnttttt      Rt Ra Rn imm(im7,sh)
            assert((isValidGeneralDatasize(id->idOpSize()) && isIntegerRegister(id->idReg1())) ||
                   (isValidVectorLSPDatasize(id->idOpSize()) && isVectorRegister(id->idReg1())));
            assert(isIntegerRegister(id->idReg1()) || // ZR
                   isVectorRegister(id->idReg1()));
            assert(isIntegerRegister(id->idReg2()) || // ZR
                   isVectorRegister(id->idReg2()));
            assert(isIntegerRegister(id->idReg3())); // SP
            assert(emitGetInsSC(id) >= -0x40);
            assert(emitGetInsSC(id) < 0x40);
            assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt()));
            break;

        case IF_DI_1A: // DI_1A   X.......shiiiiii iiiiiinnnnn.....         Rn    imm(i12,sh)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isValidUimm12(emitGetInsSC(id)));
            assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt()));
            break;

        case IF_DI_1B: // DI_1B   X........hwiiiii iiiiiiiiiiiddddd      Rd       imm(i16,hw)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isValidImmHWVal(emitGetInsSC(id), id->idOpSize()));
            break;

        case IF_DI_1C: // DI_1C   X........Nrrrrrr ssssssnnnnn.....         Rn    imm(N,r,s)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize()));
            break;

        case IF_DI_1D: // DI_1D   X........Nrrrrrr ssssss.....ddddd      Rd       imm(N,r,s)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isIntegerRegister(id->idReg1())); // SP
            assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize()));
            break;

        case IF_DI_1E: // DI_1E   .ii.....iiiiiiii iiiiiiiiiiiddddd      Rd       simm21
            assert(isGeneralRegister(id->idReg1()));
            break;

        case IF_DI_1F: // DI_1F   X..........iiiii cccc..nnnnn.nzcv      Rn imm5  nzcv cond
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isValidImmCondFlagsImm5(emitGetInsSC(id)));
            break;

        case IF_DI_2A: // DI_2A   X.......shiiiiii iiiiiinnnnnddddd      Rd Rn    imm(i12,sh)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isIntegerRegister(id->idReg1())); // SP
            assert(isIntegerRegister(id->idReg2())); // SP
            assert(isValidUimm12(emitGetInsSC(id)));
            assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt()));
            break;

        case IF_DI_2B: // DI_2B   X.........Xnnnnn ssssssnnnnnddddd      Rd Rn    imm(0-63)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            assert(isValidImmShift(emitGetInsSC(id), id->idOpSize()));
            break;

        case IF_DI_2C: // DI_2C   X........Nrrrrrr ssssssnnnnnddddd      Rd Rn    imm(N,r,s)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isIntegerRegister(id->idReg1())); // SP
            assert(isGeneralRegister(id->idReg2()));
            assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize()));
            break;

        case IF_DI_2D: // DI_2D   X........Nrrrrrr ssssssnnnnnddddd      Rd Rn    imr, imms   (N,r,s)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize()));
            break;

        case IF_DR_1D: // DR_1D   X............... cccc.......ddddd      Rd       cond
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isValidImmCond(emitGetInsSC(id)));
            break;

        case IF_DR_2A: // DR_2A   X..........mmmmm ......nnnnn.....         Rn Rm
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            break;

        case IF_DR_2B: // DR_2B   X.......sh.mmmmm ssssssnnnnn.....         Rn Rm {LSL,LSR,ASR,ROR} imm(0-63)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isIntegerRegister(id->idReg1())); // ZR
            assert(isGeneralRegister(id->idReg2()));
            assert(isValidImmShift(emitGetInsSC(id), id->idOpSize()));
            if (!insOptsNone(id->idInsOpt()))
            {
                if (id->idIns() == INS_tst) // tst allows ROR, cmp/cmn don't
                {
                    assert(insOptsAnyShift(id->idInsOpt()));
                }
                else
                {
                    assert(insOptsAluShift(id->idInsOpt()));
                }
            }
            assert(insOptsNone(id->idInsOpt()) || (emitGetInsSC(id) > 0));
            break;

        case IF_DR_2C: // DR_2C   X..........mmmmm ooosssnnnnn.....         Rn Rm ext(Rm) LSL imm(0-4)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isIntegerRegister(id->idReg1())); // SP
            assert(isGeneralRegister(id->idReg2()));
            assert(insOptsNone(id->idInsOpt()) || insOptsLSL(id->idInsOpt()) || insOptsAnyExtend(id->idInsOpt()));
            assert(emitGetInsSC(id) >= 0);
            assert(emitGetInsSC(id) <= 4);
            if (insOptsLSL(id->idInsOpt()))
            {
                assert(emitGetInsSC(id) > 0);
            }
            break;

        case IF_DR_2D: // DR_2D   X..........nnnnn cccc..nnnnnmmmmm      Rd Rn    cond
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            assert(isValidImmCond(emitGetInsSC(id)));
            break;

        case IF_DR_2E: // DR_2E   X..........mmmmm ...........ddddd      Rd    Rm
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isIntegerRegister(id->idReg2())); // ZR
            break;

        case IF_DR_2F: // DR_2F   X.......sh.mmmmm ssssss.....ddddd      Rd    Rm {LSL,LSR,ASR} imm(0-63)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            assert(isValidImmShift(emitGetInsSC(id), id->idOpSize()));
            assert(insOptsNone(id->idInsOpt()) || insOptsAluShift(id->idInsOpt()));
            assert(insOptsNone(id->idInsOpt()) || (emitGetInsSC(id) > 0));
            break;

        case IF_DR_2G: // DR_2G   X............... ......nnnnnddddd      Rd    Rm
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isIntegerRegister(id->idReg1())); // SP
            assert(isIntegerRegister(id->idReg2())); // SP
            break;

        case IF_DR_2H: // DR_2H   X........X...... ......nnnnnddddd      Rd Rn
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            break;

        case IF_DR_2I: // DR_2I   X..........mmmmm cccc..nnnnn.nzcv      Rn Rm    nzcv cond
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            assert(isValidImmCondFlags(emitGetInsSC(id)));
            break;

        case IF_DR_3A: // DR_3A   X..........mmmmm ......nnnnnmmmmm      Rd Rn Rm
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isIntegerRegister(id->idReg1())); // SP
            assert(isIntegerRegister(id->idReg2())); // SP
            if (id->idIsLclVar())
            {
                assert(isGeneralRegister(codeGen->rsGetRsvdReg()));
            }
            else
            {
                assert(isGeneralRegister(id->idReg3()));
            }
            assert(insOptsNone(id->idInsOpt()));
            break;

        case IF_DR_3B: // DR_3B   X.......sh.mmmmm ssssssnnnnnddddd      Rd Rn Rm {LSL,LSR,ASR,ROR} imm(0-63)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            assert(isGeneralRegister(id->idReg3()));
            assert(isValidImmShift(emitGetInsSC(id), id->idOpSize()));
            assert(insOptsNone(id->idInsOpt()) || insOptsAnyShift(id->idInsOpt()));
            assert(insOptsNone(id->idInsOpt()) || (emitGetInsSC(id) > 0));
            break;

        case IF_DR_3C: // DR_3C   X..........mmmmm ooosssnnnnnddddd      Rd Rn Rm ext(Rm) LSL imm(0-4)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isIntegerRegister(id->idReg1())); // SP
            assert(isIntegerRegister(id->idReg2())); // SP
            assert(isGeneralRegister(id->idReg3()));
            assert(insOptsNone(id->idInsOpt()) || insOptsLSL(id->idInsOpt()) || insOptsAnyExtend(id->idInsOpt()));
            assert(emitGetInsSC(id) >= 0);
            assert(emitGetInsSC(id) <= 4);
            if (insOptsLSL(id->idInsOpt()))
            {
                assert((emitGetInsSC(id) > 0) ||
                       (id->idReg2() == REG_ZR)); // REG_ZR encodes SP and we allow a shift of zero
            }
            break;

        case IF_DR_3D: // DR_3D   X..........mmmmm cccc..nnnnnmmmmm      Rd Rn Rm cond
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            assert(isGeneralRegister(id->idReg3()));
            assert(isValidImmCond(emitGetInsSC(id)));
            break;

        case IF_DR_3E: // DR_3E   X........X.mmmmm ssssssnnnnnddddd      Rd Rn Rm imm(0-63)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            assert(isGeneralRegister(id->idReg3()));
            assert(isValidImmShift(emitGetInsSC(id), id->idOpSize()));
            assert(insOptsNone(id->idInsOpt()));
            break;

        case IF_DR_4A: // DR_4A   X..........mmmmm .aaaaannnnnddddd      Rd Rn Rm Ra
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isGeneralRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            assert(isGeneralRegister(id->idReg3()));
            assert(isGeneralRegister(id->idReg4()));
            break;

        case IF_DV_1A: // DV_1A   .........X.iiiii iii........ddddd      Vd imm8    (fmov - immediate scalar)
            assert(insOptsNone(id->idInsOpt()));
            elemsize = id->idOpSize();
            assert(isValidVectorElemsizeFloat(elemsize));
            assert(isVectorRegister(id->idReg1()));
            assert(isValidUimm8(emitGetInsSC(id)));
            break;

        case IF_DV_1B: // DV_1B   .QX..........iii cmod..iiiiiddddd      Vd imm8    (immediate vector)
            ins      = id->idIns();
            imm      = emitGetInsSC(id) & 0x0ff;
            immShift = (emitGetInsSC(id) & 0x700) >> 8;
            assert(immShift >= 0);
            datasize = id->idOpSize();
            assert(isValidVectorDatasize(datasize));
            assert(isValidArrangement(datasize, id->idInsOpt()));
            elemsize = optGetElemsize(id->idInsOpt());
            if (ins == INS_fmov)
            {
                assert(isValidVectorElemsizeFloat(elemsize));
                assert(id->idInsOpt() != INS_OPTS_1D); // Reserved encoding
                assert(immShift == 0);
            }
            else
            {
                assert(isValidVectorElemsize(elemsize));
                assert((immShift != 4) && (immShift != 7)); // always invalid values
                if (ins != INS_movi)                        // INS_mvni, INS_orr, INS_bic
                {
                    assert((elemsize != EA_1BYTE) && (elemsize != EA_8BYTE)); // only H or S
                    if (elemsize == EA_2BYTE)
                    {
                        assert(immShift < 2);
                    }
                    else // (elemsize == EA_4BYTE)
                    {
                        if (ins != INS_mvni)
                        {
                            assert(immShift < 4);
                        }
                    }
                }
            }
            assert(isVectorRegister(id->idReg1()));
            assert(isValidUimm8(imm));
            break;

        case IF_DV_1C: // DV_1C   .........X...... ......nnnnn.....      Vn #0.0    (fcmp - with zero)
            assert(insOptsNone(id->idInsOpt()));
            elemsize = id->idOpSize();
            assert(isValidVectorElemsizeFloat(elemsize));
            assert(isVectorRegister(id->idReg1()));
            break;

        case IF_DV_2A: // DV_2A   .Q.......X...... ......nnnnnddddd      Vd Vn      (fabs, fcvt - vector)
        case IF_DV_2M: // DV_2M   .Q......XX...... ......nnnnnddddd      Vd Vn      (abs, neg   - vector)
            assert(isValidVectorDatasize(id->idOpSize()));
            assert(isValidArrangement(id->idOpSize(), id->idInsOpt()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            break;

        case IF_DV_2N: // DV_2N   .........iiiiiii ......nnnnnddddd      Vd Vn imm   (shift - scalar)
            assert(id->idOpSize() == EA_8BYTE);
            assert(insOptsNone(id->idInsOpt()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            assert(isValidImmShift(emitGetInsSC(id), EA_8BYTE));
            break;

        case IF_DV_2O: // DV_2O   .Q.......iiiiiii ......nnnnnddddd      Vd Vn imm   (shift - vector)
            assert(isValidVectorDatasize(id->idOpSize()));
            assert(isValidArrangement(id->idOpSize(), id->idInsOpt()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            elemsize = optGetElemsize(id->idInsOpt());
            assert(isValidImmShift(emitGetInsSC(id), elemsize));
            break;

        case IF_DV_2B: // DV_2B   .Q.........iiiii ......nnnnnddddd      Rd Vn[]  (umov/smov    - to general)
            elemsize = id->idOpSize();
            index    = emitGetInsSC(id);
            assert(insOptsNone(id->idInsOpt()));
            assert(isValidVectorIndex(EA_16BYTE, elemsize, index));
            assert(isValidVectorElemsize(elemsize));
            assert(isGeneralRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            break;

        case IF_DV_2C: // DV_2C   .Q.........iiiii ......nnnnnddddd      Vd Rn    (dup/ins - vector from general)
            if (id->idIns() == INS_dup)
            {
                datasize = id->idOpSize();
                assert(isValidVectorDatasize(datasize));
                assert(isValidArrangement(datasize, id->idInsOpt()));
                elemsize = optGetElemsize(id->idInsOpt());
            }
            else // INS_ins
            {
                datasize = EA_16BYTE;
                elemsize = id->idOpSize();
                assert(isValidVectorElemsize(elemsize));
            }
            assert(isVectorRegister(id->idReg1()));
            assert(isGeneralRegisterOrZR(id->idReg2()));
            break;

        case IF_DV_2D: // DV_2D   .Q.........iiiii ......nnnnnddddd      Vd Vn[]  (dup - vector)
            datasize = id->idOpSize();
            assert(isValidVectorDatasize(datasize));
            assert(isValidArrangement(datasize, id->idInsOpt()));
            elemsize = optGetElemsize(id->idInsOpt());
            index    = emitGetInsSC(id);
            assert(isValidVectorIndex(datasize, elemsize, index));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            break;

        case IF_DV_2E: // DV_2E   ...........iiiii ......nnnnnddddd      Vd Vn[]  (dup - scalar)
            elemsize = id->idOpSize();
            index    = emitGetInsSC(id);
            assert(isValidVectorIndex(EA_16BYTE, elemsize, index));
            assert(isValidVectorElemsize(elemsize));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            break;

        case IF_DV_2F: // DV_2F   ...........iiiii .jjjj.nnnnnddddd      Vd[] Vn[] (ins - element)
            imm      = emitGetInsSC(id);
            index    = (imm >> 4) & 0xf;
            index2   = imm & 0xf;
            elemsize = id->idOpSize();
            assert(isValidVectorElemsize(elemsize));
            assert(isValidVectorIndex(EA_16BYTE, elemsize, index));
            assert(isValidVectorIndex(EA_16BYTE, elemsize, index2));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            break;

        case IF_DV_2L: // DV_2L   ........XX...... ......nnnnnddddd      Vd Vn      (abs, neg - scalar)
            assert(id->idOpSize() == EA_8BYTE); // only type D is supported
            __fallthrough;

        case IF_DV_2G: // DV_2G   .........X...... ......nnnnnddddd      Vd Vn      (fmov, fcvtXX - register)
        case IF_DV_2K: // DV_2K   .........X.mmmmm ......nnnnn.....      Vn Vm      (fcmp)
            assert(insOptsNone(id->idInsOpt()));
            assert(isValidVectorElemsizeFloat(id->idOpSize()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            break;

        case IF_DV_2H: // DV_2H   X........X...... ......nnnnnddddd      Rd Vn      (fmov/fcvtXX - to general)
            assert(insOptsConvertFloatToInt(id->idInsOpt()));
            dstsize = optGetDstsize(id->idInsOpt());
            srcsize = optGetSrcsize(id->idInsOpt());
            assert(isValidGeneralDatasize(dstsize));
            assert(isValidVectorElemsizeFloat(srcsize));
            assert(dstsize == id->idOpSize());
            assert(isGeneralRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            break;

        case IF_DV_2I: // DV_2I   X........X...... ......nnnnnddddd      Vd Rn      (fmov/Xcvtf - from general)
            assert(insOptsConvertIntToFloat(id->idInsOpt()));
            dstsize = optGetDstsize(id->idInsOpt());
            srcsize = optGetSrcsize(id->idInsOpt());
            assert(isValidGeneralDatasize(srcsize));
            assert(isValidVectorElemsizeFloat(dstsize));
            assert(dstsize == id->idOpSize());
            assert(isVectorRegister(id->idReg1()));
            assert(isGeneralRegister(id->idReg2()));
            break;

        case IF_DV_2J: // DV_2J   ........SS.....D D.....nnnnnddddd      Vd Vn      (fcvt)
            assert(insOptsConvertFloatToFloat(id->idInsOpt()));
            dstsize = optGetDstsize(id->idInsOpt());
            srcsize = optGetSrcsize(id->idInsOpt());
            assert(isValidVectorFcvtsize(srcsize));
            assert(isValidVectorFcvtsize(dstsize));
            assert(dstsize == id->idOpSize());
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            break;

        case IF_DV_3A: // DV_3A   .Q......XX.mmmmm ......nnnnnddddd      Vd Vn Vm   (vector)
            assert(isValidVectorDatasize(id->idOpSize()));
            assert(isValidArrangement(id->idOpSize(), id->idInsOpt()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            assert(isVectorRegister(id->idReg3()));
            elemsize = optGetElemsize(id->idInsOpt());
            ins      = id->idIns();
            if (ins == INS_mul)
            {
                assert(elemsize != EA_8BYTE); // can't use 2D or 1D
            }
            else if (ins == INS_pmul)
            {
                assert(elemsize == EA_1BYTE); // only supports 8B or 16B
            }
            break;

        case IF_DV_3AI: // DV_3AI  .Q......XXLMmmmm ....H.nnnnnddddd      Vd Vn Vm[] (vector by elem)
            assert(isValidVectorDatasize(id->idOpSize()));
            assert(isValidArrangement(id->idOpSize(), id->idInsOpt()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            assert(isVectorRegister(id->idReg3()));
            elemsize = optGetElemsize(id->idInsOpt());
            assert(isValidVectorIndex(EA_16BYTE, elemsize, emitGetInsSC(id)));
            // Only has encodings for H or S elemsize
            assert((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE));
            break;

        case IF_DV_3B: // DV_3B   .Q.......X.mmmmm ......nnnnnddddd      Vd Vn Vm   (vector)
            assert(isValidVectorDatasize(id->idOpSize()));
            assert(isValidArrangement(id->idOpSize(), id->idInsOpt()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            assert(isVectorRegister(id->idReg3()));
            break;

        case IF_DV_3BI: // DV_3BI  .Q.......XLmmmmm ....H.nnnnnddddd      Vd Vn Vm[] (vector by elem)
            assert(isValidVectorDatasize(id->idOpSize()));
            assert(isValidArrangement(id->idOpSize(), id->idInsOpt()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            assert(isVectorRegister(id->idReg3()));
            elemsize = optGetElemsize(id->idInsOpt());
            assert(isValidVectorIndex(id->idOpSize(), elemsize, emitGetInsSC(id)));
            break;

        case IF_DV_3C: // DV_3C   .Q.........mmmmm ......nnnnnddddd      Vd Vn Vm   (vector)
            assert(isValidVectorDatasize(id->idOpSize()));
            assert(isValidArrangement(id->idOpSize(), id->idInsOpt()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            assert(isVectorRegister(id->idReg3()));
            break;

        case IF_DV_3D: // DV_3D   .........X.mmmmm ......nnnnnddddd      Vd Vn Vm   (scalar)
            assert(isValidScalarDatasize(id->idOpSize()));
            assert(insOptsNone(id->idInsOpt()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            assert(isVectorRegister(id->idReg3()));
            break;

        case IF_DV_3DI: // DV_3DI  .........XLmmmmm ....H.nnnnnddddd      Vd Vn Vm[] (scalar by elem)
            assert(isValidScalarDatasize(id->idOpSize()));
            assert(insOptsNone(id->idInsOpt()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            assert(isVectorRegister(id->idReg3()));
            elemsize = id->idOpSize();
            assert(isValidVectorIndex(EA_16BYTE, elemsize, emitGetInsSC(id)));
            break;

        case IF_DV_3E: // DV_3E   ...........mmmmm ......nnnnnddddd      Vd Vn Vm  (scalar)
            assert(insOptsNone(id->idInsOpt()));
            assert(id->idOpSize() == EA_8BYTE);
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            assert(isVectorRegister(id->idReg3()));
            break;

        case IF_DV_4A: // DR_4A   .........X.mmmmm .aaaaannnnnddddd      Rd Rn Rm Ra (scalar)
            assert(isValidGeneralDatasize(id->idOpSize()));
            assert(isVectorRegister(id->idReg1()));
            assert(isVectorRegister(id->idReg2()));
            assert(isVectorRegister(id->idReg3()));
            assert(isVectorRegister(id->idReg4()));
            break;

        case IF_SN_0A: // SN_0A   ................ ................
        case IF_SI_0A: // SI_0A   ...........iiiii iiiiiiiiiii.....               imm16
        case IF_SI_0B: // SI_0B   ................ ....bbbb........               imm4 - barrier
            break;

        default:
            printf("unexpected format %s\n", emitIfName(id->idInsFmt()));
            assert(!"Unexpected format");
            break;
    }
}
#endif // DEBUG

bool emitter::emitInsMayWriteToGCReg(instrDesc* id)
{
    instruction ins = id->idIns();
    insFormat   fmt = id->idInsFmt();

    switch (fmt)
    {

        // These are the formats with "destination" registers:

        case IF_DI_1B: // DI_1B   X........hwiiiii iiiiiiiiiiiddddd      Rd       imm(i16,hw)
        case IF_DI_1D: // DI_1D   X........Nrrrrrr ssssss.....ddddd      Rd       imm(N,r,s)
        case IF_DI_1E: // DI_1E   .ii.....iiiiiiii iiiiiiiiiiiddddd      Rd       simm21

        case IF_DI_2A: // DI_2A   X.......shiiiiii iiiiiinnnnnddddd      Rd Rn    imm(i12,sh)
        case IF_DI_2B: // DI_2B   X.........Xnnnnn ssssssnnnnnddddd      Rd Rn    imm(0-63)
        case IF_DI_2C: // DI_2C   X........Nrrrrrr ssssssnnnnnddddd      Rd Rn    imm(N,r,s)
        case IF_DI_2D: // DI_2D   X........Nrrrrrr ssssssnnnnnddddd      Rd Rn    imr, imms   (N,r,s)

        case IF_DR_1D: // DR_1D   X............... cccc.......ddddd      Rd       cond

        case IF_DR_2D: // DR_2D   X..........nnnnn cccc..nnnnnddddd      Rd Rn    cond
        case IF_DR_2E: // DR_2E   X..........mmmmm ...........ddddd      Rd    Rm
        case IF_DR_2F: // DR_2F   X.......sh.mmmmm ssssss.....ddddd      Rd    Rm {LSL,LSR,ASR} imm(0-63)
        case IF_DR_2G: // DR_2G   X............... ......nnnnnddddd      Rd Rn
        case IF_DR_2H: // DR_2H   X........X...... ......nnnnnddddd      Rd Rn

        case IF_DR_3A: // DR_3A   X..........mmmmm ......nnnnnddddd      Rd Rn Rm
        case IF_DR_3B: // DR_3B   X.......sh.mmmmm ssssssnnnnnddddd      Rd Rn Rm {LSL,LSR,ASR} imm(0-63)
        case IF_DR_3C: // DR_3C   X..........mmmmm xxxsssnnnnnddddd      Rd Rn Rm ext(Rm) LSL imm(0-4)
        case IF_DR_3D: // DR_3D   X..........mmmmm cccc..nnnnnddddd      Rd Rn Rm cond
        case IF_DR_3E: // DR_3E   X........X.mmmmm ssssssnnnnnddddd      Rd Rn Rm imm(0-63)

        case IF_DR_4A: // DR_4A   X..........mmmmm .aaaaannnnnddddd      Rd Rn Rm Ra

        case IF_DV_2B: // DV_2B   .Q.........iiiii ......nnnnnddddd      Rd Vn[]    (umov - to general)
        case IF_DV_2H: // DV_2H   X........X...... ......nnnnnddddd      Rd Vn      (fmov - to general)

            return true;

        case IF_DV_2C:  // DV_2C   .Q.........iiiii ......nnnnnddddd      Vd Rn      (dup/ins - vector from general)
        case IF_DV_2D:  // DV_2D   .Q.........iiiii ......nnnnnddddd      Vd Vn[]    (dup - vector)
        case IF_DV_2E:  // DV_2E   ...........iiiii ......nnnnnddddd      Vd Vn[]    (dup - scalar)
        case IF_DV_2F:  // DV_2F   ...........iiiii .jjjj.nnnnnddddd      Vd[] Vn[]  (ins - element)
        case IF_DV_2G:  // DV_2G   .........X...... ......nnnnnddddd      Vd Vn      (fmov, fcvtXX - register)
        case IF_DV_2I:  // DV_2I   X........X...... ......nnnnnddddd      Vd Rn      (fmov - from general)
        case IF_DV_2J:  // DV_2J   ........SS.....D D.....nnnnnddddd      Vd Vn      (fcvt)
        case IF_DV_2K:  // DV_2K   .........X.mmmmm ......nnnnn.....      Vn Vm      (fcmp)
        case IF_DV_2L:  // DV_2L   ........XX...... ......nnnnnddddd      Vd Vn      (abs, neg - scalar)
        case IF_DV_2M:  // DV_2M   .Q......XX...... ......nnnnnddddd      Vd Vn      (abs, neg - vector)
        case IF_DV_3A:  // DV_3A   .Q......XX.mmmmm ......nnnnnddddd      Vd Vn Vm   (vector)
        case IF_DV_3AI: // DV_3AI  .Q......XXLMmmmm ....H.nnnnnddddd      Vd Vn Vm[] (vector)
        case IF_DV_3B:  // DV_3B   .Q.......X.mmmmm ......nnnnnddddd      Vd Vn Vm   (vector)
        case IF_DV_3BI: // DV_3BI  .Q.......XLmmmmm ....H.nnnnnddddd      Vd Vn Vm[] (vector by elem)
        case IF_DV_3C:  // DV_3C   .Q.........mmmmm ......nnnnnddddd      Vd Vn Vm   (vector)
        case IF_DV_3D:  // DV_3D   .........X.mmmmm ......nnnnnddddd      Vd Vn Vm   (scalar)
        case IF_DV_3DI: // DV_3DI  .........XLmmmmm ....H.nnnnnddddd      Vd Vn Vm[] (scalar by elem)
        case IF_DV_3E:  // DV_3E   ...........mmmmm ......nnnnnddddd      Vd Vn Vm   (scalar)
        case IF_DV_4A:  // DV_4A   .........X.mmmmm .aaaaannnnnddddd      Vd Va Vn Vm (scalar)
            // Tracked GC pointers cannot be placed into the SIMD registers.
            return false;

        // These are the load/store formats with "target" registers:

        case IF_LS_1A: // LS_1A   XX...V..iiiiiiii iiiiiiiiiiittttt      Rt    PC imm(1MB)
        case IF_LS_2A: // LS_2A   .X.......X...... ......nnnnnttttt      Rt Rn
        case IF_LS_2B: // LS_2B   .X.......Xiiiiii iiiiiinnnnnttttt      Rt Rn    imm(0-4095)
        case IF_LS_2C: // LS_2C   .X.......X.iiiii iiiiP.nnnnnttttt      Rt Rn    imm(-256..+255) pre/post inc
        case IF_LS_3A: // LS_3A   .X.......X.mmmmm xxxS..nnnnnttttt      Rt Rn Rm ext(Rm) LSL {}
        case IF_LS_3B: // LS_3B   X............... .aaaaannnnnttttt      Rt Ra Rn
        case IF_LS_3C: // LS_3C   X.........iiiiii iaaaaannnnnttttt      Rt Ra Rn imm(im7,sh)

            // For the Store instructions the "target" register is actually a "source" value

            if (emitInsIsStore(ins))
            {
                return false;
            }
            else
            {
                assert(emitInsIsLoad(ins));
                return true;
            }

        default:
            return false;
    }
}

bool emitter::emitInsWritesToLclVarStackLoc(instrDesc* id)
{
    if (!id->idIsLclVar())
        return false;

    instruction ins = id->idIns();

    // This list is related to the list of instructions used to store local vars in emitIns_S_R().
    // We don't accept writing to float local vars.

    switch (ins)
    {
        case INS_strb:
        case INS_strh:
        case INS_str:
        case INS_stur:
        case INS_sturb:
        case INS_sturh:
            return true;
        default:
            return false;
    }
}

bool emitter::emitInsMayWriteMultipleRegs(instrDesc* id)
{
    instruction ins = id->idIns();

    switch (ins)
    {
        case INS_ldp:
        case INS_ldpsw:
        case INS_ldnp:
            return true;
        default:
            return false;
    }
}

// For the small loads/store instruction we adjust the size 'attr'
// depending upon whether we have a load or a store
//
emitAttr emitter::emitInsAdjustLoadStoreAttr(instruction ins, emitAttr attr)
{
    if (EA_SIZE(attr) <= EA_4BYTE)
    {
        if (emitInsIsLoad(ins))
        {
            // The value of 'ins' encodes the size to load
            // we use EA_8BYTE here because it is the size we will write (into dataReg)
            // it is also required when ins is INS_ldrsw
            //
            attr = EA_8BYTE;
        }
        else
        {
            assert(emitInsIsStore(ins));

            // The value of 'ins' encodes the size to store
            // we use EA_4BYTE here because it is the size of the register
            // that we want to display when storing small values
            //
            attr = EA_4BYTE;
        }
    }
    return attr;
}

// Takes an instrDesc 'id' and uses the instruction 'ins' to determine the
// size of the target register that is written or read by the instruction.
// Note that even if EA_4BYTE is returned a load instruction will still
// always zero the upper 4 bytes of the target register.
// This method is required so that we can distinguish between loads that are
// sign-extending as they can have two different sizes for their target register.
// Additionally for instructions like 'ldr' and 'str' these can load/store
// either 4 byte or 8 bytes to/from the target register.
// By convention the small unsigned load instructions are considered to write
// a 4 byte sized target register, though since these also zero the upper 4 bytes
// they could equally be considered to write the unsigned value to full 8 byte register.
//
emitAttr emitter::emitInsTargetRegSize(instrDesc* id)
{
    instruction ins    = id->idIns();
    emitAttr    result = EA_UNKNOWN;

    // This is used to determine the size of the target registers for a load/store instruction

    switch (ins)
    {
        case INS_ldrb:
        case INS_strb:
        case INS_ldurb:
        case INS_sturb:
            result = EA_4BYTE;
            break;

        case INS_ldrh:
        case INS_strh:
        case INS_ldurh:
        case INS_sturh:
            result = EA_4BYTE;
            break;

        case INS_ldrsb:
        case INS_ldursb:
        case INS_ldrsh:
        case INS_ldursh:
            if (id->idOpSize() == EA_8BYTE)
                result = EA_8BYTE;
            else
                result = EA_4BYTE;
            break;

        case INS_ldrsw:
        case INS_ldursw:
        case INS_ldpsw:
            result = EA_8BYTE;
            break;

        case INS_ldp:
        case INS_stp:
        case INS_ldnp:
        case INS_stnp:
            result = id->idOpSize();
            break;

        case INS_ldr:
        case INS_str:
        case INS_ldur:
        case INS_stur:
            result = id->idOpSize();
            break;

        default:
            NO_WAY("unexpected instruction");
            break;
    }
    return result;
}

// Takes an instrDesc and uses the instruction to determine the 'size' of the
// data that is loaded from memory.
//
emitAttr emitter::emitInsLoadStoreSize(instrDesc* id)
{
    instruction ins    = id->idIns();
    emitAttr    result = EA_UNKNOWN;

    // The 'result' returned is the 'size' of the data that is loaded from memory.

    switch (ins)
    {
        case INS_ldrb:
        case INS_strb:
        case INS_ldurb:
        case INS_sturb:
        case INS_ldrsb:
        case INS_ldursb:
            result = EA_1BYTE;
            break;

        case INS_ldrh:
        case INS_strh:
        case INS_ldurh:
        case INS_sturh:
        case INS_ldrsh:
        case INS_ldursh:
            result = EA_2BYTE;
            break;

        case INS_ldrsw:
        case INS_ldursw:
        case INS_ldpsw:
            result = EA_4BYTE;
            break;

        case INS_ldp:
        case INS_stp:
        case INS_ldnp:
        case INS_stnp:
            result = id->idOpSize();
            break;

        case INS_ldr:
        case INS_str:
        case INS_ldur:
        case INS_stur:
            result = id->idOpSize();
            break;

        default:
            NO_WAY("unexpected instruction");
            break;
    }
    return result;
}

/*****************************************************************************/
#ifdef DEBUG

// clang-format off
static const char * const  xRegNames[] =
{
    #define REGDEF(name, rnum, mask, xname, wname) xname,
    #include "register.h"
};

static const char * const  wRegNames[] =
{
    #define REGDEF(name, rnum, mask, xname, wname) wname,
    #include "register.h"
};

static const char * const  vRegNames[] =
{
    "v0",  "v1",  "v2",  "v3",  "v4", 
    "v5",  "v6",  "v7",  "v8",  "v9", 
    "v10", "v11", "v12", "v13", "v14", 
    "v15", "v16", "v17", "v18", "v19", 
    "v20", "v21", "v22", "v23", "v24", 
    "v25", "v26", "v27", "v28", "v29",
    "v30", "v31"
};

static const char * const  qRegNames[] =
{
    "q0",  "q1",  "q2",  "q3",  "q4", 
    "q5",  "q6",  "q7",  "q8",  "q9", 
    "q10", "q11", "q12", "q13", "q14", 
    "q15", "q16", "q17", "q18", "q19", 
    "q20", "q21", "q22", "q23", "q24", 
    "q25", "q26", "q27", "q28", "q29",
    "q30", "q31"
};

static const char * const  hRegNames[] =
{
    "h0",  "h1",  "h2",  "h3",  "h4", 
    "h5",  "h6",  "h7",  "h8",  "h9", 
    "h10", "h11", "h12", "h13", "h14", 
    "h15", "h16", "h17", "h18", "h19", 
    "h20", "h21", "h22", "h23", "h24", 
    "h25", "h26", "h27", "h28", "h29",
    "h30", "h31"
};
static const char * const  bRegNames[] =
{
    "b0",  "b1",  "b2",  "b3",  "b4", 
    "b5",  "b6",  "b7",  "b8",  "b9", 
    "b10", "b11", "b12", "b13", "b14", 
    "b15", "b16", "b17", "b18", "b19", 
    "b20", "b21", "b22", "b23", "b24", 
    "b25", "b26", "b27", "b28", "b29",
    "b30", "b31"
};
// clang-format on

/*****************************************************************************
 *
 *  Return a string that represents the given register.
 */

const char* emitter::emitRegName(regNumber reg, emitAttr size, bool varName)
{
    assert(reg < REG_COUNT);

    const char* rn = nullptr;

    if (size == EA_8BYTE)
    {
        rn = xRegNames[reg];
    }
    else if (size == EA_4BYTE)
    {
        rn = wRegNames[reg];
    }
    else if (isVectorRegister(reg))
    {
        if (size == EA_16BYTE)
        {
            rn = qRegNames[reg - REG_V0];
        }
        else if (size == EA_2BYTE)
        {
            rn = hRegNames[reg - REG_V0];
        }
        else if (size == EA_1BYTE)
        {
            rn = bRegNames[reg - REG_V0];
        }
    }

    assert(rn != nullptr);

    return rn;
}

/*****************************************************************************
 *
 *  Return a string that represents the given register.
 */

const char* emitter::emitVectorRegName(regNumber reg)
{
    assert((reg >= REG_V0) && (reg <= REG_V31));

    int index = (int)reg - (int)REG_V0;

    return vRegNames[index];
}
#endif // DEBUG

/*****************************************************************************
 *
 *  Returns the base encoding of the given CPU instruction.
 */

emitter::insFormat emitter::emitInsFormat(instruction ins)
{
    // clang-format off
    const static insFormat insFormats[] =
    {
        #define INST1(id, nm, fp, ldst, fmt, e1                                ) fmt,
        #define INST2(id, nm, fp, ldst, fmt, e1, e2                            ) fmt,
        #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3                        ) fmt,
        #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4                    ) fmt,
        #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5                ) fmt,
        #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6            ) fmt,
        #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) fmt,
        #include "instrs.h"
    };
    // clang-format on

    assert(ins < ArrLen(insFormats));
    assert((insFormats[ins] != IF_NONE));

    return insFormats[ins];
}

// INST_FP is 1
#define LD 2
#define ST 4
#define CMP 8

// clang-format off
/*static*/ const BYTE CodeGenInterface::instInfo[] =
{
    #define INST1(id, nm, fp, ldst, fmt, e1                                ) ldst | INST_FP*fp,
    #define INST2(id, nm, fp, ldst, fmt, e1, e2                            ) ldst | INST_FP*fp,
    #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3                        ) ldst | INST_FP*fp,
    #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4                    ) ldst | INST_FP*fp,
    #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5                ) ldst | INST_FP*fp,
    #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6            ) ldst | INST_FP*fp,
    #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) ldst | INST_FP*fp,
    #include "instrs.h"
};
// clang-format on

/*****************************************************************************
 *
 *  Returns true if the instruction is some kind of compare or test instruction
 */

bool emitter::emitInsIsCompare(instruction ins)
{
    // We have pseudo ins like lea which are not included in emitInsLdStTab.
    if (ins < ArrLen(CodeGenInterface::instInfo))
        return (CodeGenInterface::instInfo[ins] & CMP) ? true : false;
    else
        return false;
}

/*****************************************************************************
 *
 *  Returns true if the instruction is some kind of load instruction
 */

bool emitter::emitInsIsLoad(instruction ins)
{
    // We have pseudo ins like lea which are not included in emitInsLdStTab.
    if (ins < ArrLen(CodeGenInterface::instInfo))
        return (CodeGenInterface::instInfo[ins] & LD) ? true : false;
    else
        return false;
}
/*****************************************************************************
 *
 *  Returns true if the instruction is some kind of store instruction
 */

bool emitter::emitInsIsStore(instruction ins)
{
    // We have pseudo ins like lea which are not included in emitInsLdStTab.
    if (ins < ArrLen(CodeGenInterface::instInfo))
        return (CodeGenInterface::instInfo[ins] & ST) ? true : false;
    else
        return false;
}

/*****************************************************************************
 *
 *  Returns true if the instruction is some kind of load/store instruction
 */

bool emitter::emitInsIsLoadOrStore(instruction ins)
{
    // We have pseudo ins like lea which are not included in emitInsLdStTab.
    if (ins < ArrLen(CodeGenInterface::instInfo))
        return (CodeGenInterface::instInfo[ins] & (LD | ST)) ? true : false;
    else
        return false;
}

#undef LD
#undef ST
#undef CMP

/*****************************************************************************
 *
 *  Returns the specific encoding of the given CPU instruction and format
 */

emitter::code_t emitter::emitInsCode(instruction ins, insFormat fmt)
{
    // clang-format off
    const static code_t insCodes1[] =
    {
        #define INST1(id, nm, fp, ldst, fmt, e1                                ) e1,
        #define INST2(id, nm, fp, ldst, fmt, e1, e2                            ) e1,
        #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3                        ) e1,
        #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4                    ) e1,
        #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5                ) e1,
        #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6            ) e1,
        #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e1,
        #include "instrs.h"
    };
    const static code_t insCodes2[] =
    {
        #define INST1(id, nm, fp, ldst, fmt, e1                                )
        #define INST2(id, nm, fp, ldst, fmt, e1, e2                            ) e2,
        #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3                        ) e2,
        #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4                    ) e2,
        #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5                ) e2,
        #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6            ) e2,
        #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e2,
        #include "instrs.h"
    };
    const static code_t insCodes3[] =
    {
        #define INST1(id, nm, fp, ldst, fmt, e1                                )
        #define INST2(id, nm, fp, ldst, fmt, e1, e2                            )
        #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3                        ) e3,
        #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4                    ) e3,
        #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5                ) e3,
        #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6            ) e3,
        #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e3,
        #include "instrs.h"
    };
    const static code_t insCodes4[] =
    {
        #define INST1(id, nm, fp, ldst, fmt, e1                                )
        #define INST2(id, nm, fp, ldst, fmt, e1, e2                            )
        #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3                        )
        #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4                    ) e4,
        #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5                ) e4,
        #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6            ) e4,
        #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e4,
        #include "instrs.h"
    };
    const static code_t insCodes5[] =
    {
        #define INST1(id, nm, fp, ldst, fmt, e1                                )
        #define INST2(id, nm, fp, ldst, fmt, e1, e2                            )
        #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3                        )
        #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4                    )
        #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5                ) e5,
        #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6            ) e5,
        #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e5,
        #include "instrs.h"
    };
    const static code_t insCodes6[] =
    {
        #define INST1(id, nm, fp, ldst, fmt, e1                                )
        #define INST2(id, nm, fp, ldst, fmt, e1, e2                            )
        #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3                        )
        #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4                    )
        #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5                )
        #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6            ) e6,
        #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e6,
        #include "instrs.h"
    };
    const static code_t insCodes7[] =
    {
        #define INST1(id, nm, fp, ldst, fmt, e1                                )
        #define INST2(id, nm, fp, ldst, fmt, e1, e2                            )
        #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3                        )
        #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4                    )
        #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5                )
        #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6            )
        #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e7,
        #include "instrs.h"
    };
    const static code_t insCodes8[] =
    {
        #define INST1(id, nm, fp, ldst, fmt, e1                                )
        #define INST2(id, nm, fp, ldst, fmt, e1, e2                            )
        #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3                        )
        #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4                    )
        #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5                )
        #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6            )
        #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e8,
        #include "instrs.h"
    };
    const static code_t insCodes9[] =
    {
        #define INST1(id, nm, fp, ldst, fmt, e1                                )
        #define INST2(id, nm, fp, ldst, fmt, e1, e2                            )
        #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3                        )
        #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4                    )
        #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5                )
        #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6            )
        #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e9,
        #include "instrs.h"
    };
    // clang-format on

    const static insFormat formatEncode9[9] = {IF_DR_2E, IF_DR_2G, IF_DI_1B, IF_DI_1D, IF_DV_3C,
                                               IF_DV_2B, IF_DV_2C, IF_DV_2E, IF_DV_2F};
    const static insFormat formatEncode6A[6] = {IF_DR_3A, IF_DR_3B, IF_DR_3C, IF_DI_2A, IF_DV_3A, IF_DV_3E};
    const static insFormat formatEncode5A[5] = {IF_LS_2A, IF_LS_2B, IF_LS_2C, IF_LS_3A, IF_LS_1A};
    const static insFormat formatEncode5B[5] = {IF_DV_2G, IF_DV_2H, IF_DV_2I, IF_DV_1A, IF_DV_1B};
    const static insFormat formatEncode5C[5] = {IF_DR_3A, IF_DR_3B, IF_DI_2C, IF_DV_3C, IF_DV_1B};
    const static insFormat formatEncode4A[4] = {IF_LS_2A, IF_LS_2B, IF_LS_2C, IF_LS_3A};
    const static insFormat formatEncode4B[4] = {IF_DR_3A, IF_DR_3B, IF_DR_3C, IF_DI_2A};
    const static insFormat formatEncode4C[4] = {IF_DR_2A, IF_DR_2B, IF_DR_2C, IF_DI_1A};
    const static insFormat formatEncode4D[4] = {IF_DV_3B, IF_DV_3D, IF_DV_3BI, IF_DV_3DI};
    const static insFormat formatEncode4E[4] = {IF_DR_3A, IF_DR_3B, IF_DI_2C, IF_DV_3C};
    const static insFormat formatEncode4F[4] = {IF_DR_3A, IF_DR_3B, IF_DV_3C, IF_DV_1B};
    const static insFormat formatEncode4G[4] = {IF_DR_2E, IF_DR_2F, IF_DV_2M, IF_DV_2L};
    const static insFormat formatEncode3A[3] = {IF_DR_3A, IF_DR_3B, IF_DI_2C};
    const static insFormat formatEncode3B[3] = {IF_DR_2A, IF_DR_2B, IF_DI_1C};
    const static insFormat formatEncode3C[3] = {IF_DR_3A, IF_DR_3B, IF_DV_3C};
    const static insFormat formatEncode3D[3] = {IF_DV_2C, IF_DV_2D, IF_DV_2E};
    const static insFormat formatEncode3E[3] = {IF_DV_3B, IF_DV_3BI, IF_DV_3DI};
    const static insFormat formatEncode3F[3] = {IF_DV_2A, IF_DV_2G, IF_DV_2H};
    const static insFormat formatEncode3G[3] = {IF_DV_2A, IF_DV_2G, IF_DV_2I};
    const static insFormat formatEncode3H[3] = {IF_DR_3A, IF_DV_3A, IF_DV_3AI};
    const static insFormat formatEncode3I[3] = {IF_DR_2E, IF_DR_2F, IF_DV_2M};
    const static insFormat formatEncode2A[2] = {IF_DR_2E, IF_DR_2F};
    const static insFormat formatEncode2B[2] = {IF_DR_3A, IF_DR_3B};
    const static insFormat formatEncode2C[2] = {IF_DR_3A, IF_DI_2D};
    const static insFormat formatEncode2D[2] = {IF_DR_3A, IF_DI_2B};
    const static insFormat formatEncode2E[2] = {IF_LS_3B, IF_LS_3C};
    const static insFormat formatEncode2F[2] = {IF_DR_2I, IF_DI_1F};
    const static insFormat formatEncode2G[2] = {IF_DV_3B, IF_DV_3D};
    const static insFormat formatEncode2H[2] = {IF_DV_2C, IF_DV_2F};
    const static insFormat formatEncode2I[2] = {IF_DV_2K, IF_DV_1C};
    const static insFormat formatEncode2J[2] = {IF_DV_2A, IF_DV_2G};
    const static insFormat formatEncode2K[2] = {IF_DV_2M, IF_DV_2L};
    const static insFormat formatEncode2L[2] = {IF_DV_2G, IF_DV_2M};
    const static insFormat formatEncode2M[2] = {IF_DV_3A, IF_DV_3AI};
    const static insFormat formatEncode2N[2] = {IF_DV_2N, IF_DV_2O};

    code_t    code           = BAD_CODE;
    insFormat insFmt         = emitInsFormat(ins);
    bool      encoding_found = false;
    int       index          = -1;

    switch (insFmt)
    {
        case IF_EN9:
            for (index = 0; index < 9; index++)
            {
                if (fmt == formatEncode9[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN6A:
            for (index = 0; index < 6; index++)
            {
                if (fmt == formatEncode6A[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN5A:
            for (index = 0; index < 5; index++)
            {
                if (fmt == formatEncode5A[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN5B:
            for (index = 0; index < 5; index++)
            {
                if (fmt == formatEncode5B[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN5C:
            for (index = 0; index < 5; index++)
            {
                if (fmt == formatEncode5C[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN4A:
            for (index = 0; index < 4; index++)
            {
                if (fmt == formatEncode4A[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN4B:
            for (index = 0; index < 4; index++)
            {
                if (fmt == formatEncode4B[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN4C:
            for (index = 0; index < 4; index++)
            {
                if (fmt == formatEncode4C[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN4D:
            for (index = 0; index < 4; index++)
            {
                if (fmt == formatEncode4D[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN4E:
            for (index = 0; index < 4; index++)
            {
                if (fmt == formatEncode4E[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN4F:
            for (index = 0; index < 4; index++)
            {
                if (fmt == formatEncode4F[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN4G:
            for (index = 0; index < 4; index++)
            {
                if (fmt == formatEncode4G[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN3A:
            for (index = 0; index < 3; index++)
            {
                if (fmt == formatEncode3A[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN3B:
            for (index = 0; index < 3; index++)
            {
                if (fmt == formatEncode3B[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN3C:
            for (index = 0; index < 3; index++)
            {
                if (fmt == formatEncode3C[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN3D:
            for (index = 0; index < 3; index++)
            {
                if (fmt == formatEncode3D[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN3E:
            for (index = 0; index < 3; index++)
            {
                if (fmt == formatEncode3E[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN3F:
            for (index = 0; index < 3; index++)
            {
                if (fmt == formatEncode3F[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN3G:
            for (index = 0; index < 3; index++)
            {
                if (fmt == formatEncode3G[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN3H:
            for (index = 0; index < 3; index++)
            {
                if (fmt == formatEncode3H[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN3I:
            for (index = 0; index < 3; index++)
            {
                if (fmt == formatEncode3I[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2A:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2A[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2B:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2B[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2C:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2C[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2D:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2D[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2E:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2E[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2F:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2F[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2G:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2G[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2H:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2H[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2I:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2I[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2J:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2J[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2K:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2K[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2L:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2L[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2M:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2M[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_EN2N:
            for (index = 0; index < 2; index++)
            {
                if (fmt == formatEncode2N[index])
                {
                    encoding_found = true;
                    break;
                }
            }
            break;

        case IF_BI_0A:
        case IF_BI_0B:
        case IF_BI_0C:
        case IF_BI_1A:
        case IF_BI_1B:
        case IF_BR_1A:
        case IF_BR_1B:
        case IF_LS_1A:
        case IF_LS_2A:
        case IF_LS_2B:
        case IF_LS_2C:
        case IF_LS_3A:
        case IF_LS_3B:
        case IF_LS_3C:
        case IF_DI_1A:
        case IF_DI_1B:
        case IF_DI_1C:
        case IF_DI_1D:
        case IF_DI_1E:
        case IF_DI_1F:
        case IF_DI_2A:
        case IF_DI_2B:
        case IF_DI_2C:
        case IF_DI_2D:
        case IF_DR_1D:
        case IF_DR_2A:
        case IF_DR_2B:
        case IF_DR_2C:
        case IF_DR_2D:
        case IF_DR_2E:
        case IF_DR_2F:
        case IF_DR_2G:
        case IF_DR_2H:
        case IF_DR_2I:
        case IF_DR_3A:
        case IF_DR_3B:
        case IF_DR_3C:
        case IF_DR_3D:
        case IF_DR_3E:
        case IF_DR_4A:
        case IF_DV_1A:
        case IF_DV_1B:
        case IF_DV_1C:
        case IF_DV_2A:
        case IF_DV_2B:
        case IF_DV_2C:
        case IF_DV_2D:
        case IF_DV_2E:
        case IF_DV_2F:
        case IF_DV_2G:
        case IF_DV_2H:
        case IF_DV_2I:
        case IF_DV_2J:
        case IF_DV_2K:
        case IF_DV_2L:
        case IF_DV_2M:
        case IF_DV_2N:
        case IF_DV_2O:
        case IF_DV_3A:
        case IF_DV_3AI:
        case IF_DV_3B:
        case IF_DV_3BI:
        case IF_DV_3C:
        case IF_DV_3D:
        case IF_DV_3DI:
        case IF_DV_3E:
        case IF_DV_4A:
        case IF_SN_0A:
        case IF_SI_0A:
        case IF_SI_0B:

            index          = 0;
            encoding_found = true;
            break;

        default:

            encoding_found = false;
            break;
    }

    assert(encoding_found);

    switch (index)
    {
        case 0:
            assert(ins < ArrLen(insCodes1));
            code = insCodes1[ins];
            break;
        case 1:
            assert(ins < ArrLen(insCodes2));
            code = insCodes2[ins];
            break;
        case 2:
            assert(ins < ArrLen(insCodes3));
            code = insCodes3[ins];
            break;
        case 3:
            assert(ins < ArrLen(insCodes4));
            code = insCodes4[ins];
            break;
        case 4:
            assert(ins < ArrLen(insCodes5));
            code = insCodes5[ins];
            break;
        case 5:
            assert(ins < ArrLen(insCodes6));
            code = insCodes6[ins];
            break;
        case 6:
            assert(ins < ArrLen(insCodes7));
            code = insCodes7[ins];
            break;
        case 7:
            assert(ins < ArrLen(insCodes8));
            code = insCodes8[ins];
            break;
        case 8:
            assert(ins < ArrLen(insCodes9));
            code = insCodes9[ins];
            break;
    }

    assert((code != BAD_CODE));

    return code;
}

// true if this 'imm' can be encoded as a input operand to a mov instruction
/*static*/ bool emitter::emitIns_valid_imm_for_mov(INT64 imm, emitAttr size)
{
    // Check for "MOV (wide immediate)".
    if (canEncodeHalfwordImm(imm, size))
        return true;

    // Next try the ones-complement form of 'halfword immediate' imm(i16,hw),
    // namely "MOV (inverted wide immediate)".
    ssize_t notOfImm = NOT_helper(imm, getBitWidth(size));
    if (canEncodeHalfwordImm(notOfImm, size))
        return true;

    // Finally try "MOV (bitmask immediate)" imm(N,r,s)
    if (canEncodeBitMaskImm(imm, size))
        return true;

    return false;
}

// true if this 'imm' can be encoded as a input operand to a vector movi instruction
/*static*/ bool emitter::emitIns_valid_imm_for_movi(INT64 imm, emitAttr elemsize)
{
    if (elemsize == EA_8BYTE)
    {
        UINT64 uimm = imm;
        while (uimm != 0)
        {
            INT64 loByte = uimm & 0xFF;
            if ((loByte == 0) || (loByte == 0xFF))
            {
                uimm >>= 8;
            }
            else
            {
                return false;
            }
        }
        assert(uimm == 0);
        return true;
    }
    else
    {
        // First try the standard 'byteShifted immediate' imm(i8,bySh)
        if (canEncodeByteShiftedImm(imm, elemsize, true))
            return true;

        // Next try the ones-complement form of the 'immediate' imm(i8,bySh)
        ssize_t notOfImm = NOT_helper(imm, getBitWidth(elemsize));
        if (canEncodeByteShiftedImm(notOfImm, elemsize, true))
            return true;
    }
    return false;
}

// true if this 'imm' can be encoded as a input operand to a fmov instruction
/*static*/ bool emitter::emitIns_valid_imm_for_fmov(double immDbl)
{
    if (canEncodeFloatImm8(immDbl))
        return true;

    return false;
}

// true if this 'imm' can be encoded as a input operand to an add instruction
/*static*/ bool emitter::emitIns_valid_imm_for_add(INT64 imm, emitAttr size)
{
    if (unsigned_abs(imm) <= 0x0fff)
        return true;
    else if (canEncodeWithShiftImmBy12(imm)) // Try the shifted by 12 encoding
        return true;

    return false;
}

// true if this 'imm' can be encoded as a input operand to an non-add/sub alu instruction
/*static*/ bool emitter::emitIns_valid_imm_for_cmp(INT64 imm, emitAttr size)
{
    return emitIns_valid_imm_for_add(imm, size);
}

// true if this 'imm' can be encoded as a input operand to an non-add/sub alu instruction
/*static*/ bool emitter::emitIns_valid_imm_for_alu(INT64 imm, emitAttr size)
{
    if (canEncodeBitMaskImm(imm, size))
        return true;

    return false;
}

// true if this 'imm' can be encoded as the offset in a ldr/str instruction
/*static*/ bool emitter::emitIns_valid_imm_for_ldst_offset(INT64 imm, emitAttr attr)
{
    if (imm == 0)
        return true; // Encodable using IF_LS_2A

    if ((imm >= -256) && (imm <= 255))
        return true; // Encodable using IF_LS_2C (or possibly IF_LS_2B)

    if (imm < 0)
        return false; // not encodable

    emitAttr size  = EA_SIZE(attr);
    unsigned scale = NaturalScale_helper(size);
    ssize_t  mask  = size - 1; // the mask of low bits that must be zero to encode the immediate

    if (((imm & mask) == 0) && ((imm >> scale) < 0x1000))
        return true; // Encodable using IF_LS_2B

    return false; // not encodable
}

/************************************************************************
 *
 *   A helper method to return the natural scale for an EA 'size'
 */

/*static*/ unsigned emitter::NaturalScale_helper(emitAttr size)
{
    assert(size == EA_1BYTE || size == EA_2BYTE || size == EA_4BYTE || size == EA_8BYTE || size == EA_16BYTE);

    unsigned result = 0;
    unsigned utemp  = (unsigned)size;

    // Compute log base 2 of utemp (aka 'size')
    while (utemp > 1)
    {
        result++;
        utemp >>= 1;
    }

    return result;
}

/************************************************************************
 *
 *  A helper method to perform a Rotate-Right shift operation
 *  the source is 'value' and it is rotated right by 'sh' bits
 *  'value' is considered to be a fixed size 'width' set of bits.
 *
 *  Example
 *      value is '00001111', sh is 2 and width is 8
 *     result is '11000011'
 */

/*static*/ UINT64 emitter::ROR_helper(UINT64 value, unsigned sh, unsigned width)
{
    assert(width <= 64);
    // Check that 'value' fits in 'width' bits
    assert((width == 64) || (value < (1ULL << width)));
    // We don't support shifts >= width
    assert(sh < width);

    UINT64 result;

    unsigned rsh = sh;
    unsigned lsh = width - rsh;

    result = (value >> rsh);
    result |= (value << lsh);

    if (width < 64)
    {
        // mask off any extra bits that we got from the left shift
        result &= ((1ULL << width) - 1);
    }
    return result;
}
/************************************************************************
 *
 *  A helper method to perform a 'NOT' bitwise complement operation.
 *  'value' is considered to be a fixed size 'width' set of bits.
 *
 *  Example
 *      value is '01001011', and width is 8
 *     result is '10110100'
 */

/*static*/ UINT64 emitter::NOT_helper(UINT64 value, unsigned width)
{
    assert(width <= 64);

    UINT64 result = ~value;

    if (width < 64)
    {
        // Check that 'value' fits in 'width' bits. Don't consider "sign" bits above width.
        UINT64 maxVal       = 1ULL << width;
        UINT64 lowBitsMask  = maxVal - 1;
        UINT64 signBitsMask = ~lowBitsMask | (1ULL << (width - 1)); // The high bits must be set, and the top bit
                                                                    // (sign bit) must be set.
        assert((value < maxVal) || ((value & signBitsMask) == signBitsMask));

        // mask off any extra bits that we got from the complement operation
        result &= lowBitsMask;
    }

    return result;
}

/************************************************************************
 *
 *  A helper method to perform a bit Replicate operation
 *  the source is 'value' with a fixed size 'width' set of bits.
 *  value is replicated to fill out 32 or 64 bits as determined by 'size'.
 *
 *  Example
 *      value is '11000011' (0xE3), width is 8 and size is EA_8BYTE
 *     result is '11000011 11000011 11000011 11000011 11000011 11000011 11000011 11000011'
 *               0xE3E3E3E3E3E3E3E3
 */

/*static*/ UINT64 emitter::Replicate_helper(UINT64 value, unsigned width, emitAttr size)
{
    assert(emitter::isValidGeneralDatasize(size));

    unsigned immWidth = (size == EA_8BYTE) ? 64 : 32;
    assert(width <= immWidth);

    UINT64   result     = value;
    unsigned filledBits = width;

    while (filledBits < immWidth)
    {
        value <<= width;
        result |= value;
        filledBits += width;
    }
    return result;
}

/************************************************************************
 *
 *  Convert an imm(N,r,s) into a 64-bit immediate
 *  inputs 'bmImm' a bitMaskImm struct
 *         'size' specifies the size of the result (64 or 32 bits)
 */

/*static*/ INT64 emitter::emitDecodeBitMaskImm(const emitter::bitMaskImm bmImm, emitAttr size)
{
    assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms

    unsigned N = bmImm.immN; // read the N,R and S values from the 'bitMaskImm' encoding
    unsigned R = bmImm.immR;
    unsigned S = bmImm.immS;

    unsigned elemWidth = 64; // used when immN == 1

    if (bmImm.immN == 0) // find the smaller elemWidth when immN == 0
    {
        // Scan S for the highest bit not set
        elemWidth = 32;
        for (unsigned bitNum = 5; bitNum > 0; bitNum--)
        {
            unsigned oneBit = elemWidth;
            if ((S & oneBit) == 0)
                break;
            elemWidth /= 2;
        }
    }
    else
    {
        assert(size == EA_8BYTE);
    }

    unsigned maskSR = elemWidth - 1;

    S &= maskSR;
    R &= maskSR;

    // encoding for S is one less than the number of consecutive one bits
    S++; // Number of consecutive ones to generate in 'welem'

    // At this point:
    //
    //    'elemWidth' is the number of bits that we will use for the ROR and Replicate operations
    //    'S'         is the number of consecutive 1 bits for the immediate
    //    'R'         is the number of bits that we will Rotate Right the immediate
    //    'size'      selects the final size of the immedate that we return (64 or 32 bits)

    assert(S < elemWidth); // 'elemWidth' consecutive one's is a reserved encoding

    UINT64 welem;
    UINT64 wmask;

    welem = (1ULL << S) - 1;

    wmask = ROR_helper(welem, R, elemWidth);
    wmask = Replicate_helper(wmask, elemWidth, size);

    return wmask;
}

/*****************************************************************************
 *
 *  Check if an immediate can use the left shifted by 12 bits encoding
 */

/*static*/ bool emitter::canEncodeWithShiftImmBy12(INT64 imm)
{
    if (imm < 0)
    {
        imm = -imm; // convert to unsigned
    }

    if (imm < 0)
    {
        return false; // Must be MIN_INT64
    }

    if ((imm & 0xfff) != 0) // Now the low 12 bits all have to be zero
    {
        return false;
    }

    imm >>= 12; // shift right by 12 bits

    return (imm <= 0x0fff); // Does it fit in 12 bits
}

/*****************************************************************************
 *
 *  Normalize the 'imm' so that the upper bits, as defined by 'size' are zero
 */

/*static*/ INT64 emitter::normalizeImm64(INT64 imm, emitAttr size)
{
    unsigned immWidth = getBitWidth(size);
    INT64    result   = imm;

    if (immWidth < 64)
    {
        // Check that 'imm' fits in 'immWidth' bits. Don't consider "sign" bits above width.
        INT64 maxVal      = 1LL << immWidth;
        INT64 lowBitsMask = maxVal - 1;
        INT64 hiBitsMask  = ~lowBitsMask;
        INT64 signBitsMask =
            hiBitsMask | (1LL << (immWidth - 1)); // The high bits must be set, and the top bit (sign bit) must be set.
        assert((imm < maxVal) || ((imm & signBitsMask) == signBitsMask));

        // mask off the hiBits
        result &= lowBitsMask;
    }
    return result;
}

/*****************************************************************************
 *
 *  Normalize the 'imm' so that the upper bits, as defined by 'size' are zero
 */

/*static*/ INT32 emitter::normalizeImm32(INT32 imm, emitAttr size)
{
    unsigned immWidth = getBitWidth(size);
    INT32    result   = imm;

    if (immWidth < 32)
    {
        // Check that 'imm' fits in 'immWidth' bits. Don't consider "sign" bits above width.
        INT32 maxVal       = 1 << immWidth;
        INT32 lowBitsMask  = maxVal - 1;
        INT32 hiBitsMask   = ~lowBitsMask;
        INT32 signBitsMask = hiBitsMask | (1 << (immWidth - 1)); // The high bits must be set, and the top bit
                                                                 // (sign bit) must be set.
        assert((imm < maxVal) || ((imm & signBitsMask) == signBitsMask));

        // mask off the hiBits
        result &= lowBitsMask;
    }
    return result;
}

/************************************************************************
 *
 *  returns true if 'imm' of 'size bits (32/64) can be encoded
 *  using the ARM64 'bitmask immediate' form.
 *  When a non-null value is passed for 'wbBMI' then this method
 *  writes back the 'N','S' and 'R' values use to encode this immediate
 *
 */

/*static*/ bool emitter::canEncodeBitMaskImm(INT64 imm, emitAttr size, emitter::bitMaskImm* wbBMI)
{
    assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms

    unsigned immWidth = (size == EA_8BYTE) ? 64 : 32;
    unsigned maxLen   = (size == EA_8BYTE) ? 6 : 5;

    imm = normalizeImm64(imm, size);

    // Starting with len=1, elemWidth is 2 bits
    //               len=2, elemWidth is 4 bits
    //               len=3, elemWidth is 8 bits
    //               len=4, elemWidth is 16 bits
    //               len=5, elemWidth is 32 bits
    // (optionally)  len=6, elemWidth is 64 bits
    //
    for (unsigned len = 1; (len <= maxLen); len++)
    {
        unsigned elemWidth = 1 << len;
        UINT64   elemMask  = ((UINT64)-1) >> (64 - elemWidth);
        UINT64   tempImm   = (UINT64)imm;        // A working copy of 'imm' that we can mutate
        UINT64   elemVal   = tempImm & elemMask; // The low 'elemWidth' bits of 'imm'

        // Check for all 1's or 0's as these can't be encoded
        if ((elemVal == 0) || (elemVal == elemMask))
            continue;

        // 'checkedBits' is the count of bits that are known to match 'elemVal' when replicated
        unsigned checkedBits = elemWidth; // by definition the first 'elemWidth' bits match

        // Now check to see if each of the next bits match...
        //
        while (checkedBits < immWidth)
        {
            tempImm >>= elemWidth;

            UINT64 nextElem = tempImm & elemMask;
            if (nextElem != elemVal)
            {
                // Not matching, exit this loop and checkedBits will not be equal to immWidth
                break;
            }

            // The 'nextElem' is matching, so increment 'checkedBits'
            checkedBits += elemWidth;
        }

        // Did the full immediate contain bits that can be formed by repeating 'elemVal'?
        if (checkedBits == immWidth)
        {
            // We are not quite done, since the only values that we can encode as a
            // 'bitmask immediate' are those that can be formed by starting with a
            // bit string of 0*1* that is rotated by some number of bits.
            //
            // We check to see if 'elemVal' can be formed using these restrictions.
            //
            // Observation:
            // Rotating by one bit any value that passes these restrictions
            // can be xor-ed with the original value and will result it a string
            // of bits that have exactly two 1 bits: 'elemRorXor'
            // Further the distance between the two one bits tells us the value
            // of S and the location of the 1 bits tells us the value of R
            //
            // Some examples:   (immWidth is 8)
            //
            // S=4,R=0   S=5,R=3   S=3,R=6
            // elemVal:        00001111  11100011  00011100
            // elemRor:        10000111  11110001  00001110
            // elemRorXor:     10001000  00010010  00010010
            //      compute S  45678---  ---5678-  ---3210-
            //      compute R  01234567  ---34567  ------67

            UINT64 elemRor    = ROR_helper(elemVal, 1, elemWidth); // Rotate 'elemVal' Right by one bit
            UINT64 elemRorXor = elemVal ^ elemRor;                 // Xor elemVal and elemRor

            // If we only have a two-bit change in elemROR then we can form a mask for this value
            unsigned bitCount = 0;
            UINT64   oneBit   = 0x1;
            unsigned R        = elemWidth; // R is shift count for ROR (rotate right shift)
            unsigned S        = 0;         // S is number of consecutive one bits
            int      incr     = -1;

            // Loop over the 'elemWidth' bits in 'elemRorXor'
            //
            for (unsigned bitNum = 0; bitNum < elemWidth; bitNum++)
            {
                if (incr == -1)
                {
                    R--; // We decrement R by one whenever incr is -1
                }
                if (bitCount == 1)
                {
                    S += incr; // We incr/decr S, after we find the first one bit in 'elemRorXor'
                }

                // Is this bit position a 1 bit in 'elemRorXor'?
                //
                if (oneBit & elemRorXor)
                {
                    bitCount++;
                    // Is this the first 1 bit that we found in 'elemRorXor'?
                    if (bitCount == 1)
                    {
                        // Does this 1 bit represent a transition to zero bits?
                        bool toZeros = ((oneBit & elemVal) != 0);
                        if (toZeros)
                        {
                            // S :: Count down from elemWidth
                            S    = elemWidth;
                            incr = -1;
                        }
                        else // this 1 bit represent a transition to one bits.
                        {
                            // S :: Count up from zero
                            S    = 0;
                            incr = +1;
                        }
                    }
                    else // bitCount > 1
                    {
                        // We found the second (or third...) 1 bit in 'elemRorXor'
                        incr = 0; // stop decrementing 'R'

                        if (bitCount > 2)
                        {
                            // More than 2 transitions from 0/1 in 'elemVal'
                            // This means that 'elemVal' can't be encoded
                            // using a 'bitmask immediate'.
                            //
                            // Furthermore, it will continue to fail
                            // with any larger 'len' that we try.
                            // so just return false.
                            //
                            return false;
                        }
                    }
                }

                // shift oneBit left by one bit to test the next position
                oneBit <<= 1;
            }

            // We expect that bitCount will always be two at this point
            // but just in case return false for any bad cases.
            //
            assert(bitCount == 2);
            if (bitCount != 2)
                return false;

            // Perform some sanity checks on the values of 'S' and 'R'
            assert(S > 0);
            assert(S < elemWidth);
            assert(R < elemWidth);

            // Does the caller want us to return the N,R,S encoding values?
            //
            if (wbBMI != nullptr)
            {

                // The encoding used for S is one less than the
                //  number of consecutive one bits
                S--;

                if (len == 6)
                {
                    wbBMI->immN = 1;
                }
                else
                {
                    wbBMI->immN = 0;
                    // The encoding used for 'S' here is a bit peculiar.
                    //
                    // The upper bits need to be complemented, followed by a zero bit
                    // then the value of 'S-1'
                    //
                    unsigned upperBitsOfS = 64 - (1 << (len + 1));
                    S |= upperBitsOfS;
                }
                wbBMI->immR = R;
                wbBMI->immS = S;

                // Verify that what we are returning is correct.
                assert(imm == emitDecodeBitMaskImm(*wbBMI, size));
            }
            // Tell the caller that we can successfully encode this immediate
            // using a 'bitmask immediate'.
            //
            return true;
        }
    }
    return false;
}

/************************************************************************
 *
 *  Convert a 64-bit immediate into its 'bitmask immediate' representation imm(N,r,s)
 */

/*static*/ emitter::bitMaskImm emitter::emitEncodeBitMaskImm(INT64 imm, emitAttr size)
{
    emitter::bitMaskImm result;
    result.immNRS = 0;

    bool canEncode = canEncodeBitMaskImm(imm, size, &result);
    assert(canEncode);

    return result;
}

/************************************************************************
 *
 *  Convert an imm(i16,hw) into a 32/64-bit immediate
 *  inputs 'hwImm' a halfwordImm struct
 *         'size' specifies the size of the result (64 or 32 bits)
 */

/*static*/ INT64 emitter::emitDecodeHalfwordImm(const emitter::halfwordImm hwImm, emitAttr size)
{
    assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms

    unsigned hw  = hwImm.immHW;
    INT64    val = (INT64)hwImm.immVal;

    assert((hw <= 1) || (size == EA_8BYTE));

    INT64 result = val << (16 * hw);
    return result;
}

/************************************************************************
 *
 *  returns true if 'imm' of 'size' bits (32/64) can be encoded
 *  using the ARM64 'halfword immediate' form.
 *  When a non-null value is passed for 'wbHWI' then this method
 *  writes back the 'immHW' and 'immVal' values use to encode this immediate
 *
 */

/*static*/ bool emitter::canEncodeHalfwordImm(INT64 imm, emitAttr size, emitter::halfwordImm* wbHWI)
{
    assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms

    unsigned immWidth = (size == EA_8BYTE) ? 64 : 32;
    unsigned maxHW    = (size == EA_8BYTE) ? 4 : 2;

    // setup immMask to a (EA_4BYTE) 0x00000000_FFFFFFFF or (EA_8BYTE) 0xFFFFFFFF_FFFFFFFF
    const UINT64 immMask = ((UINT64)-1) >> (64 - immWidth);
    const INT64  mask16  = (INT64)0xFFFF;

    imm = normalizeImm64(imm, size);

    // Try each of the valid hw shift sizes
    for (unsigned hw = 0; (hw < maxHW); hw++)
    {
        INT64 curMask   = mask16 << (hw * 16); // Represents the mask of the bits in the current halfword
        INT64 checkBits = immMask & ~curMask;

        // Excluding the current halfword (using ~curMask)
        //  does the immediate have zero bits in every other bit that we care about?
        //  note we care about all 64-bits for EA_8BYTE
        //  and we care about the lowest 32 bits for EA_4BYTE
        //
        if ((imm & checkBits) == 0)
        {
            // Does the caller want us to return the imm(i16,hw) encoding values?
            //
            if (wbHWI != nullptr)
            {
                INT64 val     = ((imm & curMask) >> (hw * 16)) & mask16;
                wbHWI->immHW  = hw;
                wbHWI->immVal = val;

                // Verify that what we are returning is correct.
                assert(imm == emitDecodeHalfwordImm(*wbHWI, size));
            }
            // Tell the caller that we can successfully encode this immediate
            // using a 'halfword immediate'.
            //
            return true;
        }
    }
    return false;
}

/************************************************************************
 *
 *  Convert a 64-bit immediate into its 'halfword immediate' representation imm(i16,hw)
 */

/*static*/ emitter::halfwordImm emitter::emitEncodeHalfwordImm(INT64 imm, emitAttr size)
{
    emitter::halfwordImm result;
    result.immHWVal = 0;

    bool canEncode = canEncodeHalfwordImm(imm, size, &result);
    assert(canEncode);

    return result;
}

/************************************************************************
 *
 *  Convert an imm(i8,sh) into a 16/32-bit immediate
 *  inputs 'bsImm' a byteShiftedImm struct
 *         'size' specifies the size of the result (16 or 32 bits)
 */

/*static*/ INT32 emitter::emitDecodeByteShiftedImm(const emitter::byteShiftedImm bsImm, emitAttr size)
{
    bool     onesShift = (bsImm.immOnes == 1);
    unsigned bySh      = bsImm.immBY;         // Num Bytes to shift 0,1,2,3
    INT32    val       = (INT32)bsImm.immVal; // 8-bit immediate
    INT32    result    = val;

    if (bySh > 0)
    {
        assert((size == EA_2BYTE) || (size == EA_4BYTE)); // Only EA_2BYTE or EA_4BYTE forms
        if (size == EA_2BYTE)
        {
            assert(bySh < 2);
        }
        else
        {
            assert(bySh < 4);
        }

        result <<= (8 * bySh);

        if (onesShift)
        {
            result |= ((1 << (8 * bySh)) - 1);
        }
    }
    return result;
}

/************************************************************************
 *
 *  returns true if 'imm' of 'size' bits (16/32) can be encoded
 *  using the ARM64 'byteShifted immediate' form.
 *  When a non-null value is passed for 'wbBSI' then this method
 *  writes back the 'immBY' and 'immVal' values use to encode this immediate
 *
 */

/*static*/ bool emitter::canEncodeByteShiftedImm(INT64                    imm,
                                                 emitAttr                 size,
                                                 bool                     allow_MSL,
                                                 emitter::byteShiftedImm* wbBSI)
{
    bool     canEncode = false;
    bool     onesShift = false; // true if we use the shifting ones variant
    unsigned bySh      = 0;     // number of bytes to shift: 0, 1, 2, 3
    unsigned imm8      = 0;     // immediate to use in the encoding

    imm = normalizeImm64(imm, size);

    if (size == EA_1BYTE)
    {
        imm8 = (unsigned)imm;
        assert(imm8 < 0x100);
        canEncode = true;
    }
    else if (size == EA_8BYTE)
    {
        imm8 = (unsigned)imm;
        assert(imm8 < 0x100);
        canEncode = true;
    }
    else
    {
        assert((size == EA_2BYTE) || (size == EA_4BYTE)); // Only EA_2BYTE or EA_4BYTE forms

        unsigned immWidth = (size == EA_4BYTE) ? 32 : 16;
        unsigned maxBY    = (size == EA_4BYTE) ? 4 : 2;

        // setup immMask to a (EA_2BYTE) 0x0000FFFF or (EA_4BYTE) 0xFFFFFFFF
        const UINT32 immMask = ((UINT32)-1) >> (32 - immWidth);
        const INT32  mask8   = (INT32)0xFF;

        // Try each of the valid by shift sizes
        for (bySh = 0; (bySh < maxBY); bySh++)
        {
            INT32 curMask   = mask8 << (bySh * 8); // Represents the mask of the bits in the current byteShifted
            INT32 checkBits = immMask & ~curMask;
            INT32 immCheck  = (imm & checkBits);

            // Excluding the current byte (using ~curMask)
            //  does the immediate have zero bits in every other bit that we care about?
            //  or can be use the shifted one variant?
            //  note we care about all 32-bits for EA_4BYTE
            //  and we care about the lowest 16 bits for EA_2BYTE
            //
            if (immCheck == 0)
            {
                canEncode = true;
            }
            if (allow_MSL)
            {
                if ((bySh == 1) && (immCheck == 0xFF))
                {
                    canEncode = true;
                    onesShift = true;
                }
                else if ((bySh == 2) && (immCheck == 0xFFFF))
                {
                    canEncode = true;
                    onesShift = true;
                }
            }
            if (canEncode)
            {
                imm8 = (unsigned)(((imm & curMask) >> (bySh * 8)) & mask8);
                break;
            }
        }
    }

    if (canEncode)
    {
        // Does the caller want us to return the imm(i8,bySh) encoding values?
        //
        if (wbBSI != nullptr)
        {
            wbBSI->immOnes = onesShift;
            wbBSI->immBY   = bySh;
            wbBSI->immVal  = imm8;

            // Verify that what we are returning is correct.
            assert(imm == emitDecodeByteShiftedImm(*wbBSI, size));
        }
        // Tell the caller that we can successfully encode this immediate
        // using a 'byteShifted immediate'.
        //
        return true;
    }
    return false;
}

/************************************************************************
 *
 *  Convert a 32-bit immediate into its 'byteShifted immediate' representation imm(i8,by)
 */

/*static*/ emitter::byteShiftedImm emitter::emitEncodeByteShiftedImm(INT64 imm, emitAttr size, bool allow_MSL)
{
    emitter::byteShiftedImm result;
    result.immBSVal = 0;

    bool canEncode = canEncodeByteShiftedImm(imm, size, allow_MSL, &result);
    assert(canEncode);

    return result;
}

/************************************************************************
 *
 *  Convert a 'float 8-bit immediate' into a double.
 *  inputs 'fpImm' a floatImm8 struct
 */

/*static*/ double emitter::emitDecodeFloatImm8(const emitter::floatImm8 fpImm)
{
    unsigned sign  = fpImm.immSign;
    unsigned exp   = fpImm.immExp ^ 0x4;
    unsigned mant  = fpImm.immMant + 16;
    unsigned scale = 16 * 8;

    while (exp > 0)
    {
        scale /= 2;
        exp--;
    }

    double result = ((double)mant) / ((double)scale);
    if (sign == 1)
    {
        result = -result;
    }

    return result;
}

/************************************************************************
 *
 *  returns true if the 'immDbl' can be encoded using the 'float 8-bit immediate' form.
 *  also returns the encoding if wbFPI is non-null
 *
 */

/*static*/ bool emitter::canEncodeFloatImm8(double immDbl, emitter::floatImm8* wbFPI)
{
    bool   canEncode = false;
    double val       = immDbl;

    int sign = 0;
    if (val < 0.0)
    {
        val  = -val;
        sign = 1;
    }

    int exp = 0;
    while ((val < 1.0) && (exp >= -4))
    {
        val *= 2.0;
        exp--;
    }
    while ((val >= 2.0) && (exp <= 5))
    {
        val *= 0.5;
        exp++;
    }
    exp += 3;
    val *= 16.0;
    int ival = (int)val;

    if ((exp >= 0) && (exp <= 7))
    {
        if (val == (double)ival)
        {
            canEncode = true;

            if (wbFPI != nullptr)
            {
                ival -= 16;
                assert((ival >= 0) && (ival <= 15));

                wbFPI->immSign = sign;
                wbFPI->immExp  = exp ^ 0x4;
                wbFPI->immMant = ival;
                unsigned imm8  = wbFPI->immFPIVal;
                assert((imm8 >= 0) && (imm8 <= 0xff));
            }
        }
    }

    return canEncode;
}

/************************************************************************
 *
 *  Convert a double into its 'float 8-bit immediate' representation
 */

/*static*/ emitter::floatImm8 emitter::emitEncodeFloatImm8(double immDbl)
{
    emitter::floatImm8 result;
    result.immFPIVal = 0;

    bool canEncode = canEncodeFloatImm8(immDbl, &result);
    assert(canEncode);

    return result;
}

/*****************************************************************************
 *
 *  For the given 'ins' returns the reverse instruction
 *  if one exists, otherwise returns INS_INVALID
 */

/*static*/ instruction emitter::insReverse(instruction ins)
{
    switch (ins)
    {
        case INS_add:
            return INS_sub;
        case INS_adds:
            return INS_subs;

        case INS_sub:
            return INS_add;
        case INS_subs:
            return INS_adds;

        case INS_cmp:
            return INS_cmn;
        case INS_cmn:
            return INS_cmp;

        case INS_ccmp:
            return INS_ccmn;
        case INS_ccmn:
            return INS_ccmp;

        default:
            return INS_invalid;
    }
}

/*****************************************************************************
 *
 *  For the given 'datasize' and 'elemsize', make the proper arrangement option
 *  returns the insOpts that specifies the vector register arrangement
 *  if one does not exist returns INS_OPTS_NONE
 */

/*static*/ insOpts emitter::optMakeArrangement(emitAttr datasize, emitAttr elemsize)
{
    insOpts result = INS_OPTS_NONE;

    if (datasize == EA_8BYTE)
    {
        switch (elemsize)
        {
            case EA_1BYTE:
                result = INS_OPTS_8B;
                break;
            case EA_2BYTE:
                result = INS_OPTS_4H;
                break;
            case EA_4BYTE:
                result = INS_OPTS_2S;
                break;
            case EA_8BYTE:
                result = INS_OPTS_1D;
                break;
            default:
                // TODO-Cleanup: add unreached() here
                break;
        }
    }
    else if (datasize == EA_16BYTE)
    {
        switch (elemsize)
        {
            case EA_1BYTE:
                result = INS_OPTS_16B;
                break;
            case EA_2BYTE:
                result = INS_OPTS_8H;
                break;
            case EA_4BYTE:
                result = INS_OPTS_4S;
                break;
            case EA_8BYTE:
                result = INS_OPTS_2D;
                break;
            default:
                // TODO-Cleanup: add unreached() here
                break;
        }
    }
    return result;
}

/*****************************************************************************
 *
 *  For the given 'datasize' and arrangement 'opts'
 *  returns true is the pair spcifies a valid arrangement
 */
/*static*/ bool emitter::isValidArrangement(emitAttr datasize, insOpts opt)
{
    if (datasize == EA_8BYTE)
    {
        if ((opt == INS_OPTS_8B) || (opt == INS_OPTS_4H) || (opt == INS_OPTS_2S) || (opt == INS_OPTS_1D))
        {
            return true;
        }
    }
    else if (datasize == EA_16BYTE)
    {
        if ((opt == INS_OPTS_16B) || (opt == INS_OPTS_8H) || (opt == INS_OPTS_4S) || (opt == INS_OPTS_2D))
        {
            return true;
        }
    }
    return false;
}

//  For the given 'arrangement' returns the 'datasize' specified by the vector register arrangement
//  asserts and returns EA_UNKNOWN if an invalid 'arrangement' value is passed
//
/*static*/ emitAttr emitter::optGetDatasize(insOpts arrangement)
{
    if ((arrangement == INS_OPTS_8B) || (arrangement == INS_OPTS_4H) || (arrangement == INS_OPTS_2S) ||
        (arrangement == INS_OPTS_1D))
    {
        return EA_8BYTE;
    }
    else if ((arrangement == INS_OPTS_16B) || (arrangement == INS_OPTS_8H) || (arrangement == INS_OPTS_4S) ||
             (arrangement == INS_OPTS_2D))
    {
        return EA_16BYTE;
    }
    else
    {
        assert(!" invalid 'arrangement' value");
        return EA_UNKNOWN;
    }
}

//  For the given 'arrangement' returns the 'elemsize' specified by the vector register arrangement
//  asserts and returns EA_UNKNOWN if an invalid 'arrangement' value is passed
//
/*static*/ emitAttr emitter::optGetElemsize(insOpts arrangement)
{
    if ((arrangement == INS_OPTS_8B) || (arrangement == INS_OPTS_16B))
    {
        return EA_1BYTE;
    }
    else if ((arrangement == INS_OPTS_4H) || (arrangement == INS_OPTS_8H))
    {
        return EA_2BYTE;
    }
    else if ((arrangement == INS_OPTS_2S) || (arrangement == INS_OPTS_4S))
    {
        return EA_4BYTE;
    }
    else if ((arrangement == INS_OPTS_1D) || (arrangement == INS_OPTS_2D))
    {
        return EA_8BYTE;
    }
    else
    {
        assert(!" invalid 'arrangement' value");
        return EA_UNKNOWN;
    }
}

//  For the given 'arrangement' returns the 'widen-arrangement' specified by the vector register arrangement
//  asserts and returns INS_OPTS_NONE if an invalid 'arrangement' value is passed
//
/*static*/ insOpts emitter::optWidenElemsize(insOpts arrangement)
{
    if ((arrangement == INS_OPTS_8B) || (arrangement == INS_OPTS_16B))
    {
        return INS_OPTS_8H;
    }
    else if ((arrangement == INS_OPTS_4H) || (arrangement == INS_OPTS_8H))
    {
        return INS_OPTS_4S;
    }
    else if ((arrangement == INS_OPTS_2S) || (arrangement == INS_OPTS_4S))
    {
        return INS_OPTS_2D;
    }
    else
    {
        assert(!" invalid 'arrangement' value");
        return INS_OPTS_NONE;
    }
}

//  For the given 'conversion' returns the 'dstsize' specified by the conversion option
/*static*/ emitAttr emitter::optGetDstsize(insOpts conversion)
{
    switch (conversion)
    {
        case INS_OPTS_S_TO_8BYTE:
        case INS_OPTS_D_TO_8BYTE:
        case INS_OPTS_4BYTE_TO_D:
        case INS_OPTS_8BYTE_TO_D:
        case INS_OPTS_S_TO_D:
        case INS_OPTS_H_TO_D:

            return EA_8BYTE;

        case INS_OPTS_S_TO_4BYTE:
        case INS_OPTS_D_TO_4BYTE:
        case INS_OPTS_4BYTE_TO_S:
        case INS_OPTS_8BYTE_TO_S:
        case INS_OPTS_D_TO_S:
        case INS_OPTS_H_TO_S:

            return EA_4BYTE;

        case INS_OPTS_S_TO_H:
        case INS_OPTS_D_TO_H:

            return EA_2BYTE;

        default:
            assert(!" invalid 'conversion' value");
            return EA_UNKNOWN;
    }
}

//  For the given 'conversion' returns the 'srcsize' specified by the conversion option
/*static*/ emitAttr emitter::optGetSrcsize(insOpts conversion)
{
    switch (conversion)
    {
        case INS_OPTS_D_TO_8BYTE:
        case INS_OPTS_D_TO_4BYTE:
        case INS_OPTS_8BYTE_TO_D:
        case INS_OPTS_8BYTE_TO_S:
        case INS_OPTS_D_TO_S:
        case INS_OPTS_D_TO_H:

            return EA_8BYTE;

        case INS_OPTS_S_TO_8BYTE:
        case INS_OPTS_S_TO_4BYTE:
        case INS_OPTS_4BYTE_TO_S:
        case INS_OPTS_4BYTE_TO_D:
        case INS_OPTS_S_TO_D:
        case INS_OPTS_S_TO_H:

            return EA_4BYTE;

        case INS_OPTS_H_TO_S:
        case INS_OPTS_H_TO_D:

            return EA_2BYTE;

        default:
            assert(!" invalid 'conversion' value");
            return EA_UNKNOWN;
    }
}

//    For the given 'size' and 'index' returns true if it specifies a valid index for a vector register of 'size'
/*static*/ bool emitter::isValidVectorIndex(emitAttr datasize, emitAttr elemsize, ssize_t index)
{
    assert(isValidVectorDatasize(datasize));
    assert(isValidVectorElemsize(elemsize));

    bool result = false;
    if (index >= 0)
    {
        if (datasize == EA_8BYTE)
        {
            switch (elemsize)
            {
                case EA_1BYTE:
                    result = (index < 8);
                    break;
                case EA_2BYTE:
                    result = (index < 4);
                    break;
                case EA_4BYTE:
                    result = (index < 2);
                    break;
                case EA_8BYTE:
                    result = (index < 1);
                    break;
                default:
                    // TODO-Cleanup: add unreached() here
                    break;
            }
        }
        else if (datasize == EA_16BYTE)
        {
            switch (elemsize)
            {
                case EA_1BYTE:
                    result = (index < 16);
                    break;
                case EA_2BYTE:
                    result = (index < 8);
                    break;
                case EA_4BYTE:
                    result = (index < 4);
                    break;
                case EA_8BYTE:
                    result = (index < 2);
                    break;
                default:
                    // TODO-Cleanup: add unreached() here
                    break;
            }
        }
    }
    return result;
}

/*****************************************************************************
 *
 *  Add an instruction with no operands.
 */

void emitter::emitIns(instruction ins)
{
    instrDesc* id  = emitNewInstrSmall(EA_8BYTE);
    insFormat  fmt = emitInsFormat(ins);

    assert(fmt == IF_SN_0A);

    id->idIns(ins);
    id->idInsFmt(fmt);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction with a single immediate value.
 */

void emitter::emitIns_I(instruction ins, emitAttr attr, ssize_t imm)
{
    insFormat fmt = IF_NONE;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_brk:
            if ((imm & 0x0000ffff) == imm)
            {
                fmt = IF_SI_0A;
            }
            else
            {
                assert(!"Instruction cannot be encoded: IF_SI_0A");
            }
            break;
        default:
            // TODO-Cleanup: add unreached() here
            break;
    }
    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstrSC(attr, imm);

    id->idIns(ins);
    id->idInsFmt(fmt);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing a single register.
 */

void emitter::emitIns_R(instruction ins, emitAttr attr, regNumber reg)
{
    emitAttr   size = EA_SIZE(attr);
    insFormat  fmt  = IF_NONE;
    instrDesc* id   = nullptr;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_br:
        case INS_ret:
            assert(isGeneralRegister(reg));
            id = emitNewInstrSmall(attr);
            id->idReg1(reg);
            fmt = IF_BR_1A;
            break;

        default:
            unreached();
    }

    assert(fmt != IF_NONE);

    id->idIns(ins);
    id->idInsFmt(fmt);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing a register and a constant.
 */

void emitter::emitIns_R_I(instruction ins, emitAttr attr, regNumber reg, ssize_t imm, insOpts opt /* = INS_OPTS_NONE */)
{
    emitAttr  size      = EA_SIZE(attr);
    emitAttr  elemsize  = EA_UNKNOWN;
    insFormat fmt       = IF_NONE;
    bool      canEncode = false;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        bitMaskImm     bmi;
        halfwordImm    hwi;
        byteShiftedImm bsi;
        ssize_t        notOfImm;

        case INS_tst:
            assert(insOptsNone(opt));
            assert(isGeneralRegister(reg));
            bmi.immNRS = 0;
            canEncode  = canEncodeBitMaskImm(imm, size, &bmi);
            if (canEncode)
            {
                imm = bmi.immNRS;
                assert(isValidImmNRS(imm, size));
                fmt = IF_DI_1C;
            }
            break;

        case INS_movk:
        case INS_movn:
        case INS_movz:
            assert(isValidGeneralDatasize(size));
            assert(insOptsNone(opt)); // No LSL here (you must use emitIns_R_I_I if a shift is needed)
            assert(isGeneralRegister(reg));
            assert(isValidUimm16(imm));

            hwi.immHW  = 0;
            hwi.immVal = imm;
            assert(imm == emitDecodeHalfwordImm(hwi, size));

            imm       = hwi.immHWVal;
            canEncode = true;
            fmt       = IF_DI_1B;
            break;

        case INS_mov:
            assert(isValidGeneralDatasize(size));
            assert(insOptsNone(opt)); // No explicit LSL here
            // We will automatically determine the shift based upon the imm

            // First try the standard 'halfword immediate' imm(i16,hw)
            hwi.immHWVal = 0;
            canEncode    = canEncodeHalfwordImm(imm, size, &hwi);
            if (canEncode)
            {
                // uses a movz encoding
                assert(isGeneralRegister(reg));
                imm = hwi.immHWVal;
                assert(isValidImmHWVal(imm, size));
                fmt = IF_DI_1B;
                break;
            }

            // Next try the ones-complement form of 'halfword immediate' imm(i16,hw)
            notOfImm  = NOT_helper(imm, getBitWidth(size));
            canEncode = canEncodeHalfwordImm(notOfImm, size, &hwi);
            if (canEncode)
            {
                assert(isGeneralRegister(reg));
                imm = hwi.immHWVal;
                ins = INS_movn; // uses a movn encoding
                assert(isValidImmHWVal(imm, size));
                fmt = IF_DI_1B;
                break;
            }

            // Finally try the 'bitmask immediate' imm(N,r,s)
            bmi.immNRS = 0;
            canEncode  = canEncodeBitMaskImm(imm, size, &bmi);
            if (canEncode)
            {
                assert(isGeneralRegisterOrSP(reg));
                reg = encodingSPtoZR(reg);
                imm = bmi.immNRS;
                assert(isValidImmNRS(imm, size));
                fmt = IF_DI_1D;
                break;
            }
            else
            {
                assert(!"Instruction cannot be encoded: mov imm");
            }

            break;

        case INS_movi:
            assert(isValidVectorDatasize(size));
            assert(isVectorRegister(reg));
            if (insOptsNone(opt) && (size == EA_8BYTE))
            {
                opt = INS_OPTS_1D;
            }
            assert(isValidArrangement(size, opt));
            elemsize = optGetElemsize(opt);

            if (elemsize == EA_8BYTE)
            {
                size_t   uimm = imm;
                ssize_t  imm8 = 0;
                unsigned pos  = 0;
                canEncode     = true;
                bool failed   = false;
                while (uimm != 0)
                {
                    INT64 loByte = uimm & 0xFF;
                    if (((loByte == 0) || (loByte == 0xFF)) && (pos < 8))
                    {
                        if (loByte == 0xFF)
                        {
                            imm8 |= (1 << pos);
                        }
                        uimm >>= 8;
                        pos++;
                    }
                    else
                    {
                        canEncode = false;
                        break;
                    }
                }
                imm = imm8;
                assert(isValidUimm8(imm));
                fmt = IF_DV_1B;
                break;
            }
            else
            {
                // Vector operation

                // No explicit LSL/MSL is used for the immediate
                // We will automatically determine the shift based upon the value of imm

                // First try the standard 'byteShifted immediate' imm(i8,bySh)
                bsi.immBSVal = 0;
                canEncode    = canEncodeByteShiftedImm(imm, elemsize, true, &bsi);
                if (canEncode)
                {
                    imm = bsi.immBSVal;
                    assert(isValidImmBSVal(imm, size));
                    fmt = IF_DV_1B;
                    break;
                }

                // Next try the ones-complement form of the 'immediate' imm(i8,bySh)
                if ((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE)) // Only EA_2BYTE or EA_4BYTE forms
                {
                    notOfImm  = NOT_helper(imm, getBitWidth(elemsize));
                    canEncode = canEncodeByteShiftedImm(notOfImm, elemsize, true, &bsi);
                    if (canEncode)
                    {
                        imm = bsi.immBSVal;
                        ins = INS_mvni; // uses a mvni encoding
                        assert(isValidImmBSVal(imm, size));
                        fmt = IF_DV_1B;
                        break;
                    }
                }
            }
            break;

        case INS_orr:
        case INS_bic:
        case INS_mvni:
            assert(isValidVectorDatasize(size));
            assert(isVectorRegister(reg));
            assert(isValidArrangement(size, opt));
            elemsize = optGetElemsize(opt);
            assert((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE)); // Only EA_2BYTE or EA_4BYTE forms

            // Vector operation

            // No explicit LSL/MSL is used for the immediate
            // We will automatically determine the shift based upon the value of imm

            // First try the standard 'byteShifted immediate' imm(i8,bySh)
            bsi.immBSVal = 0;
            canEncode    = canEncodeByteShiftedImm(imm, elemsize,
                                                (ins == INS_mvni), // mvni supports the ones shifting variant (aka MSL)
                                                &bsi);
            if (canEncode)
            {
                imm = bsi.immBSVal;
                assert(isValidImmBSVal(imm, size));
                fmt = IF_DV_1B;
                break;
            }
            break;

        case INS_cmp:
        case INS_cmn:
            assert(insOptsNone(opt));
            assert(isGeneralRegister(reg));

            if (unsigned_abs(imm) <= 0x0fff)
            {
                if (imm < 0)
                {
                    ins = insReverse(ins);
                    imm = -imm;
                }
                assert(isValidUimm12(imm));
                canEncode = true;
                fmt       = IF_DI_1A;
            }
            else if (canEncodeWithShiftImmBy12(imm)) // Try the shifted by 12 encoding
            {
                // Encoding will use a 12-bit left shift of the immediate
                opt = INS_OPTS_LSL12;
                if (imm < 0)
                {
                    ins = insReverse(ins);
                    imm = -imm;
                }
                assert((imm & 0xfff) == 0);
                imm >>= 12;
                assert(isValidUimm12(imm));
                canEncode = true;
                fmt       = IF_DI_1A;
            }
            else
            {
                assert(!"Instruction cannot be encoded: IF_DI_1A");
            }
            break;

        default:
            // TODO-Cleanup: add unreached() here
            break;

    } // end switch (ins)

    assert(canEncode);
    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstrSC(attr, imm);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(opt);

    id->idReg1(reg);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing a register and a floating point constant.
 */

void emitter::emitIns_R_F(
    instruction ins, emitAttr attr, regNumber reg, double immDbl, insOpts opt /* = INS_OPTS_NONE */)

{
    emitAttr  size      = EA_SIZE(attr);
    emitAttr  elemsize  = EA_UNKNOWN;
    insFormat fmt       = IF_NONE;
    ssize_t   imm       = 0;
    bool      canEncode = false;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        floatImm8 fpi;

        case INS_fcmp:
        case INS_fcmpe:
            assert(insOptsNone(opt));
            assert(isValidVectorElemsizeFloat(size));
            assert(isVectorRegister(reg));
            if (immDbl == 0.0)
            {
                canEncode = true;
                fmt       = IF_DV_1C;
            }
            break;

        case INS_fmov:
            assert(isVectorRegister(reg));
            fpi.immFPIVal = 0;
            canEncode     = canEncodeFloatImm8(immDbl, &fpi);

            if (insOptsAnyArrangement(opt))
            {
                // Vector operation
                assert(isValidVectorDatasize(size));
                assert(isValidArrangement(size, opt));
                elemsize = optGetElemsize(opt);
                assert(isValidVectorElemsizeFloat(elemsize));
                assert(opt != INS_OPTS_1D); // Reserved encoding

                if (canEncode)
                {
                    imm = fpi.immFPIVal;
                    assert((imm >= 0) && (imm <= 0xff));
                    fmt = IF_DV_1B;
                }
            }
            else
            {
                // Scalar operation
                assert(insOptsNone(opt));
                assert(isValidVectorElemsizeFloat(size));

                if (canEncode)
                {
                    imm = fpi.immFPIVal;
                    assert((imm >= 0) && (imm <= 0xff));
                    fmt = IF_DV_1A;
                }
            }
            break;

        default:
            // TODO-Cleanup: add unreached() here
            break;

    } // end switch (ins)

    assert(canEncode);
    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstrSC(attr, imm);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(opt);

    id->idReg1(reg);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing two registers
 */

void emitter::emitIns_R_R(
    instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insOpts opt /* = INS_OPTS_NONE */)
{
    emitAttr  size     = EA_SIZE(attr);
    emitAttr  elemsize = EA_UNKNOWN;
    insFormat fmt      = IF_NONE;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_mov:
            assert(insOptsNone(opt));
            // Is the mov even necessary?
            if (reg1 == reg2)
            {
                // A mov with a EA_4BYTE has the side-effect of clearing the upper bits
                // So only eliminate mov instructions that are not clearing the upper bits
                //
                if (isGeneralRegisterOrSP(reg1) && (size == EA_8BYTE))
                {
                    return;
                }
                else if (isVectorRegister(reg1) && (size == EA_16BYTE))
                {
                    return;
                }
            }

            // Check for the 'mov' aliases for the vector registers
            if (isVectorRegister(reg1))
            {
                if (isVectorRegister(reg2) && isValidVectorDatasize(size))
                {
                    return emitIns_R_R_R(INS_mov, size, reg1, reg2, reg2);
                }
                else
                {
                    return emitIns_R_R_I(INS_mov, size, reg1, reg2, 0);
                }
            }
            else
            {
                if (isVectorRegister(reg2))
                {
                    assert(isGeneralRegister(reg1));
                    return emitIns_R_R_I(INS_mov, size, reg1, reg2, 0);
                }
            }

            // Is this a MOV to/from SP instruction?
            if ((reg1 == REG_SP) || (reg2 == REG_SP))
            {
                assert(isGeneralRegisterOrSP(reg1));
                assert(isGeneralRegisterOrSP(reg2));
                reg1 = encodingSPtoZR(reg1);
                reg2 = encodingSPtoZR(reg2);
                fmt  = IF_DR_2G;
            }
            else
            {
                assert(insOptsNone(opt));
                assert(isGeneralRegister(reg1));
                assert(isGeneralRegisterOrZR(reg2));
                fmt = IF_DR_2E;
            }
            break;

        case INS_abs:
        case INS_not:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            // for 'NOT' we can construct the arrangement: 8B or 16B
            if ((ins == INS_not) && insOptsNone(opt))
            {
                assert(isValidVectorDatasize(size));
                elemsize = EA_1BYTE;
                opt      = optMakeArrangement(size, elemsize);
            }
            if (insOptsNone(opt))
            {
                // Scalar operation
                assert(size == EA_8BYTE); // Only type D is supported
                fmt = IF_DV_2L;
            }
            else
            {
                // Vector operation
                assert(insOptsAnyArrangement(opt));
                assert(isValidVectorDatasize(size));
                assert(isValidArrangement(size, opt));
                elemsize = optGetElemsize(opt);
                if (ins == INS_not)
                {
                    assert(elemsize == EA_1BYTE);
                }
                fmt = IF_DV_2M;
            }
            break;

        case INS_mvn:
        case INS_neg:
            if (isVectorRegister(reg1))
            {
                assert(isVectorRegister(reg2));
                // for 'mvn' we can construct the arrangement: 8B or 16b
                if ((ins == INS_mvn) && insOptsNone(opt))
                {
                    assert(isValidVectorDatasize(size));
                    elemsize = EA_1BYTE;
                    opt      = optMakeArrangement(size, elemsize);
                }
                if (insOptsNone(opt))
                {
                    // Scalar operation
                    assert(size == EA_8BYTE); // Only type D is supported
                    fmt = IF_DV_2L;
                }
                else
                {
                    // Vector operation
                    assert(isValidVectorDatasize(size));
                    assert(isValidArrangement(size, opt));
                    elemsize = optGetElemsize(opt);
                    if (ins == INS_mvn)
                    {
                        assert(elemsize == EA_1BYTE); // Only supports 8B or 16B
                    }
                    fmt = IF_DV_2M;
                }
                break;
            }
            __fallthrough;

        case INS_negs:
            assert(insOptsNone(opt));
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegisterOrZR(reg2));
            fmt = IF_DR_2E;
            break;

        case INS_sxtw:
            assert(size == EA_8BYTE);
            __fallthrough;

        case INS_sxtb:
        case INS_sxth:
        case INS_uxtb:
        case INS_uxth:
            assert(insOptsNone(opt));
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            fmt = IF_DR_2H;
            break;

        case INS_sxtl:
        case INS_sxtl2:
        case INS_uxtl:
        case INS_uxtl2:
            return emitIns_R_R_I(ins, size, reg1, reg2, 0, opt);

        case INS_cls:
        case INS_clz:
        case INS_rbit:
        case INS_rev16:
        case INS_rev32:
        case INS_cnt:
            if (isVectorRegister(reg1))
            {
                assert(isVectorRegister(reg2));
                assert(isValidVectorDatasize(size));
                assert(isValidArrangement(size, opt));
                elemsize = optGetElemsize(opt);
                if ((ins == INS_cls) || (ins == INS_clz))
                {
                    assert(elemsize != EA_8BYTE); // No encoding for type D
                }
                else if (ins == INS_rev32)
                {
                    assert((elemsize == EA_2BYTE) || (elemsize == EA_1BYTE));
                }
                else
                {
                    assert(elemsize == EA_1BYTE); // Only supports 8B or 16B
                }
                fmt = IF_DV_2M;
                break;
            }
            if (ins == INS_cnt)
            {
                // Doesn't have general register version(s)
                break;
            }

            __fallthrough;

        case INS_rev:
            assert(insOptsNone(opt));
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            if (ins == INS_rev32)
            {
                assert(size == EA_8BYTE);
            }
            else
            {
                assert(isValidGeneralDatasize(size));
            }
            fmt = IF_DR_2G;
            break;

        case INS_rev64:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert(isValidVectorDatasize(size));
            assert(isValidArrangement(size, opt));
            elemsize = optGetElemsize(opt);
            assert(elemsize != EA_8BYTE); // No encoding for type D
            fmt = IF_DV_2M;
            break;

        case INS_ldr:
        case INS_ldrb:
        case INS_ldrh:
        case INS_ldrsb:
        case INS_ldrsh:
        case INS_ldrsw:
        case INS_str:
        case INS_strb:
        case INS_strh:

        case INS_cmp:
        case INS_cmn:
        case INS_tst:
            assert(insOptsNone(opt));
            emitIns_R_R_I(ins, attr, reg1, reg2, 0, INS_OPTS_NONE);
            return;

        case INS_fmov:
            assert(isValidVectorElemsizeFloat(size));

            // Is the mov even necessary?
            if (reg1 == reg2)
            {
                return;
            }

            if (isVectorRegister(reg1))
            {
                if (isVectorRegister(reg2))
                {
                    assert(insOptsNone(opt));
                    fmt = IF_DV_2G;
                }
                else
                {
                    assert(isGeneralRegister(reg2));

                    // if the optional conversion specifier is not present we calculate it
                    if (opt == INS_OPTS_NONE)
                    {
                        opt = (size == EA_4BYTE) ? INS_OPTS_4BYTE_TO_S : INS_OPTS_8BYTE_TO_D;
                    }
                    assert(insOptsConvertIntToFloat(opt));

                    fmt = IF_DV_2I;
                }
            }
            else
            {
                assert(isGeneralRegister(reg1));
                assert(isVectorRegister(reg2));

                // if the optional conversion specifier is not present we calculate it
                if (opt == INS_OPTS_NONE)
                {
                    opt = (size == EA_4BYTE) ? INS_OPTS_S_TO_4BYTE : INS_OPTS_D_TO_8BYTE;
                }
                assert(insOptsConvertFloatToInt(opt));

                fmt = IF_DV_2H;
            }
            break;

        case INS_fcmp:
        case INS_fcmpe:
            assert(insOptsNone(opt));
            assert(isValidVectorElemsizeFloat(size));
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            fmt = IF_DV_2K;
            break;

        case INS_fcvtns:
        case INS_fcvtnu:
        case INS_fcvtas:
        case INS_fcvtau:
        case INS_fcvtps:
        case INS_fcvtpu:
        case INS_fcvtms:
        case INS_fcvtmu:
        case INS_fcvtzs:
        case INS_fcvtzu:
            if (insOptsAnyArrangement(opt))
            {
                // Vector operation
                assert(isVectorRegister(reg1));
                assert(isVectorRegister(reg2));
                assert(isValidVectorDatasize(size));
                assert(isValidArrangement(size, opt));
                elemsize = optGetElemsize(opt);
                assert(isValidVectorElemsizeFloat(elemsize));
                assert(opt != INS_OPTS_1D); // Reserved encoding
                fmt = IF_DV_2A;
            }
            else
            {
                // Scalar operation
                assert(isVectorRegister(reg2));
                if (isVectorRegister(reg1))
                {
                    assert(insOptsNone(opt));
                    assert(isValidVectorElemsizeFloat(size));
                    fmt = IF_DV_2G;
                }
                else
                {
                    assert(isGeneralRegister(reg1));
                    assert(insOptsConvertFloatToInt(opt));
                    assert(isValidVectorElemsizeFloat(size));
                    fmt = IF_DV_2H;
                }
            }
            break;

        case INS_scvtf:
        case INS_ucvtf:
            if (insOptsAnyArrangement(opt))
            {
                // Vector operation
                assert(isVectorRegister(reg1));
                assert(isVectorRegister(reg2));
                assert(isValidVectorDatasize(size));
                assert(isValidArrangement(size, opt));
                elemsize = optGetElemsize(opt);
                assert(isValidVectorElemsizeFloat(elemsize));
                assert(opt != INS_OPTS_1D); // Reserved encoding
                fmt = IF_DV_2A;
            }
            else
            {
                // Scalar operation
                assert(isVectorRegister(reg1));
                if (isVectorRegister(reg2))
                {
                    assert(insOptsNone(opt));
                    assert(isValidVectorElemsizeFloat(size));
                    fmt = IF_DV_2G;
                }
                else
                {
                    assert(isGeneralRegister(reg2));
                    assert(insOptsConvertIntToFloat(opt));
                    assert(isValidVectorElemsizeFloat(size));
                    fmt = IF_DV_2I;
                }
            }
            break;

        case INS_fabs:
        case INS_fneg:
        case INS_fsqrt:
        case INS_frinta:
        case INS_frinti:
        case INS_frintm:
        case INS_frintn:
        case INS_frintp:
        case INS_frintx:
        case INS_frintz:
            if (insOptsAnyArrangement(opt))
            {
                // Vector operation
                assert(isVectorRegister(reg1));
                assert(isVectorRegister(reg2));
                assert(isValidVectorDatasize(size));
                assert(isValidArrangement(size, opt));
                elemsize = optGetElemsize(opt);
                assert(isValidVectorElemsizeFloat(elemsize));
                assert(opt != INS_OPTS_1D); // Reserved encoding
                fmt = IF_DV_2A;
            }
            else
            {
                // Scalar operation
                assert(insOptsNone(opt));
                assert(isValidVectorElemsizeFloat(size));
                assert(isVectorRegister(reg1));
                assert(isVectorRegister(reg2));
                fmt = IF_DV_2G;
            }
            break;

        case INS_fcvt:
            assert(insOptsConvertFloatToFloat(opt));
            assert(isValidVectorFcvtsize(size));
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            fmt = IF_DV_2J;
            break;

        default:
            // TODO-Cleanup: add unreached() here
            break;

    } // end switch (ins)

    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstrSmall(attr);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(opt);

    id->idReg1(reg1);
    id->idReg2(reg2);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing a register and two constants.
 */

void emitter::emitIns_R_I_I(
    instruction ins, emitAttr attr, regNumber reg, ssize_t imm1, ssize_t imm2, insOpts opt /* = INS_OPTS_NONE */)
{
    emitAttr  size   = EA_SIZE(attr);
    insFormat fmt    = IF_NONE;
    size_t    immOut = 0; // composed from imm1 and imm2 and stored in the instrDesc

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        bool        canEncode;
        halfwordImm hwi;

        case INS_mov:
            ins = INS_movz; // INS_mov with LSL is an alias for INS_movz LSL
            __fallthrough;

        case INS_movk:
        case INS_movn:
        case INS_movz:
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegister(reg));
            assert(isValidUimm16(imm1));
            assert(insOptsLSL(opt)); // Must be INS_OPTS_LSL

            if (size == EA_8BYTE)
            {
                assert((imm2 == 0) || (imm2 == 16) || // shift amount: 0, 16, 32 or 48
                       (imm2 == 32) || (imm2 == 48));
            }
            else // EA_4BYTE
            {
                assert((imm2 == 0) || (imm2 == 16)); // shift amount: 0 or 16
            }

            hwi.immHWVal = 0;

            switch (imm2)
            {
                case 0:
                    hwi.immHW = 0;
                    canEncode = true;
                    break;

                case 16:
                    hwi.immHW = 1;
                    canEncode = true;
                    break;

                case 32:
                    hwi.immHW = 2;
                    canEncode = true;
                    break;

                case 48:
                    hwi.immHW = 3;
                    canEncode = true;
                    break;

                default:
                    canEncode = false;
            }

            if (canEncode)
            {
                hwi.immVal = imm1;

                immOut = hwi.immHWVal;
                assert(isValidImmHWVal(immOut, size));
                fmt = IF_DI_1B;
            }
            break;

        default:
            // TODO-Cleanup: add unreached() here
            break;

    } // end switch (ins)

    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstrSC(attr, immOut);

    id->idIns(ins);
    id->idInsFmt(fmt);

    id->idReg1(reg);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing two registers and a constant.
 */

void emitter::emitIns_R_R_I(
    instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, ssize_t imm, insOpts opt /* = INS_OPTS_NONE */)
{
    emitAttr  size       = EA_SIZE(attr);
    emitAttr  elemsize   = EA_UNKNOWN;
    insFormat fmt        = IF_NONE;
    bool      isLdSt     = false;
    bool      isSIMD     = false;
    bool      isAddSub   = false;
    bool      setFlags   = false;
    unsigned  scale      = 0;
    bool      unscaledOp = false;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        bool       canEncode;
        bitMaskImm bmi;

        case INS_mov:
            // Check for the 'mov' aliases for the vector registers
            assert(insOptsNone(opt));
            assert(isValidVectorElemsize(size));
            elemsize = size;
            assert(isValidVectorIndex(EA_16BYTE, elemsize, imm));

            if (isVectorRegister(reg1))
            {
                if (isGeneralRegisterOrZR(reg2))
                {
                    fmt = IF_DV_2C; // Alias for 'ins'
                    break;
                }
                else if (isVectorRegister(reg2))
                {
                    fmt = IF_DV_2E; // Alias for 'dup'
                    break;
                }
            }
            else // isGeneralRegister(reg1)
            {
                assert(isGeneralRegister(reg1));
                if (isVectorRegister(reg2))
                {
                    fmt = IF_DV_2B; // Alias for 'umov'
                    break;
                }
            }
            assert(!" invalid INS_mov operands");
            break;

        case INS_lsl:
        case INS_lsr:
        case INS_asr:
            assert(insOptsNone(opt));
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            assert(isValidImmShift(imm, size));
            fmt = IF_DI_2D;
            break;

        case INS_ror:
            assert(insOptsNone(opt));
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            assert(isValidImmShift(imm, size));
            fmt = IF_DI_2B;
            break;

        case INS_sshr:
        case INS_ssra:
        case INS_srshr:
        case INS_srsra:
        case INS_shl:
        case INS_ushr:
        case INS_usra:
        case INS_urshr:
        case INS_ursra:
        case INS_sri:
        case INS_sli:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            if (insOptsAnyArrangement(opt))
            {
                // Vector operation
                assert(isValidVectorDatasize(size));
                assert(isValidArrangement(size, opt));
                elemsize = optGetElemsize(opt);
                assert(isValidVectorElemsize(elemsize));
                assert(isValidImmShift(imm, elemsize));
                assert(opt != INS_OPTS_1D); // Reserved encoding
                fmt = IF_DV_2O;
                break;
            }
            else
            {
                // Scalar operation
                assert(insOptsNone(opt));
                assert(size == EA_8BYTE); // only supported size
                assert(isValidImmShift(imm, size));
                fmt = IF_DV_2N;
            }
            break;

        case INS_sxtl:
        case INS_uxtl:
            assert(imm == 0);
            __fallthrough;

        case INS_shrn:
        case INS_rshrn:
        case INS_sshll:
        case INS_ushll:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            // Vector operation
            assert(size == EA_8BYTE);
            assert(isValidArrangement(size, opt));
            elemsize = optGetElemsize(opt);
            assert(elemsize != EA_8BYTE); // Reserved encodings
            assert(isValidVectorElemsize(elemsize));
            assert(isValidImmShift(imm, elemsize));
            fmt = IF_DV_2O;
            break;

        case INS_sxtl2:
        case INS_uxtl2:
            assert(imm == 0);
            __fallthrough;

        case INS_shrn2:
        case INS_rshrn2:
        case INS_sshll2:
        case INS_ushll2:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            // Vector operation
            assert(size == EA_16BYTE);
            assert(isValidArrangement(size, opt));
            elemsize = optGetElemsize(opt);
            assert(elemsize != EA_8BYTE); // Reserved encodings
            assert(isValidVectorElemsize(elemsize));
            assert(isValidImmShift(imm, elemsize));
            fmt = IF_DV_2O;
            break;

        case INS_mvn:
        case INS_neg:
        case INS_negs:
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegisterOrZR(reg2));

            if (imm == 0)
            {
                assert(insOptsNone(opt)); // a zero imm, means no alu shift kind

                fmt = IF_DR_2E;
            }
            else
            {
                if (ins == INS_mvn)
                {
                    assert(insOptsAnyShift(opt)); // a non-zero imm, must select shift kind
                }
                else // neg or negs
                {
                    assert(insOptsAluShift(opt)); // a non-zero imm, must select shift kind, can't use ROR
                }
                assert(isValidImmShift(imm, size));
                fmt = IF_DR_2F;
            }
            break;

        case INS_tst:
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegisterOrZR(reg1));
            assert(isGeneralRegister(reg2));

            if (insOptsAnyShift(opt))
            {
                assert(isValidImmShift(imm, size) && (imm != 0));
                fmt = IF_DR_2B;
            }
            else
            {
                assert(insOptsNone(opt)); // a zero imm, means no alu shift kind
                assert(imm == 0);
                fmt = IF_DR_2A;
            }
            break;

        case INS_cmp:
        case INS_cmn:
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegisterOrSP(reg1));
            assert(isGeneralRegister(reg2));

            reg1 = encodingSPtoZR(reg1);
            if (insOptsAnyExtend(opt))
            {
                assert((imm >= 0) && (imm <= 4));

                fmt = IF_DR_2C;
            }
            else if (imm == 0)
            {
                assert(insOptsNone(opt)); // a zero imm, means no alu shift kind

                fmt = IF_DR_2A;
            }
            else
            {
                assert(insOptsAnyShift(opt)); // a non-zero imm, must select shift kind
                assert(isValidImmShift(imm, size));
                fmt = IF_DR_2B;
            }
            break;

        case INS_ands:
        case INS_and:
        case INS_eor:
        case INS_orr:
            assert(insOptsNone(opt));
            assert(isGeneralRegister(reg2));
            if (ins == INS_ands)
            {
                assert(isGeneralRegister(reg1));
            }
            else
            {
                assert(isGeneralRegisterOrSP(reg1));
                reg1 = encodingSPtoZR(reg1);
            }

            bmi.immNRS = 0;
            canEncode  = canEncodeBitMaskImm(imm, size, &bmi);
            if (canEncode)
            {
                imm = bmi.immNRS;
                assert(isValidImmNRS(imm, size));
                fmt = IF_DI_2C;
            }
            break;

        case INS_dup: // by element, imm selects the element of reg2
            assert(isVectorRegister(reg1));
            if (isVectorRegister(reg2))
            {
                if (insOptsAnyArrangement(opt))
                {
                    // Vector operation
                    assert(isValidVectorDatasize(size));
                    assert(isValidArrangement(size, opt));
                    elemsize = optGetElemsize(opt);
                    assert(isValidVectorElemsize(elemsize));
                    assert(isValidVectorIndex(size, elemsize, imm));
                    assert(opt != INS_OPTS_1D); // Reserved encoding
                    fmt = IF_DV_2D;
                    break;
                }
                else
                {
                    // Scalar operation
                    assert(insOptsNone(opt));
                    elemsize = size;
                    assert(isValidVectorElemsize(elemsize));
                    assert(isValidVectorIndex(EA_16BYTE, elemsize, imm));
                    fmt = IF_DV_2E;
                    break;
                }
            }
            __fallthrough;

        case INS_ins: // (MOV from general)
            assert(insOptsNone(opt));
            assert(isValidVectorElemsize(size));
            assert(isVectorRegister(reg1));
            assert(isGeneralRegisterOrZR(reg2));
            elemsize = size;
            assert(isValidVectorIndex(EA_16BYTE, elemsize, imm));
            fmt = IF_DV_2C;
            break;

        case INS_umov: // (MOV to general)
            assert(insOptsNone(opt));
            assert(isValidVectorElemsize(size));
            assert(isGeneralRegister(reg1));
            assert(isVectorRegister(reg2));
            elemsize = size;
            assert(isValidVectorIndex(EA_16BYTE, elemsize, imm));
            fmt = IF_DV_2B;
            break;

        case INS_smov:
            assert(insOptsNone(opt));
            assert(isValidVectorElemsize(size));
            assert(size != EA_8BYTE); // no encoding, use INS_umov
            assert(isGeneralRegister(reg1));
            assert(isVectorRegister(reg2));
            elemsize = size;
            assert(isValidVectorIndex(EA_16BYTE, elemsize, imm));
            fmt = IF_DV_2B;
            break;

        case INS_add:
        case INS_sub:
            setFlags = false;
            isAddSub = true;
            break;

        case INS_adds:
        case INS_subs:
            setFlags = true;
            isAddSub = true;
            break;

        case INS_ldrsb:
        case INS_ldursb:
            // 'size' specifies how we sign-extend into 4 or 8 bytes of the target register
            assert(isValidGeneralDatasize(size));
            unscaledOp = (ins == INS_ldursb);
            scale      = 0;
            isLdSt     = true;
            break;

        case INS_ldrsh:
        case INS_ldursh:
            // 'size' specifies how we sign-extend into 4 or 8 bytes of the target register
            assert(isValidGeneralDatasize(size));
            unscaledOp = (ins == INS_ldursh);
            scale      = 1;
            isLdSt     = true;
            break;

        case INS_ldrsw:
        case INS_ldursw:
            // 'size' specifies how we sign-extend into 4 or 8 bytes of the target register
            assert(size == EA_8BYTE);
            unscaledOp = (ins == INS_ldursw);
            scale      = 2;
            isLdSt     = true;
            break;

        case INS_ldrb:
        case INS_strb:
            // size is ignored
            unscaledOp = false;
            scale      = 0;
            isLdSt     = true;
            break;

        case INS_ldurb:
        case INS_sturb:
            // size is ignored
            unscaledOp = true;
            scale      = 0;
            isLdSt     = true;
            break;

        case INS_ldrh:
        case INS_strh:
            // size is ignored
            unscaledOp = false;
            scale      = 1;
            isLdSt     = true;
            break;

        case INS_ldurh:
        case INS_sturh:
            // size is ignored
            unscaledOp = true;
            scale      = 0;
            isLdSt     = true;
            break;

        case INS_ldr:
        case INS_str:
            // Is the target a vector register?
            if (isVectorRegister(reg1))
            {
                assert(isValidVectorLSDatasize(size));
                assert(isGeneralRegisterOrSP(reg2));
                isSIMD = true;
            }
            else
            {
                assert(isValidGeneralDatasize(size));
            }
            unscaledOp = false;
            scale      = NaturalScale_helper(size);
            isLdSt     = true;
            break;

        case INS_ldur:
        case INS_stur:
            // Is the target a vector register?
            if (isVectorRegister(reg1))
            {
                assert(isValidVectorLSDatasize(size));
                assert(isGeneralRegisterOrSP(reg2));
                isSIMD = true;
            }
            else
            {
                assert(isValidGeneralDatasize(size));
            }
            unscaledOp = true;
            scale      = 0;
            isLdSt     = true;
            break;

        default:
            // TODO-Cleanup: add unreached() here
            break;

    } // end switch (ins)

    if (isLdSt)
    {
        assert(!isAddSub);

        if (isSIMD)
        {
            assert(isValidVectorLSDatasize(size));
            assert(isVectorRegister(reg1));
            assert((scale >= 0) && (scale <= 4));
        }
        else
        {
            assert(isValidGeneralLSDatasize(size));
            assert(isGeneralRegisterOrZR(reg1));
            assert((scale >= 0) && (scale <= 3));
        }

        assert(isGeneralRegisterOrSP(reg2));

        // Load/Store reserved encodings:
        if (insOptsIndexed(opt))
        {
            assert(reg1 != reg2);
        }

        reg2 = encodingSPtoZR(reg2);

        ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate
        if (imm == 0)
        {
            assert(insOptsNone(opt)); // PRE/POST Index doesn't make sense with an immediate of zero

            fmt = IF_LS_2A;
        }
        else if (insOptsIndexed(opt) || unscaledOp || (imm < 0) || ((imm & mask) != 0))
        {
            if ((imm >= -256) && (imm <= 255))
            {
                fmt = IF_LS_2C;
            }
            else
            {
                assert(!"Instruction cannot be encoded: IF_LS_2C");
            }
        }
        else if (imm > 0)
        {
            assert(insOptsNone(opt));
            assert(!unscaledOp);

            if (((imm & mask) == 0) && ((imm >> scale) < 0x1000))
            {
                imm >>= scale; // The immediate is scaled by the size of the ld/st

                fmt = IF_LS_2B;
            }
            else
            {
                assert(!"Instruction cannot be encoded: IF_LS_2B");
            }
        }
    }
    else if (isAddSub)
    {
        assert(!isLdSt);
        assert(insOptsNone(opt));

        if (setFlags) // Can't encode SP with setFlags
        {
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
        }
        else
        {
            assert(isGeneralRegisterOrSP(reg1));
            assert(isGeneralRegisterOrSP(reg2));

            // Is it just a mov?
            if (imm == 0)
            {
                // Is the mov even necessary?
                if (reg1 != reg2)
                {
                    emitIns_R_R(INS_mov, attr, reg1, reg2);
                }
                return;
            }

            reg1 = encodingSPtoZR(reg1);
            reg2 = encodingSPtoZR(reg2);
        }

        if (unsigned_abs(imm) <= 0x0fff)
        {
            if (imm < 0)
            {
                ins = insReverse(ins);
                imm = -imm;
            }
            assert(isValidUimm12(imm));
            fmt = IF_DI_2A;
        }
        else if (canEncodeWithShiftImmBy12(imm)) // Try the shifted by 12 encoding
        {
            // Encoding will use a 12-bit left shift of the immediate
            opt = INS_OPTS_LSL12;
            if (imm < 0)
            {
                ins = insReverse(ins);
                imm = -imm;
            }
            assert((imm & 0xfff) == 0);
            imm >>= 12;
            assert(isValidUimm12(imm));
            fmt = IF_DI_2A;
        }
        else
        {
            assert(!"Instruction cannot be encoded: IF_DI_2A");
        }
    }

    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstrSC(attr, imm);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(opt);

    id->idReg1(reg1);
    id->idReg2(reg2);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
*
*  Add an instruction referencing two registers and a constant.
*  Also checks for a large immediate that needs a second instruction
*  and will load it in reg1
*
*  - Supports instructions: add, adds, sub, subs, and, ands, eor and orr
*  - Requires that reg1 is a general register and not SP or ZR
*  - Requires that reg1 != reg2
*/
void emitter::emitIns_R_R_Imm(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, ssize_t imm)
{
    assert(isGeneralRegister(reg1));
    assert(reg1 != reg2);

    bool immFits = true;

    switch (ins)
    {
        case INS_add:
        case INS_adds:
        case INS_sub:
        case INS_subs:
            immFits = emitter::emitIns_valid_imm_for_add(imm, attr);
            break;

        case INS_ands:
        case INS_and:
        case INS_eor:
        case INS_orr:
            immFits = emitter::emitIns_valid_imm_for_alu(imm, attr);
            break;

        default:
            assert(!"Unsupported instruction in emitIns_R_R_Imm");
    }

    if (immFits)
    {
        emitIns_R_R_I(ins, attr, reg1, reg2, imm);
    }
    else
    {
        // Load 'imm' into the reg1 register
        // then issue:   'ins'  reg1, reg2, reg1
        //
        codeGen->instGen_Set_Reg_To_Imm(attr, reg1, imm);
        emitIns_R_R_R(ins, attr, reg1, reg2, reg1);
    }
}

/*****************************************************************************
 *
 *  Add an instruction referencing three registers.
 */

void emitter::emitIns_R_R_R(
    instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, insOpts opt) /* = INS_OPTS_NONE */
{
    emitAttr  size     = EA_SIZE(attr);
    emitAttr  elemsize = EA_UNKNOWN;
    insFormat fmt      = IF_NONE;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_lsl:
        case INS_lsr:
        case INS_asr:
        case INS_ror:
        case INS_adc:
        case INS_adcs:
        case INS_sbc:
        case INS_sbcs:
        case INS_udiv:
        case INS_sdiv:
        case INS_mneg:
        case INS_smull:
        case INS_smnegl:
        case INS_smulh:
        case INS_umull:
        case INS_umnegl:
        case INS_umulh:
        case INS_lslv:
        case INS_lsrv:
        case INS_asrv:
        case INS_rorv:
            assert(insOptsNone(opt));
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            assert(isGeneralRegister(reg3));
            fmt = IF_DR_3A;
            break;

        case INS_mul:
            if (insOptsNone(opt))
            {
                // general register
                assert(isValidGeneralDatasize(size));
                assert(isGeneralRegister(reg1));
                assert(isGeneralRegister(reg2));
                assert(isGeneralRegister(reg3));
                fmt = IF_DR_3A;
                break;
            }
            __fallthrough;

        case INS_mla:
        case INS_mls:
        case INS_pmul:
            assert(insOptsAnyArrangement(opt));
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert(isVectorRegister(reg3));
            assert(isValidVectorDatasize(size));
            assert(isValidArrangement(size, opt));
            elemsize = optGetElemsize(opt);
            if (ins == INS_pmul)
            {
                assert(elemsize == EA_1BYTE); // only supports 8B or 16B
            }
            else // INS_mul, INS_mla, INS_mls
            {
                assert(elemsize != EA_8BYTE); // can't use 2D or 1D
            }
            fmt = IF_DV_3A;
            break;

        case INS_add:
        case INS_sub:
            if (isVectorRegister(reg1))
            {
                assert(isVectorRegister(reg2));
                assert(isVectorRegister(reg3));

                if (insOptsAnyArrangement(opt))
                {
                    // Vector operation
                    assert(opt != INS_OPTS_1D); // Reserved encoding
                    assert(isValidVectorDatasize(size));
                    assert(isValidArrangement(size, opt));
                    fmt = IF_DV_3A;
                }
                else
                {
                    // Scalar operation
                    assert(insOptsNone(opt));
                    assert(size == EA_8BYTE);
                    fmt = IF_DV_3E;
                }
                break;
            }
            __fallthrough;

        case INS_adds:
        case INS_subs:
            emitIns_R_R_R_I(ins, attr, reg1, reg2, reg3, 0, INS_OPTS_NONE);
            return;

        case INS_saba:
        case INS_sabd:
        case INS_uaba:
        case INS_uabd:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert(isVectorRegister(reg3));
            assert(insOptsAnyArrangement(opt));

            // Vector operation
            assert(isValidVectorDatasize(size));
            assert(isValidArrangement(size, opt));
            elemsize = optGetElemsize(opt);
            assert(elemsize != EA_8BYTE); // can't use 2D or 1D

            fmt = IF_DV_3A;
            break;

        case INS_mov:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert(reg2 == reg3);
            assert(isValidVectorDatasize(size));
            // INS_mov is an alias for INS_orr (vector register)
            if (opt == INS_OPTS_NONE)
            {
                elemsize = EA_1BYTE;
                opt      = optMakeArrangement(size, elemsize);
            }
            assert(isValidArrangement(size, opt));
            fmt = IF_DV_3C;
            break;

        case INS_and:
        case INS_bic:
        case INS_eor:
        case INS_orr:
        case INS_orn:
            if (isVectorRegister(reg1))
            {
                assert(isValidVectorDatasize(size));
                assert(isVectorRegister(reg2));
                assert(isVectorRegister(reg3));
                if (opt == INS_OPTS_NONE)
                {
                    elemsize = EA_1BYTE;
                    opt      = optMakeArrangement(size, elemsize);
                }
                assert(isValidArrangement(size, opt));
                fmt = IF_DV_3C;
                break;
            }
            __fallthrough;

        case INS_ands:
        case INS_bics:
        case INS_eon:
            emitIns_R_R_R_I(ins, attr, reg1, reg2, reg3, 0, INS_OPTS_NONE);
            return;

        case INS_bsl:
        case INS_bit:
        case INS_bif:
            assert(isValidVectorDatasize(size));
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert(isVectorRegister(reg3));
            if (opt == INS_OPTS_NONE)
            {
                elemsize = EA_1BYTE;
                opt      = optMakeArrangement(size, elemsize);
            }
            assert(isValidArrangement(size, opt));
            fmt = IF_DV_3C;
            break;

        case INS_fadd:
        case INS_fsub:
        case INS_fdiv:
        case INS_fmax:
        case INS_fmin:
        case INS_fabd:
        case INS_fmul:
        case INS_fmulx:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert(isVectorRegister(reg3));
            if (insOptsAnyArrangement(opt))
            {
                // Vector operation
                assert(isValidVectorDatasize(size));
                assert(isValidArrangement(size, opt));
                elemsize = optGetElemsize(opt);
                assert(isValidVectorElemsizeFloat(elemsize));
                assert(opt != INS_OPTS_1D); // Reserved encoding
                fmt = IF_DV_3B;
            }
            else
            {
                // Scalar operation
                assert(insOptsNone(opt));
                assert(isValidScalarDatasize(size));
                fmt = IF_DV_3D;
            }
            break;

        case INS_fnmul:
            // Scalar operation
            assert(insOptsNone(opt));
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert(isVectorRegister(reg3));
            assert(isValidScalarDatasize(size));
            fmt = IF_DV_3D;
            break;

        case INS_fmla:
        case INS_fmls:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert(isVectorRegister(reg3));
            assert(insOptsAnyArrangement(opt)); // no scalar encoding, use 4-operand 'fmadd' or 'fmsub'

            // Vector operation
            assert(isValidVectorDatasize(size));
            assert(isValidArrangement(size, opt));
            elemsize = optGetElemsize(opt);
            assert(isValidVectorElemsizeFloat(elemsize));
            assert(opt != INS_OPTS_1D); // Reserved encoding
            fmt = IF_DV_3B;
            break;

        case INS_ldr:
        case INS_ldrb:
        case INS_ldrh:
        case INS_ldrsb:
        case INS_ldrsh:
        case INS_ldrsw:
        case INS_str:
        case INS_strb:
        case INS_strh:
            emitIns_R_R_R_Ext(ins, attr, reg1, reg2, reg3, opt);
            return;

        case INS_ldp:
        case INS_ldpsw:
        case INS_ldnp:
        case INS_stp:
        case INS_stnp:
            emitIns_R_R_R_I(ins, attr, reg1, reg2, reg3, 0);
            return;

        default:
            // TODO-Cleanup: add unreached() here
            break;

    } // end switch (ins)

    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstr(attr);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(opt);

    id->idReg1(reg1);
    id->idReg2(reg2);
    id->idReg3(reg3);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing three registers and a constant.
 */

void emitter::emitIns_R_R_R_I(instruction ins,
                              emitAttr    attr,
                              regNumber   reg1,
                              regNumber   reg2,
                              regNumber   reg3,
                              ssize_t     imm,
                              insOpts     opt /* = INS_OPTS_NONE */)
{
    emitAttr  size     = EA_SIZE(attr);
    emitAttr  elemsize = EA_UNKNOWN;
    insFormat fmt      = IF_NONE;
    bool      isLdSt   = false;
    bool      isSIMD   = false;
    bool      isAddSub = false;
    bool      setFlags = false;
    unsigned  scale    = 0;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_extr:
            assert(insOptsNone(opt));
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            assert(isGeneralRegister(reg3));
            assert(isValidImmShift(imm, size));
            fmt = IF_DR_3E;
            break;

        case INS_and:
        case INS_ands:
        case INS_eor:
        case INS_orr:
        case INS_bic:
        case INS_bics:
        case INS_eon:
        case INS_orn:
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            assert(isGeneralRegister(reg3));
            assert(isValidImmShift(imm, size));
            if (imm == 0)
            {
                assert(insOptsNone(opt)); // a zero imm, means no shift kind
                fmt = IF_DR_3A;
            }
            else
            {
                assert(insOptsAnyShift(opt)); // a non-zero imm, must select shift kind
                fmt = IF_DR_3B;
            }
            break;

        case INS_fmul: // by element, imm[0..3] selects the element of reg3
        case INS_fmla:
        case INS_fmls:
        case INS_fmulx:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert(isVectorRegister(reg3));
            if (insOptsAnyArrangement(opt))
            {
                // Vector operation
                assert(isValidVectorDatasize(size));
                assert(isValidArrangement(size, opt));
                elemsize = optGetElemsize(opt);
                assert(isValidVectorElemsizeFloat(elemsize));
                assert(isValidVectorIndex(size, elemsize, imm));
                assert(opt != INS_OPTS_1D); // Reserved encoding
                fmt = IF_DV_3BI;
            }
            else
            {
                // Scalar operation
                assert(insOptsNone(opt));
                assert(isValidScalarDatasize(size));
                elemsize = size;
                assert(isValidVectorIndex(EA_16BYTE, elemsize, imm));
                fmt = IF_DV_3DI;
            }
            break;

        case INS_mul: // by element, imm[0..7] selects the element of reg3
        case INS_mla:
        case INS_mls:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert(isVectorRegister(reg3));
            // Vector operation
            assert(insOptsAnyArrangement(opt));
            assert(isValidVectorDatasize(size));
            assert(isValidArrangement(size, opt));
            elemsize = optGetElemsize(opt);
            assert(isValidVectorIndex(EA_16BYTE, elemsize, imm));
            // Only has encodings for H or S elemsize
            assert((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE));
            // Only has encodings for V0..V15
            if ((elemsize == EA_2BYTE) && (reg3 >= REG_V16))
            {
                noway_assert(!"Invalid reg3");
            }
            fmt = IF_DV_3AI;
            break;

        case INS_add:
        case INS_sub:
            setFlags = false;
            isAddSub = true;
            break;

        case INS_adds:
        case INS_subs:
            setFlags = true;
            isAddSub = true;
            break;

        case INS_ldpsw:
            scale  = 2;
            isLdSt = true;
            break;

        case INS_ldnp:
        case INS_stnp:
            assert(insOptsNone(opt)); // Can't use Pre/Post index on these two instructions
            __fallthrough;

        case INS_ldp:
        case INS_stp:
            // Is the target a vector register?
            if (isVectorRegister(reg1))
            {
                scale  = NaturalScale_helper(size);
                isSIMD = true;
            }
            else
            {
                scale = (size == EA_8BYTE) ? 3 : 2;
            }
            isLdSt = true;
            break;

        default:
            // TODO-Cleanup: add unreached() here
            break;

    } // end switch (ins)

    if (isLdSt)
    {
        assert(!isAddSub);
        assert(isGeneralRegisterOrSP(reg3));
        assert(insOptsNone(opt) || insOptsIndexed(opt));

        if (isSIMD)
        {
            assert(isValidVectorLSPDatasize(size));
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert((scale >= 2) && (scale <= 4));
        }
        else
        {
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegisterOrZR(reg1));
            assert(isGeneralRegisterOrZR(reg2));
            assert((scale == 2) || (scale == 3));
        }

        // Load/Store Pair reserved encodings:
        if (emitInsIsLoad(ins))
        {
            assert(reg1 != reg2);
        }
        if (insOptsIndexed(opt))
        {
            assert(reg1 != reg3);
            assert(reg2 != reg3);
        }

        reg3 = encodingSPtoZR(reg3);

        ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate
        if (imm == 0)
        {
            assert(insOptsNone(opt)); // PRE/POST Index doesn't make sense with an immediate of zero

            fmt = IF_LS_3B;
        }
        else
        {
            if ((imm & mask) == 0)
            {
                imm >>= scale; // The immediate is scaled by the size of the ld/st

                if ((imm >= -64) && (imm <= 63))
                {
                    fmt = IF_LS_3C;
                }
            }
#ifdef DEBUG
            if (fmt != IF_LS_3C)
            {
                assert(!"Instruction cannot be encoded: IF_LS_3C");
            }
#endif
        }
    }
    else if (isAddSub)
    {
        bool reg2IsSP = (reg2 == REG_SP);
        assert(!isLdSt);
        assert(isValidGeneralDatasize(size));
        assert(isGeneralRegister(reg3));

        if (setFlags || insOptsAluShift(opt)) // Can't encode SP in reg1 with setFlags or AluShift option
        {
            assert(isGeneralRegisterOrZR(reg1));
        }
        else
        {
            assert(isGeneralRegisterOrSP(reg1));
            reg1 = encodingSPtoZR(reg1);
        }

        if (insOptsAluShift(opt)) // Can't encode SP in reg2 with AluShift option
        {
            assert(isGeneralRegister(reg2));
        }
        else
        {
            assert(isGeneralRegisterOrSP(reg2));
            reg2 = encodingSPtoZR(reg2);
        }

        if (insOptsAnyExtend(opt))
        {
            assert((imm >= 0) && (imm <= 4));

            fmt = IF_DR_3C;
        }
        else if (insOptsAluShift(opt))
        {
            // imm should be non-zero and in [1..63]
            assert(isValidImmShift(imm, size) && (imm != 0));
            fmt = IF_DR_3B;
        }
        else if (imm == 0)
        {
            assert(insOptsNone(opt));

            if (reg2IsSP)
            {
                // To encode the SP register as reg2 we must use the IF_DR_3C encoding
                // and also specify a LSL of zero (imm == 0)
                opt = INS_OPTS_LSL;
                fmt = IF_DR_3C;
            }
            else
            {
                fmt = IF_DR_3A;
            }
        }
        else
        {
            assert(!"Instruction cannot be encoded: Add/Sub IF_DR_3A");
        }
    }
    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstrCns(attr, imm);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(opt);

    id->idReg1(reg1);
    id->idReg2(reg2);
    id->idReg3(reg3);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing three registers, with an extend option
 */

void emitter::emitIns_R_R_R_Ext(instruction ins,
                                emitAttr    attr,
                                regNumber   reg1,
                                regNumber   reg2,
                                regNumber   reg3,
                                insOpts     opt,         /* = INS_OPTS_NONE */
                                int         shiftAmount) /* = -1 -- unset   */
{
    emitAttr  size   = EA_SIZE(attr);
    insFormat fmt    = IF_NONE;
    bool      isSIMD = false;
    int       scale  = -1;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_ldrb:
        case INS_ldrsb:
        case INS_strb:
            scale = 0;
            break;

        case INS_ldrh:
        case INS_ldrsh:
        case INS_strh:
            scale = 1;
            break;

        case INS_ldrsw:
            scale = 2;
            break;

        case INS_ldr:
        case INS_str:
            // Is the target a vector register?
            if (isVectorRegister(reg1))
            {
                assert(isValidVectorLSDatasize(size));
                scale  = NaturalScale_helper(size);
                isSIMD = true;
            }
            else
            {
                assert(isValidGeneralDatasize(size));
                scale = (size == EA_8BYTE) ? 3 : 2;
            }

            break;

        default:
            // TODO-Cleanup: add unreached() here
            break;

    } // end switch (ins)

    assert(scale != -1);
    assert(insOptsLSExtend(opt));

    if (isSIMD)
    {
        assert(isValidVectorLSDatasize(size));
        assert(isVectorRegister(reg1));
    }
    else
    {
        assert(isValidGeneralLSDatasize(size));
        assert(isGeneralRegisterOrZR(reg1));
    }

    assert(isGeneralRegisterOrSP(reg2));
    assert(isGeneralRegister(reg3));

    // Load/Store reserved encodings:
    if (insOptsIndexed(opt))
    {
        assert(reg1 != reg2);
    }

    if (shiftAmount == -1)
    {
        shiftAmount = insOptsLSL(opt) ? scale : 0;
    }
    assert((shiftAmount == scale) || (shiftAmount == 0));

    reg2 = encodingSPtoZR(reg2);
    fmt  = IF_LS_3A;

    instrDesc* id = emitNewInstr(attr);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(opt);

    id->idReg1(reg1);
    id->idReg2(reg2);
    id->idReg3(reg3);
    id->idReg3Scaled(shiftAmount == scale);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing two registers and two constants.
 */

void emitter::emitIns_R_R_I_I(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, int imm1, int imm2)
{
    emitAttr  size     = EA_SIZE(attr);
    emitAttr  elemsize = EA_UNKNOWN;
    insFormat fmt      = IF_NONE;
    size_t    immOut   = 0; // composed from imm1 and imm2 and stored in the instrDesc

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        int        lsb;
        int        width;
        bitMaskImm bmi;

        case INS_bfm:
        case INS_sbfm:
        case INS_ubfm:
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            assert(isValidImmShift(imm1, size));
            assert(isValidImmShift(imm2, size));
            bmi.immNRS = 0;
            bmi.immN   = (size == EA_8BYTE);
            bmi.immR   = imm1;
            bmi.immS   = imm2;
            immOut     = bmi.immNRS;
            fmt        = IF_DI_2D;
            break;

        case INS_bfi:
        case INS_sbfiz:
        case INS_ubfiz:
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            lsb   = getBitWidth(size) - imm1;
            width = imm2 - 1;
            assert(isValidImmShift(lsb, size));
            assert(isValidImmShift(width, size));
            bmi.immNRS = 0;
            bmi.immN   = (size == EA_8BYTE);
            bmi.immR   = lsb;
            bmi.immS   = width;
            immOut     = bmi.immNRS;
            fmt        = IF_DI_2D;
            break;

        case INS_bfxil:
        case INS_sbfx:
        case INS_ubfx:
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            lsb   = imm1;
            width = imm2 + imm1 - 1;
            assert(isValidImmShift(lsb, size));
            assert(isValidImmShift(width, size));
            bmi.immNRS = 0;
            bmi.immN   = (size == EA_8BYTE);
            bmi.immR   = imm1;
            bmi.immS   = imm2 + imm1 - 1;
            immOut     = bmi.immNRS;
            fmt        = IF_DI_2D;
            break;

        case INS_mov:
        case INS_ins:
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            elemsize = size;
            assert(isValidVectorElemsize(elemsize));
            assert(isValidVectorIndex(EA_16BYTE, elemsize, imm1));
            assert(isValidVectorIndex(EA_16BYTE, elemsize, imm2));
            immOut = (imm1 << 4) + imm2;
            fmt    = IF_DV_2F;
            break;

        default:
            // TODO-Cleanup: add unreached() here
            break;
    }
    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstrSC(attr, immOut);

    id->idIns(ins);
    id->idInsFmt(fmt);

    id->idReg1(reg1);
    id->idReg2(reg2);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing four registers.
 */

void emitter::emitIns_R_R_R_R(
    instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, regNumber reg4)
{
    emitAttr  size = EA_SIZE(attr);
    insFormat fmt  = IF_NONE;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_madd:
        case INS_msub:
        case INS_smaddl:
        case INS_smsubl:
        case INS_umaddl:
        case INS_umsubl:
            assert(isValidGeneralDatasize(size));
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            assert(isGeneralRegister(reg3));
            assert(isGeneralRegister(reg4));
            fmt = IF_DR_4A;
            break;

        case INS_fmadd:
        case INS_fmsub:
        case INS_fnmadd:
        case INS_fnmsub:
            // Scalar operation
            assert(isValidScalarDatasize(size));
            assert(isVectorRegister(reg1));
            assert(isVectorRegister(reg2));
            assert(isVectorRegister(reg3));
            assert(isVectorRegister(reg4));
            fmt = IF_DV_4A;
            break;

        case INS_invalid:
            fmt = IF_NONE;
            break;

        default:
            // TODO-Cleanup: add unreached() here
            break;
    }
    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstr(attr);

    id->idIns(ins);
    id->idInsFmt(fmt);

    id->idReg1(reg1);
    id->idReg2(reg2);
    id->idReg3(reg3);
    id->idReg4(reg4);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing a register and a condition code
 */

void emitter::emitIns_R_COND(instruction ins, emitAttr attr, regNumber reg, insCond cond)
{
    emitAttr     size = EA_SIZE(attr);
    insFormat    fmt  = IF_NONE;
    condFlagsImm cfi;
    cfi.immCFVal = 0;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_cset:
        case INS_csetm:
            assert(isGeneralRegister(reg));
            cfi.cond = cond;
            fmt      = IF_DR_1D;
            break;

        default:
            // TODO-Cleanup: add unreached() here
            break;

    } // end switch (ins)

    assert(fmt != IF_NONE);
    assert(isValidImmCond(cfi.immCFVal));

    instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(INS_OPTS_NONE);

    id->idReg1(reg);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing two registers and a condition code
 */

void emitter::emitIns_R_R_COND(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insCond cond)
{
    emitAttr     size = EA_SIZE(attr);
    insFormat    fmt  = IF_NONE;
    condFlagsImm cfi;
    cfi.immCFVal = 0;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_cinc:
        case INS_cinv:
        case INS_cneg:
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            cfi.cond = cond;
            fmt      = IF_DR_2D;
            break;
        default:
            // TODO-Cleanup: add unreached() here
            break;

    } // end switch (ins)

    assert(fmt != IF_NONE);
    assert(isValidImmCond(cfi.immCFVal));

    instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(INS_OPTS_NONE);

    id->idReg1(reg1);
    id->idReg2(reg2);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing two registers and a condition code
 */

void emitter::emitIns_R_R_R_COND(
    instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, insCond cond)
{
    emitAttr     size = EA_SIZE(attr);
    insFormat    fmt  = IF_NONE;
    condFlagsImm cfi;
    cfi.immCFVal = 0;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_csel:
        case INS_csinc:
        case INS_csinv:
        case INS_csneg:
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            assert(isGeneralRegister(reg3));
            cfi.cond = cond;
            fmt      = IF_DR_3D;
            break;

        default:
            // TODO-Cleanup: add unreached() here
            break;

    } // end switch (ins)

    assert(fmt != IF_NONE);
    assert(isValidImmCond(cfi.immCFVal));

    instrDesc* id = emitNewInstr(attr);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(INS_OPTS_NONE);

    id->idReg1(reg1);
    id->idReg2(reg2);
    id->idReg3(reg3);
    id->idSmallCns(cfi.immCFVal);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing two registers the flags and a condition code
 */

void emitter::emitIns_R_R_FLAGS_COND(
    instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insCflags flags, insCond cond)
{
    emitAttr     size = EA_SIZE(attr);
    insFormat    fmt  = IF_NONE;
    condFlagsImm cfi;
    cfi.immCFVal = 0;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_ccmp:
        case INS_ccmn:
            assert(isGeneralRegister(reg1));
            assert(isGeneralRegister(reg2));
            cfi.flags = flags;
            cfi.cond  = cond;
            fmt       = IF_DR_2I;
            break;
        default:
            // TODO-Cleanup: add unreached() here
            break;
    } // end switch (ins)

    assert(fmt != IF_NONE);
    assert(isValidImmCondFlags(cfi.immCFVal));

    instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(INS_OPTS_NONE);

    id->idReg1(reg1);
    id->idReg2(reg2);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing a register, an immediate, the flags and a condition code
 */

void emitter::emitIns_R_I_FLAGS_COND(
    instruction ins, emitAttr attr, regNumber reg, int imm, insCflags flags, insCond cond)
{
    emitAttr     size = EA_SIZE(attr);
    insFormat    fmt  = IF_NONE;
    condFlagsImm cfi;
    cfi.immCFVal = 0;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_ccmp:
        case INS_ccmn:
            assert(isGeneralRegister(reg));
            if (imm < 0)
            {
                ins = insReverse(ins);
                imm = -imm;
            }
            if ((imm >= 0) && (imm <= 31))
            {
                cfi.imm5  = imm;
                cfi.flags = flags;
                cfi.cond  = cond;
                fmt       = IF_DI_1F;
            }
            else
            {
                assert(!"Instruction cannot be encoded: ccmp/ccmn imm5");
            }
            break;
        default:
            // TODO-Cleanup: add unreached() here
            break;
    } // end switch (ins)

    assert(fmt != IF_NONE);
    assert(isValidImmCondFlagsImm5(cfi.immCFVal));

    instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(INS_OPTS_NONE);

    id->idReg1(reg);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add a memory barrier instruction with a 'barrier' immediate
 */

void emitter::emitIns_BARR(instruction ins, insBarrier barrier)
{
    insFormat fmt = IF_NONE;
    ssize_t   imm = 0;

    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_dsb:
        case INS_dmb:
        case INS_isb:

            fmt = IF_SI_0B;
            imm = (ssize_t)barrier;
            break;
        default:
            // TODO-Cleanup: add unreached() here
            break;
    } // end switch (ins)

    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstrSC(EA_8BYTE, imm);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(INS_OPTS_NONE);

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction with a static data member operand. If 'size' is 0, the
 *  instruction operates on the address of the static member instead of its
 *  value (e.g. "push offset clsvar", rather than "push dword ptr [clsvar]").
 */

void emitter::emitIns_C(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, int offs)
{
    NYI("emitIns_C");
}

/*****************************************************************************
 *
 *  Add an instruction referencing stack-based local variable.
 */

void emitter::emitIns_S(instruction ins, emitAttr attr, int varx, int offs)
{
    NYI("emitIns_S");
}

/*****************************************************************************
 *
 *  Add an instruction referencing a register and a stack-based local variable.
 */
void emitter::emitIns_R_S(instruction ins, emitAttr attr, regNumber reg1, int varx, int offs)
{
    emitAttr  size  = EA_SIZE(attr);
    insFormat fmt   = IF_NONE;
    int       disp  = 0;
    unsigned  scale = 0;

    assert(offs >= 0);

    // TODO-ARM64-CQ: use unscaled loads?
    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_strb:
        case INS_ldrb:
        case INS_ldrsb:
            scale = 0;
            break;

        case INS_strh:
        case INS_ldrh:
        case INS_ldrsh:
            scale = 1;
            break;

        case INS_ldrsw:
            scale = 2;
            break;

        case INS_str:
        case INS_ldr:
            assert(isValidGeneralDatasize(size));
            scale = (size == EA_8BYTE) ? 3 : 2;
            break;

        case INS_lea:
            assert(size == EA_8BYTE);
            scale = 0;
            break;

        default:
            NYI("emitIns_R_S"); // FP locals?
            return;

    } // end switch (ins)

    /* Figure out the variable's frame position */
    ssize_t imm;
    int     base;
    bool    FPbased;

    base = emitComp->lvaFrameAddress(varx, &FPbased);
    disp = base + offs;
    assert((scale >= 0) && (scale <= 3));

    regNumber reg2 = FPbased ? REG_FPBASE : REG_SPBASE;
    reg2           = encodingSPtoZR(reg2);

    if (ins == INS_lea)
    {
        if (disp >= 0)
        {
            ins = INS_add;
            imm = disp;
        }
        else
        {
            ins = INS_sub;
            imm = -disp;
        }

        if (imm <= 0x0fff)
        {
            fmt = IF_DI_2A; // add reg1,reg2,#disp
        }
        else
        {
            regNumber rsvdReg = codeGen->rsGetRsvdReg();
            codeGen->instGen_Set_Reg_To_Imm(size, rsvdReg, imm);
            fmt = IF_DR_3A; // add reg1,reg2,rsvdReg
        }
    }
    else
    {
        bool    useRegForImm = false;
        ssize_t mask         = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate

        imm = disp;
        if (imm == 0)
        {
            fmt = IF_LS_2A;
        }
        else if ((imm < 0) || ((imm & mask) != 0))
        {
            if ((imm >= -256) && (imm <= 255))
            {
                fmt = IF_LS_2C;
            }
            else
            {
                useRegForImm = true;
            }
        }
        else if (imm > 0)
        {
            if (((imm & mask) == 0) && ((imm >> scale) < 0x1000))
            {
                imm >>= scale; // The immediate is scaled by the size of the ld/st

                fmt = IF_LS_2B;
            }
            else
            {
                useRegForImm = true;
            }
        }

        if (useRegForImm)
        {
            regNumber rsvdReg = codeGen->rsGetRsvdReg();
            codeGen->instGen_Set_Reg_To_Imm(size, rsvdReg, imm);
            fmt = IF_LS_3A;
        }
    }

    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstrCns(attr, imm);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(INS_OPTS_NONE);

    id->idReg1(reg1);
    id->idReg2(reg2);
    id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs);
    id->idSetIsLclVar();

#ifdef DEBUG
    id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs;
#endif

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing a stack-based local variable and a register
 */
void emitter::emitIns_S_R(instruction ins, emitAttr attr, regNumber reg1, int varx, int offs)
{
    assert(offs >= 0);
    emitAttr  size          = EA_SIZE(attr);
    insFormat fmt           = IF_NONE;
    int       disp          = 0;
    unsigned  scale         = 0;
    bool      isVectorStore = false;

    // TODO-ARM64-CQ: use unscaled loads?
    /* Figure out the encoding format of the instruction */
    switch (ins)
    {
        case INS_strb:
            scale = 0;
            assert(isGeneralRegisterOrZR(reg1));
            break;

        case INS_strh:
            scale = 1;
            assert(isGeneralRegisterOrZR(reg1));
            break;

        case INS_str:
            if (isGeneralRegisterOrZR(reg1))
            {
                assert(isValidGeneralDatasize(size));
                scale = (size == EA_8BYTE) ? 3 : 2;
            }
            else
            {
                assert(isVectorRegister(reg1));
                assert(isValidVectorLSDatasize(size));
                scale         = NaturalScale_helper(size);
                isVectorStore = true;
            }
            break;

        default:
            NYI("emitIns_S_R"); // FP locals?
            return;

    } // end switch (ins)

    /* Figure out the variable's frame position */
    int  base;
    bool FPbased;

    base = emitComp->lvaFrameAddress(varx, &FPbased);
    disp = base + offs;
    assert(scale >= 0);
    if (isVectorStore)
    {
        assert(scale <= 4);
    }
    else
    {
        assert(scale <= 3);
    }

    // TODO-ARM64-CQ: with compLocallocUsed, should we use REG_SAVED_LOCALLOC_SP instead?
    regNumber reg2 = FPbased ? REG_FPBASE : REG_SPBASE;
    reg2           = encodingSPtoZR(reg2);

    bool    useRegForImm = false;
    ssize_t imm          = disp;
    ssize_t mask         = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate
    if (imm == 0)
    {
        fmt = IF_LS_2A;
    }
    else if ((imm < 0) || ((imm & mask) != 0))
    {
        if ((imm >= -256) && (imm <= 255))
        {
            fmt = IF_LS_2C;
        }
        else
        {
            useRegForImm = true;
        }
    }
    else if (imm > 0)
    {
        if (((imm & mask) == 0) && ((imm >> scale) < 0x1000))
        {
            imm >>= scale; // The immediate is scaled by the size of the ld/st

            fmt = IF_LS_2B;
        }
        else
        {
            useRegForImm = true;
        }
    }

    if (useRegForImm)
    {
        // The reserved register is not stored in idReg3() since that field overlaps with iiaLclVar.
        // It is instead implicit when idSetIsLclVar() is set, with this encoding format.
        regNumber rsvdReg = codeGen->rsGetRsvdReg();
        codeGen->instGen_Set_Reg_To_Imm(size, rsvdReg, imm);
        fmt = IF_LS_3A;
    }

    assert(fmt != IF_NONE);

    instrDesc* id = emitNewInstrCns(attr, imm);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(INS_OPTS_NONE);

    id->idReg1(reg1);
    id->idReg2(reg2);
    id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs);
    id->idSetIsLclVar();

#ifdef DEBUG
    id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs;
#endif

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction referencing stack-based local variable and an immediate
 */
void emitter::emitIns_S_I(instruction ins, emitAttr attr, int varx, int offs, int val)
{
    NYI("emitIns_S_I");
}

/*****************************************************************************
 *
 *  Add an instruction with a register + static member operands.
 *  Constant is stored into JIT data which is adjacent to code.
 *  No relocation is needed. PC-relative offset will be encoded directly into instruction.
 *
 */
void emitter::emitIns_R_C(
    instruction ins, emitAttr attr, regNumber reg, regNumber addrReg, CORINFO_FIELD_HANDLE fldHnd, int offs)
{
    assert(offs >= 0);
    assert(instrDesc::fitsInSmallCns(offs));

    emitAttr      size = EA_SIZE(attr);
    insFormat     fmt  = IF_NONE;
    int           disp = 0;
    instrDescJmp* id   = emitNewInstrJmp();

    switch (ins)
    {
        case INS_adr:
            // This is case to get address to the constant data.
            fmt = IF_LARGEADR;
            assert(isGeneralRegister(reg));
            assert(isValidGeneralDatasize(size));
            break;

        case INS_ldr:
            fmt = IF_LARGELDC;
            if (isVectorRegister(reg))
            {
                assert(isValidScalarDatasize(size));
                // For vector (float/double) register, we should have an integer address reg to
                // compute long address which consists of page address and page offset.
                // For integer constant, this is not needed since the dest reg can be used to
                // compute address as well as contain the final contents.
                assert(isGeneralRegister(reg) || (addrReg != REG_NA));
            }
            else
            {
                assert(isGeneralRegister(reg));
                assert(isValidGeneralDatasize(size));
            }
            break;
        default:
            unreached();
    }

    assert(fmt != IF_NONE);

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(INS_OPTS_NONE);
    id->idSmallCns(offs);
    id->idOpSize(size);
    id->idAddr()->iiaFieldHnd = fldHnd;
    id->idSetIsBound(); // We won't patch address since we will know the exact distance once JIT code and data are
                        // allocated together.

    id->idReg1(reg); // destination register that will get the constant value.
    if (addrReg != REG_NA)
    {
        id->idReg2(addrReg); // integer register to compute long address (used for vector dest when we end up with long
                             // address)
    }
    id->idjShort = false; // Assume loading constant from long address

    // Keep it long if it's in cold code.
    id->idjKeepLong = emitComp->fgIsBlockCold(emitComp->compCurBB);

#ifdef DEBUG
    if (emitComp->opts.compLongAddress)
        id->idjKeepLong = 1;
#endif // DEBUG

    // If it's possible to be shortened, then put it in jump list
    // to be revisited by emitJumpDistBind.
    if (!id->idjKeepLong)
    {
        /* Record the jump's IG and offset within it */
        id->idjIG   = emitCurIG;
        id->idjOffs = emitCurIGsize;

        /* Append this jump to this IG's jump list */
        id->idjNext      = emitCurIGjmpList;
        emitCurIGjmpList = id;

#if EMITTER_STATS
        emitTotalIGjmps++;
#endif
    }

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add an instruction with a static member + constant.
 */

void emitter::emitIns_C_I(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, ssize_t offs, ssize_t val)
{
    NYI("emitIns_C_I");
}

/*****************************************************************************
 *
 *  Add an instruction with a static member + register operands.
 */

void emitter::emitIns_C_R(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, regNumber reg, int offs)
{
    assert(!"emitIns_C_R not supported for RyuJIT backend");
}

void emitter::emitIns_R_AR(instruction ins,
                           emitAttr    attr,
                           regNumber   ireg,
                           regNumber   reg,
                           int         offs,
                           int         memCookie /* = 0 */,
                           void*       clsCookie /* = NULL */)
{
    NYI("emitIns_R_AR");
}

// This computes address from the immediate which is relocatable.
void emitter::emitIns_R_AI(instruction ins, emitAttr attr, regNumber ireg, ssize_t addr)
{
    assert(EA_IS_RELOC(attr));
    emitAttr      size    = EA_SIZE(attr);
    insFormat     fmt     = IF_DI_1E;
    bool          needAdd = false;
    instrDescJmp* id      = emitNewInstrJmp();

    switch (ins)
    {
        case INS_adrp:
            // This computes page address.
            // page offset is needed using add.
            needAdd = true;
            break;
        case INS_adr:
            break;
        default:
            unreached();
    }

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idInsOpt(INS_OPTS_NONE);
    id->idOpSize(size);
    id->idAddr()->iiaAddr = (BYTE*)addr;
    id->idReg1(ireg);
    id->idSetIsDspReloc();

    dispIns(id);
    appendToCurIG(id);

    if (needAdd)
    {
        // add reg, reg, imm
        ins           = INS_add;
        fmt           = IF_DI_2A;
        instrDesc* id = emitAllocInstr(attr);
        assert(id->idIsReloc());

        id->idIns(ins);
        id->idInsFmt(fmt);
        id->idInsOpt(INS_OPTS_NONE);
        id->idOpSize(size);
        id->idAddr()->iiaAddr = (BYTE*)addr;
        id->idReg1(ireg);
        id->idReg2(ireg);

        dispIns(id);
        appendToCurIG(id);
    }
}

void emitter::emitIns_AR_R(instruction ins,
                           emitAttr    attr,
                           regNumber   ireg,
                           regNumber   reg,
                           int         offs,
                           int         memCookie /* = 0 */,
                           void*       clsCookie /* = NULL */)
{
    NYI("emitIns_AR_R");
}

void emitter::emitIns_R_ARR(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, int disp)
{
    NYI("emitIns_R_ARR");
}

void emitter::emitIns_ARR_R(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, int disp)
{
    NYI("emitIns_R_ARR");
}

void emitter::emitIns_R_ARX(
    instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, unsigned mul, int disp)
{
    NYI("emitIns_R_ARR");
}

/*****************************************************************************
 *
 *  Record that a jump instruction uses the short encoding
 *
 */
void emitter::emitSetShortJump(instrDescJmp* id)
{
    if (id->idjKeepLong)
        return;

    insFormat fmt = IF_NONE;
    if (emitIsCondJump(id))
    {
        fmt = IF_BI_0B;
    }
    else if (emitIsLoadLabel(id))
    {
        fmt = IF_DI_1E;
    }
    else if (emitIsLoadConstant(id))
    {
        fmt = IF_LS_1A;
    }
    else
    {
        unreached();
    }

    id->idInsFmt(fmt);
    id->idjShort = true;
}

/*****************************************************************************
 *
 *  Add a label instruction.
 */

void emitter::emitIns_R_L(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg)
{
    assert(dst->bbFlags & BBF_JMP_TARGET);

    insFormat fmt = IF_NONE;

    switch (ins)
    {
        case INS_adr:
            fmt = IF_LARGEADR;
            break;
        default:
            unreached();
    }

    instrDescJmp* id = emitNewInstrJmp();

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idjShort             = false;
    id->idAddr()->iiaBBlabel = dst;
    id->idReg1(reg);
    id->idOpSize(EA_PTRSIZE);

#ifdef DEBUG
    // Mark the catch return
    if (emitComp->compCurBB->bbJumpKind == BBJ_EHCATCHRET)
    {
        id->idDebugOnlyInfo()->idCatchRet = true;
    }
#endif // DEBUG

    id->idjKeepLong = emitComp->fgInDifferentRegions(emitComp->compCurBB, dst);

#ifdef DEBUG
    if (emitComp->opts.compLongAddress)
        id->idjKeepLong = 1;
#endif // DEBUG

    /* Record the jump's IG and offset within it */

    id->idjIG   = emitCurIG;
    id->idjOffs = emitCurIGsize;

    /* Append this jump to this IG's jump list */

    id->idjNext      = emitCurIGjmpList;
    emitCurIGjmpList = id;

#if EMITTER_STATS
    emitTotalIGjmps++;
#endif

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add a data label instruction.
 */

void emitter::emitIns_R_D(instruction ins, emitAttr attr, unsigned offs, regNumber reg)
{
    NYI("emitIns_R_D");
}

void emitter::emitIns_J_R(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg)
{
    NYI("emitIns_J_R");
}

void emitter::emitIns_J(instruction ins, BasicBlock* dst, int instrCount)
{
    insFormat fmt = IF_NONE;

    if (dst != nullptr)
    {
        assert(dst->bbFlags & BBF_JMP_TARGET);
    }
    else
    {
        assert(instrCount != 0);
    }

    /* Figure out the encoding format of the instruction */

    bool idjShort = false;
    switch (ins)
    {
        case INS_bl_local:
        case INS_b:
            // Unconditional jump is a single form.
            idjShort = true;
            fmt      = IF_BI_0A;
            break;

        case INS_beq:
        case INS_bne:
        case INS_bhs:
        case INS_blo:
        case INS_bmi:
        case INS_bpl:
        case INS_bvs:
        case INS_bvc:
        case INS_bhi:
        case INS_bls:
        case INS_bge:
        case INS_blt:
        case INS_bgt:
        case INS_ble:
            // Assume conditional jump is long.
            fmt = IF_LARGEJMP;
            break;

        default:
            unreached();
            break;
    }

    instrDescJmp* id = emitNewInstrJmp();

    id->idIns(ins);
    id->idInsFmt(fmt);
    id->idjShort = idjShort;

#ifdef DEBUG
    // Mark the finally call
    if (ins == INS_bl_local && emitComp->compCurBB->bbJumpKind == BBJ_CALLFINALLY)
    {
        id->idDebugOnlyInfo()->idFinallyCall = true;
    }
#endif // DEBUG

    if (dst != nullptr)
    {
        id->idAddr()->iiaBBlabel = dst;

        // Skip unconditional jump that has a single form.
        // TODO-ARM64-NYI: enable hot/cold splittingNYI.
        // The target needs to be relocated.
        if (!idjShort)
        {
            id->idjKeepLong = emitComp->fgInDifferentRegions(emitComp->compCurBB, dst);

#ifdef DEBUG
            if (emitComp->opts.compLongAddress) // Force long branches
                id->idjKeepLong = 1;
#endif // DEBUG
        }
    }
    else
    {
        id->idAddr()->iiaSetInstrCount(instrCount);
        id->idjKeepLong = false;
        /* This jump must be short */
        emitSetShortJump(id);
        id->idSetIsBound();
    }

    /* Record the jump's IG and offset within it */

    id->idjIG   = emitCurIG;
    id->idjOffs = emitCurIGsize;

    /* Append this jump to this IG's jump list */

    id->idjNext      = emitCurIGjmpList;
    emitCurIGjmpList = id;

#if EMITTER_STATS
    emitTotalIGjmps++;
#endif

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Add a call instruction (direct or indirect).
 *      argSize<0 means that the caller will pop the arguments
 *
 * The other arguments are interpreted depending on callType as shown:
 * Unless otherwise specified, ireg,xreg,xmul,disp should have default values.
 *
 * EC_FUNC_TOKEN       : addr is the method address
 * EC_FUNC_ADDR        : addr is the absolute address of the function
 *
 * If callType is one of these emitCallTypes, addr has to be NULL.
 * EC_INDIR_R          : "call ireg".
 *
 * For ARM xreg, xmul and disp are never used and should always be 0/REG_NA.
 *
 *  Please consult the "debugger team notification" comment in genFnProlog().
 */

void emitter::emitIns_Call(EmitCallType          callType,
                           CORINFO_METHOD_HANDLE methHnd,
                           INDEBUG_LDISASM_COMMA(CORINFO_SIG_INFO* sigInfo) // used to report call sites to the EE
                           void*            addr,
                           ssize_t          argSize,
                           emitAttr         retSize,
                           emitAttr         secondRetSize,
                           VARSET_VALARG_TP ptrVars,
                           regMaskTP        gcrefRegs,
                           regMaskTP        byrefRegs,
                           IL_OFFSETX       ilOffset /* = BAD_IL_OFFSET */,
                           regNumber        ireg /* = REG_NA */,
                           regNumber        xreg /* = REG_NA */,
                           unsigned         xmul /* = 0     */,
                           ssize_t          disp /* = 0     */,
                           bool             isJump /* = false */,
                           bool             isNoGC /* = false */,
                           bool             isProfLeaveCB /* = false */)
{
    /* Sanity check the arguments depending on callType */

    assert(callType < EC_COUNT);
    assert((callType != EC_FUNC_TOKEN && callType != EC_FUNC_ADDR) ||
           (ireg == REG_NA && xreg == REG_NA && xmul == 0 && disp == 0));
    assert(callType < EC_INDIR_R || addr == NULL);
    assert(callType != EC_INDIR_R || (ireg < REG_COUNT && xreg == REG_NA && xmul == 0 && disp == 0));

    // ARM never uses these
    assert(xreg == REG_NA && xmul == 0 && disp == 0);

    // Our stack level should be always greater than the bytes of arguments we push. Just
    // a sanity test.
    assert((unsigned)abs(argSize) <= codeGen->genStackLevel);

    int        argCnt;
    instrDesc* id;

    /* This is the saved set of registers after a normal call */
    regMaskTP savedSet = RBM_CALLEE_SAVED;

    /* some special helper calls have a different saved set registers */

    if (isNoGC)
    {
        assert(emitNoGChelper(Compiler::eeGetHelperNum(methHnd)));

        // This call will preserve the liveness of most registers
        //
        // - On the ARM64 the NOGC helpers will preserve all registers,
        //   except for those listed in the RBM_CALLEE_TRASH_NOGC mask

        savedSet = RBM_ALLINT & ~RBM_CALLEE_TRASH_NOGC;

        // In case of Leave profiler callback, we need to preserve liveness of REG_PROFILER_RET_SCRATCH
        if (isProfLeaveCB)
        {
            savedSet |= RBM_PROFILER_RET_SCRATCH;
        }
    }
    else
    {
        assert(!emitNoGChelper(Compiler::eeGetHelperNum(methHnd)));
    }

    /* Trim out any callee-trashed registers from the live set */

    gcrefRegs &= savedSet;
    byrefRegs &= savedSet;

#ifdef DEBUG
    if (EMIT_GC_VERBOSE)
    {
        printf("Call: GCvars=%s ", VarSetOps::ToString(emitComp, ptrVars));
        dumpConvertedVarSet(emitComp, ptrVars);
        printf(", gcrefRegs=");
        printRegMaskInt(gcrefRegs);
        emitDispRegSet(gcrefRegs);
        printf(", byrefRegs=");
        printRegMaskInt(byrefRegs);
        emitDispRegSet(byrefRegs);
        printf("\n");
    }
#endif

    assert(argSize % REGSIZE_BYTES == 0);
    argCnt = (int)(argSize / (int)sizeof(void*));

#ifdef DEBUGGING_SUPPORT
    /* Managed RetVal: emit sequence point for the call */
    if (emitComp->opts.compDbgInfo && ilOffset != BAD_IL_OFFSET)
    {
        codeGen->genIPmappingAdd(ilOffset, false);
    }
#endif

    /*
        We need to allocate the appropriate instruction descriptor based
        on whether this is a direct/indirect call, and whether we need to
        record an updated set of live GC variables.
     */

    if (callType >= EC_INDIR_R)
    {
        /* Indirect call, virtual calls */

        assert(callType == EC_INDIR_R);

        id = emitNewInstrCallInd(argCnt, disp, ptrVars, gcrefRegs, byrefRegs, retSize, secondRetSize);
    }
    else
    {
        /* Helper/static/nonvirtual/function calls (direct or through handle),
           and calls to an absolute addr. */

        assert(callType == EC_FUNC_TOKEN || callType == EC_FUNC_ADDR);

        id = emitNewInstrCallDir(argCnt, ptrVars, gcrefRegs, byrefRegs, retSize, secondRetSize);
    }

    /* Update the emitter's live GC ref sets */

    VarSetOps::Assign(emitComp, emitThisGCrefVars, ptrVars);
    emitThisGCrefRegs = gcrefRegs;
    emitThisByrefRegs = byrefRegs;

    /* Set the instruction - special case jumping a function */
    instruction ins;
    insFormat   fmt = IF_NONE;

    id->idSetIsNoGC(isNoGC);

    /* Record the address: method, indirection, or funcptr */

    if (callType > EC_FUNC_ADDR)
    {
        /* This is an indirect call (either a virtual call or func ptr call) */

        switch (callType)
        {
            case EC_INDIR_R: // the address is in a register

                id->idSetIsCallRegPtr();

                if (isJump)
                {
                    ins = INS_br_tail; // INS_br_tail  Reg
                }
                else
                {
                    ins = INS_blr; // INS_blr Reg
                }
                fmt = IF_BR_1B;

                id->idIns(ins);
                id->idInsFmt(fmt);

                id->idReg3(ireg);
                assert(xreg == REG_NA);
                break;

            default:
                NO_WAY("unexpected instruction");
                break;
        }
    }
    else
    {
        /* This is a simple direct call: "call helper/method/addr" */

        assert(callType == EC_FUNC_TOKEN || callType == EC_FUNC_ADDR);

        assert(addr != NULL);

        if (isJump)
        {
            ins = INS_b_tail; // INS_b_tail imm28
        }
        else
        {
            ins = INS_bl; // INS_bl imm28
        }
        fmt = IF_BI_0C;

        id->idIns(ins);
        id->idInsFmt(fmt);

        id->idAddr()->iiaAddr = (BYTE*)addr;

        if (callType == EC_FUNC_ADDR)
        {
            id->idSetIsCallAddr();
        }

#if RELOC_SUPPORT
        if (emitComp->opts.compReloc)
        {
            id->idSetIsDspReloc();
        }
#endif
    }

#ifdef DEBUG
    if (EMIT_GC_VERBOSE)
    {
        if (id->idIsLargeCall())
        {
            printf("[%02u] Rec call GC vars = %s\n", id->idDebugOnlyInfo()->idNum,
                   VarSetOps::ToString(emitComp, ((instrDescCGCA*)id)->idcGCvars));
        }
    }
#endif

#if defined(DEBUG) || defined(LATE_DISASM)
    id->idDebugOnlyInfo()->idMemCookie = (size_t)methHnd; // method token
    id->idDebugOnlyInfo()->idClsCookie = 0;
    id->idDebugOnlyInfo()->idCallSig   = sigInfo;
#endif

#if defined(LATE_DISASM)
    if (addr != nullptr)
    {
        codeGen->getDisAssembler().disSetMethod((size_t)addr, methHnd);
    }
#endif // defined(LATE_DISASM)

    dispIns(id);
    appendToCurIG(id);
}

/*****************************************************************************
 *
 *  Returns true if 'imm' is valid Cond encoding
 */

/*static*/ bool emitter::isValidImmCond(ssize_t imm)
{
    // range check the ssize_t value, to make sure it is a small unsigned value
    // and that only the bits in the cfi.cond are set
    if ((imm < 0) || (imm > 0xF))
        return false;

    condFlagsImm cfi;
    cfi.immCFVal = (unsigned)imm;

    return (cfi.cond <= INS_COND_LE); // Don't allow 14 & 15 (AL & NV).
}

/*****************************************************************************
 *
 *  Returns true if 'imm' is valid Cond/Flags encoding
 */

/*static*/ bool emitter::isValidImmCondFlags(ssize_t imm)
{
    // range check the ssize_t value, to make sure it is a small unsigned value
    // and that only the bits in the cfi.cond or cfi.flags are set
    if ((imm < 0) || (imm > 0xFF))
        return false;

    condFlagsImm cfi;
    cfi.immCFVal = (unsigned)imm;

    return (cfi.cond <= INS_COND_LE); // Don't allow 14 & 15 (AL & NV).
}

/*****************************************************************************
 *
 *  Returns true if 'imm' is valid Cond/Flags/Imm5 encoding
 */

/*static*/ bool emitter::isValidImmCondFlagsImm5(ssize_t imm)
{
    // range check the ssize_t value, to make sure it is a small unsigned value
    // and that only the bits in the cfi.cond, cfi.flags or cfi.imm5 are set
    if ((imm < 0) || (imm > 0x1FFF))
        return false;

    condFlagsImm cfi;
    cfi.immCFVal = (unsigned)imm;

    return (cfi.cond <= INS_COND_LE); // Don't allow 14 & 15 (AL & NV).
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified register used in the 'Rd' position
 */

/*static*/ emitter::code_t emitter::insEncodeReg_Rd(regNumber reg)
{
    assert(isIntegerRegister(reg));
    emitter::code_t ureg = (emitter::code_t)reg;
    assert((ureg >= 0) && (ureg <= 31));
    return ureg;
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified register used in the 'Rt' position
 */

/*static*/ emitter::code_t emitter::insEncodeReg_Rt(regNumber reg)
{
    assert(isIntegerRegister(reg));
    emitter::code_t ureg = (emitter::code_t)reg;
    assert((ureg >= 0) && (ureg <= 31));
    return ureg;
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified register used in the 'Rn' position
 */

/*static*/ emitter::code_t emitter::insEncodeReg_Rn(regNumber reg)
{
    assert(isIntegerRegister(reg));
    emitter::code_t ureg = (emitter::code_t)reg;
    assert((ureg >= 0) && (ureg <= 31));
    return ureg << 5;
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified register used in the 'Rm' position
 */

/*static*/ emitter::code_t emitter::insEncodeReg_Rm(regNumber reg)
{
    assert(isIntegerRegister(reg));
    emitter::code_t ureg = (emitter::code_t)reg;
    assert((ureg >= 0) && (ureg <= 31));
    return ureg << 16;
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified register used in the 'Ra' position
 */

/*static*/ emitter::code_t emitter::insEncodeReg_Ra(regNumber reg)
{
    assert(isIntegerRegister(reg));
    emitter::code_t ureg = (emitter::code_t)reg;
    assert((ureg >= 0) && (ureg <= 31));
    return ureg << 10;
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified register used in the 'Vd' position
 */

/*static*/ emitter::code_t emitter::insEncodeReg_Vd(regNumber reg)
{
    assert(emitter::isVectorRegister(reg));
    emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0;
    assert((ureg >= 0) && (ureg <= 31));
    return ureg;
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified register used in the 'Vt' position
 */

/*static*/ emitter::code_t emitter::insEncodeReg_Vt(regNumber reg)
{
    assert(emitter::isVectorRegister(reg));
    emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0;
    assert((ureg >= 0) && (ureg <= 31));
    return ureg;
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified register used in the 'Vn' position
 */

/*static*/ emitter::code_t emitter::insEncodeReg_Vn(regNumber reg)
{
    assert(emitter::isVectorRegister(reg));
    emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0;
    assert((ureg >= 0) && (ureg <= 31));
    return ureg << 5;
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified register used in the 'Vm' position
 */

/*static*/ emitter::code_t emitter::insEncodeReg_Vm(regNumber reg)
{
    assert(emitter::isVectorRegister(reg));
    emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0;
    assert((ureg >= 0) && (ureg <= 31));
    return ureg << 16;
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified register used in the 'Va' position
 */

/*static*/ emitter::code_t emitter::insEncodeReg_Va(regNumber reg)
{
    assert(emitter::isVectorRegister(reg));
    emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0;
    assert((ureg >= 0) && (ureg <= 31));
    return ureg << 10;
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified condition code.
 */

/*static*/ emitter::code_t emitter::insEncodeCond(insCond cond)
{
    emitter::code_t uimm = (emitter::code_t)cond;
    return uimm << 12;
}

/*****************************************************************************
 *
 *  Returns an encoding for the condition code with the lowest bit inverted (marked by invert(<cond>) in the
 *  architecture manual).
 */

/*static*/ emitter::code_t emitter::insEncodeInvertedCond(insCond cond)
{
    emitter::code_t uimm = (emitter::code_t)cond;
    uimm ^= 1; // invert the lowest bit
    return uimm << 12;
}

/*****************************************************************************
 *
 *  Returns an encoding for the specified flags.
 */

/*static*/ emitter::code_t emitter::insEncodeFlags(insCflags flags)
{
    emitter::code_t uimm = (emitter::code_t)flags;
    return uimm;
}

/*****************************************************************************
 *
 *  Returns the encoding for the Shift Count bits to be used for Arm64 encodings
 */

/*static*/ emitter::code_t emitter::insEncodeShiftCount(ssize_t imm, emitAttr size)
{
    assert((imm & 0x003F) == imm);
    assert(((imm & 0x0020) == 0) || (size == EA_8BYTE));

    return (emitter::code_t)imm << 10;
}

/*****************************************************************************
 *
 *  Returns the encoding to select a 64-bit datasize for an Arm64 instruction
 */

/*static*/ emitter::code_t emitter::insEncodeDatasize(emitAttr size)
{
    if (size == EA_8BYTE)
    {
        return 0x80000000; // set the bit at location 31
    }
    else
    {
        assert(size == EA_4BYTE);
        return 0;
    }
}

/*****************************************************************************
 *
 *  Returns the encoding to select the datasize for the general load/store Arm64 instructions
 *
 */

/*static*/ emitter::code_t emitter::insEncodeDatasizeLS(emitter::code_t code, emitAttr size)
{
    if (code & 0x00800000) // Is this a sign-extending opcode? (i.e. ldrsw, ldrsh, ldrsb)
    {
        assert((size == EA_4BYTE) || (size == EA_8BYTE));
        if ((code & 0x80000000) == 0) // Is it a ldrsh or ldrsb and not ldrsw ?
        {
            if (size == EA_4BYTE) // Do we need to encode the 32-bit Rt size bit?
            {
                return 0x00400000; // set the bit at location 22
            }
        }
    }
    else if (code & 0x80000000) // Is this a ldr/str/ldur/stur opcode?
    {
        assert((size == EA_4BYTE) || (size == EA_8BYTE));
        if (size == EA_8BYTE) // Do we need to encode the 64-bit size bit?
        {
            return 0x40000000; // set the bit at location 30
        }
    }
    return 0;
}

/*****************************************************************************
 *
 *  Returns the encoding to select the datasize for the vector load/store Arm64 instructions
 *
 */

/*static*/ emitter::code_t emitter::insEncodeDatasizeVLS(emitter::code_t code, emitAttr size)
{
    code_t result = 0;

    // Check bit 29
    if ((code & 0x20000000) == 0)
    {
        // LDR literal

        if (size == EA_16BYTE)
        {
            // set the operation size in bit 31
            result = 0x80000000;
        }
        else if (size == EA_8BYTE)
        {
            // set the operation size in bit 30
            result = 0x40000000;
        }
        else
        {
            assert(size == EA_4BYTE);
            // no bits are set
            result = 0x00000000;
        }
    }
    else
    {
        // LDR non-literal

        if (size == EA_16BYTE)
        {
            // The operation size in bits 31 and 30 are zero
            // Bit 23 specifies a 128-bit Load/Store
            result = 0x00800000;
        }
        else if (size == EA_8BYTE)
        {
            // set the operation size in bits 31 and 30
            result = 0xC0000000;
        }
        else if (size == EA_4BYTE)
        {
            // set the operation size in bit 31
            result = 0x80000000;
        }
        else if (size == EA_2BYTE)
        {
            // set the operation size in bit 30
            result = 0x40000000;
        }
        else
        {
            assert(size == EA_1BYTE);
            // The operation size in bits 31 and 30 are zero
            result = 0x00000000;
        }
    }

    // Or in bit 26 to indicate a Vector register is used as 'target'
    result |= 0x04000000;

    return result;
}

/*****************************************************************************
 *
 *  Returns the encoding to select the datasize for the vector load/store Arm64 instructions
 *
 */

/*static*/ emitter::code_t emitter::insEncodeDatasizeVPLS(emitter::code_t code, emitAttr size)
{
    code_t result = 0;

    if (size == EA_16BYTE)
    {
        // The operation size in bits 31 and 30 are zero
        // Bit 23 specifies a 128-bit Load/Store
        result = 0x80000000;
    }
    else if (size == EA_8BYTE)
    {
        // set the operation size in bits 31 and 30
        result = 0x40000000;
    }
    else if (size == EA_4BYTE)
    {
        // set the operation size in bit 31
        result = 0x00000000;
    }

    // Or in bit 26 to indicate a Vector register is used as 'target'
    result |= 0x04000000;

    return result;
}

/*****************************************************************************
 *
 *  Returns the encoding to set the size bit and the N bits for a 'bitfield' instruction
 *
 */

/*static*/ emitter::code_t emitter::insEncodeDatasizeBF(emitter::code_t code, emitAttr size)
{
    // is bit 30 equal to 0?
    if ((code & 0x40000000) == 0) // is the opcode one of extr, sxtb, sxth or sxtw
    {
        if (size == EA_8BYTE) // Do we need to set the sf and N bits?
        {
            return 0x80400000; // set the sf-bit at location 31 and the N-bit at location 22
        }
    }
    return 0; // don't set any bits
}

/*****************************************************************************
 *
 *  Returns the encoding to select the 64/128-bit datasize for an Arm64 vector instruction
 */

/*static*/ emitter::code_t emitter::insEncodeVectorsize(emitAttr size)
{
    if (size == EA_16BYTE)
    {
        return 0x40000000; // set the bit at location 30
    }
    else
    {
        assert(size == EA_8BYTE);
        return 0;
    }
}

/*****************************************************************************
 *
 *  Returns the encoding to select 'index' for an Arm64 vector elem instruction
 */
/*static*/ emitter::code_t emitter::insEncodeVectorIndex(emitAttr elemsize, ssize_t index)
{
    code_t bits = (code_t)index;
    if (elemsize == EA_1BYTE)
    {
        bits <<= 1;
        bits |= 1;
    }
    else if (elemsize == EA_2BYTE)
    {
        bits <<= 2;
        bits |= 2;
    }
    else if (elemsize == EA_4BYTE)
    {
        bits <<= 3;
        bits |= 4;
    }
    else
    {
        assert(elemsize == EA_8BYTE);
        bits <<= 4;
        bits |= 8;
    }
    assert((bits >= 1) && (bits <= 0x1f));

    return (bits << 16); // bits at locations [20,19,18,17,16]
}

/*****************************************************************************
 *
 *  Returns the encoding to select 'index2' for an Arm64 'ins' elem instruction
 */
/*static*/ emitter::code_t emitter::insEncodeVectorIndex2(emitAttr elemsize, ssize_t index2)
{
    code_t bits = (code_t)index2;
    if (elemsize == EA_1BYTE)
    {
        // bits are correct
    }
    else if (elemsize == EA_2BYTE)
    {
        bits <<= 1;
    }
    else if (elemsize == EA_4BYTE)
    {
        bits <<= 2;
    }
    else
    {
        assert(elemsize == EA_8BYTE);
        bits <<= 3;
    }
    assert((bits >= 0) && (bits <= 0xf));

    return (bits << 11); // bits at locations [14,13,12,11]
}

/*****************************************************************************
 *
 *  Returns the encoding to select the 'index' for an Arm64 'mul' by elem instruction
 */
/*static*/ emitter::code_t emitter::insEncodeVectorIndexLMH(emitAttr elemsize, ssize_t index)
{
    code_t bits = 0;

    if (elemsize == EA_2BYTE)
    {
        assert((index >= 0) && (index <= 7));
        if (index & 0x4)
        {
            bits |= (1 << 11); // set bit 11 'H'
        }
        if (index & 0x2)
        {
            bits |= (1 << 21); // set bit 21 'L'
        }
        if (index & 0x1)
        {
            bits |= (1 << 20); // set bit 20 'M'
        }
    }
    else if (elemsize == EA_4BYTE)
    {
        assert((index >= 0) && (index <= 3));
        if (index & 0x2)
        {
            bits |= (1 << 11); // set bit 11 'H'
        }
        if (index & 0x1)
        {
            bits |= (1 << 21); // set bit 21 'L'
        }
    }
    else
    {
        assert(!"Invalid 'elemsize' value");
    }

    return bits;
}

/*****************************************************************************
 *
 *   Returns the encoding to shift by 'shift' for an Arm64 vector or scalar instruction
 */

/*static*/ emitter::code_t emitter::insEncodeVectorShift(emitAttr size, ssize_t shift)
{
    assert(shift < getBitWidth(size));

    code_t imm = (code_t)(getBitWidth(size) + shift);

    return imm << 16;
}

/*****************************************************************************
 *
 *  Returns the encoding to select the 1/2/4/8 byte elemsize for an Arm64 vector instruction
 */

/*static*/ emitter::code_t emitter::insEncodeElemsize(emitAttr size)
{
    if (size == EA_8BYTE)
    {
        return 0x00C00000; // set the bit at location 23 and 22
    }
    else if (size == EA_4BYTE)
    {
        return 0x00800000; // set the bit at location 23
    }
    else if (size == EA_2BYTE)
    {
        return 0x00400000; // set the bit at location 22
    }
    assert(size == EA_1BYTE);
    return 0x00000000;
}

/*****************************************************************************
 *
 *  Returns the encoding to select the 4/8 byte elemsize for an Arm64 float vector instruction
 */

/*static*/ emitter::code_t emitter::insEncodeFloatElemsize(emitAttr size)
{
    if (size == EA_8BYTE)
    {
        return 0x00400000; // set the bit at location 22
    }
    assert(size == EA_4BYTE);
    return 0x00000000;
}

// Returns the encoding to select the index for an Arm64 float vector by elem instruction
/*static*/ emitter::code_t emitter::insEncodeFloatIndex(emitAttr elemsize, ssize_t index)
{
    code_t result = 0x00000000;
    if (elemsize == EA_8BYTE)
    {
        assert((index >= 0) && (index <= 1));
        if (index == 1)
        {
            result |= 0x00000800; // 'H' - set the bit at location 11
        }
    }
    else
    {
        assert(elemsize == EA_4BYTE);
        assert((index >= 0) && (index <= 3));
        if (index & 2)
        {
            result |= 0x00000800; // 'H' - set the bit at location 11
        }
        if (index & 1)
        {
            result |= 0x00200000; // 'L' - set the bit at location 21
        }
    }
    return result;
}

/*****************************************************************************
 *
 *  Returns the encoding to select the fcvt operation for Arm64 instructions
 */
/*static*/ emitter::code_t emitter::insEncodeConvertOpt(insFormat fmt, insOpts conversion)
{
    code_t result = 0;
    switch (conversion)
    {
        case INS_OPTS_S_TO_D: // Single to Double
            assert(fmt == IF_DV_2J);
            result = 0x00008000; // type=00, opc=01
            break;

        case INS_OPTS_D_TO_S: // Double to Single
            assert(fmt == IF_DV_2J);
            result = 0x00400000; // type=01, opc=00
            break;

        case INS_OPTS_H_TO_S: // Half to Single
            assert(fmt == IF_DV_2J);
            result = 0x00C00000; // type=11, opc=00
            break;

        case INS_OPTS_H_TO_D: // Half to Double
            assert(fmt == IF_DV_2J);
            result = 0x00C08000; // type=11, opc=01
            break;

        case INS_OPTS_S_TO_H: // Single to Half
            assert(fmt == IF_DV_2J);
            result = 0x00018000; // type=00, opc=11
            break;

        case INS_OPTS_D_TO_H: // Double to Half
            assert(fmt == IF_DV_2J);
            result = 0x00418000; // type=01, opc=11
            break;

        case INS_OPTS_S_TO_4BYTE: // Single to INT32
            assert(fmt == IF_DV_2H);
            result = 0x00000000; // sf=0, type=00
            break;

        case INS_OPTS_D_TO_4BYTE: // Double to INT32
            assert(fmt == IF_DV_2H);
            result = 0x00400000; // sf=0, type=01
            break;

        case INS_OPTS_S_TO_8BYTE: // Single to INT64
            assert(fmt == IF_DV_2H);
            result = 0x80000000; // sf=1, type=00
            break;

        case INS_OPTS_D_TO_8BYTE: // Double to INT64
            assert(fmt == IF_DV_2H);
            result = 0x80400000; // sf=1, type=01
            break;

        case INS_OPTS_4BYTE_TO_S: // INT32 to Single
            assert(fmt == IF_DV_2I);
            result = 0x00000000; // sf=0, type=00
            break;

        case INS_OPTS_4BYTE_TO_D: // INT32 to Double
            assert(fmt == IF_DV_2I);
            result = 0x00400000; // sf=0, type=01
            break;

        case INS_OPTS_8BYTE_TO_S: // INT64 to Single
            assert(fmt == IF_DV_2I);
            result = 0x80000000; // sf=1, type=00
            break;

        case INS_OPTS_8BYTE_TO_D: // INT64 to Double
            assert(fmt == IF_DV_2I);
            result = 0x80400000; // sf=1, type=01
            break;

        default:
            assert(!"Invalid 'conversion' value");
            break;
    }
    return result;
}

/*****************************************************************************
 *
 *  Returns the encoding to have the Rn register be updated Pre/Post indexed
 *  or not updated
 */

/*static*/ emitter::code_t emitter::insEncodeIndexedOpt(insOpts opt)
{
    assert(emitter::insOptsNone(opt) || emitter::insOptsIndexed(opt));

    if (emitter::insOptsIndexed(opt))
    {
        if (emitter::insOptsPostIndex(opt))
        {
            return 0x00000400; // set the bit at location 10
        }
        else
        {
            assert(emitter::insOptsPreIndex(opt));
            return 0x00000C00; // set the bit at location 10 and 11
        }
    }
    else
    {
        assert(emitter::insOptsNone(opt));
        return 0; // bits 10 and 11 are zero
    }
}

/*****************************************************************************
 *
 *  Returns the encoding for a ldp/stp instruction to have the Rn register
 *  be updated Pre/Post indexed or not updated
 */

/*static*/ emitter::code_t emitter::insEncodePairIndexedOpt(instruction ins, insOpts opt)
{
    assert(emitter::insOptsNone(opt) || emitter::insOptsIndexed(opt));

    if ((ins == INS_ldnp) || (ins == INS_stnp))
    {
        assert(emitter::insOptsNone(opt));
        return 0; // bits 23 and 24 are zero
    }
    else
    {
        if (emitter::insOptsIndexed(opt))
        {
            if (emitter::insOptsPostIndex(opt))
            {
                return 0x00800000; // set the bit at location 23
            }
            else
            {
                assert(emitter::insOptsPreIndex(opt));
                return 0x01800000; // set the bit at location 24 and 23
            }
        }
        else
        {
            assert(emitter::insOptsNone(opt));
            return 0x01000000; // set the bit at location 24
        }
    }
}

/*****************************************************************************
 *
 *  Returns the encoding to apply a Shift Type on the Rm register
 */

/*static*/ emitter::code_t emitter::insEncodeShiftType(insOpts opt)
{
    if (emitter::insOptsNone(opt))
    {
        // None implies the we encode LSL (with a zero immediate)
        opt = INS_OPTS_LSL;
    }
    assert(emitter::insOptsAnyShift(opt));

    emitter::code_t option = (emitter::code_t)opt - (emitter::code_t)INS_OPTS_LSL;
    assert(option <= 3);

    return option << 22; // bits 23, 22
}

/*****************************************************************************
 *
 *  Returns the encoding to apply a 12 bit left shift to the immediate
 */

/*static*/ emitter::code_t emitter::insEncodeShiftImm12(insOpts opt)
{
    if (emitter::insOptsLSL12(opt))
    {
        return 0x00400000; // set the bit at location 22
    }
    return 0;
}

/*****************************************************************************
 *
 *  Returns the encoding to have the Rm register use an extend operation
 */

/*static*/ emitter::code_t emitter::insEncodeExtend(insOpts opt)
{
    if (emitter::insOptsNone(opt) || (opt == INS_OPTS_LSL))
    {
        // None or LSL implies the we encode UXTX
        opt = INS_OPTS_UXTX;
    }
    assert(emitter::insOptsAnyExtend(opt));

    emitter::code_t option = (emitter::code_t)opt - (emitter::code_t)INS_OPTS_UXTB;
    assert(option <= 7);

    return option << 13; // bits 15,14,13
}

/*****************************************************************************
 *
 *  Returns the encoding to scale the Rm register by {0,1,2,3,4}
 *  when using an extend operation
 */

/*static*/ emitter::code_t emitter::insEncodeExtendScale(ssize_t imm)
{
    assert((imm >= 0) && (imm <= 4));

    return (emitter::code_t)imm << 10; // bits 12,11,10
}

/*****************************************************************************
 *
 *  Returns the encoding to have the Rm register be auto scaled by the ld/st size
 */

/*static*/ emitter::code_t emitter::insEncodeReg3Scale(bool isScaled)
{
    if (isScaled)
    {
        return 0x00001000; // set the bit at location 12
    }
    else
    {
        return 0;
    }
}

BYTE* emitter::emitOutputLoadLabel(BYTE* dst, BYTE* srcAddr, BYTE* dstAddr, instrDescJmp* id)
{
    instruction ins    = id->idIns();
    insFormat   fmt    = id->idInsFmt();
    regNumber   dstReg = id->idReg1();
    if (id->idjShort)
    {
        // adr x, [rel addr] --  compute address: current addr(ip) + rel addr.
        assert(ins == INS_adr);
        assert(fmt == IF_DI_1E);
        ssize_t distVal = (ssize_t)(dstAddr - srcAddr);
        dst             = emitOutputShortAddress(dst, ins, fmt, distVal, dstReg);
    }
    else
    {
        // adrp x, [rel page addr] -- compute page address: current page addr + rel page addr
        assert(fmt == IF_LARGEADR);
        ssize_t relPageAddr =
            (((ssize_t)dstAddr & 0xFFFFFFFFFFFFF000LL) - ((ssize_t)srcAddr & 0xFFFFFFFFFFFFF000LL)) >> 12;
        dst = emitOutputShortAddress(dst, INS_adrp, IF_DI_1E, relPageAddr, dstReg);

        // add x, x, page offs -- compute address = page addr + page offs
        ssize_t imm12 = (ssize_t)dstAddr & 0xFFF; // 12 bits
        assert(isValidUimm12(imm12));
        code_t code =
            emitInsCode(INS_add, IF_DI_2A);  // DI_2A  X0010001shiiiiii iiiiiinnnnnddddd   1100 0000   imm(i12, sh)
        code |= insEncodeDatasize(EA_8BYTE); // X
        code |= ((code_t)imm12 << 10);       // iiiiiiiiiiii
        code |= insEncodeReg_Rd(dstReg);     // ddddd
        code |= insEncodeReg_Rn(dstReg);     // nnnnn
        dst += emitOutput_Instr(dst, code);
    }
    return dst;
}

/*****************************************************************************
 *
 *  Output a local jump or other instruction with a pc-relative immediate.
 *  Note that this may be invoked to overwrite an existing jump instruction at 'dst'
 *  to handle forward branch patching.
 */

BYTE* emitter::emitOutputLJ(insGroup* ig, BYTE* dst, instrDesc* i)
{
    instrDescJmp* id = (instrDescJmp*)i;

    unsigned srcOffs;
    unsigned dstOffs;
    BYTE*    srcAddr;
    BYTE*    dstAddr;
    ssize_t  distVal;
    ssize_t  loBits;

    // Set default ins/fmt from id.
    instruction ins = id->idIns();
    insFormat   fmt = id->idInsFmt();

    bool loadLabel    = false;
    bool isJump       = false;
    bool loadConstant = false;

    switch (ins)
    {
        default:
            isJump = true;
            break;

        case INS_tbz:
        case INS_tbnz:
        case INS_cbz:
        case INS_cbnz:
            isJump = true;
            break;

        case INS_ldr:
        case INS_ldrsw:
            loadConstant = true;
            break;

        case INS_adr:
        case INS_adrp:
            loadLabel = true;
            break;
    }

    /* Figure out the distance to the target */

    srcOffs = emitCurCodeOffs(dst);
    srcAddr = emitOffsetToPtr(srcOffs);

    if (id->idAddr()->iiaIsJitDataOffset())
    {
        assert(loadConstant || loadLabel);
        int doff = id->idAddr()->iiaGetJitDataOffset();
        assert(doff >= 0);
        ssize_t imm = emitGetInsSC(id);
        assert((imm >= 0) && (imm < 0x1000)); // 0x1000 is arbitrary, currently 'imm' is always 0

        unsigned dataOffs = (unsigned)(doff + imm);
        assert(dataOffs < emitDataSize());
        dstAddr = emitDataOffsetToPtr(dataOffs);

        regNumber dstReg  = id->idReg1();
        regNumber addrReg = dstReg; // an integer register to compute long address.
        emitAttr  opSize  = id->idOpSize();

        if (loadConstant)
        {
            if (id->idjShort)
            {
                // ldr x/v, [rel addr] -- load constant from current addr(ip) + rel addr.
                assert(ins == INS_ldr);
                assert(fmt == IF_LS_1A);
                distVal = (ssize_t)(dstAddr - srcAddr);
                dst     = emitOutputShortConstant(dst, ins, fmt, distVal, dstReg, opSize);
            }
            else
            {
                // adrp x, [rel page addr] -- compute page address: current page addr + rel page addr
                assert(fmt == IF_LARGELDC);
                ssize_t relPageAddr =
                    (((ssize_t)dstAddr & 0xFFFFFFFFFFFFF000LL) - ((ssize_t)srcAddr & 0xFFFFFFFFFFFFF000LL)) >> 12;
                if (isVectorRegister(dstReg))
                {
                    // Update addrReg with the reserved integer register
                    // since we cannot use dstReg (vector) to load constant directly from memory.
                    addrReg = id->idReg2();
                    assert(isGeneralRegister(addrReg));
                }
                ins = INS_adrp;
                fmt = IF_DI_1E;
                dst = emitOutputShortAddress(dst, ins, fmt, relPageAddr, addrReg);

                // ldr x, [x, page offs] -- load constant from page address + page offset into integer register.
                ssize_t imm12 = (ssize_t)dstAddr & 0xFFF; // 12 bits
                assert(isValidUimm12(imm12));
                ins = INS_ldr;
                fmt = IF_LS_2B;
                dst = emitOutputShortConstant(dst, ins, fmt, imm12, addrReg, opSize);

                // fmov v, d -- copy constant in integer register to vector register.
                // This is needed only for vector constant.
                if (addrReg != dstReg)
                {
                    //  fmov    Vd,Rn                DV_2I  X00111100X100111 000000nnnnnddddd   1E27 0000   Vd,Rn
                    //  (scalar, from general)
                    assert(isVectorRegister(dstReg) && isGeneralRegister(addrReg));
                    ins         = INS_fmov;
                    fmt         = IF_DV_2I;
                    code_t code = emitInsCode(ins, fmt);

                    code |= insEncodeReg_Vd(dstReg);  // ddddd
                    code |= insEncodeReg_Rn(addrReg); // nnnnn
                    if (id->idOpSize() == EA_8BYTE)
                    {
                        code |= 0x80400000; // X ... X
                    }
                    dst += emitOutput_Instr(dst, code);
                }
            }
        }
        else
        {
            assert(loadLabel);
            dst = emitOutputLoadLabel(dst, srcAddr, dstAddr, id);
        }

        return dst;
    }

    assert(loadLabel || isJump);

    if (id->idAddr()->iiaHasInstrCount())
    {
        assert(ig != NULL);
        int      instrCount = id->idAddr()->iiaGetInstrCount();
        unsigned insNum     = emitFindInsNum(ig, id);
        if (instrCount < 0)
        {
            // Backward branches using instruction count must be within the same instruction group.
            assert(insNum + 1 >= (unsigned)(-instrCount));
        }
        dstOffs = ig->igOffs + emitFindOffset(ig, (insNum + 1 + instrCount));
        dstAddr = emitOffsetToPtr(dstOffs);
    }
    else
    {
        dstOffs = id->idAddr()->iiaIGlabel->igOffs;
        dstAddr = emitOffsetToPtr(dstOffs);
    }

    distVal = (ssize_t)(dstAddr - srcAddr);

    if (dstOffs <= srcOffs)
    {
#if DEBUG_EMIT
        /* This is a backward jump - distance is known at this point */

        if (id->idDebugOnlyInfo()->idNum == (unsigned)INTERESTING_JUMP_NUM || INTERESTING_JUMP_NUM == 0)
        {
            size_t blkOffs = id->idjIG->igOffs;

            if (INTERESTING_JUMP_NUM == 0)
                printf("[3] Jump %u:\n", id->idDebugOnlyInfo()->idNum);
            printf("[3] Jump  block is at %08X - %02X = %08X\n", blkOffs, emitOffsAdj, blkOffs - emitOffsAdj);
            printf("[3] Jump        is at %08X - %02X = %08X\n", srcOffs, emitOffsAdj, srcOffs - emitOffsAdj);
            printf("[3] Label block is at %08X - %02X = %08X\n", dstOffs, emitOffsAdj, dstOffs - emitOffsAdj);
        }
#endif
    }
    else
    {
        /* This is a  forward jump - distance will be an upper limit */

        emitFwdJumps = true;

        /* The target offset will be closer by at least 'emitOffsAdj', but only if this
           jump doesn't cross the hot-cold boundary. */

        if (!emitJumpCrossHotColdBoundary(srcOffs, dstOffs))
        {
            dstOffs -= emitOffsAdj;
            distVal -= emitOffsAdj;
        }

        /* Record the location of the jump for later patching */

        id->idjOffs = dstOffs;

        /* Are we overflowing the id->idjOffs bitfield? */
        if (id->idjOffs != dstOffs)
            IMPL_LIMITATION("Method is too large");

#if DEBUG_EMIT
        if (id->idDebugOnlyInfo()->idNum == (unsigned)INTERESTING_JUMP_NUM || INTERESTING_JUMP_NUM == 0)
        {
            size_t blkOffs = id->idjIG->igOffs;

            if (INTERESTING_JUMP_NUM == 0)
                printf("[4] Jump %u:\n", id->idDebugOnlyInfo()->idNum);
            printf("[4] Jump  block is at %08X\n", blkOffs);
            printf("[4] Jump        is at %08X\n", srcOffs);
            printf("[4] Label block is at %08X - %02X = %08X\n", dstOffs + emitOffsAdj, emitOffsAdj, dstOffs);
        }
#endif
    }

#ifdef DEBUG
    if (0 && emitComp->verbose)
    {
        size_t sz          = 4;
        int    distValSize = id->idjShort ? 4 : 8;
        printf("; %s jump [%08X/%03u] from %0*X to %0*X: dist = %08XH\n", (dstOffs <= srcOffs) ? "Fwd" : "Bwd",
               dspPtr(id), id->idDebugOnlyInfo()->idNum, distValSize, srcOffs + sz, distValSize, dstOffs, distVal);
    }
#endif

    /* For forward jumps, record the address of the distance value */
    id->idjTemp.idjAddr = (distVal > 0) ? dst : NULL;

    if (emitJumpCrossHotColdBoundary(srcOffs, dstOffs))
    {
        assert(!id->idjShort);
        NYI_ARM64("Relocation Support for long address");
    }

    assert(insOptsNone(id->idInsOpt()));

    if (isJump)
    {
        if (id->idjShort)
        {
            // Short conditional/unconditional jump
            assert(!id->idjKeepLong);
            assert(emitJumpCrossHotColdBoundary(srcOffs, dstOffs) == false);
            assert((fmt == IF_BI_0A) || (fmt == IF_BI_0B));
        }
        else
        {
            // Long conditional jump
            assert(fmt == IF_LARGEJMP);
            // This is a pseudo-instruction format representing a large conditional branch, to allow
            // us to get a greater branch target range than we can get by using a straightforward conditional
            // branch. It is encoded as a short conditional branch that branches around a long unconditional
            // branch.
            //
            // Conceptually, we have:
            //
            //      b<cond> L_target
            //
            // The code we emit is:
            //
            //      b<!cond> L_not  // 4 bytes. Note that we reverse the condition.
            //      b L_target      // 4 bytes
            //   L_not:
            //
            // Note that we don't actually insert any blocks: we simply encode "b <!cond> L_not" as a branch with
            // the correct offset. Note also that this works for both integer and floating-point conditions, because
            // the condition inversion takes ordered/unordered into account, preserving NaN behavior. For example,
            // "GT" (greater than) is inverted to "LE" (less than, equal, or unordered).
            dst =
                emitOutputShortBranch(dst,
                                      emitJumpKindToIns(emitReverseJumpKind(
                                          emitInsToJumpKind(ins))), // reverse the conditional instruction
                                      IF_BI_0B,
                                      8, /* 8 bytes from start of this large conditional pseudo-instruction to L_not. */
                                      nullptr /* only used for tbz/tbnzcbz/cbnz */);

            // Now, pretend we've got a normal unconditional branch, and fall through to the code to emit that.
            ins = INS_b;
            fmt = IF_BI_0A;

            // The distVal was computed based on the beginning of the pseudo-instruction,
            // So subtract the size of the conditional branch so that it is relative to the
            // unconditional branch.
            distVal -= 4;
        }

        dst = emitOutputShortBranch(dst, ins, fmt, distVal, id);
    }
    else if (loadLabel)
    {
        dst = emitOutputLoadLabel(dst, srcAddr, dstAddr, id);
    }

    return dst;
}

/*****************************************************************************
*
*  Output a short branch instruction.
*/
BYTE* emitter::emitOutputShortBranch(BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, instrDescJmp* id)
{
    code_t code = emitInsCode(ins, fmt);

    ssize_t loBits = (distVal & 3);
    noway_assert(loBits == 0);
    distVal >>= 2; // branch offset encodings are scaled by 4.

    if (fmt == IF_BI_0A)
    {
        // INS_b or INS_bl_local
        noway_assert(isValidSimm26(distVal));
        distVal &= 0x3FFFFFFLL;
        code |= distVal;
    }
    else if (fmt == IF_BI_0B) // BI_0B   01010100iiiiiiii iiiiiiiiiiiXXXXX      simm19:00
    {
        // INS_beq, INS_bne, etc...
        noway_assert(isValidSimm19(distVal));
        distVal &= 0x7FFFFLL;
        code |= distVal << 5;
    }
    else if (fmt == IF_BI_1A) // BI_1A   X.......iiiiiiii iiiiiiiiiiittttt      Rt simm19:00
    {
        // INS_cbz or INS_cbnz
        assert(id != nullptr);
        code |= insEncodeDatasize(id->idOpSize()); // X
        code |= insEncodeReg_Rt(id->idReg1());     // ttttt

        noway_assert(isValidSimm19(distVal));
        distVal &= 0x7FFFFLL; // 19 bits
        code |= distVal << 5;
    }
    else if (fmt == IF_BI_1B) // BI_1B   B.......bbbbbiii iiiiiiiiiiittttt      Rt imm6, simm14:00
    {
        // INS_tbz or INS_tbnz
        assert(id != nullptr);
        ssize_t imm = emitGetInsSC(id);
        assert(isValidImmShift(imm, id->idOpSize()));

        if (imm & 0x20) // test bit 32-63 ?
        {
            code |= 0x80000000; // B
        }
        code |= ((imm & 0x1F) << 19);          // bbbbb
        code |= insEncodeReg_Rt(id->idReg1()); // ttttt

        noway_assert(isValidSimm14(distVal));
        distVal &= 0x3FFFLL; // 14 bits
        code |= distVal << 5;
    }
    else
    {
        assert(!"Unknown fmt for emitOutputShortBranch");
    }

    dst += emitOutput_Instr(dst, code);

    return dst;
}

/*****************************************************************************
*
*  Output a short address instruction.
*/
BYTE* emitter::emitOutputShortAddress(BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, regNumber reg)
{
    ssize_t loBits = (distVal & 3);
    distVal >>= 2;

    code_t code = emitInsCode(ins, fmt);
    if (fmt == IF_DI_1E) // DI_1E   .ii.....iiiiiiii iiiiiiiiiiiddddd      Rd simm21
    {
        // INS_adr or INS_adrp
        code |= insEncodeReg_Rd(reg); // ddddd

        noway_assert(isValidSimm19(distVal));
        distVal &= 0x7FFFFLL; // 19 bits
        code |= distVal << 5;
        code |= loBits << 29; //  2 bits
    }
    else
    {
        assert(!"Unknown fmt for emitOutputShortAddress");
    }

    dst += emitOutput_Instr(dst, code);

    return dst;
}

/*****************************************************************************
*
*  Output a short constant instruction.
*/
BYTE* emitter::emitOutputShortConstant(
    BYTE* dst, instruction ins, insFormat fmt, ssize_t imm, regNumber reg, emitAttr opSize)
{
    code_t code = emitInsCode(ins, fmt);

    if (fmt == IF_LS_1A)
    {
        // LS_1A   XX...V..iiiiiiii iiiiiiiiiiittttt      Rt simm21
        // INS_ldr or INS_ldrsw (PC-Relative)

        ssize_t loBits = (imm & 3);
        noway_assert(loBits == 0);
        ssize_t distVal = imm >>= 2; // load offset encodings are scaled by 4.

        noway_assert(isValidSimm19(distVal));

        // Is the target a vector register?
        if (isVectorRegister(reg))
        {
            code |= insEncodeDatasizeVLS(code, opSize); // XX V
            code |= insEncodeReg_Vt(reg);               // ttttt
        }
        else
        {
            assert(isGeneralRegister(reg));
            // insEncodeDatasizeLS is not quite right for this case.
            // So just specialize it.
            if ((ins == INS_ldr) && (opSize == EA_8BYTE))
            {
                // set the operation size in bit 30
                code |= 0x40000000;
            }

            code |= insEncodeReg_Rt(reg); // ttttt
        }

        distVal &= 0x7FFFFLL; // 19 bits
        code |= distVal << 5;
    }
    else if (fmt == IF_LS_2B)
    {
        //  ldr     Rt,[Xn+pimm12]       LS_2B  1X11100101iiiiii iiiiiinnnnnttttt   B940 0000   imm(0-4095<<{2,3})
        // INS_ldr or INS_ldrsw (PC-Relative)
        noway_assert(isValidUimm12(imm));
        assert(isGeneralRegister(reg));

        if (opSize == EA_8BYTE)
        {
            // insEncodeDatasizeLS is not quite right for this case.
            // So just specialize it.
            if (ins == INS_ldr)
            {
                // set the operation size in bit 30
                code |= 0x40000000;
            }
            // Low 3 bits should be 0 -- 8 byte JIT data should be aligned on 8 byte.
            assert((imm & 7) == 0);
            imm >>= 3;
        }
        else
        {
            assert(opSize == EA_4BYTE);
            // Low 2 bits should be 0 -- 4 byte aligned data.
            assert((imm & 3) == 0);
            imm >>= 2;
        }

        code |= insEncodeReg_Rt(reg); // ttttt
        code |= insEncodeReg_Rn(reg); // nnnnn
        code |= imm << 10;
    }
    else
    {
        assert(!"Unknown fmt for emitOutputShortConstant");
    }

    dst += emitOutput_Instr(dst, code);

    return dst;
}
/*****************************************************************************
 *
 *  Output a call instruction.
 */

unsigned emitter::emitOutputCall(insGroup* ig, BYTE* dst, instrDesc* id, code_t code)
{
    const unsigned char callInstrSize = sizeof(code_t); // 4 bytes
    regMaskTP           gcrefRegs;
    regMaskTP           byrefRegs;

    VARSET_TP VARSET_INIT_NOCOPY(GCvars, VarSetOps::UninitVal());

    // Is this a "fat" call descriptor?
    if (id->idIsLargeCall())
    {
        instrDescCGCA* idCall = (instrDescCGCA*)id;
        gcrefRegs             = idCall->idcGcrefRegs;
        byrefRegs             = idCall->idcByrefRegs;
        VarSetOps::Assign(emitComp, GCvars, idCall->idcGCvars);
    }
    else
    {
        assert(!id->idIsLargeDsp());
        assert(!id->idIsLargeCns());

        gcrefRegs = emitDecodeCallGCregs(id);
        byrefRegs = 0;
        VarSetOps::AssignNoCopy(emitComp, GCvars, VarSetOps::MakeEmpty(emitComp));
    }

    /* We update the GC info before the call as the variables cannot be
        used by the call. Killing variables before the call helps with
        boundary conditions if the call is CORINFO_HELP_THROW - see bug 50029.
        If we ever track aliased variables (which could be used by the
        call), we would have to keep them alive past the call. */

    emitUpdateLiveGCvars(GCvars, dst);

    // Now output the call instruction and update the 'dst' pointer
    //
    unsigned outputInstrSize = emitOutput_Instr(dst, code);
    dst += outputInstrSize;

    // All call instructions are 4-byte in size on ARM64
    //
    assert(outputInstrSize == callInstrSize);

    // If the method returns a GC ref, mark INTRET (R0) appropriately.
    if (id->idGCref() == GCT_GCREF)
    {
        gcrefRegs |= RBM_INTRET;
    }
    else if (id->idGCref() == GCT_BYREF)
    {
        byrefRegs |= RBM_INTRET;
    }

    // If is a multi-register return method is called, mark INTRET_1 (X1) appropriately
    if (id->idIsLargeCall())
    {
        instrDescCGCA* idCall = (instrDescCGCA*)id;
        if (idCall->idSecondGCref() == GCT_GCREF)
        {
            gcrefRegs |= RBM_INTRET_1;
        }
        else if (idCall->idSecondGCref() == GCT_BYREF)
        {
            byrefRegs |= RBM_INTRET_1;
        }
    }

    // If the GC register set has changed, report the new set.
    if (gcrefRegs != emitThisGCrefRegs)
    {
        emitUpdateLiveGCregs(GCT_GCREF, gcrefRegs, dst);
    }
    // If the Byref register set has changed, report the new set.
    if (byrefRegs != emitThisByrefRegs)
    {
        emitUpdateLiveGCregs(GCT_BYREF, byrefRegs, dst);
    }

    // Some helper calls may be marked as not requiring GC info to be recorded.
    if ((!id->idIsNoGC()))
    {
        // On ARM64, as on AMD64, we don't change the stack pointer to push/pop args.
        // So we're not really doing a "stack pop" here (note that "args" is 0), but we use this mechanism
        // to record the call for GC info purposes.  (It might be best to use an alternate call,
        // and protect "emitStackPop" under the EMIT_TRACK_STACK_DEPTH preprocessor variable.)
        emitStackPop(dst, /*isCall*/ true, callInstrSize, /*args*/ 0);

        // Do we need to record a call location for GC purposes?
        //
        if (!emitFullGCinfo)
        {
            emitRecordGCcall(dst, callInstrSize);
        }
    }
    return callInstrSize;
}

/*****************************************************************************
 *
 *  Emit a 32-bit Arm64 instruction
 */

/*static*/ unsigned emitter::emitOutput_Instr(BYTE* dst, code_t code)
{
    assert(sizeof(code_t) == 4);
    *((code_t*)dst) = code;

    return sizeof(code_t);
}

/*****************************************************************************
*
 *  Append the machine code corresponding to the given instruction descriptor
 *  to the code block at '*dp'; the base of the code block is 'bp', and 'ig'
 *  is the instruction group that contains the instruction. Updates '*dp' to
 *  point past the generated code, and returns the size of the instruction
 *  descriptor in bytes.
 */

size_t emitter::emitOutputInstr(insGroup* ig, instrDesc* id, BYTE** dp)
{
    BYTE*         dst  = *dp;
    BYTE*         odst = dst;
    code_t        code = 0;
    size_t        sz   = emitGetInstrDescSize(id); // TODO-ARM64-Cleanup: on ARM, this is set in each case. why?
    instruction   ins  = id->idIns();
    insFormat     fmt  = id->idInsFmt();
    emitAttr      size = id->idOpSize();
    unsigned char callInstrSize = 0;
    unsigned      condcode;

#ifdef DEBUG
#if DUMP_GC_TABLES
    bool dspOffs = emitComp->opts.dspGCtbls;
#else
    bool dspOffs = !emitComp->opts.disDiffable;
#endif
#endif // DEBUG

    assert(REG_NA == (int)REG_NA);

    VARSET_TP VARSET_INIT_NOCOPY(GCvars, VarSetOps::UninitVal());

    /* What instruction format have we got? */

    switch (fmt)
    {
        ssize_t  imm;
        ssize_t  index;
        ssize_t  index2;
        unsigned scale;
        unsigned cmode;
        unsigned immShift;
        bool     hasShift;
        emitAttr extSize;
        emitAttr elemsize;
        emitAttr datasize;

        case IF_BI_0A: // BI_0A   ......iiiiiiiiii iiiiiiiiiiiiiiii               simm26:00
        case IF_BI_0B: // BI_0B   ......iiiiiiiiii iiiiiiiiiii.....               simm19:00
        case IF_LARGEJMP:
            assert(id->idGCref() == GCT_NONE);
            assert(id->idIsBound());
            dst = emitOutputLJ(ig, dst, id);
            sz  = sizeof(instrDescJmp);
            break;

        case IF_BI_0C: // BI_0C   ......iiiiiiiiii iiiiiiiiiiiiiiii               simm26:00
            code = emitInsCode(ins, fmt);
            sz   = id->idIsLargeCall() ? sizeof(instrDescCGCA) : sizeof(instrDesc);
            dst += emitOutputCall(ig, dst, id, code);
            // Always call RecordRelocation so that we wire in a JumpStub when we don't reach
            emitRecordRelocation(odst, id->idAddr()->iiaAddr, IMAGE_REL_ARM64_BRANCH26);
            break;

        case IF_BI_1A: // BI_1A   ......iiiiiiiiii iiiiiiiiiiittttt      Rt       simm19:00
            assert(insOptsNone(id->idInsOpt()));
            assert(id->idIsBound());

            dst = emitOutputLJ(ig, dst, id);
            sz  = sizeof(instrDescJmp);
            break;

        case IF_BI_1B: // BI_1B   B.......bbbbbiii iiiiiiiiiiittttt      Rt imm6, simm14:00
            assert(insOptsNone(id->idInsOpt()));
            assert(id->idIsBound());

            dst = emitOutputLJ(ig, dst, id);
            sz  = sizeof(instrDescJmp);
            break;

        case IF_BR_1A: // BR_1A   ................ ......nnnnn.....         Rn
            assert(insOptsNone(id->idInsOpt()));
            assert((ins == INS_ret) || (ins == INS_br));
            code = emitInsCode(ins, fmt);
            code |= insEncodeReg_Rn(id->idReg1()); // nnnnn

            dst += emitOutput_Instr(dst, code);
            break;

        case IF_BR_1B: // BR_1B   ................ ......nnnnn.....         Rn
            assert(insOptsNone(id->idInsOpt()));
            assert((ins == INS_br_tail) || (ins == INS_blr));
            code = emitInsCode(ins, fmt);
            code |= insEncodeReg_Rn(id->idReg3()); // nnnnn

            sz = id->idIsLargeCall() ? sizeof(instrDescCGCA) : sizeof(instrDesc);
            dst += emitOutputCall(ig, dst, id, code);
            break;

        case IF_LS_1A: // LS_1A   XX...V..iiiiiiii iiiiiiiiiiittttt      Rt    PC imm(1MB)
        case IF_LARGELDC:
            assert(insOptsNone(id->idInsOpt()));
            assert(id->idIsBound());

            dst = emitOutputLJ(ig, dst, id);
            sz  = sizeof(instrDescJmp);
            break;

        case IF_LS_2A: // LS_2A   .X.......X...... ......nnnnnttttt      Rt Rn
            assert(insOptsNone(id->idInsOpt()));
            code = emitInsCode(ins, fmt);
            // Is the target a vector register?
            if (isVectorRegister(id->idReg1()))
            {
                code &= 0x3FFFFFFF;                                 // clear the size bits
                code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX
                code |= insEncodeReg_Vt(id->idReg1());              // ttttt
            }
            else
            {
                code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X
                code |= insEncodeReg_Rt(id->idReg1());             // ttttt
            }
            code |= insEncodeReg_Rn(id->idReg2()); // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_LS_2B: // LS_2B   .X.......Xiiiiii iiiiiinnnnnttttt      Rt Rn    imm(0-4095)
            assert(insOptsNone(id->idInsOpt()));
            imm = emitGetInsSC(id);
            assert(isValidUimm12(imm));
            code = emitInsCode(ins, fmt);
            // Is the target a vector register?
            if (isVectorRegister(id->idReg1()))
            {
                code &= 0x3FFFFFFF;                                 // clear the size bits
                code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX
                code |= insEncodeReg_Vt(id->idReg1());              // ttttt
            }
            else
            {
                code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X
                code |= insEncodeReg_Rt(id->idReg1());             // ttttt
            }
            code |= ((code_t)imm << 10);           // iiiiiiiiiiii
            code |= insEncodeReg_Rn(id->idReg2()); // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_LS_2C: // LS_2C   .X.......X.iiiii iiiiPPnnnnnttttt      Rt Rn    imm(-256..+255) no/pre/post inc
            assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt()));
            imm = emitGetInsSC(id);
            assert((imm >= -256) && (imm <= 255)); // signed 9 bits
            imm &= 0x1ff;                          // force into unsigned 9 bit representation
            code = emitInsCode(ins, fmt);
            // Is the target a vector register?
            if (isVectorRegister(id->idReg1()))
            {
                code &= 0x3FFFFFFF;                                 // clear the size bits
                code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX
                code |= insEncodeReg_Vt(id->idReg1());              // ttttt
            }
            else
            {
                code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X
                code |= insEncodeReg_Rt(id->idReg1());             // ttttt
            }
            code |= insEncodeIndexedOpt(id->idInsOpt()); // PP
            code |= ((code_t)imm << 12);                 // iiiiiiiii
            code |= insEncodeReg_Rn(id->idReg2());       // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_LS_3A: // LS_3A   .X.......X.mmmmm oooS..nnnnnttttt      Rt Rn Rm ext(Rm) LSL {}
            assert(insOptsLSExtend(id->idInsOpt()));
            code = emitInsCode(ins, fmt);
            // Is the target a vector register?
            if (isVectorRegister(id->idReg1()))
            {
                code &= 0x3FFFFFFF;                                 // clear the size bits
                code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX
                code |= insEncodeReg_Vt(id->idReg1());              // ttttt
            }
            else
            {
                code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X
                code |= insEncodeReg_Rt(id->idReg1());             // ttttt
            }
            code |= insEncodeExtend(id->idInsOpt()); // ooo
            code |= insEncodeReg_Rn(id->idReg2());   // nnnnn
            if (id->idIsLclVar())
            {
                code |= insEncodeReg_Rm(codeGen->rsGetRsvdReg()); // mmmmm
            }
            else
            {
                code |= insEncodeReg3Scale(id->idReg3Scaled()); // S
                code |= insEncodeReg_Rm(id->idReg3());          // mmmmm
            }
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_LS_3B: // LS_3B   X............... .aaaaannnnnddddd      Rd Ra Rn
            assert(insOptsNone(id->idInsOpt()));
            code = emitInsCode(ins, fmt);
            // Is the target a vector register?
            if (isVectorRegister(id->idReg1()))
            {
                code &= 0x3FFFFFFF;                                  // clear the size bits
                code |= insEncodeDatasizeVPLS(code, id->idOpSize()); // XX
                code |= insEncodeReg_Vt(id->idReg1());               // ttttt
                code |= insEncodeReg_Va(id->idReg2());               // aaaaa
            }
            else
            {
                code |= insEncodeDatasize(id->idOpSize()); // X
                code |= insEncodeReg_Rt(id->idReg1());     // ttttt
                code |= insEncodeReg_Ra(id->idReg2());     // aaaaa
            }
            code |= insEncodeReg_Rn(id->idReg3()); // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_LS_3C: // LS_3C   X......PP.iiiiii iaaaaannnnnddddd      Rd Ra Rn imm(im7,sh)
            assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt()));
            imm = emitGetInsSC(id);
            assert((imm >= -64) && (imm <= 63)); // signed 7 bits
            imm &= 0x7f;                         // force into unsigned 7 bit representation
            code = emitInsCode(ins, fmt);
            // Is the target a vector register?
            if (isVectorRegister(id->idReg1()))
            {
                code &= 0x3FFFFFFF;                                  // clear the size bits
                code |= insEncodeDatasizeVPLS(code, id->idOpSize()); // XX
                code |= insEncodeReg_Vt(id->idReg1());               // ttttt
                code |= insEncodeReg_Va(id->idReg2());               // aaaaa
            }
            else
            {
                code |= insEncodeDatasize(id->idOpSize()); // X
                code |= insEncodeReg_Rt(id->idReg1());     // ttttt
                code |= insEncodeReg_Ra(id->idReg2());     // aaaaa
            }
            code |= insEncodePairIndexedOpt(ins, id->idInsOpt()); // PP
            code |= ((code_t)imm << 15);                          // iiiiiiiii
            code |= insEncodeReg_Rn(id->idReg3());                // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DI_1A: // DI_1A   X.......shiiiiii iiiiiinnnnn.....         Rn    imm(i12,sh)
            assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt()));
            imm = emitGetInsSC(id);
            assert(isValidUimm12(imm));
            code = emitInsCode(ins, fmt);
            code |= insEncodeDatasize(id->idOpSize());   // X
            code |= insEncodeShiftImm12(id->idInsOpt()); // sh
            code |= ((code_t)imm << 10);                 // iiiiiiiiiiii
            code |= insEncodeReg_Rn(id->idReg1());       // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DI_1B: // DI_1B   X........hwiiiii iiiiiiiiiiiddddd      Rd       imm(i16,hw)
            imm = emitGetInsSC(id);
            assert(isValidImmHWVal(imm, id->idOpSize()));
            code = emitInsCode(ins, fmt);
            code |= insEncodeDatasize(id->idOpSize()); // X
            code |= ((code_t)imm << 5);                // hwiiiii iiiiiiiiiii
            code |= insEncodeReg_Rd(id->idReg1());     // ddddd
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DI_1C: // DI_1C   X........Nrrrrrr ssssssnnnnn.....         Rn    imm(N,r,s)
            imm = emitGetInsSC(id);
            assert(isValidImmNRS(imm, id->idOpSize()));
            code = emitInsCode(ins, fmt);
            code |= ((code_t)imm << 10);               // Nrrrrrrssssss
            code |= insEncodeDatasize(id->idOpSize()); // X
            code |= insEncodeReg_Rn(id->idReg1());     // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DI_1D: // DI_1D   X........Nrrrrrr ssssss.....ddddd      Rd       imm(N,r,s)
            imm = emitGetInsSC(id);
            assert(isValidImmNRS(imm, id->idOpSize()));
            code = emitInsCode(ins, fmt);
            code |= ((code_t)imm << 10);               // Nrrrrrrssssss
            code |= insEncodeDatasize(id->idOpSize()); // X
            code |= insEncodeReg_Rd(id->idReg1());     // ddddd
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DI_1E: // DI_1E   .ii.....iiiiiiii iiiiiiiiiiiddddd      Rd       simm21
        case IF_LARGEADR:
            assert(insOptsNone(id->idInsOpt()));
            if (id->idIsReloc())
            {
                code = emitInsCode(ins, fmt);
                code |= insEncodeReg_Rd(id->idReg1()); // ddddd
                dst += emitOutput_Instr(dst, code);
                emitRecordRelocation(odst, id->idAddr()->iiaAddr, IMAGE_REL_ARM64_PAGEBASE_REL21);
            }
            else
            {
                // Local jmp/load case which does not need a relocation.
                assert(id->idIsBound());
                dst = emitOutputLJ(ig, dst, id);
            }
            sz = sizeof(instrDescJmp);
            break;

        case IF_DI_1F: // DI_1F   X..........iiiii cccc..nnnnn.nzcv      Rn imm5  nzcv cond
            imm = emitGetInsSC(id);
            assert(isValidImmCondFlagsImm5(imm));
            {
                condFlagsImm cfi;
                cfi.immCFVal = (unsigned)imm;
                code         = emitInsCode(ins, fmt);
                code |= insEncodeDatasize(id->idOpSize()); // X
                code |= insEncodeReg_Rn(id->idReg1());     // nnnnn
                code |= ((code_t)cfi.imm5 << 16);          // iiiii
                code |= insEncodeFlags(cfi.flags);         // nzcv
                code |= insEncodeCond(cfi.cond);           // cccc
                dst += emitOutput_Instr(dst, code);
            }
            break;

        case IF_DI_2A: // DI_2A   X.......shiiiiii iiiiiinnnnnddddd      Rd Rn    imm(i12,sh)
            assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt()));
            imm = emitGetInsSC(id);
            assert(isValidUimm12(imm));
            code = emitInsCode(ins, fmt);
            code |= insEncodeDatasize(id->idOpSize());   // X
            code |= insEncodeShiftImm12(id->idInsOpt()); // sh
            code |= ((code_t)imm << 10);                 // iiiiiiiiiiii
            code |= insEncodeReg_Rd(id->idReg1());       // ddddd
            code |= insEncodeReg_Rn(id->idReg2());       // nnnnn
            dst += emitOutput_Instr(dst, code);

            if (id->idIsReloc())
            {
                assert(sz == sizeof(instrDesc));
                assert(id->idAddr()->iiaAddr != nullptr);
                emitRecordRelocation(odst, id->idAddr()->iiaAddr, IMAGE_REL_ARM64_PAGEOFFSET_12A);
            }
            break;

        case IF_DI_2B: // DI_2B   X.........Xnnnnn ssssssnnnnnddddd      Rd Rn    imm(0-63)
            code = emitInsCode(ins, fmt);
            imm  = emitGetInsSC(id);
            assert(isValidImmShift(imm, id->idOpSize()));
            code |= insEncodeDatasizeBF(code, id->idOpSize()); // X........X
            code |= insEncodeReg_Rd(id->idReg1());             // ddddd
            code |= insEncodeReg_Rn(id->idReg2());             // nnnnn
            code |= insEncodeReg_Rm(id->idReg2());             // Reg2 also in mmmmm
            code |= insEncodeShiftCount(imm, id->idOpSize());  // ssssss
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DI_2C: // DI_2C   X........Nrrrrrr ssssssnnnnnddddd      Rd Rn    imm(N,r,s)
            imm = emitGetInsSC(id);
            assert(isValidImmNRS(imm, id->idOpSize()));
            code = emitInsCode(ins, fmt);
            code |= ((code_t)imm << 10);               // Nrrrrrrssssss
            code |= insEncodeDatasize(id->idOpSize()); // X
            code |= insEncodeReg_Rd(id->idReg1());     // ddddd
            code |= insEncodeReg_Rn(id->idReg2());     // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DI_2D: // DI_2D   X........Nrrrrrr ssssssnnnnnddddd      Rd Rn    imr, imms   (N,r,s)
            if (ins == INS_asr || ins == INS_lsl || ins == INS_lsr)
            {
                imm = emitGetInsSC(id);
                assert(isValidImmShift(imm, id->idOpSize()));

                // Shift immediates are aliases of the SBFM/UBFM instructions
                // that actually take 2 registers and 2 constants,
                // Since we stored the shift immediate value
                // we need to calculate the N,R and S values here.

                bitMaskImm bmi;
                bmi.immNRS = 0;

                bmi.immN = (size == EA_8BYTE) ? 1 : 0;
                bmi.immR = imm;
                bmi.immS = (size == EA_8BYTE) ? 0x3f : 0x1f;

                // immR and immS are now set correctly for INS_asr and INS_lsr
                // but for INS_lsl we have to adjust the values for immR and immS
                //
                if (ins == INS_lsl)
                {
                    bmi.immR = -imm & bmi.immS;
                    bmi.immS = bmi.immS - imm;
                }

                // setup imm with the proper 13 bit value N:R:S
                //
                imm = bmi.immNRS;
            }
            else
            {
                // The other instructions have already have encoded N,R and S values
                imm = emitGetInsSC(id);
            }
            assert(isValidImmNRS(imm, id->idOpSize()));

            code = emitInsCode(ins, fmt);
            code |= ((code_t)imm << 10);               // Nrrrrrrssssss
            code |= insEncodeDatasize(id->idOpSize()); // X
            code |= insEncodeReg_Rd(id->idReg1());     // ddddd
            code |= insEncodeReg_Rn(id->idReg2());     // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_1D: // DR_1D   X............... cccc.......ddddd      Rd       cond
            imm = emitGetInsSC(id);
            assert(isValidImmCond(imm));
            {
                condFlagsImm cfi;
                cfi.immCFVal = (unsigned)imm;
                code         = emitInsCode(ins, fmt);
                code |= insEncodeDatasize(id->idOpSize()); // X
                code |= insEncodeReg_Rd(id->idReg1());     // ddddd
                code |= insEncodeInvertedCond(cfi.cond);   // cccc
                dst += emitOutput_Instr(dst, code);
            }
            break;

        case IF_DR_2A: // DR_2A   X..........mmmmm ......nnnnn.....         Rn Rm
            assert(insOptsNone(id->idInsOpt()));
            code = emitInsCode(ins, fmt);
            code |= insEncodeDatasize(id->idOpSize()); // X
            code |= insEncodeReg_Rn(id->idReg1());     // nnnnn
            code |= insEncodeReg_Rm(id->idReg2());     // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_2B: // DR_2B   X.......sh.mmmmm ssssssnnnnn.....         Rn Rm {LSL,LSR,ASR,ROR} imm(0-63)
            code = emitInsCode(ins, fmt);
            imm  = emitGetInsSC(id);
            assert(isValidImmShift(imm, id->idOpSize()));
            code |= insEncodeDatasize(id->idOpSize());        // X
            code |= insEncodeShiftType(id->idInsOpt());       // sh
            code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss
            code |= insEncodeReg_Rn(id->idReg1());            // nnnnn
            code |= insEncodeReg_Rm(id->idReg2());            // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_2C: // DR_2C   X..........mmmmm ooosssnnnnn.....         Rn Rm ext(Rm) LSL imm(0-4)
            code = emitInsCode(ins, fmt);
            imm  = emitGetInsSC(id);
            assert((imm >= 0) && (imm <= 4));          // imm [0..4]
            code |= insEncodeDatasize(id->idOpSize()); // X
            code |= insEncodeExtend(id->idInsOpt());   // ooo
            code |= insEncodeExtendScale(imm);         // sss
            code |= insEncodeReg_Rn(id->idReg1());     // nnnnn
            code |= insEncodeReg_Rm(id->idReg2());     // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_2D: // DR_2D   X..........nnnnn cccc..nnnnnddddd      Rd Rn    cond
            imm = emitGetInsSC(id);
            assert(isValidImmCond(imm));
            {
                condFlagsImm cfi;
                cfi.immCFVal = (unsigned)imm;
                code         = emitInsCode(ins, fmt);
                code |= insEncodeDatasize(id->idOpSize()); // X
                code |= insEncodeReg_Rd(id->idReg1());     // ddddd
                code |= insEncodeReg_Rn(id->idReg2());     // nnnnn
                code |= insEncodeReg_Rm(id->idReg2());     // mmmmm
                code |= insEncodeInvertedCond(cfi.cond);   // cccc
                dst += emitOutput_Instr(dst, code);
            }
            break;

        case IF_DR_2E: // DR_2E   X..........mmmmm ...........ddddd      Rd    Rm
            code = emitInsCode(ins, fmt);
            code |= insEncodeDatasize(id->idOpSize()); // X
            code |= insEncodeReg_Rd(id->idReg1());     // ddddd
            code |= insEncodeReg_Rm(id->idReg2());     // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_2F: // DR_2F   X.......sh.mmmmm ssssss.....ddddd      Rd    Rm {LSL,LSR,ASR} imm(0-63)
            code = emitInsCode(ins, fmt);
            imm  = emitGetInsSC(id);
            assert(isValidImmShift(imm, id->idOpSize()));
            code |= insEncodeDatasize(id->idOpSize());        // X
            code |= insEncodeShiftType(id->idInsOpt());       // sh
            code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss
            code |= insEncodeReg_Rd(id->idReg1());            // ddddd
            code |= insEncodeReg_Rm(id->idReg2());            // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_2G: // DR_2G   X............... .....xnnnnnddddd      Rd Rn
            code = emitInsCode(ins, fmt);
            code |= insEncodeDatasize(id->idOpSize()); // X
            if (ins == INS_rev)
            {
                if (size == EA_8BYTE)
                {
                    code |= 0x00000400; // x - bit at location 10
                }
            }
            code |= insEncodeReg_Rd(id->idReg1()); // ddddd
            code |= insEncodeReg_Rn(id->idReg2()); // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_2H: // DR_2H   X........X...... ......nnnnnddddd      Rd Rn
            code = emitInsCode(ins, fmt);
            code |= insEncodeDatasizeBF(code, id->idOpSize()); // X........X
            code |= insEncodeReg_Rd(id->idReg1());             // ddddd
            code |= insEncodeReg_Rn(id->idReg2());             // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_2I: // DR_2I   X..........mmmmm cccc..nnnnn.nzcv      Rn Rm    nzcv cond
            imm = emitGetInsSC(id);
            assert(isValidImmCondFlags(imm));
            {
                condFlagsImm cfi;
                cfi.immCFVal = (unsigned)imm;
                code         = emitInsCode(ins, fmt);
                code |= insEncodeDatasize(id->idOpSize()); // X
                code |= insEncodeReg_Rn(id->idReg1());     // nnnnn
                code |= insEncodeReg_Rm(id->idReg2());     // mmmmm
                code |= insEncodeFlags(cfi.flags);         // nzcv
                code |= insEncodeCond(cfi.cond);           // cccc
                dst += emitOutput_Instr(dst, code);
            }
            break;

        case IF_DR_3A: // DR_3A   X..........mmmmm ......nnnnnmmmmm      Rd Rn Rm
            code = emitInsCode(ins, fmt);
            code |= insEncodeDatasize(id->idOpSize()); // X
            code |= insEncodeReg_Rd(id->idReg1());     // ddddd
            code |= insEncodeReg_Rn(id->idReg2());     // nnnnn
            if (id->idIsLclVar())
            {
                code |= insEncodeReg_Rm(codeGen->rsGetRsvdReg()); // mmmmm
            }
            else
            {
                code |= insEncodeReg_Rm(id->idReg3()); // mmmmm
            }
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_3B: // DR_3B   X.......sh.mmmmm ssssssnnnnnddddd      Rd Rn Rm {LSL,LSR,ASR} imm(0-63)
            code = emitInsCode(ins, fmt);
            imm  = emitGetInsSC(id);
            assert(isValidImmShift(imm, id->idOpSize()));
            code |= insEncodeDatasize(id->idOpSize());        // X
            code |= insEncodeReg_Rd(id->idReg1());            // ddddd
            code |= insEncodeReg_Rn(id->idReg2());            // nnnnn
            code |= insEncodeReg_Rm(id->idReg3());            // mmmmm
            code |= insEncodeShiftType(id->idInsOpt());       // sh
            code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_3C: // DR_3C   X..........mmmmm ooosssnnnnnddddd      Rd Rn Rm ext(Rm) LSL imm(0-4)
            code = emitInsCode(ins, fmt);
            imm  = emitGetInsSC(id);
            assert((imm >= 0) && (imm <= 4));          // imm [0..4]
            code |= insEncodeDatasize(id->idOpSize()); // X
            code |= insEncodeExtend(id->idInsOpt());   // ooo
            code |= insEncodeExtendScale(imm);         // sss
            code |= insEncodeReg_Rd(id->idReg1());     // ddddd
            code |= insEncodeReg_Rn(id->idReg2());     // nnnnn
            code |= insEncodeReg_Rm(id->idReg3());     // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_3D: // DR_3D   X..........mmmmm cccc..nnnnnddddd      Rd Rn Rm cond
            imm = emitGetInsSC(id);
            assert(isValidImmCond(imm));
            {
                condFlagsImm cfi;
                cfi.immCFVal = (unsigned)imm;
                code         = emitInsCode(ins, fmt);
                code |= insEncodeDatasize(id->idOpSize()); // X
                code |= insEncodeReg_Rd(id->idReg1());     // ddddd
                code |= insEncodeReg_Rn(id->idReg2());     // nnnnn
                code |= insEncodeReg_Rm(id->idReg3());     // mmmmm
                code |= insEncodeCond(cfi.cond);           // cccc
                dst += emitOutput_Instr(dst, code);
            }
            break;

        case IF_DR_3E: // DR_3E   X........X.mmmmm ssssssnnnnnddddd      Rd Rn Rm imm(0-63)
            code = emitInsCode(ins, fmt);
            imm  = emitGetInsSC(id);
            assert(isValidImmShift(imm, id->idOpSize()));
            code |= insEncodeDatasizeBF(code, id->idOpSize()); // X........X
            code |= insEncodeReg_Rd(id->idReg1());             // ddddd
            code |= insEncodeReg_Rn(id->idReg2());             // nnnnn
            code |= insEncodeReg_Rm(id->idReg3());             // mmmmm
            code |= insEncodeShiftCount(imm, id->idOpSize());  // ssssss
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DR_4A: // DR_4A   X..........mmmmm .aaaaannnnnmmmmm      Rd Rn Rm Ra
            code = emitInsCode(ins, fmt);
            code |= insEncodeDatasize(id->idOpSize()); // X
            code |= insEncodeReg_Rd(id->idReg1());     // ddddd
            code |= insEncodeReg_Rn(id->idReg2());     // nnnnn
            code |= insEncodeReg_Rm(id->idReg3());     // mmmmm
            code |= insEncodeReg_Ra(id->idReg4());     // aaaaa
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_1A: // DV_1A   .........X.iiiii iii........ddddd      Vd imm8    (fmov - immediate scalar)
            imm      = emitGetInsSC(id);
            elemsize = id->idOpSize();
            code     = emitInsCode(ins, fmt);
            code |= insEncodeFloatElemsize(elemsize); // X
            code |= ((code_t)imm << 13);              // iiiii iii
            code |= insEncodeReg_Vd(id->idReg1());    // ddddd
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_1B: // DV_1B   .QX..........iii cmod..iiiiiddddd      Vd imm8    (immediate vector)
            imm      = emitGetInsSC(id) & 0x0ff;
            immShift = (emitGetInsSC(id) & 0x700) >> 8;
            elemsize = optGetElemsize(id->idInsOpt());
            cmode    = 0;
            switch (elemsize)
            { // cmode
                case EA_1BYTE:
                    cmode = 0xE; // 1110
                    break;
                case EA_2BYTE:
                    cmode = 0x8;
                    cmode |= (immShift << 1); // 10x0
                    break;
                case EA_4BYTE:
                    if (immShift < 4)
                    {
                        cmode = 0x0;
                        cmode |= (immShift << 1); // 0xx0
                    }
                    else // MSL
                    {
                        cmode = 0xC;
                        if (immShift & 2)
                            cmode |= 1; // 110x
                    }
                    break;
                case EA_8BYTE:
                    cmode = 0xE; // 1110
                    break;
                default:
                    // TODO-Cleanup: add unreached() here
                    break;
            }

            code = emitInsCode(ins, fmt);
            code |= insEncodeVectorsize(id->idOpSize()); // Q
            if ((ins == INS_fmov) || (ins == INS_movi))
            {
                if (elemsize == EA_8BYTE)
                {
                    code |= 0x20000000; // X
                }
            }
            if (ins != INS_fmov)
            {
                assert((cmode >= 0) && (cmode <= 0xF));
                code |= (cmode << 12); // cmod
            }
            code |= (((code_t)imm >> 5) << 16);    // iii
            code |= (((code_t)imm & 0x1f) << 5);   // iiiii
            code |= insEncodeReg_Vd(id->idReg1()); // ddddd
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_1C: // DV_1C   .........X...... ......nnnnn.....      Vn #0.0    (fcmp - with zero)
            elemsize = id->idOpSize();
            code     = emitInsCode(ins, fmt);
            code |= insEncodeFloatElemsize(elemsize); // X
            code |= insEncodeReg_Vn(id->idReg1());    // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2A: // DV_2A   .Q.......X...... ......nnnnnddddd      Vd Vn      (fabs, fcvt - vector)
            elemsize = optGetElemsize(id->idInsOpt());
            code     = emitInsCode(ins, fmt);
            code |= insEncodeVectorsize(id->idOpSize()); // Q
            code |= insEncodeFloatElemsize(elemsize);    // X
            code |= insEncodeReg_Vd(id->idReg1());       // ddddd
            code |= insEncodeReg_Vn(id->idReg2());       // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2B: // DV_2B   .Q.........iiiii ......nnnnnddddd      Rd Vn[] (umov/smov    - to general)
            elemsize = id->idOpSize();
            index    = emitGetInsSC(id);
            datasize = (elemsize == EA_8BYTE) ? EA_16BYTE : EA_8BYTE;
            if (ins == INS_smov)
            {
                datasize = EA_16BYTE;
            }
            code = emitInsCode(ins, fmt);
            code |= insEncodeVectorsize(datasize);         // Q
            code |= insEncodeVectorIndex(elemsize, index); // iiiii
            code |= insEncodeReg_Rd(id->idReg1());         // ddddd
            code |= insEncodeReg_Vn(id->idReg2());         // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2C: // DV_2C   .Q.........iiiii ......nnnnnddddd      Vd Rn   (dup/ins - vector from general)
            if (ins == INS_dup)
            {
                datasize = id->idOpSize();
                elemsize = optGetElemsize(id->idInsOpt());
                index    = 0;
            }
            else // INS_ins
            {
                datasize = EA_16BYTE;
                elemsize = id->idOpSize();
                index    = emitGetInsSC(id);
            }
            code = emitInsCode(ins, fmt);
            code |= insEncodeVectorsize(datasize);         // Q
            code |= insEncodeVectorIndex(elemsize, index); // iiiii
            code |= insEncodeReg_Vd(id->idReg1());         // ddddd
            code |= insEncodeReg_Rn(id->idReg2());         // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2D: // DV_2D   .Q.........iiiii ......nnnnnddddd      Vd Vn[]   (dup - vector)
            index    = emitGetInsSC(id);
            elemsize = optGetElemsize(id->idInsOpt());
            code     = emitInsCode(ins, fmt);
            code |= insEncodeVectorsize(id->idOpSize());   // Q
            code |= insEncodeVectorIndex(elemsize, index); // iiiii
            code |= insEncodeReg_Vd(id->idReg1());         // ddddd
            code |= insEncodeReg_Vn(id->idReg2());         // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2E: // DV_2E   ...........iiiii ......nnnnnddddd      Vd Vn[]   (dup - scalar)
            index    = emitGetInsSC(id);
            elemsize = id->idOpSize();
            code     = emitInsCode(ins, fmt);
            code |= insEncodeVectorIndex(elemsize, index); // iiiii
            code |= insEncodeReg_Vd(id->idReg1());         // ddddd
            code |= insEncodeReg_Vn(id->idReg2());         // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2F: // DV_2F   ...........iiiii .jjjj.nnnnnddddd      Vd[] Vn[] (ins - element)
            elemsize = id->idOpSize();
            imm      = emitGetInsSC(id);
            index    = (imm >> 4) & 0xf;
            index2   = imm & 0xf;
            code     = emitInsCode(ins, fmt);
            code |= insEncodeVectorIndex(elemsize, index);   // iiiii
            code |= insEncodeVectorIndex2(elemsize, index2); // jjjj
            code |= insEncodeReg_Vd(id->idReg1());           // ddddd
            code |= insEncodeReg_Vn(id->idReg2());           // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2G: // DV_2G   .........X...... ......nnnnnddddd      Vd Vn      (fmov,fcvtXX - register)
            elemsize = id->idOpSize();
            code     = emitInsCode(ins, fmt);
            code |= insEncodeFloatElemsize(elemsize); // X
            code |= insEncodeReg_Vd(id->idReg1());    // ddddd
            code |= insEncodeReg_Vn(id->idReg2());    // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2H: // DV_2H   X........X...... ......nnnnnddddd      Rd Vn      (fmov - to general)
            elemsize = id->idOpSize();
            code     = emitInsCode(ins, fmt);
            code |= insEncodeConvertOpt(fmt, id->idInsOpt()); // X   X
            code |= insEncodeReg_Rd(id->idReg1());            // ddddd
            code |= insEncodeReg_Vn(id->idReg2());            // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2I: // DV_2I   X........X...... ......nnnnnddddd      Vd Rn      (fmov - from general)
            elemsize = id->idOpSize();
            code     = emitInsCode(ins, fmt);
            code |= insEncodeConvertOpt(fmt, id->idInsOpt()); // X   X
            code |= insEncodeReg_Vd(id->idReg1());            // ddddd
            code |= insEncodeReg_Rn(id->idReg2());            // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2J: // DV_2J   ........SS.....D D.....nnnnnddddd      Vd Vn      (fcvt)
            code = emitInsCode(ins, fmt);
            code |= insEncodeConvertOpt(fmt, id->idInsOpt()); // SS DD
            code |= insEncodeReg_Vd(id->idReg1());            // ddddd
            code |= insEncodeReg_Vn(id->idReg2());            // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2K: // DV_2K   .........X.mmmmm ......nnnnn.....      Vn Vm      (fcmp)
            elemsize = id->idOpSize();
            code     = emitInsCode(ins, fmt);
            code |= insEncodeFloatElemsize(elemsize); // X
            code |= insEncodeReg_Vn(id->idReg1());    // nnnnn
            code |= insEncodeReg_Vm(id->idReg2());    // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2L: // DV_2L   ........XX...... ......nnnnnddddd      Vd Vn      (abs, neg - scalar)
            elemsize = id->idOpSize();
            code     = emitInsCode(ins, fmt);
            code |= insEncodeElemsize(elemsize);   // XX
            code |= insEncodeReg_Vd(id->idReg1()); // ddddd
            code |= insEncodeReg_Vn(id->idReg2()); // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2M: // DV_2M   .Q......XX...... ......nnnnnddddd      Vd Vn      (abs, neg   - vector)
            elemsize = optGetElemsize(id->idInsOpt());
            code     = emitInsCode(ins, fmt);
            code |= insEncodeVectorsize(id->idOpSize()); // Q
            code |= insEncodeElemsize(elemsize);         // XX
            code |= insEncodeReg_Vd(id->idReg1());       // ddddd
            code |= insEncodeReg_Vn(id->idReg2());       // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2N: // DV_2N   .........iiiiiii ......nnnnnddddd      Vd Vn imm   (shift - scalar)
            imm  = emitGetInsSC(id);
            code = emitInsCode(ins, fmt);
            code |= insEncodeVectorShift(EA_8BYTE, imm); // iiiiiii
            code |= insEncodeReg_Vd(id->idReg1());       // ddddd
            code |= insEncodeReg_Vn(id->idReg2());       // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_2O: // DV_2O   .Q.......iiiiiii ......nnnnnddddd      Vd Vn imm   (shift - vector)
            imm      = emitGetInsSC(id);
            elemsize = optGetElemsize(id->idInsOpt());
            code     = emitInsCode(ins, fmt);
            code |= insEncodeVectorsize(id->idOpSize()); // Q
            code |= insEncodeVectorShift(elemsize, imm); // iiiiiii
            code |= insEncodeReg_Vd(id->idReg1());       // ddddd
            code |= insEncodeReg_Vn(id->idReg2());       // nnnnn
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_3A: // DV_3A   .Q......XX.mmmmm ......nnnnnddddd      Vd Vn Vm   (vector)
            code     = emitInsCode(ins, fmt);
            elemsize = optGetElemsize(id->idInsOpt());
            code |= insEncodeVectorsize(id->idOpSize()); // Q
            code |= insEncodeElemsize(elemsize);         // XX
            code |= insEncodeReg_Vd(id->idReg1());       // ddddd
            code |= insEncodeReg_Vn(id->idReg2());       // nnnnn
            code |= insEncodeReg_Vm(id->idReg3());       // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_3AI: // DV_3AI  .Q......XXLMmmmm ....H.nnnnnddddd      Vd Vn Vm[] (vector)
            code     = emitInsCode(ins, fmt);
            imm      = emitGetInsSC(id);
            elemsize = optGetElemsize(id->idInsOpt());
            assert(isValidVectorIndex(EA_16BYTE, elemsize, imm));
            code |= insEncodeVectorsize(id->idOpSize());    // Q
            code |= insEncodeElemsize(elemsize);            // XX
            code |= insEncodeVectorIndexLMH(elemsize, imm); // LM H
            code |= insEncodeReg_Vd(id->idReg1());          // ddddd
            code |= insEncodeReg_Vn(id->idReg2());          // nnnnn
            code |= insEncodeReg_Vm(id->idReg3());          // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_3B: // DV_3B   .Q.......X.mmmmm ......nnnnnddddd      Vd Vn Vm   (vector)
            code     = emitInsCode(ins, fmt);
            elemsize = optGetElemsize(id->idInsOpt());
            code |= insEncodeVectorsize(id->idOpSize()); // Q
            code |= insEncodeFloatElemsize(elemsize);    // X
            code |= insEncodeReg_Vd(id->idReg1());       // ddddd
            code |= insEncodeReg_Vn(id->idReg2());       // nnnnn
            code |= insEncodeReg_Vm(id->idReg3());       // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_3BI: // DV_3BI  .Q.......XLmmmmm ....H.nnnnnddddd      Vd Vn Vm[] (vector by elem)
            code     = emitInsCode(ins, fmt);
            imm      = emitGetInsSC(id);
            elemsize = optGetElemsize(id->idInsOpt());
            assert(isValidVectorIndex(id->idOpSize(), elemsize, imm));
            code |= insEncodeVectorsize(id->idOpSize()); // Q
            code |= insEncodeFloatElemsize(elemsize);    // X
            code |= insEncodeFloatIndex(elemsize, imm);  // L H
            code |= insEncodeReg_Vd(id->idReg1());       // ddddd
            code |= insEncodeReg_Vn(id->idReg2());       // nnnnn
            code |= insEncodeReg_Vm(id->idReg3());       // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_3C: // DV_3C   .Q.........mmmmm ......nnnnnddddd      Vd Vn Vm   (vector)
            code = emitInsCode(ins, fmt);
            code |= insEncodeVectorsize(id->idOpSize()); // Q
            code |= insEncodeReg_Vd(id->idReg1());       // ddddd
            code |= insEncodeReg_Vn(id->idReg2());       // nnnnn
            code |= insEncodeReg_Vm(id->idReg3());       // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_3D: // DV_3D   .........X.mmmmm ......nnnnnddddd      Vd Vn Vm   (scalar)
            code = emitInsCode(ins, fmt);
            code |= insEncodeFloatElemsize(id->idOpSize()); // X
            code |= insEncodeReg_Vd(id->idReg1());          // ddddd
            code |= insEncodeReg_Vn(id->idReg2());          // nnnnn
            code |= insEncodeReg_Vm(id->idReg3());          // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_3DI: // DV_3DI  .........XLmmmmm ....H.nnnnnddddd      Vd Vn Vm[] (scalar by elem)
            code     = emitInsCode(ins, fmt);
            imm      = emitGetInsSC(id);
            elemsize = id->idOpSize();
            assert(isValidVectorIndex(EA_16BYTE, elemsize, imm));
            code |= insEncodeFloatElemsize(elemsize);   // X
            code |= insEncodeFloatIndex(elemsize, imm); // L H
            code |= insEncodeReg_Vd(id->idReg1());      // ddddd
            code |= insEncodeReg_Vn(id->idReg2());      // nnnnn
            code |= insEncodeReg_Vm(id->idReg3());      // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_3E: // DV_3E   ...........mmmmm ......nnnnnddddd      Vd Vn Vm   (scalar)
            code = emitInsCode(ins, fmt);
            code |= insEncodeReg_Vd(id->idReg1()); // ddddd
            code |= insEncodeReg_Vn(id->idReg2()); // nnnnn
            code |= insEncodeReg_Vm(id->idReg3()); // mmmmm
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_DV_4A: // DV_4A   .........X.mmmmm .aaaaannnnnddddd      Vd Va Vn Vm (scalar)
            code     = emitInsCode(ins, fmt);
            elemsize = id->idOpSize();
            code |= insEncodeFloatElemsize(elemsize); // X
            code |= insEncodeReg_Vd(id->idReg1());    // ddddd
            code |= insEncodeReg_Vn(id->idReg2());    // nnnnn
            code |= insEncodeReg_Vm(id->idReg3());    // mmmmm
            code |= insEncodeReg_Va(id->idReg4());    // aaaaa
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_SN_0A: // SN_0A   ................ ................
            code = emitInsCode(ins, fmt);
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_SI_0A: // SI_0A   ...........iiiii iiiiiiiiiii.....               imm16
            imm = emitGetInsSC(id);
            assert(isValidUimm16(imm));
            code = emitInsCode(ins, fmt);
            code |= ((code_t)imm << 5); // iiiii iiiiiiiiiii
            dst += emitOutput_Instr(dst, code);
            break;

        case IF_SI_0B: // SI_0B   ................ ....bbbb........               imm4 - barrier
            imm = emitGetInsSC(id);
            assert((imm >= 0) && (imm <= 15));
            code = emitInsCode(ins, fmt);
            code |= ((code_t)imm << 8); // bbbb
            dst += emitOutput_Instr(dst, code);
            break;

        default:
            assert(!"Unexpected format");
            break;
    }

    // Determine if any registers now hold GC refs, or whether a register that was overwritten held a GC ref.
    // We assume here that "id->idGCref()" is not GC_NONE only if the instruction described by "id" writes a
    // GC ref to register "id->idReg1()".  (It may, apparently, also not be GC_NONE in other cases, such as
    // for stores, but we ignore those cases here.)
    if (emitInsMayWriteToGCReg(id)) // True if "id->idIns()" writes to a register than can hold GC ref.
    {
        // If we ever generate instructions that write to multiple registers,
        // then we'd need to more work here to ensure that changes in the status of GC refs are
        // tracked properly.
        if (emitInsMayWriteMultipleRegs(id))
        {
            // INS_ldp etc...
            // We assume that "idReg1" and "idReg2" are the destination register for all instructions
            emitGCregDeadUpd(id->idReg1(), dst);
            emitGCregDeadUpd(id->idReg2(), dst);
        }
        else
        {
            // We assume that "idReg1" is the destination register for all instructions
            if (id->idGCref() != GCT_NONE)
            {
                emitGCregLiveUpd(id->idGCref(), id->idReg1(), dst);
            }
            else
            {
                emitGCregDeadUpd(id->idReg1(), dst);
            }
        }
    }

    // Now we determine if the instruction has written to a (local variable) stack location, and either written a GC
    // ref or overwritten one.
    if (emitInsWritesToLclVarStackLoc(id))
    {
        int      varNum = id->idAddr()->iiaLclVar.lvaVarNum();
        unsigned ofs    = AlignDown(id->idAddr()->iiaLclVar.lvaOffset(), sizeof(size_t));
        bool     FPbased;
        int      adr = emitComp->lvaFrameAddress(varNum, &FPbased);
        if (id->idGCref() != GCT_NONE)
        {
            emitGCvarLiveUpd(adr + ofs, varNum, id->idGCref(), dst);
        }
        else
        {
            // If the type of the local is a gc ref type, update the liveness.
            var_types vt;
            if (varNum >= 0)
            {
                // "Regular" (non-spill-temp) local.
                vt = var_types(emitComp->lvaTable[varNum].lvType);
            }
            else
            {
                TempDsc* tmpDsc = emitComp->tmpFindNum(varNum);
                vt              = tmpDsc->tdTempType();
            }
            if (vt == TYP_REF || vt == TYP_BYREF)
                emitGCvarDeadUpd(adr + ofs, dst);
        }
    }

#ifdef DEBUG
    /* Make sure we set the instruction descriptor size correctly */

    size_t expected = emitSizeOfInsDsc(id);
    assert(sz == expected);

    if (emitComp->opts.disAsm || emitComp->opts.dspEmit || emitComp->verbose)
    {
        emitDispIns(id, false, dspOffs, true, emitCurCodeOffs(odst), *dp, (dst - *dp), ig);
    }

    if (emitComp->compDebugBreak)
    {
        // For example, set JitBreakEmitOutputInstr=a6 will break when this method is called for
        // emitting instruction a6, (i.e. IN00a6 in jitdump).
        if ((unsigned)JitConfig.JitBreakEmitOutputInstr() == id->idDebugOnlyInfo()->idNum)
        {
            assert(!"JitBreakEmitOutputInstr reached");
        }
    }
#endif

    /* All instructions are expected to generate code */

    assert(*dp != dst);

    *dp = dst;

    return sz;
}

/*****************************************************************************/
/*****************************************************************************/

#ifdef DEBUG

/*****************************************************************************
 *
 *  Display the instruction name
 */
void emitter::emitDispInst(instruction ins)
{
    const char* insstr = codeGen->genInsName(ins);
    size_t      len    = strlen(insstr);

    /* Display the instruction name */

    printf("%s", insstr);

    //
    // Add at least one space after the instruction name
    // and add spaces until we have reach the normal size of 8
    do
    {
        printf(" ");
        len++;
    } while (len < 8);
}

/*****************************************************************************
 *
 *  Display an reloc value
 *  If we are formatting for an assembly listing don't print the hex value
 *  since it will prevent us from doing assembly diffs
 */
void emitter::emitDispReloc(int value, bool addComma)
{
    if (emitComp->opts.disAsm)
    {
        printf("(reloc)");
    }
    else
    {
        printf("(reloc 0x%x)", dspPtr(value));
    }

    if (addComma)
        printf(", ");
}

/*****************************************************************************
 *
 *  Display an immediate value
 */
void emitter::emitDispImm(ssize_t imm, bool addComma, bool alwaysHex /* =false */)
{
    if (strictArmAsm)
    {
        printf("#");
    }

    // Munge any pointers if we want diff-able disassembly
    if (emitComp->opts.disDiffable)
    {
        ssize_t top44bits = (imm >> 20);
        if ((top44bits != 0) && (top44bits != -1))
            imm = 0xD1FFAB1E;
    }

    if (!alwaysHex && (imm > -1000) && (imm < 1000))
    {
        printf("%d", imm);
    }
    else
    {
        if ((imm < 0) && ((imm & 0xFFFFFFFF00000000LL) == 0xFFFFFFFF00000000LL))
        {
            printf("-");
            imm = -imm;
        }

        if ((imm & 0xFFFFFFFF00000000LL) != 0)
        {
            printf("0x%llx", imm);
        }
        else
        {
            printf("0x%02x", imm);
        }
    }

    if (addComma)
        printf(", ");
}

/*****************************************************************************
 *
 *  Display a float zero constant
 */
void emitter::emitDispFloatZero()
{
    if (strictArmAsm)
    {
        printf("#");
    }
    printf("0.0");
}

/*****************************************************************************
 *
 *  Display an encoded float constant value
 */
void emitter::emitDispFloatImm(ssize_t imm8)
{
    assert((0 <= imm8) && (imm8 <= 0x0ff));
    if (strictArmAsm)
    {
        printf("#");
    }

    floatImm8 fpImm;
    fpImm.immFPIVal = (unsigned)imm8;
    double result   = emitDecodeFloatImm8(fpImm);

    printf("%.4f", result);
}

/*****************************************************************************
 *
 *  Display an immediate that is optionally LSL12.
 */
void emitter::emitDispImmOptsLSL12(ssize_t imm, insOpts opt)
{
    if (!strictArmAsm && insOptsLSL12(opt))
    {
        imm <<= 12;
    }
    emitDispImm(imm, false);
    if (strictArmAsm && insOptsLSL12(opt))
    {
        printf(", LSL #12");
    }
}

/*****************************************************************************
 *
 *  Display an ARM64 condition code for the conditional instructions
 */
void emitter::emitDispCond(insCond cond)
{
    const static char* armCond[16] = {"eq", "ne", "hs", "lo", "mi", "pl", "vs", "vc",
                                      "hi", "ls", "ge", "lt", "gt", "le", "AL", "NV"}; // The last two are invalid
    unsigned imm = (unsigned)cond;
    assert((0 <= imm) && (imm < ArrLen(armCond)));
    printf(armCond[imm]);
}

/*****************************************************************************
 *
 *  Display an ARM64 flags for the conditional instructions
 */
void emitter::emitDispFlags(insCflags flags)
{
    const static char* armFlags[16] = {"0", "v",  "c",  "cv",  "z",  "zv",  "zc",  "zcv",
                                       "n", "nv", "nc", "ncv", "nz", "nzv", "nzc", "nzcv"};
    unsigned imm = (unsigned)flags;
    assert((0 <= imm) && (imm < ArrLen(armFlags)));
    printf(armFlags[imm]);
}

/*****************************************************************************
 *
 *  Display an ARM64 'barrier' for the memory barrier instructions
 */
void emitter::emitDispBarrier(insBarrier barrier)
{
    const static char* armBarriers[16] = {"#0", "oshld", "oshst", "osh", "#4",  "nshld", "nshst", "nsh",
                                          "#8", "ishld", "ishst", "ish", "#12", "ld",    "st",    "sy"};
    unsigned imm = (unsigned)barrier;
    assert((0 <= imm) && (imm < ArrLen(armBarriers)));
    printf(armBarriers[imm]);
}

/*****************************************************************************
 *
 *  Prints the encoding for the Shift Type encoding
 */

void emitter::emitDispShiftOpts(insOpts opt)
{
    if (opt == INS_OPTS_LSL)
        printf(" LSL ");
    else if (opt == INS_OPTS_LSR)
        printf(" LSR ");
    else if (opt == INS_OPTS_ASR)
        printf(" ASR ");
    else if (opt == INS_OPTS_ROR)
        printf(" ROR ");
    else if (opt == INS_OPTS_MSL)
        printf(" MSL ");
    else
        assert(!"Bad value");
}

/*****************************************************************************
 *
 *  Prints the encoding for the Extend Type encoding
 */

void emitter::emitDispExtendOpts(insOpts opt)
{
    if (opt == INS_OPTS_UXTB)
        printf("UXTB");
    else if (opt == INS_OPTS_UXTH)
        printf("UXTH");
    else if (opt == INS_OPTS_UXTW)
        printf("UXTW");
    else if (opt == INS_OPTS_UXTX)
        printf("UXTX");
    else if (opt == INS_OPTS_SXTB)
        printf("SXTB");
    else if (opt == INS_OPTS_SXTH)
        printf("SXTH");
    else if (opt == INS_OPTS_SXTW)
        printf("SXTW");
    else if (opt == INS_OPTS_SXTX)
        printf("SXTX");
    else
        assert(!"Bad value");
}

/*****************************************************************************
 *
 *  Prints the encoding for the Extend Type encoding in loads/stores
 */

void emitter::emitDispLSExtendOpts(insOpts opt)
{
    if (opt == INS_OPTS_LSL)
        printf("LSL");
    else if (opt == INS_OPTS_UXTW)
        printf("UXTW");
    else if (opt == INS_OPTS_UXTX)
        printf("UXTX");
    else if (opt == INS_OPTS_SXTW)
        printf("SXTW");
    else if (opt == INS_OPTS_SXTX)
        printf("SXTX");
    else
        assert(!"Bad value");
}

/*****************************************************************************
 *
 *  Display a register
 */
void emitter::emitDispReg(regNumber reg, emitAttr attr, bool addComma)
{
    emitAttr size = EA_SIZE(attr);
    printf(emitRegName(reg, size));

    if (addComma)
        printf(", ");
}

/*****************************************************************************
 *
 *  Display a vector register with an arrangement suffix
 */
void emitter::emitDispVectorReg(regNumber reg, insOpts opt, bool addComma)
{
    assert(isVectorRegister(reg));
    printf(emitVectorRegName(reg));
    emitDispArrangement(opt);

    if (addComma)
        printf(", ");
}

/*****************************************************************************
 *
 *  Display an vector register index suffix
 */
void emitter::emitDispVectorRegIndex(regNumber reg, emitAttr elemsize, ssize_t index, bool addComma)
{
    assert(isVectorRegister(reg));
    printf(emitVectorRegName(reg));

    switch (elemsize)
    {
        case EA_1BYTE:
            printf(".b");
            break;
        case EA_2BYTE:
            printf(".h");
            break;
        case EA_4BYTE:
            printf(".s");
            break;
        case EA_8BYTE:
            printf(".d");
            break;
        default:
            assert(!"invalid elemsize");
            break;
    }

    printf("[%d]", index);

    if (addComma)
        printf(", ");
}

/*****************************************************************************
 *
 *  Display an arrangement suffix
 */
void emitter::emitDispArrangement(insOpts opt)
{
    const char* str = "???";

    switch (opt)
    {
        case INS_OPTS_8B:
            str = "8b";
            break;
        case INS_OPTS_16B:
            str = "16b";
            break;
        case INS_OPTS_4H:
            str = "4h";
            break;
        case INS_OPTS_8H:
            str = "8h";
            break;
        case INS_OPTS_2S:
            str = "2s";
            break;
        case INS_OPTS_4S:
            str = "4s";
            break;
        case INS_OPTS_1D:
            str = "1d";
            break;
        case INS_OPTS_2D:
            str = "2d";
            break;

        default:
            assert(!"Invalid insOpt for vector register");
    }
    printf(".");
    printf(str);
}

/*****************************************************************************
 *
 *  Display a register with an optional shift operation
 */
void emitter::emitDispShiftedReg(regNumber reg, insOpts opt, ssize_t imm, emitAttr attr)
{
    emitAttr size = EA_SIZE(attr);
    assert((imm & 0x003F) == imm);
    assert(((imm & 0x0020) == 0) || (size == EA_8BYTE));

    printf(emitRegName(reg, size));

    if (imm > 0)
    {
        if (strictArmAsm)
        {
            printf(",");
        }
        emitDispShiftOpts(opt);
        emitDispImm(imm, false);
    }
}

/*****************************************************************************
 *
 *  Display a register with an optional extend and scale operations
 */
void emitter::emitDispExtendReg(regNumber reg, insOpts opt, ssize_t imm)
{
    assert((imm >= 0) && (imm <= 4));
    assert(insOptsNone(opt) || insOptsAnyExtend(opt) || (opt == INS_OPTS_LSL));

    // size is based on the extend option, not the instr size.
    emitAttr size = insOpts32BitExtend(opt) ? EA_4BYTE : EA_8BYTE;

    if (strictArmAsm)
    {
        if (insOptsNone(opt))
        {
            emitDispReg(reg, size, false);
        }
        else
        {
            emitDispReg(reg, size, true);
            if (opt == INS_OPTS_LSL)
                printf("LSL");
            else
                emitDispExtendOpts(opt);
            if ((imm > 0) || (opt == INS_OPTS_LSL))
            {
                printf(" ");
                emitDispImm(imm, false);
            }
        }
    }
    else // !strictArmAsm
    {
        if (insOptsNone(opt))
        {
            emitDispReg(reg, size, false);
        }
        else
        {
            if (opt != INS_OPTS_LSL)
            {
                emitDispExtendOpts(opt);
                printf("(");
                emitDispReg(reg, size, false);
                printf(")");
            }
        }
        if (imm > 0)
        {
            printf("*");
            emitDispImm(1 << imm, false);
        }
    }
}

/*****************************************************************************
 *
 *  Display an addressing operand [reg + imm]
 */
void emitter::emitDispAddrRI(regNumber reg, insOpts opt, ssize_t imm)
{
    reg = encodingZRtoSP(reg); // ZR (R31) encodes the SP register

    if (strictArmAsm)
    {
        printf("[");

        emitDispReg(reg, EA_8BYTE, false);

        if (!insOptsPostIndex(opt) && (imm != 0))
        {
            printf(",");
            emitDispImm(imm, false);
        }
        printf("]");

        if (insOptsPreIndex(opt))
        {
            printf("!");
        }
        else if (insOptsPostIndex(opt))
        {
            printf(",");
            emitDispImm(imm, false);
        }
    }
    else // !strictArmAsm
    {
        printf("[");

        const char* operStr = "++";
        if (imm < 0)
        {
            operStr = "--";
            imm     = -imm;
        }

        if (insOptsPreIndex(opt))
        {
            printf(operStr);
        }

        emitDispReg(reg, EA_8BYTE, false);

        if (insOptsPostIndex(opt))
        {
            printf(operStr);
        }

        if (insOptsIndexed(opt))
        {
            printf(", ");
        }
        else
        {
            printf("%c", operStr[1]);
        }
        emitDispImm(imm, false);
        printf("]");
    }
}

/*****************************************************************************
 *
 *  Display an addressing operand [reg + extended reg]
 */
void emitter::emitDispAddrRRExt(regNumber reg1, regNumber reg2, insOpts opt, bool isScaled, emitAttr size)
{
    reg1 = encodingZRtoSP(reg1); // ZR (R31) encodes the SP register

    unsigned scale = 0;
    if (isScaled)
    {
        scale = NaturalScale_helper(size);
    }

    printf("[");

    if (strictArmAsm)
    {
        emitDispReg(reg1, EA_8BYTE, true);
        emitDispExtendReg(reg2, opt, scale);
    }
    else // !strictArmAsm
    {
        emitDispReg(reg1, EA_8BYTE, false);
        printf("+");
        emitDispExtendReg(reg2, opt, scale);
    }

    printf("]");
}

/*****************************************************************************
 *
 *  Display (optionally) the instruction encoding in hex
 */

void emitter::emitDispInsHex(BYTE* code, size_t sz)
{
    // We do not display the instruction hex if we want diff-able disassembly
    if (!emitComp->opts.disDiffable)
    {
        if (sz == 4)
        {
            printf("  %08X    ", (*((code_t*)code)));
        }
        else
        {
            printf("              ");
        }
    }
}

/****************************************************************************
 *
 *  Display the given instruction.
 */

void emitter::emitDispIns(
    instrDesc* id, bool isNew, bool doffs, bool asmfm, unsigned offset, BYTE* pCode, size_t sz, insGroup* ig)
{
    if (EMITVERBOSE)
    {
        unsigned idNum =
            id->idDebugOnlyInfo()->idNum; // Do not remove this!  It is needed for VisualStudio conditional breakpoints

        printf("IN%04x: ", idNum);
    }

    if (pCode == NULL)
        sz = 0;

    if (!emitComp->opts.dspEmit && !isNew && !asmfm && sz)
        doffs = true;

    /* Display the instruction offset */

    emitDispInsOffs(offset, doffs);

    /* Display the instruction hex code */

    emitDispInsHex(pCode, sz);

    printf("      ");

    /* Get the instruction and format */

    instruction ins = id->idIns();
    insFormat   fmt = id->idInsFmt();

    emitDispInst(ins);

    /* If this instruction has just been added, check its size */

    assert(isNew == false || (int)emitSizeOfInsDsc(id) == emitCurIGfreeNext - (BYTE*)id);

    /* Figure out the operand size */
    emitAttr size = id->idOpSize();
    emitAttr attr = size;
    if (id->idGCref() == GCT_GCREF)
        attr = EA_GCREF;
    else if (id->idGCref() == GCT_BYREF)
        attr = EA_BYREF;

    switch (fmt)
    {
        code_t       code;
        ssize_t      imm;
        int          doffs;
        bool         isExtendAlias;
        bool         canEncode;
        bitMaskImm   bmi;
        halfwordImm  hwi;
        condFlagsImm cfi;
        unsigned     scale;
        unsigned     immShift;
        bool         hasShift;
        ssize_t      offs;
        const char*  methodName;
        emitAttr     elemsize;
        emitAttr     datasize;
        emitAttr     srcsize;
        emitAttr     dstsize;
        ssize_t      index;
        ssize_t      index2;

        case IF_BI_0A: // BI_0A   ......iiiiiiiiii iiiiiiiiiiiiiiii               simm26:00
        case IF_BI_0B: // BI_0B   ......iiiiiiiiii iiiiiiiiiii.....               simm19:00
        case IF_LARGEJMP:
        {
            if (fmt == IF_LARGEJMP)
            {
                printf("(LARGEJMP)");
            }
            if (id->idAddr()->iiaHasInstrCount())
            {
                int instrCount = id->idAddr()->iiaGetInstrCount();

                if (ig == nullptr)
                {
                    printf("pc%s%d instructions", (instrCount >= 0) ? "+" : "", instrCount);
                }
                else
                {
                    unsigned       insNum  = emitFindInsNum(ig, id);
                    UNATIVE_OFFSET srcOffs = ig->igOffs + emitFindOffset(ig, insNum + 1);
                    UNATIVE_OFFSET dstOffs = ig->igOffs + emitFindOffset(ig, insNum + 1 + instrCount);
                    ssize_t        relOffs = (ssize_t)(emitOffsetToPtr(dstOffs) - emitOffsetToPtr(srcOffs));
                    printf("pc%s%d (%d instructions)", (relOffs >= 0) ? "+" : "", relOffs, instrCount);
                }
            }
            else if (id->idIsBound())
            {
                printf("G_M%03u_IG%02u", Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum);
            }
            else
            {
                printf("L_M%03u_BB%02u", Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum);
            }
        }
        break;

        case IF_BI_0C: // BI_0C   ......iiiiiiiiii iiiiiiiiiiiiiiii               simm26:00
            if (id->idIsCallAddr())
            {
                offs       = (ssize_t)id->idAddr()->iiaAddr;
                methodName = "";
            }
            else
            {
                offs       = 0;
                methodName = emitComp->eeGetMethodFullName((CORINFO_METHOD_HANDLE)id->idDebugOnlyInfo()->idMemCookie);
            }

            if (offs)
            {
                if (id->idIsDspReloc())
                    printf("reloc ");
                printf("%08X", offs);
            }
            else
            {
                printf("%s", methodName);
            }
            break;

        case IF_BI_1A: // BI_1A   ......iiiiiiiiii iiiiiiiiiiittttt      Rt       simm19:00
            assert(insOptsNone(id->idInsOpt()));
            emitDispReg(id->idReg1(), size, true);
            if (id->idIsBound())
            {
                printf("G_M%03u_IG%02u", Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum);
            }
            else
            {
                printf("L_M%03u_BB%02u", Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum);
            }
            break;

        case IF_BI_1B: // BI_1B   B.......bbbbbiii iiiiiiiiiiittttt      Rt imm6, simm14:00
            assert(insOptsNone(id->idInsOpt()));
            emitDispReg(id->idReg1(), size, true);
            emitDispImm(emitGetInsSC(id), true);
            if (id->idIsBound())
            {
                printf("G_M%03u_IG%02u", Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum);
            }
            else
            {
                printf("L_M%03u_BB%02u", Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum);
            }
            break;

        case IF_BR_1A: // BR_1A   ................ ......nnnnn.....         Rn
            assert(insOptsNone(id->idInsOpt()));
            emitDispReg(id->idReg1(), size, false);
            break;

        case IF_BR_1B: // BR_1B   ................ ......nnnnn.....         Rn
            assert(insOptsNone(id->idInsOpt()));
            emitDispReg(id->idReg3(), size, false);
            break;

        case IF_LS_1A: // LS_1A   XX...V..iiiiiiii iiiiiiiiiiittttt      Rt    PC imm(1MB)
        case IF_DI_1E: // DI_1E   .ii.....iiiiiiii iiiiiiiiiiiddddd      Rd       simm21
        case IF_LARGELDC:
        case IF_LARGEADR:
            assert(insOptsNone(id->idInsOpt()));
            emitDispReg(id->idReg1(), size, true);
            imm = emitGetInsSC(id);

            /* Is this actually a reference to a data section? */
            if (fmt == IF_LARGEADR)
            {
                printf("(LARGEADR)");
            }
            else if (fmt == IF_LARGELDC)
            {
                printf("(LARGELDC)");
            }

            printf("[");
            if (id->idAddr()->iiaIsJitDataOffset())
            {
                doffs = Compiler::eeGetJitDataOffs(id->idAddr()->iiaFieldHnd);
                /* Display a data section reference */

                if (doffs & 1)
                    printf("@CNS%02u", doffs - 1);
                else
                    printf("@RWD%02u", doffs);

                if (imm != 0)
                    printf("%+Id", imm);
            }
            else
            {
                assert(imm == 0);
                if (id->idIsReloc())
                {
                    printf("RELOC ");
                    emitDispImm((ssize_t)id->idAddr()->iiaAddr, false);
                }
                else if (id->idIsBound())
                {
                    printf("G_M%03u_IG%02u", Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum);
                }
                else
                {
                    printf("L_M%03u_BB%02u", Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum);
                }
            }
            printf("]");
            break;

        case IF_LS_2A: // LS_2A   .X.......X...... ......nnnnnttttt      Rt Rn
            assert(insOptsNone(id->idInsOpt()));
            assert(emitGetInsSC(id) == 0);
            emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true);
            emitDispAddrRI(id->idReg2(), id->idInsOpt(), 0);
            break;

        case IF_LS_2B: // LS_2B   .X.......Xiiiiii iiiiiinnnnnttttt      Rt Rn    imm(0-4095)
            assert(insOptsNone(id->idInsOpt()));
            imm   = emitGetInsSC(id);
            scale = NaturalScale_helper(emitInsLoadStoreSize(id));
            imm <<= scale; // The immediate is scaled by the size of the ld/st
            emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true);
            emitDispAddrRI(id->idReg2(), id->idInsOpt(), imm);
            break;

        case IF_LS_2C: // LS_2C   .X.......X.iiiii iiiiPPnnnnnttttt      Rt Rn    imm(-256..+255) no/pre/post inc
            assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt()));
            imm = emitGetInsSC(id);
            emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true);
            emitDispAddrRI(id->idReg2(), id->idInsOpt(), imm);
            break;

        case IF_LS_3A: // LS_3A   .X.......X.mmmmm oooS..nnnnnttttt      Rt Rn Rm ext(Rm) LSL {}
            assert(insOptsLSExtend(id->idInsOpt()));
            emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true);
            if (id->idIsLclVar())
            {
                emitDispAddrRRExt(id->idReg2(), codeGen->rsGetRsvdReg(), id->idInsOpt(), false, size);
            }
            else
            {
                emitDispAddrRRExt(id->idReg2(), id->idReg3(), id->idInsOpt(), id->idReg3Scaled(), size);
            }
            break;

        case IF_LS_3B: // LS_3B   X............... .aaaaannnnnddddd      Rt Ra Rn
            assert(insOptsNone(id->idInsOpt()));
            assert(emitGetInsSC(id) == 0);
            emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true);
            emitDispReg(id->idReg2(), emitInsTargetRegSize(id), true);
            emitDispAddrRI(id->idReg3(), id->idInsOpt(), 0);
            break;

        case IF_LS_3C: // LS_3C   X.........iiiiii iaaaaannnnnddddd      Rt Ra Rn imm(im7,sh)
            assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt()));
            imm   = emitGetInsSC(id);
            scale = NaturalScale_helper(emitInsLoadStoreSize(id));
            imm <<= scale;
            emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true);
            emitDispReg(id->idReg2(), emitInsTargetRegSize(id), true);
            emitDispAddrRI(id->idReg3(), id->idInsOpt(), imm);
            break;

        case IF_DI_1A: // DI_1A   X.......shiiiiii iiiiiinnnnn.....      Rn       imm(i12,sh)
            emitDispReg(id->idReg1(), size, true);
            emitDispImmOptsLSL12(emitGetInsSC(id), id->idInsOpt());
            break;

        case IF_DI_1B: // DI_1B   X........hwiiiii iiiiiiiiiiiddddd      Rd       imm(i16,hw)
            emitDispReg(id->idReg1(), size, true);
            hwi.immHWVal = (unsigned)emitGetInsSC(id);
            if (ins == INS_mov)
            {
                emitDispImm(emitDecodeHalfwordImm(hwi, size), false);
            }
            else // movz, movn, movk
            {
                emitDispImm(hwi.immVal, false);
                if (hwi.immHW != 0)
                {
                    emitDispShiftOpts(INS_OPTS_LSL);
                    emitDispImm(hwi.immHW * 16, false);
                }
            }
            break;

        case IF_DI_1C: // DI_1C   X........Nrrrrrr ssssssnnnnn.....         Rn    imm(N,r,s)
            emitDispReg(id->idReg1(), size, true);
            bmi.immNRS = (unsigned)emitGetInsSC(id);
            emitDispImm(emitDecodeBitMaskImm(bmi, size), false);
            break;

        case IF_DI_1D: // DI_1D   X........Nrrrrrr ssssss.....ddddd      Rd       imm(N,r,s)
            emitDispReg(encodingZRtoSP(id->idReg1()), size, true);
            bmi.immNRS = (unsigned)emitGetInsSC(id);
            emitDispImm(emitDecodeBitMaskImm(bmi, size), false);
            break;

        case IF_DI_2A: // DI_2A   X.......shiiiiii iiiiiinnnnnddddd      Rd Rn    imm(i12,sh)
            if ((ins == INS_add) || (ins == INS_sub))
            {
                emitDispReg(encodingZRtoSP(id->idReg1()), size, true);
                emitDispReg(encodingZRtoSP(id->idReg2()), size, true);
            }
            else
            {
                emitDispReg(id->idReg1(), size, true);
                emitDispReg(id->idReg2(), size, true);
            }
            emitDispImmOptsLSL12(emitGetInsSC(id), id->idInsOpt());
            break;

        case IF_DI_2B: // DI_2B   X........X.nnnnn ssssssnnnnnddddd      Rd Rn    imm(0-63)
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, true);
            emitDispImm(emitGetInsSC(id), false);
            break;

        case IF_DI_2C: // DI_2C   X........Nrrrrrr ssssssnnnnnddddd      Rd Rn    imm(N,r,s)
            if (ins == INS_ands)
            {
                emitDispReg(id->idReg1(), size, true);
            }
            else
            {
                emitDispReg(encodingZRtoSP(id->idReg1()), size, true);
            }
            emitDispReg(id->idReg2(), size, true);
            bmi.immNRS = (unsigned)emitGetInsSC(id);
            emitDispImm(emitDecodeBitMaskImm(bmi, size), false);
            break;

        case IF_DI_2D: // DI_2D   X........Nrrrrrr ssssssnnnnnddddd      Rd Rn    imr, ims   (N,r,s)
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, true);

            imm        = emitGetInsSC(id);
            bmi.immNRS = (unsigned)imm;

            switch (ins)
            {
                case INS_bfm:
                case INS_sbfm:
                case INS_ubfm:
                    emitDispImm(bmi.immR, true);
                    emitDispImm(bmi.immS, false);
                    break;

                case INS_bfi:
                case INS_sbfiz:
                case INS_ubfiz:
                    emitDispImm(getBitWidth(size) - bmi.immR, true);
                    emitDispImm(bmi.immS + 1, false);
                    break;

                case INS_bfxil:
                case INS_sbfx:
                case INS_ubfx:
                    emitDispImm(bmi.immR, true);
                    emitDispImm(bmi.immS - bmi.immR + 1, false);
                    break;

                case INS_asr:
                case INS_lsr:
                case INS_lsl:
                    emitDispImm(imm, false);
                    break;

                default:
                    assert(!"Unexpected instruction in IF_DI_2D");
            }

            break;

        case IF_DI_1F: // DI_1F   X..........iiiii cccc..nnnnn.nzcv      Rn imm5  nzcv cond
            emitDispReg(id->idReg1(), size, true);
            cfi.immCFVal = (unsigned)emitGetInsSC(id);
            emitDispImm(cfi.imm5, true);
            emitDispFlags(cfi.flags);
            printf(",");
            emitDispCond(cfi.cond);
            break;

        case IF_DR_1D: // DR_1D   X............... cccc.......mmmmm      Rd       cond
            emitDispReg(id->idReg1(), size, true);
            cfi.immCFVal = (unsigned)emitGetInsSC(id);
            emitDispCond(cfi.cond);
            break;

        case IF_DR_2A: // DR_2A   X..........mmmmm ......nnnnn.....         Rn Rm
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, false);
            break;

        case IF_DR_2B: // DR_2B   X.......sh.mmmmm ssssssnnnnn.....         Rn Rm {LSL,LSR,ASR,ROR} imm(0-63)
            emitDispReg(id->idReg1(), size, true);
            emitDispShiftedReg(id->idReg2(), id->idInsOpt(), emitGetInsSC(id), size);
            break;

        case IF_DR_2C: // DR_2C   X..........mmmmm ooosssnnnnn.....         Rn Rm ext(Rm) LSL imm(0-4)
            emitDispReg(encodingZRtoSP(id->idReg1()), size, true);
            imm = emitGetInsSC(id);
            emitDispExtendReg(id->idReg2(), id->idInsOpt(), imm);
            break;

        case IF_DR_2D: // DR_2D   X..........nnnnn cccc..nnnnnddddd      Rd Rn    cond
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, true);
            cfi.immCFVal = (unsigned)emitGetInsSC(id);
            emitDispCond(cfi.cond);
            break;

        case IF_DR_2E: // DR_2E   X..........mmmmm ...........ddddd      Rd    Rm
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, false);
            break;

        case IF_DR_2F: // DR_2F   X.......sh.mmmmm ssssss.....ddddd      Rd    Rm {LSL,LSR,ASR} imm(0-63)
            emitDispReg(id->idReg1(), size, true);
            emitDispShiftedReg(id->idReg2(), id->idInsOpt(), emitGetInsSC(id), size);
            break;

        case IF_DR_2G: // DR_2G   X............... ......nnnnnddddd      Rd Rn
            emitDispReg(encodingZRtoSP(id->idReg1()), size, true);
            emitDispReg(encodingZRtoSP(id->idReg2()), size, false);
            break;

        case IF_DR_2H: // DR_2H   X........X...... ......nnnnnddddd      Rd Rn
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, false);
            break;

        case IF_DR_2I: // DR_2I   X..........mmmmm cccc..nnnnn.nzcv      Rn Rm    nzcv cond
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, true);
            cfi.immCFVal = (unsigned)emitGetInsSC(id);
            emitDispFlags(cfi.flags);
            printf(",");
            emitDispCond(cfi.cond);
            break;

        case IF_DR_3A: // DR_3A   X..........mmmmm ......nnnnnmmmmm      Rd Rn Rm
            if ((ins == INS_add) || (ins == INS_sub))
            {
                emitDispReg(encodingZRtoSP(id->idReg1()), size, true);
                emitDispReg(encodingZRtoSP(id->idReg2()), size, true);
            }
            else
            {
                emitDispReg(id->idReg1(), size, true);
                emitDispReg(id->idReg2(), size, true);
            }
            if (id->idIsLclVar())
            {
                emitDispReg(codeGen->rsGetRsvdReg(), size, false);
            }
            else
            {
                emitDispReg(id->idReg3(), size, false);
            }

            break;

        case IF_DR_3B: // DR_3B   X.......sh.mmmmm ssssssnnnnnddddd      Rd Rn Rm {LSL,LSR,ASR} imm(0-63)
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, true);
            emitDispShiftedReg(id->idReg3(), id->idInsOpt(), emitGetInsSC(id), size);
            break;

        case IF_DR_3C: // DR_3C   X..........mmmmm ooosssnnnnnddddd      Rd Rn Rm ext(Rm) LSL imm(0-4)
            emitDispReg(encodingZRtoSP(id->idReg1()), size, true);
            emitDispReg(encodingZRtoSP(id->idReg2()), size, true);
            imm = emitGetInsSC(id);
            emitDispExtendReg(id->idReg3(), id->idInsOpt(), imm);
            break;

        case IF_DR_3D: // DR_3D   X..........mmmmm cccc..nnnnnmmmmm      Rd Rn Rm cond
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, true);
            emitDispReg(id->idReg3(), size, true);
            cfi.immCFVal = (unsigned)emitGetInsSC(id);
            emitDispCond(cfi.cond);
            break;

        case IF_DR_3E: // DR_3E   X........X.mmmmm ssssssnnnnnddddd      Rd Rn Rm imm(0-63)
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, true);
            emitDispReg(id->idReg3(), size, true);
            emitDispImm(emitGetInsSC(id), false);
            break;

        case IF_DR_4A: // DR_4A   X..........mmmmm .aaaaannnnnmmmmm      Rd Rn Rm Ra
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, true);
            emitDispReg(id->idReg3(), size, true);
            emitDispReg(id->idReg4(), size, false);
            break;

        case IF_DV_1A: // DV_1A   .........X.iiiii iii........ddddd      Vd imm8 (fmov - immediate scalar)
            elemsize = id->idOpSize();
            emitDispReg(id->idReg1(), elemsize, true);
            emitDispFloatImm(emitGetInsSC(id));
            break;

        case IF_DV_1B: // DV_1B   .QX..........iii cmod..iiiiiddddd      Vd imm8 (immediate vector)
            imm      = emitGetInsSC(id) & 0x0ff;
            immShift = (emitGetInsSC(id) & 0x700) >> 8;
            hasShift = (immShift != 0);
            elemsize = optGetElemsize(id->idInsOpt());
            if (id->idInsOpt() == INS_OPTS_1D)
            {
                assert(elemsize == size);
                emitDispReg(id->idReg1(), size, true);
            }
            else
            {
                emitDispVectorReg(id->idReg1(), id->idInsOpt(), true);
            }
            if (ins == INS_fmov)
            {
                emitDispFloatImm(imm);
                assert(hasShift == false);
            }
            else
            {
                if (elemsize == EA_8BYTE)
                {
                    assert(ins == INS_movi);
                    ssize_t       imm64 = 0;
                    const ssize_t mask8 = 0xFF;
                    for (unsigned b = 0; b < 8; b++)
                    {
                        if (imm & (1 << b))
                        {
                            imm64 |= (mask8 << (b * 8));
                        }
                    }
                    emitDispImm(imm64, hasShift, true);
                }
                else
                {
                    emitDispImm(imm, hasShift, true);
                }
                if (hasShift)
                {
                    insOpts  opt   = (immShift & 0x4) ? INS_OPTS_MSL : INS_OPTS_LSL;
                    unsigned shift = (immShift & 0x3) * 8;
                    emitDispShiftOpts(opt);
                    emitDispImm(shift, false);
                }
            }
            break;

        case IF_DV_1C: // DV_1C   .........X...... ......nnnnn.....      Vn #0.0 (fcmp - with zero)
            elemsize = id->idOpSize();
            emitDispReg(id->idReg1(), elemsize, true);
            emitDispFloatZero();
            break;

        case IF_DV_2A: // DV_2A   .Q.......X...... ......nnnnnddddd      Vd Vn   (fabs, fcvt - vector)
        case IF_DV_2M: // DV_2M   .Q......XX...... ......nnnnnddddd      Vd Vn   (abs, neg   - vector)
            emitDispVectorReg(id->idReg1(), id->idInsOpt(), true);
            emitDispVectorReg(id->idReg2(), id->idInsOpt(), false);
            break;

        case IF_DV_2N: // DV_2N   .........iiiiiii ......nnnnnddddd      Vd Vn imm   (shift - scalar)
            elemsize = id->idOpSize();
            emitDispReg(id->idReg1(), elemsize, true);
            emitDispReg(id->idReg2(), elemsize, true);
            emitDispImm(emitGetInsSC(id), false);
            break;

        case IF_DV_2O: // DV_2O   .Q.......iiiiiii ......nnnnnddddd      Vd Vn imm   (shift - vector)
            imm = emitGetInsSC(id);
            // Do we have a sxtl or uxtl instruction?
            isExtendAlias = ((ins == INS_sxtl) || (ins == INS_sxtl2) || (ins == INS_uxtl) || (ins == INS_uxtl2));
            code          = emitInsCode(ins, fmt);
            if (code & 0x00008000) // widen/narrow opcodes
            {
                if (code & 0x00002000) // SHL opcodes
                {
                    emitDispVectorReg(id->idReg1(), optWidenElemsize(id->idInsOpt()), true);
                    emitDispVectorReg(id->idReg2(), id->idInsOpt(), !isExtendAlias);
                }
                else // SHR opcodes
                {
                    emitDispVectorReg(id->idReg1(), id->idInsOpt(), true);
                    emitDispVectorReg(id->idReg2(), optWidenElemsize(id->idInsOpt()), !isExtendAlias);
                }
            }
            else
            {
                emitDispVectorReg(id->idReg1(), id->idInsOpt(), true);
                emitDispVectorReg(id->idReg2(), id->idInsOpt(), !isExtendAlias);
            }
            // Print the immediate unless we have a sxtl or uxtl instruction
            if (!isExtendAlias)
            {
                emitDispImm(imm, false);
            }
            break;

        case IF_DV_2B: // DV_2B   .Q.........iiiii ......nnnnnddddd      Rd Vn[] (umov/smov    - to general)
            srcsize = id->idOpSize();
            index   = emitGetInsSC(id);
            if (ins == INS_smov)
            {
                dstsize = EA_8BYTE;
            }
            else // INS_umov or INS_mov
            {
                dstsize = (srcsize == EA_8BYTE) ? EA_8BYTE : EA_4BYTE;
            }
            emitDispReg(id->idReg1(), dstsize, true);
            emitDispVectorRegIndex(id->idReg2(), srcsize, index, false);
            break;

        case IF_DV_2C: // DV_2C   .Q.........iiiii ......nnnnnddddd      Vd Rn   (dup/ins - vector from general)
            if (ins == INS_dup)
            {
                datasize = id->idOpSize();
                assert(isValidVectorDatasize(datasize));
                assert(isValidArrangement(datasize, id->idInsOpt()));
                elemsize = optGetElemsize(id->idInsOpt());
                emitDispVectorReg(id->idReg1(), id->idInsOpt(), true);
            }
            else // INS_ins
            {
                elemsize = id->idOpSize();
                index    = emitGetInsSC(id);
                assert(isValidVectorElemsize(elemsize));
                emitDispVectorRegIndex(id->idReg1(), elemsize, index, true);
            }
            emitDispReg(id->idReg2(), (elemsize == EA_8BYTE) ? EA_8BYTE : EA_4BYTE, false);
            break;

        case IF_DV_2D: // DV_2D   .Q.........iiiii ......nnnnnddddd      Vd Vn[]   (dup - vector)
            datasize = id->idOpSize();
            assert(isValidVectorDatasize(datasize));
            assert(isValidArrangement(datasize, id->idInsOpt()));
            elemsize = optGetElemsize(id->idInsOpt());
            index    = emitGetInsSC(id);
            emitDispVectorReg(id->idReg1(), id->idInsOpt(), true);
            emitDispVectorRegIndex(id->idReg2(), elemsize, index, false);
            break;

        case IF_DV_2E: // DV_2E   ...........iiiii ......nnnnnddddd      Vd Vn[]   (dup - scalar)
            elemsize = id->idOpSize();
            index    = emitGetInsSC(id);
            emitDispReg(id->idReg1(), elemsize, true);
            emitDispVectorRegIndex(id->idReg2(), elemsize, index, false);
            break;

        case IF_DV_2F: // DV_2F   ...........iiiii .jjjj.nnnnnddddd      Vd[] Vn[] (ins - element)
            imm      = emitGetInsSC(id);
            index    = (imm >> 4) & 0xf;
            index2   = imm & 0xf;
            elemsize = id->idOpSize();
            emitDispVectorRegIndex(id->idReg1(), elemsize, index, true);
            emitDispVectorRegIndex(id->idReg2(), elemsize, index2, false);
            break;

        case IF_DV_2G: // DV_2G   .........X...... ......nnnnnddddd      Vd Vn      (fmov, fcvtXX - register)
        case IF_DV_2K: // DV_2K   .........X.mmmmm ......nnnnn.....      Vn Vm      (fcmp)
        case IF_DV_2L: // DV_2L   ........XX...... ......nnnnnddddd      Vd Vn      (abs, neg - scalar)
            elemsize = id->idOpSize();
            emitDispReg(id->idReg1(), elemsize, true);
            emitDispReg(id->idReg2(), elemsize, false);
            break;

        case IF_DV_2H: // DV_2H   X........X...... ......nnnnnddddd      Rd Vn      (fmov, fcvtXX - to general)
        case IF_DV_2I: // DV_2I   X........X...... ......nnnnnddddd      Vd Rn      (fmov, Xcvtf - from general)
        case IF_DV_2J: // DV_2J   ........SS.....D D.....nnnnnddddd      Vd Vn      (fcvt)
            dstsize = optGetDstsize(id->idInsOpt());
            srcsize = optGetSrcsize(id->idInsOpt());

            emitDispReg(id->idReg1(), dstsize, true);
            emitDispReg(id->idReg2(), srcsize, false);
            break;

        case IF_DV_3A: // DV_3A   .Q......XX.mmmmm ......nnnnnddddd      Vd Vn Vm  (vector)
        case IF_DV_3B: // DV_3B   .Q.........mmmmm ......nnnnnddddd      Vd Vn Vm  (vector)
            emitDispVectorReg(id->idReg1(), id->idInsOpt(), true);
            emitDispVectorReg(id->idReg2(), id->idInsOpt(), true);
            emitDispVectorReg(id->idReg3(), id->idInsOpt(), false);
            break;

        case IF_DV_3C: // DV_3C   .Q.........mmmmm ......nnnnnddddd      Vd Vn Vm  (vector)
            emitDispVectorReg(id->idReg1(), id->idInsOpt(), true);
            if (ins != INS_mov)
            {
                emitDispVectorReg(id->idReg2(), id->idInsOpt(), true);
            }
            emitDispVectorReg(id->idReg3(), id->idInsOpt(), false);
            break;

        case IF_DV_3AI: // DV_3AI  .Q......XXLMmmmm ....H.nnnnnddddd      Vd Vn Vm[] (vector by elem)
        case IF_DV_3BI: // DV_3BI  .Q........Lmmmmm ....H.nnnnnddddd      Vd Vn Vm[] (vector by elem)
            emitDispVectorReg(id->idReg1(), id->idInsOpt(), true);
            emitDispVectorReg(id->idReg2(), id->idInsOpt(), true);
            elemsize = optGetElemsize(id->idInsOpt());
            emitDispVectorRegIndex(id->idReg3(), elemsize, emitGetInsSC(id), false);
            break;

        case IF_DV_3D: // DV_3D   .........X.mmmmm ......nnnnnddddd      Vd Vn Vm  (scalar)
        case IF_DV_3E: // DV_3E   ...........mmmmm ......nnnnnddddd      Vd Vn Vm  (scalar)
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, true);
            emitDispReg(id->idReg3(), size, false);
            break;

        case IF_DV_3DI: // DV_3DI  .........XLmmmmm ....H.nnnnnddddd      Vd Vn Vm[] (scalar by elem)
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, true);
            elemsize = size;
            emitDispVectorRegIndex(id->idReg3(), elemsize, emitGetInsSC(id), false);
            break;

        case IF_DV_4A: // DV_4A   .........X.mmmmm .aaaaannnnnddddd      Vd Va Vn Vm (scalar)
            emitDispReg(id->idReg1(), size, true);
            emitDispReg(id->idReg2(), size, true);
            emitDispReg(id->idReg3(), size, true);
            emitDispReg(id->idReg4(), size, false);
            break;

        case IF_SN_0A: // SN_0A   ................ ................
            break;

        case IF_SI_0A: // SI_0A   ...........iiiii iiiiiiiiiii.....               imm16
            emitDispImm(emitGetInsSC(id), false);
            break;

        case IF_SI_0B: // SI_0B   ................ ....bbbb........               imm4 - barrier
            emitDispBarrier((insBarrier)emitGetInsSC(id));
            break;

        default:
            printf("unexpected format %s", emitIfName(id->idInsFmt()));
            assert(!"unexpectedFormat");
            break;
    }

    if (id->idDebugOnlyInfo()->idVarRefOffs)
    {
        printf("\t// ");
        emitDispFrameRef(id->idAddr()->iiaLclVar.lvaVarNum(), id->idAddr()->iiaLclVar.lvaOffset(),
                         id->idDebugOnlyInfo()->idVarRefOffs, asmfm);
    }

    printf("\n");
}

/*****************************************************************************
 *
 *  Display a stack frame reference.
 */

void emitter::emitDispFrameRef(int varx, int disp, int offs, bool asmfm)
{
    printf("[");

    if (varx < 0)
        printf("TEMP_%02u", -varx);
    else
        emitComp->gtDispLclVar(+varx, false);

    if (disp < 0)
        printf("-0x%02x", -disp);
    else if (disp > 0)
        printf("+0x%02x", +disp);

    printf("]");

    if (varx >= 0 && emitComp->opts.varNames)
    {
        LclVarDsc*  varDsc;
        const char* varName;

        assert((unsigned)varx < emitComp->lvaCount);
        varDsc  = emitComp->lvaTable + varx;
        varName = emitComp->compLocalVarName(varx, offs);

        if (varName)
        {
            printf("'%s", varName);

            if (disp < 0)
                printf("-%d", -disp);
            else if (disp > 0)
                printf("+%d", +disp);

            printf("'");
        }
    }
}

#endif // DEBUG

// Generate code for a load or store operation with a potentially complex addressing mode
// This method handles the case of a GT_IND with contained GT_LEA op1 of the x86 form [base + index*sccale + offset]
// Since Arm64 does not directly support this complex of an addressing mode
// we may generates up to three instructions for this for Arm64
//
void emitter::emitInsLoadStoreOp(instruction ins, emitAttr attr, regNumber dataReg, GenTreeIndir* indir)
{
    emitAttr ldstAttr = isVectorRegister(dataReg) ? attr : emitInsAdjustLoadStoreAttr(ins, attr);

    GenTree* addr = indir->Addr();

    if (addr->isContained())
    {
        assert(addr->OperGet() == GT_LCL_VAR_ADDR || addr->OperGet() == GT_LEA);

        int   offset = 0;
        DWORD lsl    = 0;

        if (addr->OperGet() == GT_LEA)
        {
            offset = (int)addr->AsAddrMode()->gtOffset;
            if (addr->AsAddrMode()->gtScale > 0)
            {
                assert(isPow2(addr->AsAddrMode()->gtScale));
                BitScanForward(&lsl, addr->AsAddrMode()->gtScale);
            }
        }

        GenTree* memBase = indir->Base();

        if (indir->HasIndex())
        {
            GenTree* index = indir->Index();

            if (offset != 0)
            {
                regMaskTP tmpRegMask = indir->gtRsvdRegs;
                regNumber tmpReg     = genRegNumFromMask(tmpRegMask);
                noway_assert(tmpReg != REG_NA);

                if (emitIns_valid_imm_for_add(offset, EA_8BYTE))
                {
                    if (lsl > 0)
                    {
                        // Generate code to set tmpReg = base + index*scale
                        emitIns_R_R_R_I(INS_add, EA_PTRSIZE, tmpReg, memBase->gtRegNum, index->gtRegNum, lsl,
                                        INS_OPTS_LSL);
                    }
                    else // no scale
                    {
                        // Generate code to set tmpReg = base + index
                        emitIns_R_R_R(INS_add, EA_PTRSIZE, tmpReg, memBase->gtRegNum, index->gtRegNum);
                    }

                    noway_assert(emitInsIsLoad(ins) || (tmpReg != dataReg));

                    // Then load/store dataReg from/to [tmpReg + offset]
                    emitIns_R_R_I(ins, ldstAttr, dataReg, tmpReg, offset);
                    ;
                }
                else // large offset
                {
                    // First load/store tmpReg with the large offset constant
                    codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, tmpReg, offset);
                    // Then add the base register
                    //      rd = rd + base
                    emitIns_R_R_R(INS_add, EA_PTRSIZE, tmpReg, tmpReg, memBase->gtRegNum);

                    noway_assert(emitInsIsLoad(ins) || (tmpReg != dataReg));
                    noway_assert(tmpReg != index->gtRegNum);

                    // Then load/store dataReg from/to [tmpReg + index*scale]
                    emitIns_R_R_R_I(ins, ldstAttr, dataReg, tmpReg, index->gtRegNum, lsl, INS_OPTS_LSL);
                }
            }
            else // (offset == 0)
            {
                if (lsl > 0)
                {
                    // Then load/store dataReg from/to [memBase + index*scale]
                    emitIns_R_R_R_I(ins, ldstAttr, dataReg, memBase->gtRegNum, index->gtRegNum, lsl, INS_OPTS_LSL);
                }
                else // no scale
                {
                    // Then load/store dataReg from/to [memBase + index]
                    emitIns_R_R_R(ins, ldstAttr, dataReg, memBase->gtRegNum, index->gtRegNum);
                }
            }
        }
        else // no Index register
        {
            if (emitIns_valid_imm_for_ldst_offset(offset, EA_SIZE(attr)))
            {
                // Then load/store dataReg from/to [memBase + offset]
                emitIns_R_R_I(ins, ldstAttr, dataReg, memBase->gtRegNum, offset);
            }
            else
            {
                // We require a tmpReg to hold the offset
                regMaskTP tmpRegMask = indir->gtRsvdRegs;
                regNumber tmpReg     = genRegNumFromMask(tmpRegMask);
                noway_assert(tmpReg != REG_NA);

                // First load/store tmpReg with the large offset constant
                codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, tmpReg, offset);

                // Then load/store dataReg from/to [memBase + tmpReg]
                emitIns_R_R_R(ins, ldstAttr, dataReg, memBase->gtRegNum, tmpReg);
            }
        }
    }
    else // addr is not contained, so we evaluate it into a register
    {
        codeGen->genConsumeReg(addr);
        // Then load/store dataReg from/to [addrReg]
        emitIns_R_R(ins, ldstAttr, dataReg, addr->gtRegNum);
    }
}

// Generates an integer data section constant and returns a field handle representing
// the data offset to access the constant via a load instruction.
// This is called during ngen for any relocatable constants
//
CORINFO_FIELD_HANDLE emitter::emitLiteralConst(ssize_t cnsValIn, emitAttr attr /*=EA_8BYTE*/)
{
    ssize_t constValue = cnsValIn;
    void*   cnsAddr    = &constValue;
    bool    dblAlign;

    if (attr == EA_4BYTE)
    {
        dblAlign = false;
    }
    else
    {
        assert(attr == EA_8BYTE);
        dblAlign = true;
    }

    // Access to inline data is 'abstracted' by a special type of static member
    // (produced by eeFindJitDataOffs) which the emitter recognizes as being a reference
    // to constant data, not a real static field.

    UNATIVE_OFFSET cnsSize = (attr == EA_4BYTE) ? 4 : 8;
    UNATIVE_OFFSET cnum    = emitDataConst(cnsAddr, cnsSize, dblAlign);
    return emitComp->eeFindJitDataOffs(cnum);
}

// Generates a float or double data section constant and returns field handle representing
// the data offset to access the constant.  This is called by emitInsBinary() in case
// of contained float of double constants.
CORINFO_FIELD_HANDLE emitter::emitFltOrDblConst(GenTreeDblCon* tree, emitAttr attr /*=EA_UNKNOWN*/)
{
    if (attr == EA_UNKNOWN)
    {
        attr = emitTypeSize(tree->TypeGet());
    }
    else
    {
        assert(emitTypeSize(tree->TypeGet()) == attr);
    }

    double constValue = tree->gtDblCon.gtDconVal;
    void*  cnsAddr;
    float  f;
    bool   dblAlign;

    if (attr == EA_4BYTE)
    {
        f        = forceCastToFloat(constValue);
        cnsAddr  = &f;
        dblAlign = false;
    }
    else
    {
        cnsAddr  = &constValue;
        dblAlign = true;
    }

    // Access to inline data is 'abstracted' by a special type of static member
    // (produced by eeFindJitDataOffs) which the emitter recognizes as being a reference
    // to constant data, not a real static field.

    UNATIVE_OFFSET cnsSize = (attr == EA_4BYTE) ? 4 : 8;
    UNATIVE_OFFSET cnum    = emitDataConst(cnsAddr, cnsSize, dblAlign);
    return emitComp->eeFindJitDataOffs(cnum);
}

// The callee must call genConsumeReg() for any non-contained srcs
// and genProduceReg() for any non-contained dsts.

regNumber emitter::emitInsBinary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src)
{
    regNumber result = REG_NA;

    // dst can only be a reg
    assert(!dst->isContained());

    // src can be immed or reg
    assert(!src->isContained() || src->isContainedIntOrIImmed());

    // find immed (if any) - it cannot be a dst
    GenTreeIntConCommon* intConst = nullptr;
    if (src->isContainedIntOrIImmed())
    {
        intConst = src->AsIntConCommon();
    }

    if (intConst)
    {
        emitIns_R_I(ins, attr, dst->gtRegNum, intConst->IconValue());
        return dst->gtRegNum;
    }
    else
    {
        emitIns_R_R(ins, attr, dst->gtRegNum, src->gtRegNum);
        return dst->gtRegNum;
    }
}

// The callee must call genConsumeReg() for any non-contained srcs
// and genProduceReg() for any non-contained dsts.

regNumber emitter::emitInsTernary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src1, GenTree* src2)
{
    regNumber result = REG_NA;

    // dst can only be a reg
    assert(!dst->isContained());

    // find immed (if any) - it cannot be a dst
    // Only one src can be an int.
    GenTreeIntConCommon* intConst  = nullptr;
    GenTree*             nonIntReg = nullptr;

    if (varTypeIsFloating(dst))
    {
        // src1 can only be a reg
        assert(!src1->isContained());
        // src2 can only be a reg
        assert(!src2->isContained());
    }
    else // not floating point
    {
        // src2 can be immed or reg
        assert(!src2->isContained() || src2->isContainedIntOrIImmed());

        // Check src2 first as we can always allow it to be a contained immediate
        if (src2->isContainedIntOrIImmed())
        {
            intConst  = src2->AsIntConCommon();
            nonIntReg = src1;
        }
        // Only for commutative operations do we check src1 and allow it to be a contained immediate
        else if (dst->OperIsCommutative())
        {
            // src1 can be immed or reg
            assert(!src1->isContained() || src1->isContainedIntOrIImmed());

            // Check src1 and allow it to be a contained immediate
            if (src1->isContainedIntOrIImmed())
            {
                assert(!src2->isContainedIntOrIImmed());
                intConst  = src1->AsIntConCommon();
                nonIntReg = src2;
            }
        }
        else
        {
            // src1 can only be a reg
            assert(!src1->isContained());
        }
    }
    bool      isMulOverflow = false;
    bool      isUnsignedMul = false;
    regNumber extraReg      = REG_NA;
    if (dst->gtOverflowEx())
    {
        if (ins == INS_add)
        {
            ins = INS_adds;
        }
        else if (ins == INS_sub)
        {
            ins = INS_subs;
        }
        else if (ins == INS_mul)
        {
            isMulOverflow = true;
            isUnsignedMul = ((dst->gtFlags & GTF_UNSIGNED) != 0);
            assert(intConst == nullptr); // overflow format doesn't support an int constant operand
        }
        else
        {
            assert(!"Invalid ins for overflow check");
        }
    }
    if (intConst != nullptr)
    {
        emitIns_R_R_I(ins, attr, dst->gtRegNum, nonIntReg->gtRegNum, intConst->IconValue());
    }
    else
    {
        if (isMulOverflow)
        {
            // Make sure that we have an internal register
            assert(genCountBits(dst->gtRsvdRegs) == 2);

            // There will be two bits set in tmpRegsMask.
            // Remove the bit for 'dst->gtRegNum' from 'tmpRegsMask'
            regMaskTP tmpRegsMask = dst->gtRsvdRegs & ~genRegMask(dst->gtRegNum);
            assert(tmpRegsMask != RBM_NONE);
            regMaskTP tmpRegMask = genFindLowestBit(tmpRegsMask); // set tmpRegMsk to a one-bit mask
            extraReg             = genRegNumFromMask(tmpRegMask); // set tmpReg from that mask

            if (isUnsignedMul)
            {
                if (attr == EA_4BYTE)
                {
                    // Compute 8 byte results from 4 byte by 4 byte multiplication.
                    emitIns_R_R_R(INS_umull, EA_8BYTE, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum);

                    // Get the high result by shifting dst.
                    emitIns_R_R_I(INS_lsr, EA_8BYTE, extraReg, dst->gtRegNum, 32);
                }
                else
                {
                    assert(attr == EA_8BYTE);
                    // Compute the high result.
                    emitIns_R_R_R(INS_umulh, attr, extraReg, src1->gtRegNum, src2->gtRegNum);

                    // Now multiply without skewing the high result.
                    emitIns_R_R_R(ins, attr, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum);
                }

                // zero-sign bit comparision to detect overflow.
                emitIns_R_I(INS_cmp, attr, extraReg, 0);
            }
            else
            {
                int bitShift = 0;
                if (attr == EA_4BYTE)
                {
                    // Compute 8 byte results from 4 byte by 4 byte multiplication.
                    emitIns_R_R_R(INS_smull, EA_8BYTE, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum);

                    // Get the high result by shifting dst.
                    emitIns_R_R_I(INS_lsr, EA_8BYTE, extraReg, dst->gtRegNum, 32);

                    bitShift = 31;
                }
                else
                {
                    assert(attr == EA_8BYTE);
                    // Save the high result in a temporary register.
                    emitIns_R_R_R(INS_smulh, attr, extraReg, src1->gtRegNum, src2->gtRegNum);

                    // Now multiply without skewing the high result.
                    emitIns_R_R_R(ins, attr, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum);

                    bitShift = 63;
                }

                // Sign bit comparision to detect overflow.
                emitIns_R_R_I(INS_cmp, attr, extraReg, dst->gtRegNum, bitShift, INS_OPTS_ASR);
            }
        }
        else
        {
            // We can just multiply.
            emitIns_R_R_R(ins, attr, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum);
        }
    }

    if (dst->gtOverflowEx())
    {
        assert(!varTypeIsFloating(dst));
        codeGen->genCheckOverflow(dst);
    }

    return dst->gtRegNum;
}

#endif // defined(_TARGET_ARM64_)