summaryrefslogtreecommitdiff
path: root/src/jit/emit.h
blob: 5ec8a6af067077d14c7e8c845b9988db6526bb86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
/*****************************************************************************/

#ifndef _EMIT_H_
#define _EMIT_H_

#include "instr.h"

#ifndef _GCINFO_H_
#include "gcinfo.h"
#endif

#include "jitgcinfo.h"

/*****************************************************************************/
#ifdef TRANSLATE_PDB
#ifndef _ADDRMAP_INCLUDED_
#include "addrmap.h"
#endif
#ifndef _LOCALMAP_INCLUDED_
#include "localmap.h"
#endif
#ifndef _PDBREWRITE_H_
#include "pdbrewrite.h"
#endif
#endif // TRANSLATE_PDB

/*****************************************************************************/
#ifdef _MSC_VER
#pragma warning(disable : 4200) // allow arrays of 0 size inside structs
#endif
#define TRACK_GC_TEMP_LIFETIMES 0

/*****************************************************************************/

#if 0
#define EMITVERBOSE 1
#else
#define EMITVERBOSE (emitComp->verbose)
#endif

#if 0
#define EMIT_GC_VERBOSE 0
#else
#define EMIT_GC_VERBOSE (emitComp->verbose)
#endif

#if 1
#define EMIT_INSTLIST_VERBOSE 0
#else
#define EMIT_INSTLIST_VERBOSE (emitComp->verbose)
#endif

/*****************************************************************************/

#ifdef DEBUG
#define DEBUG_EMIT 1
#else
#define DEBUG_EMIT 0
#endif

#if EMITTER_STATS
void emitterStats(FILE* fout);
void emitterStaticStats(FILE* fout); // Static stats about the emitter (data structure offsets, sizes, etc.)
#endif

void printRegMaskInt(regMaskTP mask);

/*****************************************************************************/
/* Forward declarations */

class emitLocation;
class emitter;
struct insGroup;

typedef void (*emitSplitCallbackType)(void* context, emitLocation* emitLoc);

/*****************************************************************************/

//-----------------------------------------------------------------------------

inline bool needsGC(GCtype gcType)
{
    if (gcType == GCT_NONE)
    {
        return false;
    }
    else
    {
        assert(gcType == GCT_GCREF || gcType == GCT_BYREF);
        return true;
    }
}

//-----------------------------------------------------------------------------

#ifdef DEBUG

inline bool IsValidGCtype(GCtype gcType)
{
    return (gcType == GCT_NONE || gcType == GCT_GCREF || gcType == GCT_BYREF);
}

// Get a string name to represent the GC type

inline const char* GCtypeStr(GCtype gcType)
{
    switch (gcType)
    {
        case GCT_NONE:
            return "npt";
        case GCT_GCREF:
            return "gcr";
        case GCT_BYREF:
            return "byr";
        default:
            assert(!"Invalid GCtype");
            return "err";
    }
}

#endif // DEBUG

/*****************************************************************************/

#if DEBUG_EMIT
#define INTERESTING_JUMP_NUM -1 // set to 0 to see all jump info
//#define INTERESTING_JUMP_NUM    0
#endif

/*****************************************************************************
 *
 *  Represent an emitter location.
 */

class emitLocation
{
public:
    emitLocation() : ig(nullptr), codePos(0)
    {
    }

    emitLocation(insGroup* _ig) : ig(_ig), codePos(0)
    {
    }

    emitLocation(void* emitCookie) : ig((insGroup*)emitCookie), codePos(0)
    {
    }

    // A constructor for code that needs to call it explicitly.
    void Init()
    {
        this->emitLocation::emitLocation();
    }

    void CaptureLocation(emitter* emit);

    bool IsCurrentLocation(emitter* emit) const;

    // This function is highly suspect, since it presumes knowledge of the codePos "cookie",
    // and doesn't look at the 'ig' pointer.
    bool IsOffsetZero() const
    {
        return (codePos == 0);
    }

    UNATIVE_OFFSET CodeOffset(emitter* emit) const;

    insGroup* GetIG() const
    {
        return ig;
    }

    int GetInsNum() const;

    bool operator!=(const emitLocation& other) const
    {
        return (ig != other.ig) || (codePos != other.codePos);
    }

    bool operator==(const emitLocation& other) const
    {
        return !(*this != other);
    }

    bool Valid() const
    {
        // Things we could validate:
        //   1. the instruction group pointer is non-nullptr.
        //   2. 'ig' is a legal pointer to an instruction group.
        //   3. 'codePos' is a legal offset into 'ig'.
        // Currently, we just do #1.
        // #2 and #3 should only be done in DEBUG, if they are implemented.

        if (ig == nullptr)
        {
            return false;
        }

        return true;
    }

#ifdef _TARGET_AMD64_
    UNATIVE_OFFSET GetFuncletPrologOffset(emitter* emit) const;
#endif // _TARGET_AMD64_

#ifdef DEBUG
    void Print() const;
#endif // DEBUG

private:
    insGroup* ig;      // the instruction group
    unsigned  codePos; // the code position within the IG (see emitCurOffset())
};

/************************************************************************/
/*          The following describes an instruction group                */
/************************************************************************/

DECLARE_TYPED_ENUM(insGroupPlaceholderType, unsigned char)
{
    IGPT_PROLOG, // currently unused
        IGPT_EPILOG,
#if FEATURE_EH_FUNCLETS
        IGPT_FUNCLET_PROLOG, IGPT_FUNCLET_EPILOG,
#endif // FEATURE_EH_FUNCLETS
}
END_DECLARE_TYPED_ENUM(insGroupPlaceholderType, unsigned char)

#if defined(_MSC_VER) && defined(_TARGET_ARM_)
// ARM aligns structures that contain 64-bit ints or doubles on 64-bit boundaries. This causes unwanted
// padding to be added to the end, so sizeof() is unnecessarily big.
#pragma pack(push)
#pragma pack(4)
#endif // defined(_MSC_VER) && defined(_TARGET_ARM_)

struct insPlaceholderGroupData
{
    insGroup*               igPhNext;
    BasicBlock*             igPhBB;
    VARSET_TP               igPhInitGCrefVars;
    regMaskTP               igPhInitGCrefRegs;
    regMaskTP               igPhInitByrefRegs;
    VARSET_TP               igPhPrevGCrefVars;
    regMaskTP               igPhPrevGCrefRegs;
    regMaskTP               igPhPrevByrefRegs;
    insGroupPlaceholderType igPhType;
}; // end of struct insPlaceholderGroupData

struct insGroup
{
    insGroup* igNext;

#ifdef DEBUG
    insGroup* igSelf; // for consistency checking
#endif

    UNATIVE_OFFSET igNum;     // for ordering (and display) purposes
    UNATIVE_OFFSET igOffs;    // offset of this group within method
    unsigned int   igFuncIdx; // Which function/funclet does this belong to? (Index into Compiler::compFuncInfos array.)
    unsigned short igFlags;   // see IGF_xxx below
    unsigned short igSize;    // # of bytes of code in this group

#define IGF_GC_VARS 0x0001    // new set of live GC ref variables
#define IGF_BYREF_REGS 0x0002 // new set of live by-ref registers
#if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)
#define IGF_FINALLY_TARGET 0x0004 // this group is the start of a basic block that is returned to after a finally.
#endif                            // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)
#define IGF_FUNCLET_PROLOG 0x0008 // this group belongs to a funclet prolog
#define IGF_FUNCLET_EPILOG 0x0010 // this group belongs to a funclet epilog.
#define IGF_EPILOG 0x0020         // this group belongs to a main function epilog
#define IGF_NOGCINTERRUPT 0x0040  // this IG is is a no-interrupt region (prolog, epilog, etc.)
#define IGF_UPD_ISZ 0x0080        // some instruction sizes updated
#define IGF_PLACEHOLDER 0x0100    // this is a placeholder group, to be filled in later
#define IGF_EMIT_ADD 0x0200       // this is a block added by the emitter
                                  // because the codegen block was too big. Also used for
                                  // placeholder IGs that aren't also labels.

// Mask of IGF_* flags that should be propagated to new blocks when they are created.
// This allows prologs and epilogs to be any number of IGs, but still be
// automatically marked properly.
#if FEATURE_EH_FUNCLETS
#ifdef DEBUG
#define IGF_PROPAGATE_MASK (IGF_EPILOG | IGF_FUNCLET_PROLOG | IGF_FUNCLET_EPILOG)
#else // DEBUG
#define IGF_PROPAGATE_MASK (IGF_EPILOG | IGF_FUNCLET_PROLOG)
#endif // DEBUG
#else  // FEATURE_EH_FUNCLETS
#define IGF_PROPAGATE_MASK (IGF_EPILOG)
#endif // FEATURE_EH_FUNCLETS

    // Try to do better packing based on how large regMaskSmall is (8, 16, or 64 bits).
    CLANG_FORMAT_COMMENT_ANCHOR;
#if REGMASK_BITS <= 32

    union {
        BYTE*                    igData;   // addr of instruction descriptors
        insPlaceholderGroupData* igPhData; // when igFlags & IGF_PLACEHOLDER
    };

#if EMIT_TRACK_STACK_DEPTH
    unsigned igStkLvl; // stack level on entry
#endif
    regMaskSmall  igGCregs; // set of registers with live GC refs
    unsigned char igInsCnt; // # of instructions  in this group

#else // REGMASK_BITS

    regMaskSmall igGCregs; // set of registers with live GC refs

    union {
        BYTE*                    igData;   // addr of instruction descriptors
        insPlaceholderGroupData* igPhData; // when igFlags & IGF_PLACEHOLDER
    };

#if EMIT_TRACK_STACK_DEPTH
    unsigned igStkLvl; // stack level on entry
#endif

    unsigned char igInsCnt; // # of instructions  in this group

#endif // REGMASK_BITS

    VARSET_VALRET_TP igGCvars() const
    {
        assert(igFlags & IGF_GC_VARS);

        BYTE* ptr = (BYTE*)igData;
        ptr -= sizeof(VARSET_TP);

        return *(VARSET_TP*)ptr;
    }

    unsigned igByrefRegs() const
    {
        assert(igFlags & IGF_BYREF_REGS);

        BYTE* ptr = (BYTE*)igData;

        if (igFlags & IGF_GC_VARS)
        {
            ptr -= sizeof(VARSET_TP);
        }

        ptr -= sizeof(unsigned);

        return *(unsigned*)ptr;
    }

}; // end of struct insGroup

//  For AMD64 the maximum prolog/epilog size supported on the OS is 256 bytes
//  Since it is incorrect for us to be jumping across funclet prolog/epilogs
//  we will use the following estimate as the maximum placeholder size.
//
#define MAX_PLACEHOLDER_IG_SIZE 256

#if defined(_MSC_VER) && defined(_TARGET_ARM_)
#pragma pack(pop)
#endif // defined(_MSC_VER) && defined(_TARGET_ARM_)

/*****************************************************************************/

#define DEFINE_ID_OPS
#include "emitfmts.h"
#undef DEFINE_ID_OPS

enum LclVarAddrTag
{
    LVA_STANDARD_ENCODING = 0,
    LVA_LARGE_OFFSET      = 1,
    LVA_COMPILER_TEMP     = 2,
    LVA_LARGE_VARNUM      = 3
};

struct emitLclVarAddr
{
    // Constructor
    void initLclVarAddr(int varNum, unsigned offset);

    int lvaVarNum(); // Returns the variable to access. Note that it returns a negative number for compiler spill temps.
    unsigned lvaOffset(); // returns the offset into the variable to access

    // This struct should be 32 bits in size for the release build.
    // We have this constraint because this type is used in a union
    // with several other pointer sized types in the instrDesc struct.
    //
protected:
    unsigned _lvaVarNum : 15; // Usually the lvaVarNum
    unsigned _lvaExtra : 15;  // Usually the lvaOffset
    unsigned _lvaTag : 2;     // tag field to support larger varnums
};

enum idAddrUnionTag
{
    iaut_ALIGNED_POINTER = 0x0,
    iaut_DATA_OFFSET     = 0x1,
    iaut_INST_COUNT      = 0x2,
    iaut_UNUSED_TAG      = 0x3,

    iaut_MASK  = 0x3,
    iaut_SHIFT = 2
};

class emitter
{
    friend class emitLocation;
    friend class Compiler;
    friend class CodeGen;
    friend class CodeGenInterface;

public:
    /*************************************************************************
     *
     *  Define the public entry points.
     */

    // Constructor.
    emitter()
    {
#ifdef DEBUG
        // There seem to be some cases where this is used without being initialized via CodeGen::inst_set_SV_var().
        emitVarRefOffs = 0;
#endif // DEBUG

#ifdef _TARGET_XARCH_
        SetUseSSE3_4(false);
#endif // _TARGET_XARCH_

#ifdef FEATURE_AVX_SUPPORT
        SetUseAVX(false);
#endif // FEATURE_AVX_SUPPORT
    }

#include "emitpub.h"

protected:
    /************************************************************************/
    /*                        Miscellaneous stuff                           */
    /************************************************************************/

    Compiler* emitComp;
    GCInfo*   gcInfo;
    CodeGen*  codeGen;

    typedef GCInfo::varPtrDsc varPtrDsc;
    typedef GCInfo::regPtrDsc regPtrDsc;
    typedef GCInfo::CallDsc   callDsc;

    void* emitGetMem(size_t sz);

    DECLARE_TYPED_ENUM(opSize, unsigned)
    {
        OPSZ1 = 0, OPSZ2 = 1, OPSZ4 = 2, OPSZ8 = 3, OPSZ16 = 4, OPSZ32 = 5, OPSZ_COUNT = 6,
#ifdef _TARGET_AMD64_
        OPSZP = OPSZ8,
#else
        OPSZP = OPSZ4,
#endif
    }
    END_DECLARE_TYPED_ENUM(opSize, unsigned)

#define OPSIZE_INVALID ((opSize)0xffff)

    static const emitter::opSize emitSizeEncode[];
    static const emitAttr        emitSizeDecode[];

    static emitter::opSize emitEncodeSize(emitAttr size);
    static emitAttr emitDecodeSize(emitter::opSize ensz);

    // Currently, we only allow one IG for the prolog
    bool emitIGisInProlog(const insGroup* ig)
    {
        return ig == emitPrologIG;
    }

    bool emitIGisInEpilog(const insGroup* ig)
    {
        return (ig != nullptr) && ((ig->igFlags & IGF_EPILOG) != 0);
    }

#if FEATURE_EH_FUNCLETS

    bool emitIGisInFuncletProlog(const insGroup* ig)
    {
        return (ig != nullptr) && ((ig->igFlags & IGF_FUNCLET_PROLOG) != 0);
    }

    bool emitIGisInFuncletEpilog(const insGroup* ig)
    {
        return (ig != nullptr) && ((ig->igFlags & IGF_FUNCLET_EPILOG) != 0);
    }

#endif // FEATURE_EH_FUNCLETS

    // If "ig" corresponds to the start of a basic block that is the
    // target of a funclet return, generate GC information for it's start
    // address "cp", as if it were the return address of a call.
    void emitGenGCInfoIfFuncletRetTarget(insGroup* ig, BYTE* cp);

    void emitRecomputeIGoffsets();

    /************************************************************************/
    /*          The following describes a single instruction                */
    /************************************************************************/

    DECLARE_TYPED_ENUM(insFormat, unsigned)
    {
#define IF_DEF(en, op1, op2) IF_##en,
#include "emitfmts.h"

        IF_COUNT
    }
    END_DECLARE_TYPED_ENUM(insFormat, unsigned)

#define AM_DISP_BITS ((sizeof(unsigned) * 8) - 2 * (REGNUM_BITS + 1) - 2)
#define AM_DISP_BIG_VAL (-(1 << (AM_DISP_BITS - 1)))
#define AM_DISP_MIN (-((1 << (AM_DISP_BITS - 1)) - 1))
#define AM_DISP_MAX (+((1 << (AM_DISP_BITS - 1)) - 1))

    struct emitAddrMode
    {
        regNumber       amBaseReg : REGNUM_BITS + 1;
        regNumber       amIndxReg : REGNUM_BITS + 1;
        emitter::opSize amScale : 2;
        int             amDisp : AM_DISP_BITS;
    };

#if defined(DEBUG) || defined(LATE_DISASM) // LATE_DISASM needs the idMemCookie on calls to display the call target name

    struct instrDesc;

    struct instrDescDebugInfo
    {
        unsigned idNum;
        size_t   idSize;       // size of the instruction descriptor
        unsigned idVarRefOffs; // IL offset for LclVar reference
        size_t   idMemCookie;  // for display of member names in addr modes
        void*    idClsCookie;  // for display of member names in addr modes
#ifdef TRANSLATE_PDB
        unsigned int idilStart; // instruction descriptor source information for PDB translation
#endif
        bool              idFinallyCall; // Branch instruction is a call to finally
        bool              idCatchRet;    // Instruction is for a catch 'return'
        CORINFO_SIG_INFO* idCallSig;     // Used to report native call site signatures to the EE
    };

#endif // defined(DEBUG) || defined(LATE_DISASM)

#ifdef _TARGET_ARM_
    unsigned insEncodeSetFlags(insFlags sf);

    DECLARE_TYPED_ENUM(insSize, unsigned)
    {
        ISZ_16BIT, ISZ_32BIT, ISZ_48BIT // pseudo-instruction for conditional branch with imm24 range,
                                        // encoded as IT of condition followed by an unconditional branch
    }
    END_DECLARE_TYPED_ENUM(insSize, unsigned)

    unsigned insEncodeShiftOpts(insOpts opt);
    unsigned insEncodePUW_G0(insOpts opt, int imm);
    unsigned insEncodePUW_H0(insOpts opt, int imm);

#endif // _TARGET_ARM_

#if defined(_TARGET_X86_) && defined(LEGACY_BACKEND)
#define HAS_TINY_DESC 1
#else
#define HAS_TINY_DESC 0
#endif

    struct instrDescCns;

    struct instrDesc
    {
    private:
#if defined(_TARGET_XARCH_) && !defined(LEGACY_BACKEND)
        // The assembly instruction
        instruction _idIns : 9;
#else  // !defined(_TARGET_XARCH_) || defined(LEGACY_BACKEND)
        // The assembly instruction
        instruction _idIns : 8;
#endif // !defined(_TARGET_XARCH_) || defined(LEGACY_BACKEND)
        // The format for the instruction
        insFormat _idInsFmt : 8;

    public:
        instruction idIns() const
        {
            return _idIns;
        }
        void idIns(instruction ins)
        {
            _idIns = ins;
            assert(_idIns == ins);
        }

        insFormat idInsFmt() const
        {
            return _idInsFmt;
        }
        void idInsFmt(insFormat insFmt)
        {
#if defined(_TARGET_ARM64_)
            noway_assert(insFmt != IF_NONE); // Only the x86 emitter uses IF_NONE, it is invalid for ARM64 (and ARM32)
#endif
            _idInsFmt = insFmt;
            assert(_idInsFmt == insFmt);
        }

        /*
            The idReg1 and idReg2 fields hold the first and second register
            operand(s), whenever these are present. Note that the size of
            these fields ranges from 3 to 6 bits, and care needs to be taken
            to make sure all of these fields stay reasonably packed.
         */

        void idSetRelocFlags(emitAttr attr)
        {
            _idCnsReloc = (EA_IS_CNS_RELOC(attr) ? 1 : 0);
            _idDspReloc = (EA_IS_DSP_RELOC(attr) ? 1 : 0);
        }

        ////////////////////////////////////////////////////////////////////////
        // Space taken up to here:
        // x86:   16 bits
        // amd64: 17 bits
        // arm:   16 bits
        // arm64: 16 bits

    private:
#ifdef _TARGET_XARCH_
        unsigned _idCodeSize : 4; // size of instruction in bytes
#endif

#if defined(_TARGET_XARCH_) && !defined(LEGACY_BACKEND)
        opSize _idOpSize : 3; // operand size: 0=1 , 1=2 , 2=4 , 3=8, 4=16, 5=32
                              // At this point we have fully consumed first DWORD so that next field
                              // doesn't cross a byte boundary.
#elif defined(_TARGET_ARM64_)
// Moved the definition of '_idOpSize' later so that we don't cross a 32-bit boundary when laying out bitfields
#else  // ARM or x86-LEGACY_BACKEND
        opSize _idOpSize : 2; // operand size: 0=1 , 1=2 , 2=4 , 3=8
#endif // ARM or x86-LEGACY_BACKEND

        // On Amd64, this is where the second DWORD begins
        // On System V a call could return a struct in 2 registers. The instrDescCGCA struct below has  member that
        // stores the GC-ness of the second register.
        // It is added to the instrDescCGCA and not here (the base struct) since it is not needed by all the
        // instructions. This struct (instrDesc) is very carefully kept to be no more than 128 bytes. There is no more
        // space to add members for keeping GC-ness of the second return registers. It will also bloat the base struct
        // unnecessarily since the GC-ness of the second register is only needed for call instructions.
        // The instrDescCGCA struct's member keeping the GC-ness of the first return register is _idcSecondRetRegGCType.
        GCtype _idGCref : 2; // GCref operand? (value is a "GCtype")

        // Note that we use the _idReg1 and _idReg2 fields to hold
        // the live gcrefReg mask for the call instructions on x86/x64
        //
        regNumber _idReg1 : REGNUM_BITS; // register num

        regNumber _idReg2 : REGNUM_BITS;

        ////////////////////////////////////////////////////////////////////////
        // Space taken up to here:
        // x86:   30 bits
        // amd64: 38 bits
        // arm:   32 bits
        // arm64: 30 bits
        CLANG_FORMAT_COMMENT_ANCHOR;

#if HAS_TINY_DESC
        //
        // For x86 use last two bits to differentiate if we are tiny or small
        //
        unsigned _idTinyDsc : 1;  // is this a "tiny"  descriptor?
        unsigned _idSmallDsc : 1; // is this a "small" descriptor?

#else // !HAS_TINY_DESC

        //
        // On x86/arm platforms we have used 32 bits so far (4 bytes)
        // On amd64 we have used 38 bits so far (4 bytes + 6 bits)
        //

        //
        // For amd64 we just can't fit anything useful into a single DWORD
        // So we eliminate the notion of 'tiny', and have small (2 DWORDS)
        // or not small (which is bigger, just like x86)
        //

        unsigned _idSmallDsc : 1;  // is this a "small" descriptor?
        unsigned _idLargeCns : 1;  // does a large constant     follow?
        unsigned _idLargeDsp : 1;  // does a large displacement follow?
        unsigned _idLargeCall : 1; // large call descriptor used

        unsigned _idBound : 1;      // jump target / frame offset bound
        unsigned _idCallRegPtr : 1; // IL indirect calls: addr in reg
        unsigned _idCallAddr : 1;   // IL indirect calls: can make a direct call to iiaAddr
        unsigned _idNoGC : 1;       // Some helpers don't get recorded in GC tables

#ifdef _TARGET_ARM64_
        opSize   _idOpSize : 3;     // operand size: 0=1 , 1=2 , 2=4 , 3=8, 4=16
        insOpts  _idInsOpt : 6;     // options for instructions
        unsigned _idLclVar : 1;     // access a local on stack
#endif

#ifdef _TARGET_ARM_
        insSize  _idInsSize : 2;    // size of instruction: 16, 32 or 48 bits
        insFlags _idInsFlags : 1;   // will this instruction set the flags
        unsigned _idLclVar : 1;     // access a local on stack
        unsigned _idLclFPBase : 1;  // access a local on stack - SP based offset
        insOpts  _idInsOpt : 3;     // options for Load/Store instructions

// For arm we have used 16 bits
#define ID_EXTRA_BITFIELD_BITS (16)

#elif defined(_TARGET_ARM64_)
// For Arm64, we have used 16 bits from the second DWORD.
#define ID_EXTRA_BITFIELD_BITS (16)
#elif defined(_TARGET_XARCH_) && !defined(LEGACY_BACKEND)
// For xarch !LEGACY_BACKEND, we have used 14 bits from the second DWORD.
#define ID_EXTRA_BITFIELD_BITS (14)
#elif defined(_TARGET_X86_)
// For x86, we have used 6 bits from the second DWORD.
#define ID_EXTRA_BITFIELD_BITS (6)
#else
#error Unsupported or unset target architecture
#endif

        ////////////////////////////////////////////////////////////////////////
        // Space taken up to here:
        // x86:   38 bits  // if HAS_TINY_DESC is not defined (which it is)
        // amd64: 46 bits
        // arm:   48 bits
        // arm64: 48 bits
        CLANG_FORMAT_COMMENT_ANCHOR;

        unsigned _idCnsReloc : 1; // LargeCns is an RVA and needs reloc tag
        unsigned _idDspReloc : 1; // LargeDsp is an RVA and needs reloc tag

#define ID_EXTRA_RELOC_BITS (2)

        ////////////////////////////////////////////////////////////////////////
        // Space taken up to here:
        // x86:   40 bits
        // amd64: 48 bits
        // arm:   50 bits
        // arm64: 50 bits
        CLANG_FORMAT_COMMENT_ANCHOR;

#define ID_EXTRA_BITS (ID_EXTRA_RELOC_BITS + ID_EXTRA_BITFIELD_BITS)

/* Use whatever bits are left over for small constants */

#define ID_BIT_SMALL_CNS (32 - ID_EXTRA_BITS)
#define ID_MIN_SMALL_CNS 0
#define ID_MAX_SMALL_CNS (int)((1 << ID_BIT_SMALL_CNS) - 1U)

        ////////////////////////////////////////////////////////////////////////
        // Small constant size:
        // x86:   24 bits
        // amd64: 16 bits
        // arm:   14 bits
        // arm64: 14 bits

        unsigned _idSmallCns : ID_BIT_SMALL_CNS;

        ////////////////////////////////////////////////////////////////////////
        // Space taken up to here: 64 bits, all architectures, by design.
        ////////////////////////////////////////////////////////////////////////
        CLANG_FORMAT_COMMENT_ANCHOR;

#endif // !HAS_TINY_DESC

#if defined(DEBUG) || defined(LATE_DISASM)

        instrDescDebugInfo* _idDebugOnlyInfo;

    public:
        instrDescDebugInfo* idDebugOnlyInfo() const
        {
            return _idDebugOnlyInfo;
        }
        void idDebugOnlyInfo(instrDescDebugInfo* info)
        {
            _idDebugOnlyInfo = info;
        }

    private:
#endif // defined(DEBUG) || defined(LATE_DISASM)

        //
        // This is the end of the smallest instrDesc we can allocate for all
        //   platforms.
        // Non-DEBUG sizes:
        //   x86: 32 bits, and it is called the 'tiny' descriptor.
        //   amd64/arm/arm64: 64 bits, and it is called the 'small' descriptor.
        // DEBUG sizes (includes one pointer):
        //   x86:   2 DWORDs, 64 bits
        //   amd64: 4 DWORDs, 128 bits
        //   arm:   3 DWORDs, 96 bits
        //   arm64: 4 DWORDs, 128 bits
        // There should no padding or alignment issues on any platform or
        //   configuration (including DEBUG which has 1 extra pointer).
        //
        CLANG_FORMAT_COMMENT_ANCHOR;

#if HAS_TINY_DESC

        unsigned _idLargeCns : 1;  // does a large constant     follow?
        unsigned _idLargeDsp : 1;  // does a large displacement follow?
        unsigned _idLargeCall : 1; // large call descriptor used
        unsigned _idBound : 1;     // jump target / frame offset bound

        unsigned _idCallRegPtr : 1; // IL indirect calls: addr in reg
        unsigned _idCallAddr : 1;   // IL indirect calls: can make a direct call to iiaAddr
        unsigned _idNoGC : 1;       // Some helpers don't get recorded in GC tables

#define ID_EXTRA_BITFIELD_BITS (7)

        //
        // For x86, we are using  7 bits from the second DWORD for bitfields.
        //

        unsigned _idCnsReloc : 1; // LargeCns is an RVA and needs reloc tag
        unsigned _idDspReloc : 1; // LargeDsp is an RVA and needs reloc tag

#define ID_EXTRA_REG_BITS (0)

#define ID_EXTRA_BITS (ID_EXTRA_BITFIELD_BITS + ID_EXTRA_RELOC_BITS + ID_EXTRA_REG_BITS)

/* Use whatever bits are left over for small constants */

#define ID_BIT_SMALL_CNS (32 - ID_EXTRA_BITS)
#define ID_MIN_SMALL_CNS 0
#define ID_MAX_SMALL_CNS (int)((1 << ID_BIT_SMALL_CNS) - 1U)

        // For x86 we have 23 bits remaining for the
        //   small constant in this extra DWORD.

        unsigned _idSmallCns : ID_BIT_SMALL_CNS;

#endif // HAS_TINY_DESC

//
// This is the end of the 'small' instrDesc which is the same on all
//   platforms (except 64-bit DEBUG which is a little bigger).
// Non-DEBUG sizes:
//   x86/amd64/arm/arm64: 64 bits
// DEBUG sizes (includes one pointer):
//   x86:   2 DWORDs, 64 bits
//   amd64: 4 DWORDs, 128 bits
//   arm:   3 DWORDs, 96 bits
//   arm64: 4 DWORDs, 128 bits
// There should no padding or alignment issues on any platform or
//   configuration (including DEBUG which has 1 extra pointer).
//

/*
    If you add lots more fields that need to be cleared (such
    as various flags), you might need to update the body of
    emitter::emitAllocInstr() to clear them.
 */

#if defined(DEBUG) || defined(LATE_DISASM)
#define TINY_IDSC_DEBUG_EXTRA (sizeof(void*))
#else
#define TINY_IDSC_DEBUG_EXTRA (0)
#endif

#if HAS_TINY_DESC
#define TINY_IDSC_SIZE (4 + TINY_IDSC_DEBUG_EXTRA)
#define SMALL_IDSC_SIZE (8 + TINY_IDSC_DEBUG_EXTRA)
#else
#define TINY_IDSC_SIZE (8 + TINY_IDSC_DEBUG_EXTRA)
#define SMALL_IDSC_SIZE TINY_IDSC_SIZE
#endif

        void checkSizes();

        union idAddrUnion {
// TODO-Cleanup: We should really add a DEBUG-only tag to this union so we can add asserts
// about reading what we think is here, to avoid unexpected corruption issues.

#ifndef _TARGET_ARM64_
            emitLclVarAddr iiaLclVar;
#endif
            BasicBlock*  iiaBBlabel;
            insGroup*    iiaIGlabel;
            BYTE*        iiaAddr;
            emitAddrMode iiaAddrMode;

            CORINFO_FIELD_HANDLE iiaFieldHnd; // iiaFieldHandle is also used to encode
                                              // an offset into the JIT data constant area
            bool iiaIsJitDataOffset() const;
            int  iiaGetJitDataOffset() const;

#ifdef _TARGET_ARMARCH_

            // iiaEncodedInstrCount and its accessor functions are used to specify an instruction
            // count for jumps, instead of using a label and multiple blocks. This is used in the
            // prolog as well as for IF_LARGEJMP pseudo-branch instructions.
            int iiaEncodedInstrCount;

            bool iiaHasInstrCount() const
            {
                return (iiaEncodedInstrCount & iaut_MASK) == iaut_INST_COUNT;
            }
            int iiaGetInstrCount() const
            {
                assert(iiaHasInstrCount());
                return (iiaEncodedInstrCount >> iaut_SHIFT);
            }
            void iiaSetInstrCount(int count)
            {
                assert(abs(count) < 10);
                iiaEncodedInstrCount = (count << iaut_SHIFT) | iaut_INST_COUNT;
            }

            struct
            {
#ifdef _TARGET_ARM64_
                // For 64-bit architecture this 32-bit structure can pack with these unsigned bit fields
                emitLclVarAddr iiaLclVar;
                unsigned       _idReg3Scaled : 1; // Reg3 is scaled by idOpSize bits
                GCtype         _idGCref2 : 2;
#endif
                regNumber _idReg3 : REGNUM_BITS;
                regNumber _idReg4 : REGNUM_BITS;
            };
#elif defined(_TARGET_XARCH_) && !defined(LEGACY_BACKEND)
            struct
            {
                regNumber _idReg3 : REGNUM_BITS;
            };
#endif // defined(_TARGET_XARCH_) && !defined(LEGACY_BACKEND)

        } _idAddrUnion;

        /* Trivial wrappers to return properly typed enums */
    public:
#if HAS_TINY_DESC

        bool idIsTiny() const
        {
            return (_idTinyDsc != 0);
        }
        void idSetIsTiny()
        {
            _idTinyDsc = 1;
        }

#else

        bool idIsTiny() const
        {
            return false;
        }
        void idSetIsTiny()
        {
            _idSmallDsc = 1;
        }

#endif // HAS_TINY_DESC

        bool idIsSmallDsc() const
        {
            return (_idSmallDsc != 0);
        }
        void idSetIsSmallDsc()
        {
            _idSmallDsc = 1;
        }

#if defined(_TARGET_XARCH_)

        unsigned idCodeSize() const
        {
            return _idCodeSize;
        }
        void idCodeSize(unsigned sz)
        {
            _idCodeSize = sz;
            assert(sz == _idCodeSize);
        }

#elif defined(_TARGET_ARM64_)
        unsigned idCodeSize() const
        {
            int size = 4;
            switch (idInsFmt())
            {
                case IF_LARGEADR:
                // adrp + add
                case IF_LARGEJMP:
                    // b<cond> + b<uncond>
                    size = 8;
                    break;
                case IF_LARGELDC:
                    if (isVectorRegister(idReg1()))
                    {
                        // adrp + ldr + fmov
                        size = 12;
                    }
                    else
                    {
                        // adrp + ldr
                        size = 8;
                    }
                    break;
                default:
                    break;
            }

            return size;
        }

#elif defined(_TARGET_ARM_)

        bool idInstrIsT1() const
        {
            return (_idInsSize == ISZ_16BIT);
        }
        unsigned idCodeSize() const
        {
            unsigned result = (_idInsSize == ISZ_16BIT) ? 2 : (_idInsSize == ISZ_32BIT) ? 4 : 6;
            return result;
        }
        insSize idInsSize() const
        {
            return _idInsSize;
        }
        void idInsSize(insSize isz)
        {
            _idInsSize = isz;
            assert(isz == _idInsSize);
        }
        insFlags idInsFlags() const
        {
            return _idInsFlags;
        }
        void idInsFlags(insFlags sf)
        {
            _idInsFlags = sf;
            assert(sf == _idInsFlags);
        }
#endif // _TARGET_ARM_

        emitAttr idOpSize()
        {
            return emitDecodeSize(_idOpSize);
        }
        void idOpSize(emitAttr opsz)
        {
            _idOpSize = emitEncodeSize(opsz);
        }

        GCtype idGCref() const
        {
            return (GCtype)_idGCref;
        }
        void idGCref(GCtype gctype)
        {
            _idGCref = gctype;
        }

        regNumber idReg1() const
        {
            return _idReg1;
        }
        void idReg1(regNumber reg)
        {
            _idReg1 = reg;
            assert(reg == _idReg1);
        }

#ifdef _TARGET_ARM64_
        GCtype idGCrefReg2() const
        {
            assert(!idIsTiny());
            assert(!idIsSmallDsc());
            return (GCtype)idAddr()->_idGCref2;
        }
        void idGCrefReg2(GCtype gctype)
        {
            assert(!idIsTiny());
            assert(!idIsSmallDsc());
            idAddr()->_idGCref2 = gctype;
        }
#endif // _TARGET_ARM64_

        regNumber idReg2() const
        {
            return _idReg2;
        }
        void idReg2(regNumber reg)
        {
            _idReg2 = reg;
            assert(reg == _idReg2);
        }

#if defined(_TARGET_XARCH_) && !defined(LEGACY_BACKEND)
        regNumber idReg3() const
        {
            assert(!idIsTiny());
            assert(!idIsSmallDsc());
            return idAddr()->_idReg3;
        }
        void idReg3(regNumber reg)
        {
            assert(!idIsTiny());
            assert(!idIsSmallDsc());
            idAddr()->_idReg3 = reg;
            assert(reg == idAddr()->_idReg3);
        }
#endif // defined(_TARGET_XARCH_) && !defined(LEGACY_BACKEND)
#ifdef _TARGET_ARMARCH_
        insOpts idInsOpt() const
        {
            return (insOpts)_idInsOpt;
        }
        void idInsOpt(insOpts opt)
        {
            _idInsOpt = opt;
            assert(opt == _idInsOpt);
        }

        regNumber idReg3() const
        {
            assert(!idIsTiny());
            assert(!idIsSmallDsc());
            return idAddr()->_idReg3;
        }
        void idReg3(regNumber reg)
        {
            assert(!idIsTiny());
            assert(!idIsSmallDsc());
            idAddr()->_idReg3 = reg;
            assert(reg == idAddr()->_idReg3);
        }
        regNumber idReg4() const
        {
            assert(!idIsTiny());
            assert(!idIsSmallDsc());
            return idAddr()->_idReg4;
        }
        void idReg4(regNumber reg)
        {
            assert(!idIsTiny());
            assert(!idIsSmallDsc());
            idAddr()->_idReg4 = reg;
            assert(reg == idAddr()->_idReg4);
        }
#ifdef _TARGET_ARM64_
        bool idReg3Scaled() const
        {
            assert(!idIsTiny());
            assert(!idIsSmallDsc());
            return (idAddr()->_idReg3Scaled == 1);
        }
        void idReg3Scaled(bool val)
        {
            assert(!idIsTiny());
            assert(!idIsSmallDsc());
            idAddr()->_idReg3Scaled = val ? 1 : 0;
        }
#endif // _TARGET_ARM64_

#endif // _TARGET_ARMARCH_

        inline static bool fitsInSmallCns(ssize_t val)
        {
            return ((val >= ID_MIN_SMALL_CNS) && (val <= ID_MAX_SMALL_CNS));
        }

        bool idIsLargeCns() const
        {
            assert(!idIsTiny());
            return _idLargeCns != 0;
        }
        void idSetIsLargeCns()
        {
            assert(!idIsTiny());
            _idLargeCns = 1;
        }

        bool idIsLargeDsp() const
        {
            assert(!idIsTiny());
            return _idLargeDsp != 0;
        }
        void idSetIsLargeDsp()
        {
            assert(!idIsTiny());
            _idLargeDsp = 1;
        }
        void idSetIsSmallDsp()
        {
            assert(!idIsTiny());
            _idLargeDsp = 0;
        }

        bool idIsLargeCall() const
        {
            assert(!idIsTiny());
            return _idLargeCall != 0;
        }
        void idSetIsLargeCall()
        {
            assert(!idIsTiny());
            _idLargeCall = 1;
        }

        bool idIsBound() const
        {
            assert(!idIsTiny());
            return _idBound != 0;
        }
        void idSetIsBound()
        {
            assert(!idIsTiny());
            _idBound = 1;
        }

        bool idIsCallRegPtr() const
        {
            assert(!idIsTiny());
            return _idCallRegPtr != 0;
        }
        void idSetIsCallRegPtr()
        {
            assert(!idIsTiny());
            _idCallRegPtr = 1;
        }

        bool idIsCallAddr() const
        {
            assert(!idIsTiny());
            return _idCallAddr != 0;
        }
        void idSetIsCallAddr()
        {
            assert(!idIsTiny());
            _idCallAddr = 1;
        }

        // Only call instructions that call helper functions may be marked as "IsNoGC", indicating
        // that a thread executing such a call cannot be stopped for GC.  Thus, in partially-interruptible
        // code, it is not necessary to generate GC info for a call so labeled.
        bool idIsNoGC() const
        {
            assert(!idIsTiny());
            return _idNoGC != 0;
        }
        void idSetIsNoGC(bool val)
        {
            assert(!idIsTiny());
            _idNoGC = val;
        }

#ifdef _TARGET_ARMARCH_
        bool idIsLclVar() const
        {
            return !idIsTiny() && _idLclVar != 0;
        }
        void idSetIsLclVar()
        {
            assert(!idIsTiny());
            _idLclVar = 1;
        }
#endif // _TARGET_ARMARCH_

#if defined(_TARGET_ARM_)
        bool idIsLclFPBase() const
        {
            return !idIsTiny() && _idLclFPBase != 0;
        }
        void idSetIsLclFPBase()
        {
            assert(!idIsTiny());
            _idLclFPBase = 1;
        }
#endif // defined(_TARGET_ARM_)

        bool idIsCnsReloc() const
        {
            assert(!idIsTiny());
            return _idCnsReloc != 0;
        }
        void idSetIsCnsReloc()
        {
            assert(!idIsTiny());
            _idCnsReloc = 1;
        }

        bool idIsDspReloc() const
        {
            assert(!idIsTiny());
            return _idDspReloc != 0;
        }
        void idSetIsDspReloc(bool val = true)
        {
            assert(!idIsTiny());
            _idDspReloc = val;
        }
        bool idIsReloc()
        {
            return idIsDspReloc() || idIsCnsReloc();
        }

        unsigned idSmallCns() const
        {
            assert(!idIsTiny());
            return _idSmallCns;
        }
        void idSmallCns(size_t value)
        {
            assert(!idIsTiny());
            assert(fitsInSmallCns(value));
            _idSmallCns = value;
        }

        inline const idAddrUnion* idAddr() const
        {
            assert(!idIsSmallDsc() && !idIsTiny());
            return &this->_idAddrUnion;
        }

        inline idAddrUnion* idAddr()
        {
            assert(!idIsSmallDsc() && !idIsTiny());
            return &this->_idAddrUnion;
        }
    }; // End of  struct instrDesc

    void dispIns(instrDesc* id);

    void appendToCurIG(instrDesc* id);

    /********************************************************************************************/

    struct instrDescJmp : instrDesc
    {
        instrDescJmp* idjNext; // next jump in the group/method
        insGroup*     idjIG;   // containing group

        union {
            BYTE* idjAddr; // address of jump ins (for patching)
        } idjTemp;

        unsigned idjOffs : 30;    // Before jump emission, this is the byte offset within IG of the jump instruction.
                                  // After emission, for forward jumps, this is the target offset -- in bytes from the
                                  // beginning of the function -- of the target instruction of the jump, used to
                                  // determine if this jump needs to be patched.
        unsigned idjShort : 1;    // is the jump known to be a short  one?
        unsigned idjKeepLong : 1; // should the jump be kept long? (used for
                                  // hot to cold and cold to hot jumps)
    };

#if !defined(_TARGET_ARM64_) // This shouldn't be needed for ARM32, either, but I don't want to touch the ARM32 JIT.
    struct instrDescLbl : instrDescJmp
    {
        emitLclVarAddr dstLclVar;
    };
#endif // !_TARGET_ARM64_

    struct instrDescCns : instrDesc // large const
    {
        ssize_t idcCnsVal;
    };

    struct instrDescDsp : instrDesc // large displacement
    {
        ssize_t iddDspVal;
    };

    struct instrDescCnsDsp : instrDesc // large cons + disp
    {
        ssize_t iddcCnsVal;
        int     iddcDspVal;
    };

    struct instrDescAmd : instrDesc // large addrmode disp
    {
        ssize_t idaAmdVal;
    };

    struct instrDescCnsAmd : instrDesc // large cons + addrmode disp
    {
        ssize_t idacCnsVal;
        ssize_t idacAmdVal;
    };

    struct instrDescCGCA : instrDesc // call with ...
    {
        VARSET_TP idcGCvars;    // ... updated GC vars or
        ssize_t   idcDisp;      // ... big addrmode disp
        regMaskTP idcGcrefRegs; // ... gcref registers
        regMaskTP idcByrefRegs; // ... byref registers
        unsigned  idcArgCnt;    // ... lots of args or (<0 ==> caller pops args)

#if MULTIREG_HAS_SECOND_GC_RET
        // This method handle the GC-ness of the second register in a 2 register returned struct on System V.
        GCtype idSecondGCref() const
        {
            return (GCtype)_idcSecondRetRegGCType;
        }
        void idSecondGCref(GCtype gctype)
        {
            _idcSecondRetRegGCType = gctype;
        }

    private:
        // This member stores the GC-ness of the second register in a 2 register returned struct on System V.
        // It is added to the call struct since it is not needed by the base instrDesc struct, which keeps GC-ness
        // of the first register for the instCall nodes.
        // The base instrDesc is very carefully kept to be no more than 128 bytes. There is no more space to add members
        // for keeping GC-ness of the second return registers. It will also bloat the base struct unnecessarily
        // since the GC-ness of the second register is only needed for call instructions.
        // The base struct's member keeping the GC-ness of the first return register is _idGCref.
        GCtype _idcSecondRetRegGCType : 2; // ... GC type for the second return register.
#endif                                     // MULTIREG_HAS_SECOND_GC_RET
    };

    struct instrDescArmFP : instrDesc
    {
        regNumber r1;
        regNumber r2;
        regNumber r3;
    };

    insUpdateModes emitInsUpdateMode(instruction ins);
    insFormat emitInsModeFormat(instruction ins, insFormat base);

    static const BYTE emitInsModeFmtTab[];
#ifdef DEBUG
    static const unsigned emitInsModeFmtCnt;
#endif

    size_t emitGetInstrDescSize(const instrDesc* id);
    size_t emitGetInstrDescSizeSC(const instrDesc* id);

    ssize_t emitGetInsCns(instrDesc* id);
    ssize_t emitGetInsDsp(instrDesc* id);
    ssize_t emitGetInsAmd(instrDesc* id);
    ssize_t emitGetInsCnsDsp(instrDesc* id, ssize_t* dspPtr);
    ssize_t emitGetInsSC(instrDesc* id);
    ssize_t emitGetInsCIdisp(instrDesc* id);
    unsigned emitGetInsCIargs(instrDesc* id);

    // Return the argument count for a direct call "id".
    int emitGetInsCDinfo(instrDesc* id);

    unsigned emitInsCount;

/************************************************************************/
/*           A few routines used for debug display purposes             */
/************************************************************************/

#if defined(DEBUG) || EMITTER_STATS

    static const char* emitIfName(unsigned f);

#endif // defined(DEBUG) || EMITTER_STATS

#ifdef DEBUG

    unsigned emitVarRefOffs;

    const char* emitRegName(regNumber reg, emitAttr size = EA_PTRSIZE, bool varName = true);
    const char* emitFloatRegName(regNumber reg, emitAttr size = EA_PTRSIZE, bool varName = true);

    const char* emitFldName(CORINFO_FIELD_HANDLE fieldVal);
    const char* emitFncName(CORINFO_METHOD_HANDLE callVal);

    void emitDispIGflags(unsigned flags);
    void emitDispIG(insGroup* ig, insGroup* igPrev = nullptr, bool verbose = false);
    void emitDispIGlist(bool verbose = false);
    void emitDispGCinfo();
    void emitDispClsVar(CORINFO_FIELD_HANDLE fldHnd, ssize_t offs, bool reloc = false);
    void emitDispFrameRef(int varx, int disp, int offs, bool asmfm);
    void emitDispInsOffs(unsigned offs, bool doffs);
    void emitDispInsHex(BYTE* code, size_t sz);

#else // !DEBUG
#define emitVarRefOffs 0
#endif // !DEBUG

    /************************************************************************/
    /*                      Method prolog and epilog                        */
    /************************************************************************/

    unsigned emitPrologEndPos;

    unsigned       emitEpilogCnt;
    UNATIVE_OFFSET emitEpilogSize;

#ifdef _TARGET_XARCH_

    void           emitStartExitSeq(); // Mark the start of the "return" sequence
    emitLocation   emitExitSeqBegLoc;
    UNATIVE_OFFSET emitExitSeqSize; // minimum size of any return sequence - the 'ret' after the epilog

#endif // _TARGET_XARCH_

    insGroup* emitPlaceholderList; // per method placeholder list - head
    insGroup* emitPlaceholderLast; // per method placeholder list - tail

#ifdef JIT32_GCENCODER

    // The x86 GC encoder needs to iterate over a list of epilogs to generate a table of
    // epilog offsets. Epilogs always start at the beginning of an IG, so save the first
    // IG of the epilog, and use it to find the epilog offset at the end of code generation.
    struct EpilogList
    {
        EpilogList*  elNext;
        emitLocation elLoc;

        EpilogList() : elNext(nullptr), elLoc()
        {
        }
    };

    EpilogList* emitEpilogList; // per method epilog list - head
    EpilogList* emitEpilogLast; // per method epilog list - tail

public:
    void emitStartEpilog();

    bool emitHasEpilogEnd();

    size_t emitGenEpilogLst(size_t (*fp)(void*, unsigned), void* cp);

#endif // JIT32_GCENCODER

    void emitBegPrologEpilog(insGroup* igPh);
    void emitEndPrologEpilog();

    void emitBegFnEpilog(insGroup* igPh);
    void emitEndFnEpilog();

#if FEATURE_EH_FUNCLETS

    void emitBegFuncletProlog(insGroup* igPh);
    void emitEndFuncletProlog();

    void emitBegFuncletEpilog(insGroup* igPh);
    void emitEndFuncletEpilog();

#endif // FEATURE_EH_FUNCLETS

/************************************************************************/
/*           Members and methods used in PDB translation                */
/************************************************************************/

#ifdef TRANSLATE_PDB

    inline void SetIDSource(instrDesc* pID);
    void MapCode(int ilOffset, BYTE* imgDest);
    void MapFunc(int                imgOff,
                 int                procLen,
                 int                dbgStart,
                 int                dbgEnd,
                 short              frameReg,
                 int                stkAdjust,
                 int                lvaCount,
                 OptJit::LclVarDsc* lvaTable,
                 bool               framePtr);

private:
    int              emitInstrDescILBase; // code offset of IL that produced this instruction desctriptor
    int              emitInstrDescILBase; // code offset of IL that produced this instruction desctriptor
    static AddrMap*  emitPDBOffsetTable;  // translation table for mapping IL addresses to native addresses
    static LocalMap* emitPDBLocalTable;   // local symbol translation table
    static bool      emitIsPDBEnabled;    // flag to disable PDB translation code when a PDB is not found
    static BYTE*     emitILBaseOfCode;    // start of IL .text section
    static BYTE*     emitILMethodBase;    // beginning of IL method (start of header)
    static BYTE*     emitILMethodStart;   // beginning of IL method code (right after the header)
    static BYTE*     emitImgBaseOfCode;   // start of the image .text section

#endif

    /************************************************************************/
    /*    Methods to record a code position and later convert to offset     */
    /************************************************************************/

    unsigned emitFindInsNum(insGroup* ig, instrDesc* id);
    UNATIVE_OFFSET emitFindOffset(insGroup* ig, unsigned insNum);

/************************************************************************/
/*        Members and methods used to issue (encode) instructions.      */
/************************************************************************/

#ifdef DEBUG
    // If we have started issuing instructions from the list of instrDesc, this is set
    bool emitIssuing;
#endif

    BYTE* emitCodeBlock;     // Hot code block
    BYTE* emitColdCodeBlock; // Cold code block
    BYTE* emitConsBlock;     // Read-only (constant) data block

    UNATIVE_OFFSET emitTotalHotCodeSize;
    UNATIVE_OFFSET emitTotalColdCodeSize;

    UNATIVE_OFFSET emitCurCodeOffs(BYTE* dst)
    {
        size_t distance;
        if ((dst >= emitCodeBlock) && (dst <= (emitCodeBlock + emitTotalHotCodeSize)))
        {
            distance = (dst - emitCodeBlock);
        }
        else
        {
            assert(emitFirstColdIG);
            assert(emitColdCodeBlock);
            assert((dst >= emitColdCodeBlock) && (dst <= (emitColdCodeBlock + emitTotalColdCodeSize)));

            distance = (dst - emitColdCodeBlock + emitTotalHotCodeSize);
        }
        noway_assert((UNATIVE_OFFSET)distance == distance);
        return (UNATIVE_OFFSET)distance;
    }

    BYTE* emitOffsetToPtr(UNATIVE_OFFSET offset)
    {
        if (offset < emitTotalHotCodeSize)
        {
            return emitCodeBlock + offset;
        }
        else
        {
            assert(offset < (emitTotalHotCodeSize + emitTotalColdCodeSize));

            return emitColdCodeBlock + (offset - emitTotalHotCodeSize);
        }
    }

    BYTE* emitDataOffsetToPtr(UNATIVE_OFFSET offset)
    {
        assert(offset < emitDataSize());
        return emitConsBlock + offset;
    }

    bool emitJumpCrossHotColdBoundary(size_t srcOffset, size_t dstOffset)
    {
        if (emitTotalColdCodeSize == 0)
        {
            return false;
        }

        assert(srcOffset < (emitTotalHotCodeSize + emitTotalColdCodeSize));
        assert(dstOffset < (emitTotalHotCodeSize + emitTotalColdCodeSize));

        return ((srcOffset < emitTotalHotCodeSize) != (dstOffset < emitTotalHotCodeSize));
    }

    unsigned char emitOutputByte(BYTE* dst, ssize_t val);
    unsigned char emitOutputWord(BYTE* dst, ssize_t val);
    unsigned char emitOutputLong(BYTE* dst, ssize_t val);
    unsigned char emitOutputSizeT(BYTE* dst, ssize_t val);

#if !defined(LEGACY_BACKEND) && defined(_TARGET_X86_)
    unsigned char emitOutputByte(BYTE* dst, size_t val);
    unsigned char emitOutputWord(BYTE* dst, size_t val);
    unsigned char emitOutputLong(BYTE* dst, size_t val);
    unsigned char emitOutputSizeT(BYTE* dst, size_t val);

    unsigned char emitOutputByte(BYTE* dst, unsigned __int64 val);
    unsigned char emitOutputWord(BYTE* dst, unsigned __int64 val);
    unsigned char emitOutputLong(BYTE* dst, unsigned __int64 val);
    unsigned char emitOutputSizeT(BYTE* dst, unsigned __int64 val);
#endif // !defined(LEGACY_BACKEND) && defined(_TARGET_X86_)

    size_t emitIssue1Instr(insGroup* ig, instrDesc* id, BYTE** dp);
    size_t emitOutputInstr(insGroup* ig, instrDesc* id, BYTE** dp);

    bool emitHasFramePtr;

#ifdef PSEUDORANDOM_NOP_INSERTION
    bool emitInInstrumentation;
#endif // PSEUDORANDOM_NOP_INSERTION

    unsigned emitMaxTmpSize;

#ifdef LEGACY_BACKEND
    unsigned emitLclSize;
    unsigned emitGrowableMaxByteOffs;
    void emitTmpSizeChanged(unsigned tmpSize);
#ifdef DEBUG
    unsigned emitMaxByteOffsIdNum;
#endif // DEBUG
#endif // LEGACY_BACKEND

#ifdef DEBUG
    bool emitChkAlign; // perform some alignment checks
#endif

    insGroup* emitCurIG;

    void emitSetShortJump(instrDescJmp* id);
    void emitSetMediumJump(instrDescJmp* id);
    UNATIVE_OFFSET emitSizeOfJump(instrDescJmp* jmp);
    UNATIVE_OFFSET emitInstCodeSz(instrDesc* id);

#ifndef LEGACY_BACKEND
    CORINFO_FIELD_HANDLE emitLiteralConst(ssize_t cnsValIn, emitAttr attr = EA_8BYTE);
    CORINFO_FIELD_HANDLE emitFltOrDblConst(GenTreeDblCon* tree, emitAttr attr = EA_UNKNOWN);
    regNumber emitInsBinary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src);
    regNumber emitInsTernary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src1, GenTree* src2);
    void emitInsMov(instruction ins, emitAttr attr, GenTree* node);
    insFormat emitMapFmtForIns(insFormat fmt, instruction ins);
    insFormat emitMapFmtAtoM(insFormat fmt);
    void emitHandleMemOp(GenTreeIndir* indir, instrDesc* id, insFormat fmt, instruction ins);
    void spillIntArgRegsToShadowSlots();
#endif // !LEGACY_BACKEND

/************************************************************************/
/*      The logic that creates and keeps track of instruction groups    */
/************************************************************************/

#ifdef _TARGET_ARM_
// The only place where this limited instruction group size is a problem is
// in the prolog, where we only support a single instruction group. We should really fix that.
// ARM can require a bigger prolog instruction group. One scenario is where a
// function uses all the incoming integer and single-precision floating-point arguments,
// and must store them all to the frame on entry. If the frame is very large, we generate
// ugly code like "movw r10, 0x488; add r10, sp; vstr s0, [r10]" for each store, which
// eats up our insGroup buffer.
#define SC_IG_BUFFER_SIZE (100 * sizeof(instrDesc) + 14 * TINY_IDSC_SIZE)
#else // !_TARGET_ARM_
#define SC_IG_BUFFER_SIZE (50 * sizeof(instrDesc) + 14 * TINY_IDSC_SIZE)
#endif // !_TARGET_ARM_

    size_t emitIGbuffSize;

    insGroup* emitIGlist; // first  instruction group
    insGroup* emitIGlast; // last   instruction group
    insGroup* emitIGthis; // issued instruction group

    insGroup* emitPrologIG; // prolog instruction group

    instrDescJmp* emitJumpList;       // list of local jumps in method
    instrDescJmp* emitJumpLast;       // last of local jumps in method
    void          emitJumpDistBind(); // Bind all the local jumps in method

    void emitCheckFuncletBranch(instrDesc* jmp, insGroup* jmpIG); // Check for illegal branches between funclets

    bool emitFwdJumps;   // forward jumps present?
    bool emitNoGCIG;     // Are we generating IGF_NOGCINTERRUPT insGroups (for prologs, epilogs, etc.)
    bool emitForceNewIG; // If we generate an instruction, and not another instruction group, force create a new emitAdd
                         // instruction group.

    BYTE* emitCurIGfreeNext; // next available byte in buffer
    BYTE* emitCurIGfreeEndp; // one byte past the last available byte in buffer
    BYTE* emitCurIGfreeBase; // first byte address

    unsigned       emitCurIGinsCnt;   // # of collected instr's in buffer
    unsigned       emitCurIGsize;     // estimated code size of current group in bytes
    UNATIVE_OFFSET emitCurCodeOffset; // current code offset within group
    UNATIVE_OFFSET emitTotalCodeSize; // bytes of code in entire method

    insGroup* emitFirstColdIG; // first cold instruction group

    void emitSetFirstColdIGCookie(void* bbEmitCookie)
    {
        emitFirstColdIG = (insGroup*)bbEmitCookie;
    }

    int emitOffsAdj; // current code offset adjustment

    instrDescJmp* emitCurIGjmpList; // list of jumps   in current IG

    // emitPrev* and emitInit* are only used during code generation, not during
    // emission (issuing), to determine what GC values to store into an IG.
    // Note that only the Vars ones are actually used, apparently due to bugs
    // in that tracking. See emitSavIG(): the important use of ByrefRegs is commented
    // out, and GCrefRegs is always saved.

    VARSET_TP emitPrevGCrefVars;
    regMaskTP emitPrevGCrefRegs;
    regMaskTP emitPrevByrefRegs;

    VARSET_TP emitInitGCrefVars;
    regMaskTP emitInitGCrefRegs;
    regMaskTP emitInitByrefRegs;

    // If this is set, we ignore comparing emitPrev* and emitInit* to determine
    // whether to save GC state (to save space in the IG), and always save it.

    bool emitForceStoreGCState;

    // emitThis* variables are used during emission, to track GC updates
    // on a per-instruction basis. During code generation, per-instruction
    // tracking is done with variables gcVarPtrSetCur, gcRegGCrefSetCur,
    // and gcRegByrefSetCur. However, these are also used for a slightly
    // different purpose during code generation: to try to minimize the
    // amount of GC data stored to an IG, by only storing deltas from what
    // we expect to see at an IG boundary. Also, only emitThisGCrefVars is
    // really the only one used; the others seem to be calculated, but not
    // used due to bugs.

    VARSET_TP emitThisGCrefVars;
    regMaskTP emitThisGCrefRegs; // Current set of registers holding GC references
    regMaskTP emitThisByrefRegs; // Current set of registers holding BYREF references

    bool emitThisGCrefVset; // Is "emitThisGCrefVars" up to date?

    regNumber emitSyncThisObjReg; // where is "this" enregistered for synchronized methods?

#if MULTIREG_HAS_SECOND_GC_RET
    void emitSetSecondRetRegGCType(instrDescCGCA* id, emitAttr secondRetSize);
#endif // MULTIREG_HAS_SECOND_GC_RET

    static void emitEncodeCallGCregs(regMaskTP regs, instrDesc* id);
    static unsigned emitDecodeCallGCregs(instrDesc* id);

    unsigned emitNxtIGnum;

    // random nop insertion to break up nop sleds
    unsigned emitNextNop;
    bool     emitRandomNops;
    void     emitEnableRandomNops()
    {
        emitRandomNops = true;
    }
    void emitDisableRandomNops()
    {
        emitRandomNops = false;
    }

    insGroup* emitAllocAndLinkIG();
    insGroup* emitAllocIG();
    void emitInitIG(insGroup* ig);
    void emitInsertIGAfter(insGroup* insertAfterIG, insGroup* ig);

    void emitNewIG();

#if !defined(JIT32_GCENCODER)
    void emitDisableGC();
    void emitEnableGC();
#endif // !defined(JIT32_GCENCODER)

    void emitGenIG(insGroup* ig);
    insGroup* emitSavIG(bool emitAdd = false);
    void emitNxtIG(bool emitAdd = false);

    bool emitCurIGnonEmpty()
    {
        return (emitCurIG && emitCurIGfreeNext > emitCurIGfreeBase);
    }

    instrDesc* emitLastIns;

#ifdef DEBUG
    void emitCheckIGoffsets();
#endif

    // Terminates any in-progress instruction group, making the current IG a new empty one.
    // Mark this instruction group as having a label; return the the new instruction group.
    // Sets the emitter's record of the currently live GC variables
    // and registers.  The "isFinallyTarget" parameter indicates that the current location is
    // the start of a basic block that is returned to after a finally clause in non-exceptional execution.
    void* emitAddLabel(VARSET_VALARG_TP GCvars, regMaskTP gcrefRegs, regMaskTP byrefRegs, BOOL isFinallyTarget = FALSE);

#ifdef _TARGET_ARMARCH_

    void emitGetInstrDescs(insGroup* ig, instrDesc** id, int* insCnt);

    bool emitGetLocationInfo(emitLocation* emitLoc, insGroup** pig, instrDesc** pid, int* pinsRemaining = NULL);

    bool emitNextID(insGroup*& ig, instrDesc*& id, int& insRemaining);

    typedef void (*emitProcessInstrFunc_t)(instrDesc* id, void* context);

    void emitWalkIDs(emitLocation* locFrom, emitProcessInstrFunc_t processFunc, void* context);

    static void emitGenerateUnwindNop(instrDesc* id, void* context);

#endif // _TARGET_ARMARCH_

#if defined(_TARGET_ARM_)
    emitter::insFormat emitInsFormat(instruction ins);
    size_t emitInsCode(instruction ins, insFormat fmt);
#endif

#ifdef _TARGET_X86_
    void emitMarkStackLvl(unsigned stackLevel);
#endif

    int emitNextRandomNop();

    void* emitAllocInstr(size_t sz, emitAttr attr);

    instrDesc* emitAllocInstr(emitAttr attr)
    {
        return (instrDesc*)emitAllocInstr(sizeof(instrDesc), attr);
    }

    instrDescJmp* emitAllocInstrJmp()
    {
        return (instrDescJmp*)emitAllocInstr(sizeof(instrDescJmp), EA_1BYTE);
    }

#if !defined(_TARGET_ARM64_)
    instrDescLbl* emitAllocInstrLbl()
    {
        return (instrDescLbl*)emitAllocInstr(sizeof(instrDescLbl), EA_4BYTE);
    }
#endif // !_TARGET_ARM64_

    instrDescCns* emitAllocInstrCns(emitAttr attr)
    {
        return (instrDescCns*)emitAllocInstr(sizeof(instrDescCns), attr);
    }
    instrDescCns* emitAllocInstrCns(emitAttr attr, int cns)
    {
        instrDescCns* result = (instrDescCns*)emitAllocInstr(sizeof(instrDescCns), attr);
        result->idSetIsLargeCns();
        result->idcCnsVal = cns;
        return result;
    }

    instrDescDsp* emitAllocInstrDsp(emitAttr attr)
    {
        return (instrDescDsp*)emitAllocInstr(sizeof(instrDescDsp), attr);
    }

    instrDescCnsDsp* emitAllocInstrCnsDsp(emitAttr attr)
    {
        return (instrDescCnsDsp*)emitAllocInstr(sizeof(instrDescCnsDsp), attr);
    }

    instrDescAmd* emitAllocInstrAmd(emitAttr attr)
    {
        return (instrDescAmd*)emitAllocInstr(sizeof(instrDescAmd), attr);
    }

    instrDescCnsAmd* emitAllocInstrCnsAmd(emitAttr attr)
    {
        return (instrDescCnsAmd*)emitAllocInstr(sizeof(instrDescCnsAmd), attr);
    }

    instrDescCGCA* emitAllocInstrCGCA(emitAttr attr)
    {
        return (instrDescCGCA*)emitAllocInstr(sizeof(instrDescCGCA), attr);
    }

    instrDesc* emitNewInstrTiny(emitAttr attr);
    instrDesc* emitNewInstrSmall(emitAttr attr);
    instrDesc* emitNewInstr(emitAttr attr = EA_4BYTE);
    instrDesc* emitNewInstrSC(emitAttr attr, ssize_t cns);
    instrDesc* emitNewInstrCns(emitAttr attr, ssize_t cns);
    instrDesc* emitNewInstrDsp(emitAttr attr, ssize_t dsp);
    instrDesc* emitNewInstrCnsDsp(emitAttr attr, ssize_t cns, int dsp);
    instrDescJmp* emitNewInstrJmp();

#if !defined(_TARGET_ARM64_)
    instrDescLbl* emitNewInstrLbl();
#endif // !_TARGET_ARM64_

    static const BYTE emitFmtToOps[];

#ifdef DEBUG
    static const unsigned emitFmtCount;
#endif

    bool emitIsTinyInsDsc(instrDesc* id);
    bool emitIsScnsInsDsc(instrDesc* id);

    size_t emitSizeOfInsDsc(instrDesc* id);

    /************************************************************************/
    /*        The following keeps track of stack-based GC values            */
    /************************************************************************/

    unsigned emitTrkVarCnt;
    int*     emitGCrFrameOffsTab; // Offsets of tracked stack ptr vars (varTrkIndex -> stkOffs)

    unsigned    emitGCrFrameOffsCnt; // Number of       tracked stack ptr vars
    int         emitGCrFrameOffsMin; // Min offset of a tracked stack ptr var
    int         emitGCrFrameOffsMax; // Max offset of a tracked stack ptr var
    bool        emitContTrkPtrLcls;  // All lcl between emitGCrFrameOffsMin/Max are only tracked stack ptr vars
    varPtrDsc** emitGCrFrameLiveTab; // Cache of currently live varPtrs (stkOffs -> varPtrDsc)

    int emitArgFrameOffsMin;
    int emitArgFrameOffsMax;

    int emitLclFrameOffsMin;
    int emitLclFrameOffsMax;

    int emitSyncThisObjOffs; // what is the offset of "this" for synchronized methods?

public:
    void emitSetFrameRangeGCRs(int offsLo, int offsHi);
    void emitSetFrameRangeLcls(int offsLo, int offsHi);
    void emitSetFrameRangeArgs(int offsLo, int offsHi);

    static instruction emitJumpKindToIns(emitJumpKind jumpKind);
    static emitJumpKind emitInsToJumpKind(instruction ins);
    static emitJumpKind emitReverseJumpKind(emitJumpKind jumpKind);

#ifdef _TARGET_ARM_
    static unsigned emitJumpKindCondCode(emitJumpKind jumpKind);
#endif

#ifdef DEBUG
    void emitInsSanityCheck(instrDesc* id);
#endif

#ifdef _TARGET_ARMARCH_
    // Returns true if instruction "id->idIns()" writes to a register that might be used to contain a GC
    // pointer. This exempts the SP and PC registers, and floating point registers. Memory access
    // instructions that pre- or post-increment their memory address registers are *not* considered to write
    // to GC registers, even if that memory address is a by-ref: such an instruction cannot change the GC
    // status of that register, since it must be a byref before and remains one after.
    //
    // This may return false positives.
    bool emitInsMayWriteToGCReg(instrDesc* id);

    // Returns "true" if instruction "id->idIns()" writes to a LclVar stack location.
    bool emitInsWritesToLclVarStackLoc(instrDesc* id);

    // Returns true if the instruction may write to more than one register.
    bool emitInsMayWriteMultipleRegs(instrDesc* id);

    // Returns "true" if instruction "id->idIns()" writes to a LclVar stack slot pair.
    bool emitInsWritesToLclVarStackLocPair(instrDesc* id);
#endif // _TARGET_ARMARCH_

    /************************************************************************/
    /*    The following is used to distinguish helper vs non-helper calls   */
    /************************************************************************/

    static bool emitNoGChelper(unsigned IHX);

    /************************************************************************/
    /*         The following logic keeps track of live GC ref values        */
    /************************************************************************/

    bool emitFullArgInfo; // full arg info (including non-ptr arg)?
    bool emitFullGCinfo;  // full GC pointer maps?
    bool emitFullyInt;    // fully interruptible code?

#if EMIT_TRACK_STACK_DEPTH
    unsigned emitCntStackDepth; // 0 in prolog/epilog, One DWORD elsewhere
    unsigned emitMaxStackDepth; // actual computed max. stack depth
#endif

    /* Stack modelling wrt GC */

    bool emitSimpleStkUsed; // using the "simple" stack table?

    union {
        struct // if emitSimpleStkUsed==true
        {
#define BITS_IN_BYTE (8)
#define MAX_SIMPLE_STK_DEPTH (BITS_IN_BYTE * sizeof(unsigned))

            unsigned emitSimpleStkMask;      // bit per pushed dword (if it fits. Lowest bit <==> last pushed arg)
            unsigned emitSimpleByrefStkMask; // byref qualifier for emitSimpleStkMask
        } u1;

        struct // if emitSimpleStkUsed==false
        {
            BYTE   emitArgTrackLcl[16]; // small local table to avoid malloc
            BYTE*  emitArgTrackTab;     // base of the argument tracking stack
            BYTE*  emitArgTrackTop;     // top  of the argument tracking stack
            USHORT emitGcArgTrackCnt;   // count of pending arg records (stk-depth for frameless methods, gc ptrs on stk
                                        // for framed methods)
        } u2;
    };

    unsigned emitCurStackLvl; // amount of bytes pushed on stack

#if EMIT_TRACK_STACK_DEPTH
    /* Functions for stack tracking */

    void emitStackPush(BYTE* addr, GCtype gcType);

    void emitStackPushN(BYTE* addr, unsigned count);

    void emitStackPop(BYTE* addr, bool isCall, unsigned char callInstrSize, unsigned count = 1);

    void emitStackKillArgs(BYTE* addr, unsigned count, unsigned char callInstrSize);

    void emitRecordGCcall(BYTE* codePos, unsigned char callInstrSize);

    // Helpers for the above

    void emitStackPushLargeStk(BYTE* addr, GCtype gcType, unsigned count = 1);
    void emitStackPopLargeStk(BYTE* addr, bool isCall, unsigned char callInstrSize, unsigned count = 1);
#endif // EMIT_TRACK_STACK_DEPTH

    /* Liveness of stack variables, and registers */

    void emitUpdateLiveGCvars(int offs, BYTE* addr, bool birth);
    void emitUpdateLiveGCvars(VARSET_VALARG_TP vars, BYTE* addr);
    void emitUpdateLiveGCregs(GCtype gcType, regMaskTP regs, BYTE* addr);

#ifdef DEBUG
    const char* emitGetFrameReg();
    void emitDispRegSet(regMaskTP regs);
    void emitDispVarSet();
#endif

    void emitGCregLiveUpd(GCtype gcType, regNumber reg, BYTE* addr);
    void emitGCregLiveSet(GCtype gcType, regMaskTP mask, BYTE* addr, bool isThis);
    void emitGCregDeadUpdMask(regMaskTP, BYTE* addr);
    void emitGCregDeadUpd(regNumber reg, BYTE* addr);
    void emitGCregDeadSet(GCtype gcType, regMaskTP mask, BYTE* addr);

    void emitGCvarLiveUpd(int offs, int varNum, GCtype gcType, BYTE* addr);
    void emitGCvarLiveSet(int offs, GCtype gcType, BYTE* addr, ssize_t disp = -1);
    void emitGCvarDeadUpd(int offs, BYTE* addr);
    void emitGCvarDeadSet(int offs, BYTE* addr, ssize_t disp = -1);

    GCtype emitRegGCtype(regNumber reg);

    // We have a mixture of code emission methods, some of which return the size of the emitted instruction,
    // requiring the caller to add this to the current code pointer (dst += <call to emit code>), others of which
    // return the updated code pointer (dst = <call to emit code>).  Sometimes we'd like to get the size of
    // the generated instruction for the latter style.  This method accomplishes that --
    // "emitCodeWithInstructionSize(dst, <call to emitCode>, &instrSize)" will do the call, and set
    // "*instrSize" to the after-before code pointer difference.  Returns the result of the call.  (And
    // asserts that the instruction size fits in an unsigned char.)
    static BYTE* emitCodeWithInstructionSize(BYTE* codePtrBefore, BYTE* newCodePointer, unsigned char* instrSize);

    /************************************************************************/
    /*      The following logic keeps track of initialized data sections    */
    /************************************************************************/

    /* One of these is allocated for every blob of initialized data */

    struct dataSection
    {
        enum sectionType
        {
            data,
            blockAbsoluteAddr,
            blockRelative32
        };

        dataSection*   dsNext;
        UNATIVE_OFFSET dsSize;
        sectionType    dsType;
        // variable-sized array used to store the constant data
        // or BasicBlock* array in the block cases.
        BYTE dsCont[0];
    };

    /* These describe the entire initialized/uninitialized data sections */

    struct dataSecDsc
    {
        dataSection*   dsdList;
        dataSection*   dsdLast;
        UNATIVE_OFFSET dsdOffs;
    };

    dataSecDsc emitConsDsc;

    dataSection* emitDataSecCur;

    void emitOutputDataSec(dataSecDsc* sec, BYTE* dst);

    /************************************************************************/
    /*              Handles to the current class and method.                */
    /************************************************************************/

    COMP_HANDLE emitCmpHandle;

    /************************************************************************/
    /*               Helpers for interface to EE                            */
    /************************************************************************/

    void emitRecordRelocation(void* location,       /* IN */
                              void* target,         /* IN */
                              WORD  fRelocType,     /* IN */
                              WORD  slotNum   = 0,  /* IN */
                              INT32 addlDelta = 0); /* IN */

    void emitRecordCallSite(ULONG                 instrOffset,   /* IN */
                            CORINFO_SIG_INFO*     callSig,       /* IN */
                            CORINFO_METHOD_HANDLE methodHandle); /* IN */

#ifdef DEBUG
    // This is a scratch buffer used to minimize the number of sig info structs
    // we have to allocate for recordCallSite.
    CORINFO_SIG_INFO* emitScratchSigInfo;
#endif // DEBUG

/************************************************************************/
/*               Logic to collect and display statistics                */
/************************************************************************/

#if EMITTER_STATS

    friend void emitterStats(FILE* fout);
    friend void emitterStaticStats(FILE* fout);

    static size_t emitSizeMethod;

    static unsigned emitTotalInsCnt;

    static unsigned emitTotalIGcnt;   // total number of insGroup allocated
    static unsigned emitTotalPhIGcnt; // total number of insPlaceholderGroupData allocated
    static unsigned emitTotalIGicnt;
    static size_t   emitTotalIGsize;
    static unsigned emitTotalIGmcnt; // total method count
    static unsigned emitTotalIGjmps;
    static unsigned emitTotalIGptrs;

    static size_t emitTotMemAlloc;

    static unsigned emitSmallDspCnt;
    static unsigned emitLargeDspCnt;

    static unsigned emitSmallCnsCnt;
#define SMALL_CNS_TSZ 256
    static unsigned emitSmallCns[SMALL_CNS_TSZ];
    static unsigned emitLargeCnsCnt;

    static unsigned emitIFcounts[IF_COUNT];

#endif // EMITTER_STATS

/*************************************************************************
 *
 *  Define any target-dependent emitter members.
 */

#include "emitdef.h"

    // It would be better if this were a constructor, but that would entail revamping the allocation
    // infrastructure of the entire JIT...
    void Init()
    {
        VarSetOps::AssignNoCopy(emitComp, emitPrevGCrefVars, VarSetOps::MakeEmpty(emitComp));
        VarSetOps::AssignNoCopy(emitComp, emitInitGCrefVars, VarSetOps::MakeEmpty(emitComp));
        VarSetOps::AssignNoCopy(emitComp, emitThisGCrefVars, VarSetOps::MakeEmpty(emitComp));
    }
};

/*****************************************************************************
 *
 *  Define any target-dependent inlines.
 */

#include "emitinl.h"

inline void emitter::instrDesc::checkSizes()
{
#ifdef DEBUG
#if HAS_TINY_DESC
    C_ASSERT(TINY_IDSC_SIZE == (offsetof(instrDesc, _idDebugOnlyInfo) + sizeof(instrDescDebugInfo*)));
#else // !tiny
    C_ASSERT(SMALL_IDSC_SIZE == (offsetof(instrDesc, _idDebugOnlyInfo) + sizeof(instrDescDebugInfo*)));
#endif
#endif
    C_ASSERT(SMALL_IDSC_SIZE == offsetof(instrDesc, _idAddrUnion));
}

/*****************************************************************************
 *
 *  Returns true if the given instruction descriptor is a "tiny" or a "small
 *  constant" one (i.e. one of the descriptors that don't have all instrDesc
 *  fields allocated).
 */

inline bool emitter::emitIsTinyInsDsc(instrDesc* id)
{
    return id->idIsTiny();
}

inline bool emitter::emitIsScnsInsDsc(instrDesc* id)
{
    return id->idIsSmallDsc();
}

/*****************************************************************************
 *
 *  Given an instruction, return its "update mode" (RD/WR/RW).
 */

inline insUpdateModes emitter::emitInsUpdateMode(instruction ins)
{
#ifdef DEBUG
    assert((unsigned)ins < emitInsModeFmtCnt);
#endif
    return (insUpdateModes)emitInsModeFmtTab[ins];
}

/*****************************************************************************
 *
 *  Return the number of epilog blocks generated so far.
 */

inline unsigned emitter::emitGetEpilogCnt()
{
    return emitEpilogCnt;
}

/*****************************************************************************
 *
 *  Return the current size of the specified data section.
 */

inline UNATIVE_OFFSET emitter::emitDataSize()
{
    return emitConsDsc.dsdOffs;
}

/*****************************************************************************
 *
 *  Return a handle to the current position in the output stream. This can
 *  be later converted to an actual code offset in bytes.
 */

inline void* emitter::emitCurBlock()
{
    return emitCurIG;
}

/*****************************************************************************
 *
 *  The emitCurOffset() method returns a cookie that identifies the current
 *  position in the instruction stream. Due to things like scheduling (and
 *  the fact that the final size of some instructions cannot be known until
 *  the end of code generation), we return a value with the instruction number
 *  and its estimated offset to the caller.
 */

inline unsigned emitGetInsNumFromCodePos(unsigned codePos)
{
    return (codePos & 0xFFFF);
}

inline unsigned emitGetInsOfsFromCodePos(unsigned codePos)
{
    return (codePos >> 16);
}

inline unsigned emitter::emitCurOffset()
{
    unsigned codePos = emitCurIGinsCnt + (emitCurIGsize << 16);

    assert(emitGetInsOfsFromCodePos(codePos) == emitCurIGsize);
    assert(emitGetInsNumFromCodePos(codePos) == emitCurIGinsCnt);

    // printf("[IG=%02u;ID=%03u;OF=%04X] => %08X\n", emitCurIG->igNum, emitCurIGinsCnt, emitCurIGsize, codePos);

    return codePos;
}

extern const unsigned short emitTypeSizes[TYP_COUNT];

template <class T>
inline emitAttr emitTypeSize(T type)
{
    assert(TypeGet(type) < TYP_COUNT);
    assert(emitTypeSizes[TypeGet(type)] > 0);
    return (emitAttr)emitTypeSizes[TypeGet(type)];
}

extern const unsigned short emitTypeActSz[TYP_COUNT];

inline emitAttr emitActualTypeSize(var_types type)
{
    assert(type < TYP_COUNT);
    assert(emitTypeActSz[type] > 0);
    return (emitAttr)emitTypeActSz[type];
}

/*****************************************************************************
 *
 *  Convert between an operand size in bytes and a smaller encoding used for
 *  storage in instruction descriptors.
 */

/* static */ inline emitter::opSize emitter::emitEncodeSize(emitAttr size)
{
    assert(size == EA_1BYTE || size == EA_2BYTE || size == EA_4BYTE || size == EA_8BYTE || size == EA_16BYTE ||
           size == EA_32BYTE);

    return emitSizeEncode[((int)size) - 1];
}

/* static */ inline emitAttr emitter::emitDecodeSize(emitter::opSize ensz)
{
    assert(((unsigned)ensz) < OPSZ_COUNT);

    return emitSizeDecode[ensz];
}

/*****************************************************************************
 *
 *  Little helpers to allocate various flavors of instructions.
 */

inline emitter::instrDesc* emitter::emitNewInstrTiny(emitAttr attr)
{
    instrDesc* id;

    id = (instrDesc*)emitAllocInstr(TINY_IDSC_SIZE, attr);
    id->idSetIsTiny();

    return id;
}

inline emitter::instrDesc* emitter::emitNewInstrSmall(emitAttr attr)
{
    instrDesc* id;

    // This is larger than the Tiny Descr
    id = (instrDesc*)emitAllocInstr(SMALL_IDSC_SIZE, attr);
    id->idSetIsSmallDsc();

    return id;
}

inline emitter::instrDesc* emitter::emitNewInstr(emitAttr attr)
{
    // This is larger than the Small Descr
    return emitAllocInstr(attr);
}

inline emitter::instrDescJmp* emitter::emitNewInstrJmp()
{
    return emitAllocInstrJmp();
}

#if !defined(_TARGET_ARM64_)
inline emitter::instrDescLbl* emitter::emitNewInstrLbl()
{
    return emitAllocInstrLbl();
}
#endif // !_TARGET_ARM64_

inline emitter::instrDesc* emitter::emitNewInstrDsp(emitAttr attr, ssize_t dsp)
{
    if (dsp == 0)
    {
        instrDesc* id = emitAllocInstr(attr);

#if EMITTER_STATS
        emitSmallDspCnt++;
#endif

        return id;
    }
    else
    {
        instrDescDsp* id = emitAllocInstrDsp(attr);

        id->idSetIsLargeDsp();
        id->iddDspVal = dsp;

#if EMITTER_STATS
        emitLargeDspCnt++;
#endif

        return id;
    }
}

/*****************************************************************************
 *
 *  Allocate an instruction descriptor for an instruction with a constant operand.
 *  The instruction descriptor uses the idAddrUnion to save additional info
 *  so the smallest size that this can be is sizeof(instrDesc).
 *  Note that this very similar to emitter::emitNewInstrSC(), except it never
 *  allocates a small descriptor.
 */
inline emitter::instrDesc* emitter::emitNewInstrCns(emitAttr attr, ssize_t cns)
{
    if (instrDesc::fitsInSmallCns(cns))
    {
        instrDesc* id = emitAllocInstr(attr);

        id->idSmallCns(cns);

#if EMITTER_STATS
        emitSmallCnsCnt++;
        if (cns - ID_MIN_SMALL_CNS >= SMALL_CNS_TSZ)
            emitSmallCns[SMALL_CNS_TSZ - 1]++;
        else
            emitSmallCns[cns - ID_MIN_SMALL_CNS]++;
#endif

        return id;
    }
    else
    {
        instrDescCns* id = emitAllocInstrCns(attr);

        id->idSetIsLargeCns();
        id->idcCnsVal = cns;

#if EMITTER_STATS
        emitLargeCnsCnt++;
#endif

        return id;
    }
}

/*****************************************************************************
 *
 *  Get the instrDesc size, general purpose version
 *
 */

inline size_t emitter::emitGetInstrDescSize(const instrDesc* id)
{
    if (id->idIsTiny())
    {
        return TINY_IDSC_SIZE;
    }

    if (id->idIsSmallDsc())
    {
        return SMALL_IDSC_SIZE;
    }

    if (id->idIsLargeCns())
    {
        return sizeof(instrDescCns);
    }

    return sizeof(instrDesc);
}

/*****************************************************************************
 *
 *  Allocate an instruction descriptor for an instruction with a small integer
 *  constant operand. This is the same as emitNewInstrCns() except that here
 *  any constant that is small enough for instrDesc::fitsInSmallCns() only gets
 *  allocated SMALL_IDSC_SIZE bytes (and is thus a small descriptor, whereas
 *  emitNewInstrCns() always allocates at least sizeof(instrDesc).
 */

inline emitter::instrDesc* emitter::emitNewInstrSC(emitAttr attr, ssize_t cns)
{
    instrDesc* id;

    if (instrDesc::fitsInSmallCns(cns))
    {
        id = (instrDesc*)emitAllocInstr(SMALL_IDSC_SIZE, attr);

        id->idSmallCns(cns);
        id->idSetIsSmallDsc();
    }
    else
    {
        id = (instrDesc*)emitAllocInstr(sizeof(instrDescCns), attr);

        id->idSetIsLargeCns();
        ((instrDescCns*)id)->idcCnsVal = cns;
    }

    return id;
}

/*****************************************************************************
 *
 *  Get the instrDesc size for something that contains a constant
 */

inline size_t emitter::emitGetInstrDescSizeSC(const instrDesc* id)
{
    if (id->idIsSmallDsc())
    {
        return SMALL_IDSC_SIZE;
    }
    else if (id->idIsLargeCns())
    {
        return sizeof(instrDescCns);
    }
    else
    {
        return sizeof(instrDesc);
    }
}

/*****************************************************************************
 *
 *  The following helpers should be used to access the various values that
 *  get stored in different places within the instruction descriptor.
 */

inline ssize_t emitter::emitGetInsCns(instrDesc* id)
{
    return id->idIsLargeCns() ? ((instrDescCns*)id)->idcCnsVal : id->idSmallCns();
}

inline ssize_t emitter::emitGetInsDsp(instrDesc* id)
{
    if (id->idIsLargeDsp())
    {
        if (id->idIsLargeCns())
        {
            return ((instrDescCnsDsp*)id)->iddcDspVal;
        }
        return ((instrDescDsp*)id)->iddDspVal;
    }
    return 0;
}

inline ssize_t emitter::emitGetInsCnsDsp(instrDesc* id, ssize_t* dspPtr)
{
    if (id->idIsLargeCns())
    {
        if (id->idIsLargeDsp())
        {
            *dspPtr = ((instrDescCnsDsp*)id)->iddcDspVal;
            return ((instrDescCnsDsp*)id)->iddcCnsVal;
        }
        else
        {
            *dspPtr = 0;
            return ((instrDescCns*)id)->idcCnsVal;
        }
    }
    else
    {
        if (id->idIsLargeDsp())
        {
            *dspPtr = ((instrDescDsp*)id)->iddDspVal;
            return id->idSmallCns();
        }
        else
        {
            *dspPtr = 0;
            return id->idSmallCns();
        }
    }
}

/*****************************************************************************
 *
 *  Get hold of the argument count for an indirect call.
 */

inline unsigned emitter::emitGetInsCIargs(instrDesc* id)
{
    if (id->idIsLargeCall())
    {
        return ((instrDescCGCA*)id)->idcArgCnt;
    }
    else
    {
        assert(id->idIsLargeDsp() == false);
        assert(id->idIsLargeCns() == false);

        ssize_t cns = emitGetInsCns(id);
        assert((unsigned)cns == (size_t)cns);
        return (unsigned)cns;
    }
}

/*****************************************************************************
 *
 *  Returns true if the given register contains a live GC ref.
 */

inline GCtype emitter::emitRegGCtype(regNumber reg)
{
    assert(emitIssuing);

    if ((emitThisGCrefRegs & genRegMask(reg)) != 0)
    {
        return GCT_GCREF;
    }
    else if ((emitThisByrefRegs & genRegMask(reg)) != 0)
    {
        return GCT_BYREF;
    }
    else
    {
        return GCT_NONE;
    }
}

#ifdef DEBUG

#if EMIT_TRACK_STACK_DEPTH
#define CHECK_STACK_DEPTH() assert((int)emitCurStackLvl >= 0)
#else
#define CHECK_STACK_DEPTH()
#endif

#endif // DEBUG

/*****************************************************************************
 *
 *  Return true when a given code offset is properly aligned for the target
 */

inline bool IsCodeAligned(UNATIVE_OFFSET offset)
{
    return ((offset & (CODE_ALIGN - 1)) == 0);
}

// Static:
inline BYTE* emitter::emitCodeWithInstructionSize(BYTE* codePtrBefore, BYTE* newCodePointer, unsigned char* instrSize)
{
    // DLD: Perhaps this method should return the instruction size, and we should do dst += <that size>
    // as is done in other cases?
    assert(newCodePointer >= codePtrBefore);
    ClrSafeInt<unsigned char> callInstrSizeSafe = ClrSafeInt<unsigned char>(newCodePointer - codePtrBefore);
    assert(!callInstrSizeSafe.IsOverflow());
    *instrSize = callInstrSizeSafe.Value();
    return newCodePointer;
}

/*****************************************************************************
 *
 *  Add a new IG to the current list, and get it ready to receive code.
 */

inline void emitter::emitNewIG()
{
    insGroup* ig = emitAllocAndLinkIG();

    /* It's linked in. Now, set it up to accept code */

    emitGenIG(ig);
}

#if !defined(JIT32_GCENCODER)
// Start a new instruction group that is not interruptable
inline void emitter::emitDisableGC()
{
    emitNoGCIG = true;

    if (emitCurIGnonEmpty())
    {
        emitNxtIG(true);
    }
    else
    {
        emitCurIG->igFlags |= IGF_NOGCINTERRUPT;
    }
}

// Start a new instruction group that is interruptable
inline void emitter::emitEnableGC()
{
    emitNoGCIG = false;

    // The next time an instruction needs to be generated, force a new instruction group.
    // It will be an emitAdd group in that case. Note that the next thing we see might be
    // a label, which will force a non-emitAdd group.
    //
    // Note that we can't just create a new instruction group here, because we don't know
    // if there are going to be any instructions added to it, and we don't support empty
    // instruction groups.
    emitForceNewIG = true;
}
#endif // !defined(JIT32_GCENCODER)

/*****************************************************************************/
#endif // _EMIT_H_
/*****************************************************************************/