summaryrefslogtreecommitdiff
path: root/src/jit/codegenxarch.cpp
blob: 252f0048531e388048954aa0e703f25917c93cfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                        Amd64/x86 Code Generator                           XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif

#ifndef LEGACY_BACKEND // This file is ONLY used for the RyuJIT backend that uses the linear scan register allocator.

#ifdef _TARGET_XARCH_
#include "emit.h"
#include "codegen.h"
#include "lower.h"
#include "gcinfo.h"
#include "gcinfoencoder.h"

/*****************************************************************************
 *
 *  Generate code that will set the given register to the integer constant.
 */

void CodeGen::genSetRegToIcon(regNumber reg, ssize_t val, var_types type, insFlags flags)
{
    // Reg cannot be a FP reg
    assert(!genIsValidFloatReg(reg));

    // The only TYP_REF constant that can come this path is a managed 'null' since it is not
    // relocatable.  Other ref type constants (e.g. string objects) go through a different
    // code path.
    noway_assert(type != TYP_REF || val == 0);

    if (val == 0)
    {
        instGen_Set_Reg_To_Zero(emitActualTypeSize(type), reg, flags);
    }
    else
    {
        // TODO-XArch-CQ: needs all the optimized cases
        getEmitter()->emitIns_R_I(INS_mov, emitActualTypeSize(type), reg, val);
    }
}

/*****************************************************************************
 *
 *   Generate code to check that the GS cookie wasn't thrashed by a buffer
 *   overrun.  If pushReg is true, preserve all registers around code sequence.
 *   Otherwise ECX could be modified.
 *
 *   Implementation Note: pushReg = true, in case of tail calls.
 */
void CodeGen::genEmitGSCookieCheck(bool pushReg)
{
    noway_assert(compiler->gsGlobalSecurityCookieAddr || compiler->gsGlobalSecurityCookieVal);

    // Make sure that EAX is reported as live GC-ref so that any GC that kicks in while
    // executing GS cookie check will not collect the object pointed to by EAX.
    //
    // For Amd64 System V, a two-register-returned struct could be returned in RAX and RDX
    // In such case make sure that the correct GC-ness of RDX is reported as well, so
    // a GC object pointed by RDX will not be collected.
    if (!pushReg)
    {
        // Handle multi-reg return type values
        if (compiler->compMethodReturnsMultiRegRetType())
        {
            ReturnTypeDesc retTypeDesc;
            if (varTypeIsLong(compiler->info.compRetNativeType))
            {
                retTypeDesc.InitializeLongReturnType(compiler);
            }
            else // we must have a struct return type
            {
                retTypeDesc.InitializeStructReturnType(compiler, compiler->info.compMethodInfo->args.retTypeClass);
            }

            unsigned regCount = retTypeDesc.GetReturnRegCount();

            // Only x86 and x64 Unix ABI allows multi-reg return and
            // number of result regs should be equal to MAX_RET_REG_COUNT.
            assert(regCount == MAX_RET_REG_COUNT);

            for (unsigned i = 0; i < regCount; ++i)
            {
                gcInfo.gcMarkRegPtrVal(retTypeDesc.GetABIReturnReg(i), retTypeDesc.GetReturnRegType(i));
            }
        }
        else if (compiler->compMethodReturnsRetBufAddr())
        {
            // This is for returning in an implicit RetBuf.
            // If the address of the buffer is returned in REG_INTRET, mark the content of INTRET as ByRef.

            // In case the return is in an implicit RetBuf, the native return type should be a struct
            assert(varTypeIsStruct(compiler->info.compRetNativeType));

            gcInfo.gcMarkRegPtrVal(REG_INTRET, TYP_BYREF);
        }
        // ... all other cases.
        else
        {
#ifdef _TARGET_AMD64_
            // For x64, structs that are not returned in registers are always
            // returned in implicit RetBuf. If we reached here, we should not have
            // a RetBuf and the return type should not be a struct.
            assert(compiler->info.compRetBuffArg == BAD_VAR_NUM);
            assert(!varTypeIsStruct(compiler->info.compRetNativeType));
#endif // _TARGET_AMD64_

            // For x86 Windows we can't make such assertions since we generate code for returning of
            // the RetBuf in REG_INTRET only when the ProfilerHook is enabled. Otherwise
            // compRetNativeType could be TYP_STRUCT.
            gcInfo.gcMarkRegPtrVal(REG_INTRET, compiler->info.compRetNativeType);
        }
    }

    regNumber regGSCheck;
    regMaskTP regMaskGSCheck = RBM_NONE;

    if (!pushReg)
    {
        // Non-tail call: we can use any callee trash register that is not
        // a return register or contain 'this' pointer (keep alive this), since
        // we are generating GS cookie check after a GT_RETURN block.
        // Note: On Amd64 System V RDX is an arg register - REG_ARG_2 - as well
        // as return register for two-register-returned structs.
        if (compiler->lvaKeepAliveAndReportThis() && compiler->lvaTable[compiler->info.compThisArg].lvRegister &&
            (compiler->lvaTable[compiler->info.compThisArg].lvRegNum == REG_ARG_0))
        {
            regGSCheck = REG_ARG_1;
        }
        else
        {
            regGSCheck = REG_ARG_0;
        }
    }
    else
    {
#ifdef _TARGET_X86_
        // It doesn't matter which register we pick, since we're going to save and restore it
        // around the check.
        // TODO-CQ: Can we optimize the choice of register to avoid doing the push/pop sometimes?
        regGSCheck     = REG_EAX;
        regMaskGSCheck = RBM_EAX;
#else  // !_TARGET_X86_
        // Tail calls from methods that need GS check:  We need to preserve registers while
        // emitting GS cookie check for a tail prefixed call or a jmp. To emit GS cookie
        // check, we might need a register. This won't be an issue for jmp calls for the
        // reason mentioned below (see comment starting with "Jmp Calls:").
        //
        // The following are the possible solutions in case of tail prefixed calls:
        // 1) Use R11 - ignore tail prefix on calls that need to pass a param in R11 when
        //    present in methods that require GS cookie check.  Rest of the tail calls that
        //    do not require R11 will be honored.
        // 2) Internal register - GT_CALL node reserves an internal register and emits GS
        //    cookie check as part of tail call codegen. GenExitCode() needs to special case
        //    fast tail calls implemented as epilog+jmp or such tail calls should always get
        //    dispatched via helper.
        // 3) Materialize GS cookie check as a sperate node hanging off GT_CALL node in
        //    right execution order during rationalization.
        //
        // There are two calls that use R11: VSD and calli pinvokes with cookie param. Tail
        // prefix on pinvokes is ignored.  That is, options 2 and 3 will allow tail prefixed
        // VSD calls from methods that need GS check.
        //
        // Tail prefixed calls: Right now for Jit64 compat, method requiring GS cookie check
        // ignores tail prefix.  In future, if we intend to support tail calls from such a method,
        // consider one of the options mentioned above.  For now adding an assert that we don't
        // expect to see a tail call in a method that requires GS check.
        noway_assert(!compiler->compTailCallUsed);

        // Jmp calls: specify method handle using which JIT queries VM for its entry point
        // address and hence it can neither be a VSD call nor PInvoke calli with cookie
        // parameter.  Therefore, in case of jmp calls it is safe to use R11.
        regGSCheck = REG_R11;
#endif // !_TARGET_X86_
    }

    regMaskTP byrefPushedRegs = RBM_NONE;
    regMaskTP norefPushedRegs = RBM_NONE;
    regMaskTP pushedRegs      = RBM_NONE;

    if (compiler->gsGlobalSecurityCookieAddr == nullptr)
    {
#if defined(_TARGET_AMD64_)
        // If GS cookie value fits within 32-bits we can use 'cmp mem64, imm32'.
        // Otherwise, load the value into a reg and use 'cmp mem64, reg64'.
        if ((int)compiler->gsGlobalSecurityCookieVal != (ssize_t)compiler->gsGlobalSecurityCookieVal)
        {
            genSetRegToIcon(regGSCheck, compiler->gsGlobalSecurityCookieVal, TYP_I_IMPL);
            getEmitter()->emitIns_S_R(INS_cmp, EA_PTRSIZE, regGSCheck, compiler->lvaGSSecurityCookie, 0);
        }
        else
#endif // defined(_TARGET_AMD64_)
        {
            assert((int)compiler->gsGlobalSecurityCookieVal == (ssize_t)compiler->gsGlobalSecurityCookieVal);
            getEmitter()->emitIns_S_I(INS_cmp, EA_PTRSIZE, compiler->lvaGSSecurityCookie, 0,
                                      (int)compiler->gsGlobalSecurityCookieVal);
        }
    }
    else
    {
        // Ngen case - GS cookie value needs to be accessed through an indirection.

        pushedRegs = genPushRegs(regMaskGSCheck, &byrefPushedRegs, &norefPushedRegs);

        instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, regGSCheck, (ssize_t)compiler->gsGlobalSecurityCookieAddr);
        getEmitter()->emitIns_R_AR(ins_Load(TYP_I_IMPL), EA_PTRSIZE, regGSCheck, regGSCheck, 0);
        getEmitter()->emitIns_S_R(INS_cmp, EA_PTRSIZE, regGSCheck, compiler->lvaGSSecurityCookie, 0);
    }

    BasicBlock*  gsCheckBlk = genCreateTempLabel();
    emitJumpKind jmpEqual   = genJumpKindForOper(GT_EQ, CK_SIGNED);
    inst_JMP(jmpEqual, gsCheckBlk);
    genEmitHelperCall(CORINFO_HELP_FAIL_FAST, 0, EA_UNKNOWN);
    genDefineTempLabel(gsCheckBlk);

    genPopRegs(pushedRegs, byrefPushedRegs, norefPushedRegs);
}

BasicBlock* CodeGen::genCallFinally(BasicBlock* block)
{
#if FEATURE_EH_FUNCLETS
    // Generate a call to the finally, like this:
    //      mov         rcx,qword ptr [rbp + 20H]       // Load rcx with PSPSym
    //      call        finally-funclet
    //      jmp         finally-return                  // Only for non-retless finally calls
    // The jmp can be a NOP if we're going to the next block.
    // If we're generating code for the main function (not a funclet), and there is no localloc,
    // then RSP at this point is the same value as that stored in the PSPSym. So just copy RSP
    // instead of loading the PSPSym in this case, or if PSPSym is not used (CoreRT ABI).

    if ((compiler->lvaPSPSym == BAD_VAR_NUM) ||
        (!compiler->compLocallocUsed && (compiler->funCurrentFunc()->funKind == FUNC_ROOT)))
    {
#ifndef UNIX_X86_ABI
        inst_RV_RV(INS_mov, REG_ARG_0, REG_SPBASE, TYP_I_IMPL);
#endif // !UNIX_X86_ABI
    }
    else
    {
        getEmitter()->emitIns_R_S(ins_Load(TYP_I_IMPL), EA_PTRSIZE, REG_ARG_0, compiler->lvaPSPSym, 0);
    }
    getEmitter()->emitIns_J(INS_call, block->bbJumpDest);

    if (block->bbFlags & BBF_RETLESS_CALL)
    {
        // We have a retless call, and the last instruction generated was a call.
        // If the next block is in a different EH region (or is the end of the code
        // block), then we need to generate a breakpoint here (since it will never
        // get executed) to get proper unwind behavior.

        if ((block->bbNext == nullptr) || !BasicBlock::sameEHRegion(block, block->bbNext))
        {
            instGen(INS_BREAKPOINT); // This should never get executed
        }
    }
    else
    {
// TODO-Linux-x86: Do we need to handle the GC information for this NOP or JMP specially, as is done for other
// architectures?
#ifndef JIT32_GCENCODER
        // Because of the way the flowgraph is connected, the liveness info for this one instruction
        // after the call is not (can not be) correct in cases where a variable has a last use in the
        // handler.  So turn off GC reporting for this single instruction.
        getEmitter()->emitDisableGC();
#endif // JIT32_GCENCODER

        // Now go to where the finally funclet needs to return to.
        if (block->bbNext->bbJumpDest == block->bbNext->bbNext)
        {
            // Fall-through.
            // TODO-XArch-CQ: Can we get rid of this instruction, and just have the call return directly
            // to the next instruction? This would depend on stack walking from within the finally
            // handler working without this instruction being in this special EH region.
            instGen(INS_nop);
        }
        else
        {
            inst_JMP(EJ_jmp, block->bbNext->bbJumpDest);
        }

#ifndef JIT32_GCENCODER
        getEmitter()->emitEnableGC();
#endif // JIT32_GCENCODER
    }

#else // !FEATURE_EH_FUNCLETS

    // If we are about to invoke a finally locally from a try block, we have to set the ShadowSP slot
    // corresponding to the finally's nesting level. When invoked in response to an exception, the
    // EE does this.
    //
    // We have a BBJ_CALLFINALLY followed by a BBJ_ALWAYS.
    //
    // We will emit :
    //      mov [ebp - (n + 1)], 0
    //      mov [ebp -  n     ], 0xFC
    //      push &step
    //      jmp  finallyBlock
    // ...
    // step:
    //      mov [ebp -  n     ], 0
    //      jmp leaveTarget
    // ...
    // leaveTarget:

    noway_assert(isFramePointerUsed());

    // Get the nesting level which contains the finally
    unsigned finallyNesting = 0;
    compiler->fgGetNestingLevel(block, &finallyNesting);

    // The last slot is reserved for ICodeManager::FixContext(ppEndRegion)
    unsigned filterEndOffsetSlotOffs;
    filterEndOffsetSlotOffs = (unsigned)(compiler->lvaLclSize(compiler->lvaShadowSPslotsVar) - TARGET_POINTER_SIZE);

    unsigned curNestingSlotOffs;
    curNestingSlotOffs = (unsigned)(filterEndOffsetSlotOffs - ((finallyNesting + 1) * TARGET_POINTER_SIZE));

    // Zero out the slot for the next nesting level
    instGen_Store_Imm_Into_Lcl(TYP_I_IMPL, EA_PTRSIZE, 0, compiler->lvaShadowSPslotsVar,
                               curNestingSlotOffs - TARGET_POINTER_SIZE);
    instGen_Store_Imm_Into_Lcl(TYP_I_IMPL, EA_PTRSIZE, LCL_FINALLY_MARK, compiler->lvaShadowSPslotsVar,
                               curNestingSlotOffs);

    // Now push the address where the finally funclet should return to directly.
    if (!(block->bbFlags & BBF_RETLESS_CALL))
    {
        assert(block->isBBCallAlwaysPair());
        getEmitter()->emitIns_J(INS_push_hide, block->bbNext->bbJumpDest);
    }
    else
    {
        // EE expects a DWORD, so we give him 0
        inst_IV(INS_push_hide, 0);
    }

    // Jump to the finally BB
    inst_JMP(EJ_jmp, block->bbJumpDest);

#endif // !FEATURE_EH_FUNCLETS

    // The BBJ_ALWAYS is used because the BBJ_CALLFINALLY can't point to the
    // jump target using bbJumpDest - that is already used to point
    // to the finally block. So just skip past the BBJ_ALWAYS unless the
    // block is RETLESS.
    if (!(block->bbFlags & BBF_RETLESS_CALL))
    {
        assert(block->isBBCallAlwaysPair());
        block = block->bbNext;
    }
    return block;
}

#if FEATURE_EH_FUNCLETS
void CodeGen::genEHCatchRet(BasicBlock* block)
{
    // Set RAX to the address the VM should return to after the catch.
    // Generate a RIP-relative
    //         lea reg, [rip + disp32] ; the RIP is implicit
    // which will be position-indepenent.
    getEmitter()->emitIns_R_L(INS_lea, EA_PTR_DSP_RELOC, block->bbJumpDest, REG_INTRET);
}

#else // !FEATURE_EH_FUNCLETS

void CodeGen::genEHFinallyOrFilterRet(BasicBlock* block)
{
    // The last statement of the block must be a GT_RETFILT, which has already been generated.
    assert(block->lastNode() != nullptr);
    assert(block->lastNode()->OperGet() == GT_RETFILT);

    if (block->bbJumpKind == BBJ_EHFINALLYRET)
    {
        assert(block->lastNode()->gtOp.gtOp1 == nullptr); // op1 == nullptr means endfinally

        // Return using a pop-jmp sequence. As the "try" block calls
        // the finally with a jmp, this leaves the x86 call-ret stack
        // balanced in the normal flow of path.

        noway_assert(isFramePointerRequired());
        inst_RV(INS_pop_hide, REG_EAX, TYP_I_IMPL);
        inst_RV(INS_i_jmp, REG_EAX, TYP_I_IMPL);
    }
    else
    {
        assert(block->bbJumpKind == BBJ_EHFILTERRET);

        // The return value has already been computed.
        instGen_Return(0);
    }
}

#endif // !FEATURE_EH_FUNCLETS

//  Move an immediate value into an integer register

void CodeGen::instGen_Set_Reg_To_Imm(emitAttr size, regNumber reg, ssize_t imm, insFlags flags)
{
    // reg cannot be a FP register
    assert(!genIsValidFloatReg(reg));

    if (!compiler->opts.compReloc)
    {
        size = EA_SIZE(size); // Strip any Reloc flags from size if we aren't doing relocs
    }

    if ((imm == 0) && !EA_IS_RELOC(size))
    {
        instGen_Set_Reg_To_Zero(size, reg, flags);
    }
    else
    {
        if (genDataIndirAddrCanBeEncodedAsPCRelOffset(imm))
        {
            getEmitter()->emitIns_R_AI(INS_lea, EA_PTR_DSP_RELOC, reg, imm);
        }
        else
        {
            getEmitter()->emitIns_R_I(INS_mov, size, reg, imm);
        }
    }
    regTracker.rsTrackRegIntCns(reg, imm);
}

/***********************************************************************************
 *
 * Generate code to set a register 'targetReg' of type 'targetType' to the constant
 * specified by the constant (GT_CNS_INT or GT_CNS_DBL) in 'tree'. This does not call
 * genProduceReg() on the target register.
 */
void CodeGen::genSetRegToConst(regNumber targetReg, var_types targetType, GenTreePtr tree)
{

    switch (tree->gtOper)
    {
        case GT_CNS_INT:
        {
            // relocatable values tend to come down as a CNS_INT of native int type
            // so the line between these two opcodes is kind of blurry
            GenTreeIntConCommon* con    = tree->AsIntConCommon();
            ssize_t              cnsVal = con->IconValue();

            if (con->ImmedValNeedsReloc(compiler))
            {
                instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, targetReg, cnsVal);
                regTracker.rsTrackRegTrash(targetReg);
            }
            else
            {
                genSetRegToIcon(targetReg, cnsVal, targetType);
            }
        }
        break;

        case GT_CNS_DBL:
        {
            double constValue = tree->gtDblCon.gtDconVal;

            // Make sure we use "xorpd reg, reg"  only for +ve zero constant (0.0) and not for -ve zero (-0.0)
            if (*(__int64*)&constValue == 0)
            {
                // A faster/smaller way to generate 0
                instruction ins = genGetInsForOper(GT_XOR, targetType);
                inst_RV_RV(ins, targetReg, targetReg, targetType);
            }
            else
            {
                GenTreePtr cns;
                if (targetType == TYP_FLOAT)
                {
                    float f = forceCastToFloat(constValue);
                    cns     = genMakeConst(&f, targetType, tree, false);
                }
                else
                {
                    cns = genMakeConst(&constValue, targetType, tree, true);
                }

                inst_RV_TT(ins_Load(targetType), targetReg, cns);
            }
        }
        break;

        default:
            unreached();
    }
}

// Generate code to get the high N bits of a N*N=2N bit multiplication result
void CodeGen::genCodeForMulHi(GenTreeOp* treeNode)
{
    if (treeNode->OperGet() == GT_MULHI)
    {
        assert(!(treeNode->gtFlags & GTF_UNSIGNED));
    }
    assert(!treeNode->gtOverflowEx());

    regNumber targetReg  = treeNode->gtRegNum;
    var_types targetType = treeNode->TypeGet();
    emitter*  emit       = getEmitter();
    emitAttr  size       = emitTypeSize(treeNode);
    GenTree*  op1        = treeNode->gtOp.gtOp1;
    GenTree*  op2        = treeNode->gtOp.gtOp2;

    // to get the high bits of the multiply, we are constrained to using the
    // 1-op form:  RDX:RAX = RAX * rm
    // The 3-op form (Rx=Ry*Rz) does not support it.

    genConsumeOperands(treeNode->AsOp());

    GenTree* regOp = op1;
    GenTree* rmOp  = op2;

    // Set rmOp to the memory operand (if any)
    if (op1->isUsedFromMemory() || (op2->isUsedFromReg() && (op2->gtRegNum == REG_RAX)))
    {
        regOp = op2;
        rmOp  = op1;
    }
    assert(regOp->isUsedFromReg());

    // Setup targetReg when neither of the source operands was a matching register
    if (regOp->gtRegNum != REG_RAX)
    {
        inst_RV_RV(ins_Copy(targetType), REG_RAX, regOp->gtRegNum, targetType);
    }

    instruction ins;
    if ((treeNode->gtFlags & GTF_UNSIGNED) == 0)
    {
        ins = INS_imulEAX;
    }
    else
    {
        ins = INS_mulEAX;
    }
    emit->emitInsBinary(ins, size, treeNode, rmOp);

    // Move the result to the desired register, if necessary
    if (treeNode->OperGet() == GT_MULHI && targetReg != REG_RDX)
    {
        inst_RV_RV(INS_mov, targetReg, REG_RDX, targetType);
    }
}

#ifdef _TARGET_X86_
//------------------------------------------------------------------------
// genCodeForLongUMod: Generate code for a tree of the form
//                     `(umod (gt_long x y) (const int))`
//
// Arguments:
//   node - the node for which to generate code
//
void CodeGen::genCodeForLongUMod(GenTreeOp* node)
{
    assert(node != nullptr);
    assert(node->OperGet() == GT_UMOD);
    assert(node->TypeGet() == TYP_INT);

    GenTreeOp* const dividend = node->gtOp1->AsOp();
    assert(dividend->OperGet() == GT_LONG);
    assert(varTypeIsLong(dividend));

    genConsumeOperands(node);

    GenTree* const dividendLo = dividend->gtOp1;
    GenTree* const dividendHi = dividend->gtOp2;
    assert(dividendLo->isUsedFromReg());
    assert(dividendHi->isUsedFromReg());

    GenTree* const divisor = node->gtOp2;
    assert(divisor->gtSkipReloadOrCopy()->OperGet() == GT_CNS_INT);
    assert(divisor->gtSkipReloadOrCopy()->isUsedFromReg());
    assert(divisor->gtSkipReloadOrCopy()->AsIntCon()->gtIconVal >= 2);
    assert(divisor->gtSkipReloadOrCopy()->AsIntCon()->gtIconVal <= 0x3fffffff);

    // dividendLo must be in RAX; dividendHi must be in RDX
    genCopyRegIfNeeded(dividendLo, REG_EAX);
    genCopyRegIfNeeded(dividendHi, REG_EDX);

    // At this point, EAX:EDX contains the 64bit dividend and op2->gtRegNum
    // contains the 32bit divisor. We want to generate the following code:
    //
    //   cmp edx, divisor->gtRegNum
    //   jb noOverflow
    //
    //   mov temp, eax
    //   mov eax, edx
    //   xor edx, edx
    //   div divisor->gtRegNum
    //   mov eax, temp
    //
    // noOverflow:
    //   div divisor->gtRegNum
    //
    // This works because (a * 2^32 + b) % c = ((a % c) * 2^32 + b) % c.

    BasicBlock* const noOverflow = genCreateTempLabel();

    //   cmp edx, divisor->gtRegNum
    //   jb noOverflow
    inst_RV_RV(INS_cmp, REG_EDX, divisor->gtRegNum);
    inst_JMP(EJ_jb, noOverflow);

    //   mov temp, eax
    //   mov eax, edx
    //   xor edx, edx
    //   div divisor->gtRegNum
    //   mov eax, temp
    const regNumber tempReg = node->GetSingleTempReg();
    inst_RV_RV(INS_mov, tempReg, REG_EAX, TYP_INT);
    inst_RV_RV(INS_mov, REG_EAX, REG_EDX, TYP_INT);
    instGen_Set_Reg_To_Zero(EA_PTRSIZE, REG_EDX);
    inst_RV(INS_div, divisor->gtRegNum, TYP_INT);
    inst_RV_RV(INS_mov, REG_EAX, tempReg, TYP_INT);

    // noOverflow:
    //   div divisor->gtRegNum
    genDefineTempLabel(noOverflow);
    inst_RV(INS_div, divisor->gtRegNum, TYP_INT);

    const regNumber targetReg = node->gtRegNum;
    if (targetReg != REG_EDX)
    {
        inst_RV_RV(INS_mov, targetReg, REG_RDX, TYP_INT);
    }
    genProduceReg(node);
}
#endif // _TARGET_X86_

//------------------------------------------------------------------------
// genCodeForDivMod: Generate code for a DIV or MOD operation.
//
// Arguments:
//    treeNode - the node to generate the code for
//
void CodeGen::genCodeForDivMod(GenTreeOp* treeNode)
{
    GenTree* dividend = treeNode->gtOp1;
#ifdef _TARGET_X86_
    if (varTypeIsLong(dividend->TypeGet()))
    {
        genCodeForLongUMod(treeNode);
        return;
    }
#endif // _TARGET_X86_

    GenTree*   divisor    = treeNode->gtOp2;
    genTreeOps oper       = treeNode->OperGet();
    emitAttr   size       = emitTypeSize(treeNode);
    regNumber  targetReg  = treeNode->gtRegNum;
    var_types  targetType = treeNode->TypeGet();
    emitter*   emit       = getEmitter();

    // dividend is in a register.
    assert(dividend->isUsedFromReg());

    genConsumeOperands(treeNode->AsOp());
    if (varTypeIsFloating(targetType))
    {
        // Check that divisor is a valid operand.
        // Note that a reg optional operand is a treated as a memory op
        // if no register is allocated to it.
        assert(divisor->isUsedFromReg() || divisor->isMemoryOp() || divisor->IsCnsFltOrDbl() ||
               divisor->IsRegOptional());

        // Floating point div/rem operation
        assert(oper == GT_DIV || oper == GT_MOD);

        if (dividend->gtRegNum == targetReg)
        {
            emit->emitInsBinary(genGetInsForOper(treeNode->gtOper, targetType), size, treeNode, divisor);
        }
        else if (divisor->isUsedFromReg() && divisor->gtRegNum == targetReg)
        {
            // It is not possible to generate 2-operand divss or divsd where reg2 = reg1 / reg2
            // because divss/divsd reg1, reg2 will over-write reg1.  Therefore, in case of AMD64
            // LSRA has to make sure that such a register assignment is not generated for floating
            // point div/rem operations.
            noway_assert(
                !"GT_DIV/GT_MOD (float): case of reg2 = reg1 / reg2, LSRA should never generate such a reg assignment");
        }
        else
        {
            inst_RV_RV(ins_Copy(targetType), targetReg, dividend->gtRegNum, targetType);
            emit->emitInsBinary(genGetInsForOper(treeNode->gtOper, targetType), size, treeNode, divisor);
        }
    }
    else
    {
        // dividend must be in RAX
        genCopyRegIfNeeded(dividend, REG_RAX);

        // zero or sign extend rax to rdx
        if (oper == GT_UMOD || oper == GT_UDIV)
        {
            instGen_Set_Reg_To_Zero(EA_PTRSIZE, REG_EDX);
        }
        else
        {
            emit->emitIns(INS_cdq, size);
            // the cdq instruction writes RDX, So clear the gcInfo for RDX
            gcInfo.gcMarkRegSetNpt(RBM_RDX);
        }

        // Perform the 'targetType' (64-bit or 32-bit) divide instruction
        instruction ins;
        if (oper == GT_UMOD || oper == GT_UDIV)
        {
            ins = INS_div;
        }
        else
        {
            ins = INS_idiv;
        }

        emit->emitInsBinary(ins, size, treeNode, divisor);

        // DIV/IDIV instructions always store the quotient in RAX and the remainder in RDX.
        // Move the result to the desired register, if necessary
        if (oper == GT_DIV || oper == GT_UDIV)
        {
            if (targetReg != REG_RAX)
            {
                inst_RV_RV(INS_mov, targetReg, REG_RAX, targetType);
            }
        }
        else
        {
            assert((oper == GT_MOD) || (oper == GT_UMOD));
            if (targetReg != REG_RDX)
            {
                inst_RV_RV(INS_mov, targetReg, REG_RDX, targetType);
            }
        }
    }
    genProduceReg(treeNode);
}

//------------------------------------------------------------------------
// genCodeForBinary: Generate code for many binary arithmetic operators
// This method is expected to have called genConsumeOperands() before calling it.
//
// Arguments:
//    treeNode - The binary operation for which we are generating code.
//
// Return Value:
//    None.
//
// Notes:
//    Mul and div variants have special constraints on x64 so are not handled here.
//    See teh assert below for the operators that are handled.

void CodeGen::genCodeForBinary(GenTree* treeNode)
{
    const genTreeOps oper       = treeNode->OperGet();
    regNumber        targetReg  = treeNode->gtRegNum;
    var_types        targetType = treeNode->TypeGet();
    emitter*         emit       = getEmitter();

#if defined(_TARGET_64BIT_)
    assert(oper == GT_OR || oper == GT_XOR || oper == GT_AND || oper == GT_ADD || oper == GT_SUB);
#else  // !defined(_TARGET_64BIT_)
    assert(oper == GT_OR || oper == GT_XOR || oper == GT_AND || oper == GT_ADD_LO || oper == GT_ADD_HI ||
           oper == GT_SUB_LO || oper == GT_SUB_HI || oper == GT_MUL_LONG || oper == GT_DIV_HI || oper == GT_MOD_HI ||
           oper == GT_ADD || oper == GT_SUB);
#endif // !defined(_TARGET_64BIT_)

    GenTreePtr op1 = treeNode->gtGetOp1();
    GenTreePtr op2 = treeNode->gtGetOp2();

    // Commutative operations can mark op1 as contained or reg-optional to generate "op reg, memop/immed"
    if (!op1->isUsedFromReg())
    {
        assert(treeNode->OperIsCommutative());
        assert(op1->isMemoryOp() || op1->IsCnsNonZeroFltOrDbl() || op1->IsIntCnsFitsInI32() || op1->IsRegOptional());

        op1 = treeNode->gtGetOp2();
        op2 = treeNode->gtGetOp1();
    }

    instruction ins = genGetInsForOper(treeNode->OperGet(), targetType);

    // The arithmetic node must be sitting in a register (since it's not contained)
    noway_assert(targetReg != REG_NA);

    regNumber op1reg = op1->isUsedFromReg() ? op1->gtRegNum : REG_NA;
    regNumber op2reg = op2->isUsedFromReg() ? op2->gtRegNum : REG_NA;

    GenTreePtr dst;
    GenTreePtr src;

    // This is the case of reg1 = reg1 op reg2
    // We're ready to emit the instruction without any moves
    if (op1reg == targetReg)
    {
        dst = op1;
        src = op2;
    }
    // We have reg1 = reg2 op reg1
    // In order for this operation to be correct
    // we need that op is a commutative operation so
    // we can convert it into reg1 = reg1 op reg2 and emit
    // the same code as above
    else if (op2reg == targetReg)
    {
        noway_assert(GenTree::OperIsCommutative(oper));
        dst = op2;
        src = op1;
    }
    // now we know there are 3 different operands so attempt to use LEA
    else if (oper == GT_ADD && !varTypeIsFloating(treeNode) && !treeNode->gtOverflowEx() // LEA does not set flags
             && (op2->isContainedIntOrIImmed() || op2->isUsedFromReg()) && !treeNode->gtSetFlags())
    {
        if (op2->isContainedIntOrIImmed())
        {
            emit->emitIns_R_AR(INS_lea, emitTypeSize(treeNode), targetReg, op1reg,
                               (int)op2->AsIntConCommon()->IconValue());
        }
        else
        {
            assert(op2reg != REG_NA);
            emit->emitIns_R_ARX(INS_lea, emitTypeSize(treeNode), targetReg, op1reg, op2reg, 1, 0);
        }
        genProduceReg(treeNode);
        return;
    }
    // dest, op1 and op2 registers are different:
    // reg3 = reg1 op reg2
    // We can implement this by issuing a mov:
    // reg3 = reg1
    // reg3 = reg3 op reg2
    else
    {
        inst_RV_RV(ins_Copy(targetType), targetReg, op1reg, targetType);
        regTracker.rsTrackRegCopy(targetReg, op1reg);
        gcInfo.gcMarkRegPtrVal(targetReg, targetType);
        dst = treeNode;
        src = op2;
    }

    // try to use an inc or dec
    if (oper == GT_ADD && !varTypeIsFloating(treeNode) && src->isContainedIntOrIImmed() && !treeNode->gtOverflowEx())
    {
        if (src->IsIntegralConst(1))
        {
            emit->emitIns_R(INS_inc, emitTypeSize(treeNode), targetReg);
            genProduceReg(treeNode);
            return;
        }
        else if (src->IsIntegralConst(-1))
        {
            emit->emitIns_R(INS_dec, emitTypeSize(treeNode), targetReg);
            genProduceReg(treeNode);
            return;
        }
    }
    regNumber r = emit->emitInsBinary(ins, emitTypeSize(treeNode), dst, src);
    noway_assert(r == targetReg);

    if (treeNode->gtOverflowEx())
    {
#if !defined(_TARGET_64BIT_)
        assert(oper == GT_ADD || oper == GT_SUB || oper == GT_ADD_HI || oper == GT_SUB_HI);
#else
        assert(oper == GT_ADD || oper == GT_SUB);
#endif
        genCheckOverflow(treeNode);
    }
    genProduceReg(treeNode);
}

//------------------------------------------------------------------------
// isStructReturn: Returns whether the 'treeNode' is returning a struct.
//
// Arguments:
//    treeNode - The tree node to evaluate whether is a struct return.
//
// Return Value:
//    For AMD64 *nix: returns true if the 'treeNode" is a GT_RETURN node, of type struct.
//                    Otherwise returns false.
//    For other platforms always returns false.
//
bool CodeGen::isStructReturn(GenTreePtr treeNode)
{
    // This method could be called for 'treeNode' of GT_RET_FILT or GT_RETURN.
    // For the GT_RET_FILT, the return is always
    // a bool or a void, for the end of a finally block.
    noway_assert(treeNode->OperGet() == GT_RETURN || treeNode->OperGet() == GT_RETFILT);
    if (treeNode->OperGet() != GT_RETURN)
    {
        return false;
    }

#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
    return varTypeIsStruct(treeNode);
#else  // !FEATURE_UNIX_AMD64_STRUCT_PASSING
    assert(!varTypeIsStruct(treeNode));
    return false;
#endif // FEATURE_UNIX_AMD64_STRUCT_PASSING
}

//------------------------------------------------------------------------
// genStructReturn: Generates code for returning a struct.
//
// Arguments:
//    treeNode - The GT_RETURN tree node.
//
// Return Value:
//    None
//
// Assumption:
//    op1 of GT_RETURN node is either GT_LCL_VAR or multi-reg GT_CALL
void CodeGen::genStructReturn(GenTreePtr treeNode)
{
    assert(treeNode->OperGet() == GT_RETURN);
    GenTreePtr op1 = treeNode->gtGetOp1();

#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
    if (op1->OperGet() == GT_LCL_VAR)
    {
        GenTreeLclVarCommon* lclVar = op1->AsLclVarCommon();
        LclVarDsc*           varDsc = &(compiler->lvaTable[lclVar->gtLclNum]);
        assert(varDsc->lvIsMultiRegRet);

        ReturnTypeDesc retTypeDesc;
        retTypeDesc.InitializeStructReturnType(compiler, varDsc->lvVerTypeInfo.GetClassHandle());
        unsigned regCount = retTypeDesc.GetReturnRegCount();
        assert(regCount == MAX_RET_REG_COUNT);

        if (varTypeIsEnregisterableStruct(op1))
        {
            // Right now the only enregistrable structs supported are SIMD vector types.
            assert(varTypeIsSIMD(op1));
            assert(op1->isUsedFromReg());

            // This is a case of operand is in a single reg and needs to be
            // returned in multiple ABI return registers.
            regNumber opReg = genConsumeReg(op1);
            regNumber reg0  = retTypeDesc.GetABIReturnReg(0);
            regNumber reg1  = retTypeDesc.GetABIReturnReg(1);

            if (opReg != reg0 && opReg != reg1)
            {
                // Operand reg is different from return regs.
                // Copy opReg to reg0 and let it to be handled by one of the
                // two cases below.
                inst_RV_RV(ins_Copy(TYP_DOUBLE), reg0, opReg, TYP_DOUBLE);
                opReg = reg0;
            }

            if (opReg == reg0)
            {
                assert(opReg != reg1);

                // reg0 - already has required 8-byte in bit position [63:0].
                // reg1 = opReg.
                // swap upper and lower 8-bytes of reg1 so that desired 8-byte is in bit position [63:0].
                inst_RV_RV(ins_Copy(TYP_DOUBLE), reg1, opReg, TYP_DOUBLE);
            }
            else
            {
                assert(opReg == reg1);

                // reg0 = opReg.
                // swap upper and lower 8-bytes of reg1 so that desired 8-byte is in bit position [63:0].
                inst_RV_RV(ins_Copy(TYP_DOUBLE), reg0, opReg, TYP_DOUBLE);
            }
            inst_RV_RV_IV(INS_shufpd, EA_16BYTE, reg1, reg1, 0x01);
        }
        else
        {
            assert(op1->isUsedFromMemory());

            // Copy var on stack into ABI return registers
            int offset = 0;
            for (unsigned i = 0; i < regCount; ++i)
            {
                var_types type = retTypeDesc.GetReturnRegType(i);
                regNumber reg  = retTypeDesc.GetABIReturnReg(i);
                getEmitter()->emitIns_R_S(ins_Load(type), emitTypeSize(type), reg, lclVar->gtLclNum, offset);
                offset += genTypeSize(type);
            }
        }
    }
    else
    {
        assert(op1->IsMultiRegCall() || op1->IsCopyOrReloadOfMultiRegCall());

        genConsumeRegs(op1);

        GenTree*        actualOp1   = op1->gtSkipReloadOrCopy();
        GenTreeCall*    call        = actualOp1->AsCall();
        ReturnTypeDesc* retTypeDesc = call->GetReturnTypeDesc();
        unsigned        regCount    = retTypeDesc->GetReturnRegCount();
        assert(regCount == MAX_RET_REG_COUNT);

        // Handle circular dependency between call allocated regs and ABI return regs.
        //
        // It is possible under LSRA stress that originally allocated regs of call node,
        // say rax and rdx, are spilled and reloaded to rdx and rax respectively.  But
        // GT_RETURN needs to  move values as follows: rdx->rax, rax->rdx. Similar kind
        // kind of circular dependency could arise between xmm0 and xmm1 return regs.
        // Codegen is expected to handle such circular dependency.
        //
        var_types regType0      = retTypeDesc->GetReturnRegType(0);
        regNumber returnReg0    = retTypeDesc->GetABIReturnReg(0);
        regNumber allocatedReg0 = call->GetRegNumByIdx(0);

        var_types regType1      = retTypeDesc->GetReturnRegType(1);
        regNumber returnReg1    = retTypeDesc->GetABIReturnReg(1);
        regNumber allocatedReg1 = call->GetRegNumByIdx(1);

        if (op1->IsCopyOrReload())
        {
            // GT_COPY/GT_RELOAD will have valid reg for those positions
            // that need to be copied or reloaded.
            regNumber reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(0);
            if (reloadReg != REG_NA)
            {
                allocatedReg0 = reloadReg;
            }

            reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(1);
            if (reloadReg != REG_NA)
            {
                allocatedReg1 = reloadReg;
            }
        }

        if (allocatedReg0 == returnReg1 && allocatedReg1 == returnReg0)
        {
            // Circular dependency - swap allocatedReg0 and allocatedReg1
            if (varTypeIsFloating(regType0))
            {
                assert(varTypeIsFloating(regType1));

                // The fastest way to swap two XMM regs is using PXOR
                inst_RV_RV(INS_pxor, allocatedReg0, allocatedReg1, TYP_DOUBLE);
                inst_RV_RV(INS_pxor, allocatedReg1, allocatedReg0, TYP_DOUBLE);
                inst_RV_RV(INS_pxor, allocatedReg0, allocatedReg1, TYP_DOUBLE);
            }
            else
            {
                assert(varTypeIsIntegral(regType0));
                assert(varTypeIsIntegral(regType1));
                inst_RV_RV(INS_xchg, allocatedReg1, allocatedReg0, TYP_I_IMPL);
            }
        }
        else if (allocatedReg1 == returnReg0)
        {
            // Change the order of moves to correctly handle dependency.
            if (allocatedReg1 != returnReg1)
            {
                inst_RV_RV(ins_Copy(regType1), returnReg1, allocatedReg1, regType1);
            }

            if (allocatedReg0 != returnReg0)
            {
                inst_RV_RV(ins_Copy(regType0), returnReg0, allocatedReg0, regType0);
            }
        }
        else
        {
            // No circular dependency case.
            if (allocatedReg0 != returnReg0)
            {
                inst_RV_RV(ins_Copy(regType0), returnReg0, allocatedReg0, regType0);
            }

            if (allocatedReg1 != returnReg1)
            {
                inst_RV_RV(ins_Copy(regType1), returnReg1, allocatedReg1, regType1);
            }
        }
    }
#else
    unreached();
#endif
}

//------------------------------------------------------------------------
// genReturn: Generates code for return statement.
//            In case of struct return, delegates to the genStructReturn method.
//
// Arguments:
//    treeNode - The GT_RETURN or GT_RETFILT tree node.
//
// Return Value:
//    None
//
void CodeGen::genReturn(GenTreePtr treeNode)
{
    assert(treeNode->OperGet() == GT_RETURN || treeNode->OperGet() == GT_RETFILT);
    GenTreePtr op1        = treeNode->gtGetOp1();
    var_types  targetType = treeNode->TypeGet();

#ifdef DEBUG
    if (targetType == TYP_VOID)
    {
        assert(op1 == nullptr);
    }
#endif

#ifdef _TARGET_X86_
    if (treeNode->TypeGet() == TYP_LONG)
    {
        assert(op1 != nullptr);
        noway_assert(op1->OperGet() == GT_LONG);
        GenTree* loRetVal = op1->gtGetOp1();
        GenTree* hiRetVal = op1->gtGetOp2();
        noway_assert((loRetVal->gtRegNum != REG_NA) && (hiRetVal->gtRegNum != REG_NA));

        genConsumeReg(loRetVal);
        genConsumeReg(hiRetVal);
        if (loRetVal->gtRegNum != REG_LNGRET_LO)
        {
            inst_RV_RV(ins_Copy(targetType), REG_LNGRET_LO, loRetVal->gtRegNum, TYP_INT);
        }
        if (hiRetVal->gtRegNum != REG_LNGRET_HI)
        {
            inst_RV_RV(ins_Copy(targetType), REG_LNGRET_HI, hiRetVal->gtRegNum, TYP_INT);
        }
    }
    else
#endif // !defined(_TARGET_X86_)
    {
        if (isStructReturn(treeNode))
        {
            genStructReturn(treeNode);
        }
        else if (targetType != TYP_VOID)
        {
            assert(op1 != nullptr);
            noway_assert(op1->gtRegNum != REG_NA);

            // !! NOTE !! genConsumeReg will clear op1 as GC ref after it has
            // consumed a reg for the operand. This is because the variable
            // is dead after return. But we are issuing more instructions
            // like "profiler leave callback" after this consumption. So
            // if you are issuing more instructions after this point,
            // remember to keep the variable live up until the new method
            // exit point where it is actually dead.
            genConsumeReg(op1);

            regNumber retReg = varTypeIsFloating(treeNode) ? REG_FLOATRET : REG_INTRET;
#ifdef _TARGET_X86_
            if (varTypeIsFloating(treeNode))
            {
                // Spill the return value register from an XMM register to the stack, then load it on the x87 stack.
                // If it already has a home location, use that. Otherwise, we need a temp.
                if (genIsRegCandidateLocal(op1) && compiler->lvaTable[op1->gtLclVarCommon.gtLclNum].lvOnFrame)
                {
                    // Store local variable to its home location, if necessary.
                    if ((op1->gtFlags & GTF_REG_VAL) != 0)
                    {
                        op1->gtFlags &= ~GTF_REG_VAL;
                        inst_TT_RV(ins_Store(op1->gtType,
                                             compiler->isSIMDTypeLocalAligned(op1->gtLclVarCommon.gtLclNum)),
                                   op1, op1->gtRegNum);
                    }
                    // Now, load it to the fp stack.
                    getEmitter()->emitIns_S(INS_fld, emitTypeSize(op1), op1->AsLclVarCommon()->gtLclNum, 0);
                }
                else
                {
                    // Spill the value, which should be in a register, then load it to the fp stack.
                    // TODO-X86-CQ: Deal with things that are already in memory (don't call genConsumeReg yet).
                    op1->gtFlags |= GTF_SPILL;
                    regSet.rsSpillTree(op1->gtRegNum, op1);
                    op1->gtFlags |= GTF_SPILLED;
                    op1->gtFlags &= ~GTF_SPILL;

                    TempDsc* t = regSet.rsUnspillInPlace(op1, op1->gtRegNum);
                    inst_FS_ST(INS_fld, emitActualTypeSize(op1->gtType), t, 0);
                    op1->gtFlags &= ~GTF_SPILLED;
                    compiler->tmpRlsTemp(t);
                }
            }
            else
#endif // _TARGET_X86_
            {
                if (op1->gtRegNum != retReg)
                {
                    inst_RV_RV(ins_Copy(targetType), retReg, op1->gtRegNum, targetType);
                }
            }
        }
    }

#ifdef PROFILING_SUPPORTED
    // !! Note !!
    // TODO-AMD64-Unix: If the profiler hook is implemented on *nix, make sure for 2 register returned structs
    //                  the RAX and RDX needs to be kept alive. Make the necessary changes in lowerxarch.cpp
    //                  in the handling of the GT_RETURN statement.
    //                  Such structs containing GC pointers need to be handled by calling gcInfo.gcMarkRegSetNpt
    //                  for the return registers containing GC refs.

    // There will be a single return block while generating profiler ELT callbacks.
    //
    // Reason for not materializing Leave callback as a GT_PROF_HOOK node after GT_RETURN:
    // In flowgraph and other places assert that the last node of a block marked as
    // BBJ_RETURN is either a GT_RETURN or GT_JMP or a tail call.  It would be nice to
    // maintain such an invariant irrespective of whether profiler hook needed or not.
    // Also, there is not much to be gained by materializing it as an explicit node.
    if (compiler->compCurBB == compiler->genReturnBB)
    {
        // !! NOTE !!
        // Since we are invalidating the assumption that we would slip into the epilog
        // right after the "return", we need to preserve the return reg's GC state
        // across the call until actual method return.
        if (varTypeIsGC(compiler->info.compRetType))
        {
            gcInfo.gcMarkRegPtrVal(REG_INTRET, compiler->info.compRetType);
        }

        genProfilingLeaveCallback();

        if (varTypeIsGC(compiler->info.compRetType))
        {
            gcInfo.gcMarkRegSetNpt(REG_INTRET);
        }
    }
#endif
}

//------------------------------------------------------------------------
// genCodeForJumpTrue: Generates code for jmpTrue statement.
//
// Arguments:
//    tree - The GT_JTRUE tree node.
//
// Return Value:
//    None
//
void CodeGen::genCodeForJumpTrue(GenTreePtr tree)
{
    GenTree* cmp = tree->gtOp.gtOp1;

    assert(cmp->OperIsCompare());
    assert(compiler->compCurBB->bbJumpKind == BBJ_COND);

#if !defined(_TARGET_64BIT_)
    // Long-typed compares should have been handled by Lowering::LowerCompare.
    assert(!varTypeIsLong(cmp->gtGetOp1()));
#endif

    // Get the "kind" and type of the comparison.  Note that whether it is an unsigned cmp
    // is governed by a flag NOT by the inherent type of the node
    // TODO-XArch-CQ: Check if we can use the currently set flags.
    emitJumpKind jumpKind[2];
    bool         branchToTrueLabel[2];
    genJumpKindsForTree(cmp, jumpKind, branchToTrueLabel);

    BasicBlock* skipLabel = nullptr;
    if (jumpKind[0] != EJ_NONE)
    {
        BasicBlock* jmpTarget;
        if (branchToTrueLabel[0])
        {
            jmpTarget = compiler->compCurBB->bbJumpDest;
        }
        else
        {
            // This case arises only for ordered GT_EQ right now
            assert((cmp->gtOper == GT_EQ) && ((cmp->gtFlags & GTF_RELOP_NAN_UN) == 0));
            skipLabel = genCreateTempLabel();
            jmpTarget = skipLabel;
        }

        inst_JMP(jumpKind[0], jmpTarget);
    }

    if (jumpKind[1] != EJ_NONE)
    {
        // the second conditional branch always has to be to the true label
        assert(branchToTrueLabel[1]);
        inst_JMP(jumpKind[1], compiler->compCurBB->bbJumpDest);
    }

    if (skipLabel != nullptr)
    {
        genDefineTempLabel(skipLabel);
    }
}

/*****************************************************************************
 *
 * Generate code for a single node in the tree.
 * Preconditions: All operands have been evaluated
 *
 */
void CodeGen::genCodeForTreeNode(GenTreePtr treeNode)
{
    regNumber targetReg;
#if !defined(_TARGET_64BIT_)
    if (treeNode->TypeGet() == TYP_LONG)
    {
        // All long enregistered nodes will have been decomposed into their
        // constituent lo and hi nodes.
        targetReg = REG_NA;
    }
    else
#endif // !defined(_TARGET_64BIT_)
    {
        targetReg = treeNode->gtRegNum;
    }
    var_types targetType = treeNode->TypeGet();
    emitter*  emit       = getEmitter();

#ifdef DEBUG
    // Validate that all the operands for the current node are consumed in order.
    // This is important because LSRA ensures that any necessary copies will be
    // handled correctly.
    lastConsumedNode = nullptr;
    if (compiler->verbose)
    {
        unsigned seqNum = treeNode->gtSeqNum; // Useful for setting a conditional break in Visual Studio
        compiler->gtDispLIRNode(treeNode, "Generating: ");
    }
#endif // DEBUG

    // Is this a node whose value is already in a register?  LSRA denotes this by
    // setting the GTF_REUSE_REG_VAL flag.
    if (treeNode->IsReuseRegVal())
    {
        // For now, this is only used for constant nodes.
        assert((treeNode->OperIsConst()));
        JITDUMP("  TreeNode is marked ReuseReg\n");
        return;
    }

    // contained nodes are part of their parents for codegen purposes
    // ex : immediates, most LEAs
    if (treeNode->isContained())
    {
        return;
    }

    switch (treeNode->gtOper)
    {
#ifndef JIT32_GCENCODER
        case GT_START_NONGC:
            getEmitter()->emitDisableGC();
            break;
#endif // !defined(JIT32_GCENCODER)

        case GT_PROF_HOOK:
#ifdef PROFILING_SUPPORTED
            // We should be seeing this only if profiler hook is needed
            noway_assert(compiler->compIsProfilerHookNeeded());

            // Right now this node is used only for tail calls. In future if
            // we intend to use it for Enter or Leave hooks, add a data member
            // to this node indicating the kind of profiler hook. For example,
            // helper number can be used.
            genProfilingLeaveCallback(CORINFO_HELP_PROF_FCN_TAILCALL);
#endif // PROFILING_SUPPORTED
            break;

        case GT_LCLHEAP:
            genLclHeap(treeNode);
            break;

        case GT_CNS_INT:
#ifdef _TARGET_X86_
            assert(!treeNode->IsIconHandle(GTF_ICON_TLS_HDL));
#endif // _TARGET_X86_
            __fallthrough;

        case GT_CNS_DBL:
            genSetRegToConst(targetReg, targetType, treeNode);
            genProduceReg(treeNode);
            break;

        case GT_NEG:
        case GT_NOT:
            if (varTypeIsFloating(targetType))
            {
                assert(treeNode->gtOper == GT_NEG);
                genSSE2BitwiseOp(treeNode);
            }
            else
            {
                GenTreePtr operand = treeNode->gtGetOp1();
                assert(operand->isUsedFromReg());
                regNumber operandReg = genConsumeReg(operand);

                if (operandReg != targetReg)
                {
                    inst_RV_RV(INS_mov, targetReg, operandReg, targetType);
                }

                instruction ins = genGetInsForOper(treeNode->OperGet(), targetType);
                inst_RV(ins, targetReg, targetType);
            }
            genProduceReg(treeNode);
            break;

        case GT_OR:
        case GT_XOR:
        case GT_AND:
            assert(varTypeIsIntegralOrI(treeNode));
            __fallthrough;

#if !defined(_TARGET_64BIT_)
        case GT_ADD_LO:
        case GT_ADD_HI:
        case GT_SUB_LO:
        case GT_SUB_HI:
#endif // !defined(_TARGET_64BIT_)
        case GT_ADD:
        case GT_SUB:
            genConsumeOperands(treeNode->AsOp());
            genCodeForBinary(treeNode);
            break;

        case GT_LSH:
        case GT_RSH:
        case GT_RSZ:
        case GT_ROL:
        case GT_ROR:
            genCodeForShift(treeNode);
            // genCodeForShift() calls genProduceReg()
            break;

#if !defined(_TARGET_64BIT_)
        case GT_LSH_HI:
        case GT_RSH_LO:
            // TODO-X86-CQ: This only handles the case where the operand being shifted is in a register. We don't
            // need sourceHi to be always in reg in case of GT_LSH_HI (because it could be moved from memory to
            // targetReg if sourceHi is a memory operand). Similarly for GT_RSH_LO, sourceLo could be marked as
            // contained memory-op. Even if not a memory-op, we could mark it as reg-optional.
            genCodeForShiftLong(treeNode);
            break;
#endif

        case GT_CAST:
            if (varTypeIsFloating(targetType) && varTypeIsFloating(treeNode->gtOp.gtOp1))
            {
                // Casts float/double <--> double/float
                genFloatToFloatCast(treeNode);
            }
            else if (varTypeIsFloating(treeNode->gtOp.gtOp1))
            {
                // Casts float/double --> int32/int64
                genFloatToIntCast(treeNode);
            }
            else if (varTypeIsFloating(targetType))
            {
                // Casts int32/uint32/int64/uint64 --> float/double
                genIntToFloatCast(treeNode);
            }
            else
            {
                // Casts int <--> int
                genIntToIntCast(treeNode);
            }
            // The per-case functions call genProduceReg()
            break;

        case GT_LCL_VAR:
        {
            // lcl_vars are not defs
            assert((treeNode->gtFlags & GTF_VAR_DEF) == 0);

            GenTreeLclVarCommon* lcl            = treeNode->AsLclVarCommon();
            bool                 isRegCandidate = compiler->lvaTable[lcl->gtLclNum].lvIsRegCandidate();

            if (isRegCandidate && !(treeNode->gtFlags & GTF_VAR_DEATH))
            {
                assert(treeNode->InReg() || (treeNode->gtFlags & GTF_SPILLED));
            }

            // If this is a register candidate that has been spilled, genConsumeReg() will
            // reload it at the point of use.  Otherwise, if it's not in a register, we load it here.

            if (!treeNode->InReg() && !(treeNode->gtFlags & GTF_SPILLED))
            {
                assert(!isRegCandidate);
#if defined(FEATURE_SIMD) && defined(_TARGET_X86_)
                // Loading of TYP_SIMD12 (i.e. Vector3) variable
                if (treeNode->TypeGet() == TYP_SIMD12)
                {
                    genLoadLclTypeSIMD12(treeNode);
                    break;
                }
#endif // defined(FEATURE_SIMD) && defined(_TARGET_X86_)

                emit->emitIns_R_S(ins_Load(treeNode->TypeGet(), compiler->isSIMDTypeLocalAligned(lcl->gtLclNum)),
                                  emitTypeSize(treeNode), treeNode->gtRegNum, lcl->gtLclNum, 0);
                genProduceReg(treeNode);
            }
        }
        break;

        case GT_LCL_FLD_ADDR:
        case GT_LCL_VAR_ADDR:
            // Address of a local var.  This by itself should never be allocated a register.
            // If it is worth storing the address in a register then it should be cse'ed into
            // a temp and that would be allocated a register.
            noway_assert(targetType == TYP_BYREF);
            noway_assert(!treeNode->InReg());

            inst_RV_TT(INS_lea, targetReg, treeNode, 0, EA_BYREF);
            genProduceReg(treeNode);
            break;

        case GT_LCL_FLD:
        {
            noway_assert(targetType != TYP_STRUCT);
            noway_assert(treeNode->gtRegNum != REG_NA);

#ifdef FEATURE_SIMD
            // Loading of TYP_SIMD12 (i.e. Vector3) field
            if (treeNode->TypeGet() == TYP_SIMD12)
            {
                genLoadLclTypeSIMD12(treeNode);
                break;
            }
#endif

            emitAttr size   = emitTypeSize(targetType);
            unsigned offs   = treeNode->gtLclFld.gtLclOffs;
            unsigned varNum = treeNode->gtLclVarCommon.gtLclNum;
            assert(varNum < compiler->lvaCount);

            emit->emitIns_R_S(ins_Move_Extend(targetType, treeNode->InReg()), size, targetReg, varNum, offs);
        }
            genProduceReg(treeNode);
            break;

        case GT_STORE_LCL_FLD:
        {
            noway_assert(targetType != TYP_STRUCT);
            noway_assert(!treeNode->InReg());
            assert(!varTypeIsFloating(targetType) || (targetType == treeNode->gtGetOp1()->TypeGet()));

#ifdef FEATURE_SIMD
            // storing of TYP_SIMD12 (i.e. Vector3) field
            if (treeNode->TypeGet() == TYP_SIMD12)
            {
                genStoreLclTypeSIMD12(treeNode);
                break;
            }
#endif // FEATURE_SIMD

            GenTreePtr op1 = treeNode->gtGetOp1();
            genConsumeRegs(op1);
            emit->emitInsBinary(ins_Store(targetType), emitTypeSize(treeNode), treeNode, op1);

            genUpdateLife(treeNode);
        }
        break;

        case GT_STORE_LCL_VAR:
        {
            GenTreePtr op1 = treeNode->gtGetOp1();

            // var = call, where call returns a multi-reg return value
            // case is handled separately.
            if (op1->gtSkipReloadOrCopy()->IsMultiRegCall())
            {
                genMultiRegCallStoreToLocal(treeNode);
            }
            else
            {
                noway_assert(targetType != TYP_STRUCT);
                assert(!varTypeIsFloating(targetType) || (targetType == treeNode->gtGetOp1()->TypeGet()));

                unsigned   lclNum = treeNode->AsLclVarCommon()->gtLclNum;
                LclVarDsc* varDsc = &(compiler->lvaTable[lclNum]);

                // Ensure that lclVar nodes are typed correctly.
                assert(!varDsc->lvNormalizeOnStore() || treeNode->TypeGet() == genActualType(varDsc->TypeGet()));

#if !defined(_TARGET_64BIT_)
                if (treeNode->TypeGet() == TYP_LONG)
                {
                    genStoreLongLclVar(treeNode);
                    break;
                }
#endif // !defined(_TARGET_64BIT_)

#ifdef FEATURE_SIMD
                // storing of TYP_SIMD12 (i.e. Vector3) field
                if (treeNode->TypeGet() == TYP_SIMD12)
                {
                    genStoreLclTypeSIMD12(treeNode);
                    break;
                }

                if (varTypeIsSIMD(targetType) && (targetReg != REG_NA) && op1->IsCnsIntOrI())
                {
                    // This is only possible for a zero-init.
                    noway_assert(op1->IsIntegralConst(0));
                    genSIMDZero(targetType, varDsc->lvBaseType, targetReg);
                    genProduceReg(treeNode);
                    break;
                }
#endif // FEATURE_SIMD

                genConsumeRegs(op1);

                if (treeNode->gtRegNum == REG_NA)
                {
                    // stack store
                    emit->emitInsMov(ins_Store(targetType, compiler->isSIMDTypeLocalAligned(lclNum)),
                                     emitTypeSize(targetType), treeNode);
                    varDsc->lvRegNum = REG_STK;
                }
                else
                {
                    // Look for the case where we have a constant zero which we've marked for reuse,
                    // but which isn't actually in the register we want.  In that case, it's better to create
                    // zero in the target register, because an xor is smaller than a copy. Note that we could
                    // potentially handle this in the register allocator, but we can't always catch it there
                    // because the target may not have a register allocated for it yet.
                    if (op1->isUsedFromReg() && (op1->gtRegNum != treeNode->gtRegNum) &&
                        (op1->IsIntegralConst(0) || op1->IsFPZero()))
                    {
                        op1->gtRegNum = REG_NA;
                        op1->ResetReuseRegVal();
                    }

                    if (!op1->isUsedFromReg())
                    {
                        // Currently, we assume that the non-reg source of a GT_STORE_LCL_VAR writing to a register
                        // must be a constant. However, in the future we might want to support an operand used from
                        // memory.  This is a bit tricky because we have to decide it can be used from memory before
                        // register allocation,
                        // and this would be a case where, once that's done, we need to mark that node as always
                        // requiring a register - which we always assume now anyway, but once we "optimize" that
                        // we'll have to take cases like this into account.
                        assert((op1->gtRegNum == REG_NA) && op1->OperIsConst());
                        genSetRegToConst(treeNode->gtRegNum, targetType, op1);
                    }
                    else if (op1->gtRegNum != treeNode->gtRegNum)
                    {
                        assert(op1->gtRegNum != REG_NA);
                        emit->emitInsBinary(ins_Move_Extend(targetType, true), emitTypeSize(treeNode), treeNode, op1);
                    }
                }
            }

            if (treeNode->gtRegNum != REG_NA)
            {
                genProduceReg(treeNode);
            }
        }
        break;

        case GT_RETFILT:
            // A void GT_RETFILT is the end of a finally. For non-void filter returns we need to load the result in
            // the return register, if it's not already there. The processing is the same as GT_RETURN.
            if (targetType != TYP_VOID)
            {
                // For filters, the IL spec says the result is type int32. Further, the only specified legal values
                // are 0 or 1, with the use of other values "undefined".
                assert(targetType == TYP_INT);
            }

            __fallthrough;

        case GT_RETURN:
            genReturn(treeNode);
            break;

        case GT_LEA:
        {
            // if we are here, it is the case where there is an LEA that cannot
            // be folded into a parent instruction
            GenTreeAddrMode* lea = treeNode->AsAddrMode();
            genLeaInstruction(lea);
        }
        // genLeaInstruction calls genProduceReg()
        break;

        case GT_IND:
        {
#ifdef FEATURE_SIMD
            // Handling of Vector3 type values loaded through indirection.
            if (treeNode->TypeGet() == TYP_SIMD12)
            {
                genLoadIndTypeSIMD12(treeNode);
                break;
            }
#endif // FEATURE_SIMD

            GenTree* addr = treeNode->AsIndir()->Addr();
            if (addr->IsCnsIntOrI() && addr->IsIconHandle(GTF_ICON_TLS_HDL))
            {
                noway_assert(EA_ATTR(genTypeSize(treeNode->gtType)) == EA_PTRSIZE);
                emit->emitIns_R_C(ins_Load(TYP_I_IMPL), EA_PTRSIZE, treeNode->gtRegNum, FLD_GLOBAL_FS,
                                  (int)addr->gtIntCon.gtIconVal);
            }
            else
            {
                genConsumeAddress(addr);
                emit->emitInsMov(ins_Load(treeNode->TypeGet()), emitTypeSize(treeNode), treeNode);
            }
            genProduceReg(treeNode);
        }
        break;

        case GT_MULHI:
#ifdef _TARGET_X86_
        case GT_MUL_LONG:
#endif
            genCodeForMulHi(treeNode->AsOp());
            genProduceReg(treeNode);
            break;

        case GT_MUL:
        {
            instruction ins;
            emitAttr    size                  = emitTypeSize(treeNode);
            bool        isUnsignedMultiply    = ((treeNode->gtFlags & GTF_UNSIGNED) != 0);
            bool        requiresOverflowCheck = treeNode->gtOverflowEx();

            GenTree* op1 = treeNode->gtGetOp1();
            GenTree* op2 = treeNode->gtGetOp2();

            // there are 3 forms of x64 multiply:
            // 1-op form with 128 result:  RDX:RAX = RAX * rm
            // 2-op form: reg *= rm
            // 3-op form: reg = rm * imm

            genConsumeOperands(treeNode->AsOp());

            // This matches the 'mul' lowering in Lowering::SetMulOpCounts()
            //
            // immOp :: Only one operand can be an immediate
            // rmOp  :: Only one operand can be a memory op.
            // regOp :: A register op (especially the operand that matches 'targetReg')
            //          (can be nullptr when we have both a memory op and an immediate op)

            GenTree* immOp = nullptr;
            GenTree* rmOp  = op1;
            GenTree* regOp;

            if (op2->isContainedIntOrIImmed())
            {
                immOp = op2;
            }
            else if (op1->isContainedIntOrIImmed())
            {
                immOp = op1;
                rmOp  = op2;
            }

            if (immOp != nullptr)
            {
                // This must be a non-floating point operation.
                assert(!varTypeIsFloating(treeNode));

                // CQ: When possible use LEA for mul by imm 3, 5 or 9
                ssize_t imm = immOp->AsIntConCommon()->IconValue();

                if (!requiresOverflowCheck && rmOp->isUsedFromReg() && ((imm == 3) || (imm == 5) || (imm == 9)))
                {
                    // We will use the LEA instruction to perform this multiply
                    // Note that an LEA with base=x, index=x and scale=(imm-1) computes x*imm when imm=3,5 or 9.
                    unsigned int scale = (unsigned int)(imm - 1);
                    getEmitter()->emitIns_R_ARX(INS_lea, size, targetReg, rmOp->gtRegNum, rmOp->gtRegNum, scale, 0);
                }
                else
                {
                    // use the 3-op form with immediate
                    ins = getEmitter()->inst3opImulForReg(targetReg);
                    emit->emitInsBinary(ins, size, rmOp, immOp);
                }
            }
            else // we have no contained immediate operand
            {
                regOp = op1;
                rmOp  = op2;

                regNumber mulTargetReg = targetReg;
                if (isUnsignedMultiply && requiresOverflowCheck)
                {
                    ins          = INS_mulEAX;
                    mulTargetReg = REG_RAX;
                }
                else
                {
                    ins = genGetInsForOper(GT_MUL, targetType);
                }

                // Set rmOp to the memory operand (if any)
                // or set regOp to the op2 when it has the matching target register for our multiply op
                //
                if (op1->isUsedFromMemory() || (op2->isUsedFromReg() && (op2->gtRegNum == mulTargetReg)))
                {
                    regOp = op2;
                    rmOp  = op1;
                }
                assert(regOp->isUsedFromReg());

                // Setup targetReg when neither of the source operands was a matching register
                if (regOp->gtRegNum != mulTargetReg)
                {
                    inst_RV_RV(ins_Copy(targetType), mulTargetReg, regOp->gtRegNum, targetType);
                }

                emit->emitInsBinary(ins, size, treeNode, rmOp);

                // Move the result to the desired register, if necessary
                if ((ins == INS_mulEAX) && (targetReg != REG_RAX))
                {
                    inst_RV_RV(INS_mov, targetReg, REG_RAX, targetType);
                }
            }

            if (requiresOverflowCheck)
            {
                // Overflow checking is only used for non-floating point types
                noway_assert(!varTypeIsFloating(treeNode));

                genCheckOverflow(treeNode);
            }
        }
            genProduceReg(treeNode);
            break;

        case GT_MOD:
        case GT_UDIV:
        case GT_UMOD:
            // We shouldn't be seeing GT_MOD on float/double args as it should get morphed into a
            // helper call by front-end.  Similarly we shouldn't be seeing GT_UDIV and GT_UMOD
            // on float/double args.
            noway_assert(!varTypeIsFloating(treeNode));
            __fallthrough;

        case GT_DIV:
            genCodeForDivMod(treeNode->AsOp());
            break;

        case GT_INTRINSIC:
            genIntrinsic(treeNode);
            break;

#ifdef FEATURE_SIMD
        case GT_SIMD:
            genSIMDIntrinsic(treeNode->AsSIMD());
            break;
#endif // FEATURE_SIMD

        case GT_CKFINITE:
            genCkfinite(treeNode);
            break;

        case GT_EQ:
        case GT_NE:
        case GT_LT:
        case GT_LE:
        case GT_GE:
        case GT_GT:
        case GT_TEST_EQ:
        case GT_TEST_NE:
        {
            // TODO-XArch-CQ: Check if we can use the currently set flags.
            // TODO-XArch-CQ: Check for the case where we can simply transfer the carry bit to a register
            //         (signed < or >= where targetReg != REG_NA)

            GenTreePtr op1     = treeNode->gtGetOp1();
            var_types  op1Type = op1->TypeGet();

            if (varTypeIsFloating(op1Type))
            {
                genCompareFloat(treeNode);
            }
#if !defined(_TARGET_64BIT_)
            // X86 Long comparison
            else if (varTypeIsLong(op1Type))
            {
#ifdef DEBUG
                // The result of an unlowered long compare on a 32-bit target must either be
                // a) materialized into a register, or
                // b) unused.
                //
                // A long compare that has a result that is used but not materialized into a register should
                // have been handled by Lowering::LowerCompare.

                LIR::Use use;
                assert((treeNode->gtRegNum != REG_NA) || !LIR::AsRange(compiler->compCurBB).TryGetUse(treeNode, &use));
#endif
                genCompareLong(treeNode);
            }
#endif // !defined(_TARGET_64BIT_)
            else
            {
                genCompareInt(treeNode);
            }
        }
        break;

        case GT_JTRUE:
            genCodeForJumpTrue(treeNode);
            break;

        case GT_JCC:
        {
            GenTreeJumpCC* jcc = treeNode->AsJumpCC();

            assert(compiler->compCurBB->bbJumpKind == BBJ_COND);

            CompareKind  compareKind = ((jcc->gtFlags & GTF_UNSIGNED) != 0) ? CK_UNSIGNED : CK_SIGNED;
            emitJumpKind jumpKind    = genJumpKindForOper(jcc->gtCondition, compareKind);

            inst_JMP(jumpKind, compiler->compCurBB->bbJumpDest);
        }
        break;

        case GT_RETURNTRAP:
        {
            // this is nothing but a conditional call to CORINFO_HELP_STOP_FOR_GC
            // based on the contents of 'data'

            GenTree* data = treeNode->gtOp.gtOp1;
            genConsumeRegs(data);
            GenTreeIntCon cns = intForm(TYP_INT, 0);
            emit->emitInsBinary(INS_cmp, emitTypeSize(TYP_INT), data, &cns);

            BasicBlock* skipLabel = genCreateTempLabel();

            emitJumpKind jmpEqual = genJumpKindForOper(GT_EQ, CK_SIGNED);
            inst_JMP(jmpEqual, skipLabel);

            // emit the call to the EE-helper that stops for GC (or other reasons)
            regNumber tmpReg = treeNode->GetSingleTempReg();
            assert(genIsValidIntReg(tmpReg));

            genEmitHelperCall(CORINFO_HELP_STOP_FOR_GC, 0, EA_UNKNOWN, tmpReg);
            genDefineTempLabel(skipLabel);
        }
        break;

        case GT_STOREIND:
            genStoreInd(treeNode);
            break;

        case GT_COPY:
            // This is handled at the time we call genConsumeReg() on the GT_COPY
            break;

        case GT_SWAP:
        {
            // Swap is only supported for lclVar operands that are enregistered
            // We do not consume or produce any registers.  Both operands remain enregistered.
            // However, the gc-ness may change.
            assert(genIsRegCandidateLocal(treeNode->gtOp.gtOp1) && genIsRegCandidateLocal(treeNode->gtOp.gtOp2));

            GenTreeLclVarCommon* lcl1    = treeNode->gtOp.gtOp1->AsLclVarCommon();
            LclVarDsc*           varDsc1 = &(compiler->lvaTable[lcl1->gtLclNum]);
            var_types            type1   = varDsc1->TypeGet();
            GenTreeLclVarCommon* lcl2    = treeNode->gtOp.gtOp2->AsLclVarCommon();
            LclVarDsc*           varDsc2 = &(compiler->lvaTable[lcl2->gtLclNum]);
            var_types            type2   = varDsc2->TypeGet();

            // We must have both int or both fp regs
            assert(!varTypeIsFloating(type1) || varTypeIsFloating(type2));

            // FP swap is not yet implemented (and should have NYI'd in LSRA)
            assert(!varTypeIsFloating(type1));

            regNumber oldOp1Reg     = lcl1->gtRegNum;
            regMaskTP oldOp1RegMask = genRegMask(oldOp1Reg);
            regNumber oldOp2Reg     = lcl2->gtRegNum;
            regMaskTP oldOp2RegMask = genRegMask(oldOp2Reg);

            // We don't call genUpdateVarReg because we don't have a tree node with the new register.
            varDsc1->lvRegNum = oldOp2Reg;
            varDsc2->lvRegNum = oldOp1Reg;

            // Do the xchg
            emitAttr size = EA_PTRSIZE;
            if (varTypeGCtype(type1) != varTypeGCtype(type2))
            {
                // If the type specified to the emitter is a GC type, it will swap the GC-ness of the registers.
                // Otherwise it will leave them alone, which is correct if they have the same GC-ness.
                size = EA_GCREF;
            }
            inst_RV_RV(INS_xchg, oldOp1Reg, oldOp2Reg, TYP_I_IMPL, size);

            // Update the gcInfo.
            // Manually remove these regs for the gc sets (mostly to avoid confusing duplicative dump output)
            gcInfo.gcRegByrefSetCur &= ~(oldOp1RegMask | oldOp2RegMask);
            gcInfo.gcRegGCrefSetCur &= ~(oldOp1RegMask | oldOp2RegMask);

            // gcMarkRegPtrVal will do the appropriate thing for non-gc types.
            // It will also dump the updates.
            gcInfo.gcMarkRegPtrVal(oldOp2Reg, type1);
            gcInfo.gcMarkRegPtrVal(oldOp1Reg, type2);
        }
        break;

        case GT_LIST:
        case GT_FIELD_LIST:
        case GT_ARGPLACE:
            // Nothing to do
            break;

        case GT_PUTARG_STK:
            genPutArgStk(treeNode->AsPutArgStk());
            break;

        case GT_PUTARG_REG:
        {
#ifndef FEATURE_UNIX_AMD64_STRUCT_PASSING
            noway_assert(targetType != TYP_STRUCT);
#endif // FEATURE_UNIX_AMD64_STRUCT_PASSING
            // commas show up here commonly, as part of a nullchk operation
            GenTree* op1 = treeNode->gtOp.gtOp1;
            // If child node is not already in the register we need, move it
            genConsumeReg(op1);
            if (treeNode->gtRegNum != op1->gtRegNum)
            {
                inst_RV_RV(ins_Copy(targetType), treeNode->gtRegNum, op1->gtRegNum, targetType);
            }
            genProduceReg(treeNode);
        }
        break;

        case GT_CALL:
            genCallInstruction(treeNode->AsCall());
            break;

        case GT_JMP:
            genJmpMethod(treeNode);
            break;

        case GT_LOCKADD:
        case GT_XCHG:
        case GT_XADD:
            genLockedInstructions(treeNode->AsOp());
            break;

        case GT_MEMORYBARRIER:
            instGen_MemoryBarrier();
            break;

        case GT_CMPXCHG:
        {
            GenTreePtr location  = treeNode->gtCmpXchg.gtOpLocation;  // arg1
            GenTreePtr value     = treeNode->gtCmpXchg.gtOpValue;     // arg2
            GenTreePtr comparand = treeNode->gtCmpXchg.gtOpComparand; // arg3

            assert(location->gtRegNum != REG_NA && location->gtRegNum != REG_RAX);
            assert(value->gtRegNum != REG_NA && value->gtRegNum != REG_RAX);

            genConsumeReg(location);
            genConsumeReg(value);
            genConsumeReg(comparand);
            // comparand goes to RAX;
            // Note that we must issue this move after the genConsumeRegs(), in case any of the above
            // have a GT_COPY from RAX.
            if (comparand->gtRegNum != REG_RAX)
            {
                inst_RV_RV(ins_Copy(comparand->TypeGet()), REG_RAX, comparand->gtRegNum, comparand->TypeGet());
            }

            // location is Rm
            instGen(INS_lock);

            emit->emitIns_AR_R(INS_cmpxchg, emitTypeSize(targetType), value->gtRegNum, location->gtRegNum, 0);

            // Result is in RAX
            if (targetReg != REG_RAX)
            {
                inst_RV_RV(ins_Copy(targetType), targetReg, REG_RAX, targetType);
            }
        }
            genProduceReg(treeNode);
            break;

        case GT_RELOAD:
            // do nothing - reload is just a marker.
            // The parent node will call genConsumeReg on this which will trigger the unspill of this node's child
            // into the register specified in this node.
            break;

        case GT_NOP:
            break;

        case GT_NO_OP:
            if (treeNode->gtFlags & GTF_NO_OP_NO)
            {
                noway_assert(!"GTF_NO_OP_NO should not be set");
            }
            else
            {
                getEmitter()->emitIns_Nop(1);
            }
            break;

        case GT_ARR_BOUNDS_CHECK:
#ifdef FEATURE_SIMD
        case GT_SIMD_CHK:
#endif // FEATURE_SIMD
            genRangeCheck(treeNode);
            break;

        case GT_PHYSREG:
            if (treeNode->gtRegNum != treeNode->AsPhysReg()->gtSrcReg)
            {
                inst_RV_RV(INS_mov, treeNode->gtRegNum, treeNode->AsPhysReg()->gtSrcReg, targetType);

                genTransferRegGCState(treeNode->gtRegNum, treeNode->AsPhysReg()->gtSrcReg);
            }
            genProduceReg(treeNode);
            break;

        case GT_PHYSREGDST:
            break;

        case GT_NULLCHECK:
        {
            assert(treeNode->gtOp.gtOp1->isUsedFromReg());
            regNumber reg = genConsumeReg(treeNode->gtOp.gtOp1);
            emit->emitIns_AR_R(INS_cmp, EA_4BYTE, reg, reg, 0);
        }
        break;

        case GT_CATCH_ARG:

            noway_assert(handlerGetsXcptnObj(compiler->compCurBB->bbCatchTyp));

            /* Catch arguments get passed in a register. genCodeForBBlist()
               would have marked it as holding a GC object, but not used. */

            noway_assert(gcInfo.gcRegGCrefSetCur & RBM_EXCEPTION_OBJECT);
            genConsumeReg(treeNode);
            break;

#if !FEATURE_EH_FUNCLETS
        case GT_END_LFIN:

            // Have to clear the ShadowSP of the nesting level which encloses the finally. Generates:
            //     mov dword ptr [ebp-0xC], 0  // for some slot of the ShadowSP local var

            unsigned finallyNesting;
            finallyNesting = treeNode->gtVal.gtVal1;
            noway_assert(treeNode->gtVal.gtVal1 < compiler->compHndBBtabCount);
            noway_assert(finallyNesting < compiler->compHndBBtabCount);

            // The last slot is reserved for ICodeManager::FixContext(ppEndRegion)
            unsigned filterEndOffsetSlotOffs;
            PREFIX_ASSUME(compiler->lvaLclSize(compiler->lvaShadowSPslotsVar) >
                          TARGET_POINTER_SIZE); // below doesn't underflow.
            filterEndOffsetSlotOffs =
                (unsigned)(compiler->lvaLclSize(compiler->lvaShadowSPslotsVar) - TARGET_POINTER_SIZE);

            unsigned curNestingSlotOffs;
            curNestingSlotOffs = filterEndOffsetSlotOffs - ((finallyNesting + 1) * TARGET_POINTER_SIZE);
            instGen_Store_Imm_Into_Lcl(TYP_I_IMPL, EA_PTRSIZE, 0, compiler->lvaShadowSPslotsVar, curNestingSlotOffs);
            break;
#endif // !FEATURE_EH_FUNCLETS

        case GT_PINVOKE_PROLOG:
            noway_assert(((gcInfo.gcRegGCrefSetCur | gcInfo.gcRegByrefSetCur) & ~fullIntArgRegMask()) == 0);

            // the runtime side requires the codegen here to be consistent
            emit->emitDisableRandomNops();
            break;

        case GT_LABEL:
            genPendingCallLabel       = genCreateTempLabel();
            treeNode->gtLabel.gtLabBB = genPendingCallLabel;
            emit->emitIns_R_L(INS_lea, EA_PTR_DSP_RELOC, genPendingCallLabel, treeNode->gtRegNum);
            break;

        case GT_STORE_OBJ:
            if (treeNode->OperIsCopyBlkOp() && !treeNode->AsBlk()->gtBlkOpGcUnsafe)
            {
                assert(treeNode->AsObj()->gtGcPtrCount != 0);
                genCodeForCpObj(treeNode->AsObj());
                break;
            }
            __fallthrough;

        case GT_STORE_DYN_BLK:
        case GT_STORE_BLK:
            genCodeForStoreBlk(treeNode->AsBlk());
            break;

        case GT_JMPTABLE:
            genJumpTable(treeNode);
            break;

        case GT_SWITCH_TABLE:
            genTableBasedSwitch(treeNode);
            break;

        case GT_ARR_INDEX:
            genCodeForArrIndex(treeNode->AsArrIndex());
            break;

        case GT_ARR_OFFSET:
            genCodeForArrOffset(treeNode->AsArrOffs());
            break;

        case GT_CLS_VAR_ADDR:
            getEmitter()->emitIns_R_C(INS_lea, EA_PTRSIZE, targetReg, treeNode->gtClsVar.gtClsVarHnd, 0);
            genProduceReg(treeNode);
            break;

#if !defined(_TARGET_64BIT_)
        case GT_LONG:
            assert(treeNode->isUsedFromReg());
            genConsumeRegs(treeNode);
            break;
#endif

        case GT_IL_OFFSET:
            // Do nothing; these nodes are simply markers for debug info.
            break;

        default:
        {
#ifdef DEBUG
            char message[256];
            _snprintf_s(message, _countof(message), _TRUNCATE, "Unimplemented node type %s\n",
                        GenTree::NodeName(treeNode->OperGet()));
#endif
            assert(!"Unknown node in codegen");
        }
        break;
    }
}

//----------------------------------------------------------------------------------
// genMultiRegCallStoreToLocal: store multi-reg return value of a call node to a local
//
// Arguments:
//    treeNode  -  Gentree of GT_STORE_LCL_VAR
//
// Return Value:
//    None
//
// Assumption:
//    The child of store is a multi-reg call node.
//    genProduceReg() on treeNode is made by caller of this routine.
//
void CodeGen::genMultiRegCallStoreToLocal(GenTreePtr treeNode)
{
    assert(treeNode->OperGet() == GT_STORE_LCL_VAR);

#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
    // Structs of size >=9 and <=16 are returned in two return registers on x64 Unix.
    assert(varTypeIsStruct(treeNode));

    // Assumption: current x64 Unix implementation requires that a multi-reg struct
    // var in 'var = call' is flagged as lvIsMultiRegRet to prevent it from
    // being struct promoted.
    unsigned   lclNum = treeNode->AsLclVarCommon()->gtLclNum;
    LclVarDsc* varDsc = &(compiler->lvaTable[lclNum]);
    noway_assert(varDsc->lvIsMultiRegRet);

    GenTree*     op1       = treeNode->gtGetOp1();
    GenTree*     actualOp1 = op1->gtSkipReloadOrCopy();
    GenTreeCall* call      = actualOp1->AsCall();
    assert(call->HasMultiRegRetVal());

    genConsumeRegs(op1);

    ReturnTypeDesc* retTypeDesc = call->GetReturnTypeDesc();
    assert(retTypeDesc->GetReturnRegCount() == MAX_RET_REG_COUNT);
    unsigned regCount = retTypeDesc->GetReturnRegCount();

    if (treeNode->gtRegNum != REG_NA)
    {
        // Right now the only enregistrable structs supported are SIMD types.
        assert(varTypeIsSIMD(treeNode));
        assert(varTypeIsFloating(retTypeDesc->GetReturnRegType(0)));
        assert(varTypeIsFloating(retTypeDesc->GetReturnRegType(1)));

        // This is a case of two 8-bytes that comprise the operand is in
        // two different xmm registers and needs to assembled into a single
        // xmm register.
        regNumber targetReg = treeNode->gtRegNum;
        regNumber reg0      = call->GetRegNumByIdx(0);
        regNumber reg1      = call->GetRegNumByIdx(1);

        if (op1->IsCopyOrReload())
        {
            // GT_COPY/GT_RELOAD will have valid reg for those positions
            // that need to be copied or reloaded.
            regNumber reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(0);
            if (reloadReg != REG_NA)
            {
                reg0 = reloadReg;
            }

            reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(1);
            if (reloadReg != REG_NA)
            {
                reg1 = reloadReg;
            }
        }

        if (targetReg != reg0 && targetReg != reg1)
        {
            // Copy reg0 into targetReg and let it to be handled by one
            // of the cases below.
            inst_RV_RV(ins_Copy(TYP_DOUBLE), targetReg, reg0, TYP_DOUBLE);
            targetReg = reg0;
        }

        if (targetReg == reg0)
        {
            // targeReg[63:0] = targetReg[63:0]
            // targetReg[127:64] = reg1[127:64]
            inst_RV_RV_IV(INS_shufpd, EA_16BYTE, targetReg, reg1, 0x00);
        }
        else
        {
            assert(targetReg == reg1);

            // We need two shuffles to achieve this
            // First:
            // targeReg[63:0] = targetReg[63:0]
            // targetReg[127:64] = reg0[63:0]
            //
            // Second:
            // targeReg[63:0] = targetReg[127:64]
            // targetReg[127:64] = targetReg[63:0]
            //
            // Essentially copy low 8-bytes from reg0 to high 8-bytes of targetReg
            // and next swap low and high 8-bytes of targetReg to have them
            // rearranged in the right order.
            inst_RV_RV_IV(INS_shufpd, EA_16BYTE, targetReg, reg0, 0x00);
            inst_RV_RV_IV(INS_shufpd, EA_16BYTE, targetReg, targetReg, 0x01);
        }
    }
    else
    {
        // Stack store
        int offset = 0;
        for (unsigned i = 0; i < regCount; ++i)
        {
            var_types type = retTypeDesc->GetReturnRegType(i);
            regNumber reg  = call->GetRegNumByIdx(i);
            if (op1->IsCopyOrReload())
            {
                // GT_COPY/GT_RELOAD will have valid reg for those positions
                // that need to be copied or reloaded.
                regNumber reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(i);
                if (reloadReg != REG_NA)
                {
                    reg = reloadReg;
                }
            }

            assert(reg != REG_NA);
            getEmitter()->emitIns_S_R(ins_Store(type), emitTypeSize(type), reg, lclNum, offset);
            offset += genTypeSize(type);
        }

        varDsc->lvRegNum = REG_STK;
    }
#elif defined(_TARGET_X86_)
    // Longs are returned in two return registers on x86.
    assert(varTypeIsLong(treeNode));

    // Assumption: current x86 implementation requires that a multi-reg long
    // var in 'var = call' is flagged as lvIsMultiRegRet to prevent it from
    // being promoted.
    unsigned   lclNum = treeNode->AsLclVarCommon()->gtLclNum;
    LclVarDsc* varDsc = &(compiler->lvaTable[lclNum]);
    noway_assert(varDsc->lvIsMultiRegRet);

    GenTree*     op1       = treeNode->gtGetOp1();
    GenTree*     actualOp1 = op1->gtSkipReloadOrCopy();
    GenTreeCall* call      = actualOp1->AsCall();
    assert(call->HasMultiRegRetVal());

    genConsumeRegs(op1);

    ReturnTypeDesc* retTypeDesc = call->GetReturnTypeDesc();
    unsigned        regCount    = retTypeDesc->GetReturnRegCount();
    assert(regCount == MAX_RET_REG_COUNT);

    // Stack store
    int offset = 0;
    for (unsigned i = 0; i < regCount; ++i)
    {
        var_types type = retTypeDesc->GetReturnRegType(i);
        regNumber reg  = call->GetRegNumByIdx(i);
        if (op1->IsCopyOrReload())
        {
            // GT_COPY/GT_RELOAD will have valid reg for those positions
            // that need to be copied or reloaded.
            regNumber reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(i);
            if (reloadReg != REG_NA)
            {
                reg = reloadReg;
            }
        }

        assert(reg != REG_NA);
        getEmitter()->emitIns_S_R(ins_Store(type), emitTypeSize(type), reg, lclNum, offset);
        offset += genTypeSize(type);
    }

    varDsc->lvRegNum            = REG_STK;
#else  // !FEATURE_UNIX_AMD64_STRUCT_PASSING && !_TARGET_X86_
    assert(!"Unreached");
#endif // !FEATURE_UNIX_AMD64_STRUCT_PASSING && !_TARGET_X86_
}

//------------------------------------------------------------------------
// genLclHeap: Generate code for localloc.
//
// Arguments:
//      tree - the localloc tree to generate.
//
// Notes:
//      Note that for x86, we don't track ESP movements while generating the localloc code.
//      The ESP tracking is used to report stack pointer-relative GC info, which is not
//      interesting while doing the localloc construction. Also, for functions with localloc,
//      we have EBP frames, and EBP-relative locals, and ESP-relative accesses only for function
//      call arguments. We store the ESP after the localloc is complete in the LocAllocSP
//      variable. This variable is implicitly reported to the VM in the GC info (its position
//      is defined by convention relative to other items), and is used by the GC to find the
//      "base" stack pointer in functions with localloc.
//
void CodeGen::genLclHeap(GenTreePtr tree)
{
    assert(tree->OperGet() == GT_LCLHEAP);
    assert(compiler->compLocallocUsed);

    GenTreePtr size = tree->gtOp.gtOp1;
    noway_assert((genActualType(size->gtType) == TYP_INT) || (genActualType(size->gtType) == TYP_I_IMPL));

    regNumber   targetReg = tree->gtRegNum;
    regNumber   regCnt    = REG_NA;
    var_types   type      = genActualType(size->gtType);
    emitAttr    easz      = emitTypeSize(type);
    BasicBlock* endLabel  = nullptr;

#ifdef DEBUG
    // Verify ESP
    if (compiler->opts.compStackCheckOnRet)
    {
        noway_assert(compiler->lvaReturnEspCheck != 0xCCCCCCCC &&
                     compiler->lvaTable[compiler->lvaReturnEspCheck].lvDoNotEnregister &&
                     compiler->lvaTable[compiler->lvaReturnEspCheck].lvOnFrame);
        getEmitter()->emitIns_S_R(INS_cmp, EA_PTRSIZE, REG_SPBASE, compiler->lvaReturnEspCheck, 0);

        BasicBlock*  esp_check = genCreateTempLabel();
        emitJumpKind jmpEqual  = genJumpKindForOper(GT_EQ, CK_SIGNED);
        inst_JMP(jmpEqual, esp_check);
        getEmitter()->emitIns(INS_BREAKPOINT);
        genDefineTempLabel(esp_check);
    }
#endif

    noway_assert(isFramePointerUsed()); // localloc requires Frame Pointer to be established since SP changes
    noway_assert(genStackLevel == 0);   // Can't have anything on the stack

    unsigned    stackAdjustment = 0;
    BasicBlock* loop            = nullptr;

    // compute the amount of memory to allocate to properly STACK_ALIGN.
    size_t amount = 0;
    if (size->IsCnsIntOrI())
    {
        // If size is a constant, then it must be contained.
        assert(size->isContained());

        // If amount is zero then return null in targetReg
        amount = size->gtIntCon.gtIconVal;
        if (amount == 0)
        {
            instGen_Set_Reg_To_Zero(EA_PTRSIZE, targetReg);
            goto BAILOUT;
        }

        // 'amount' is the total number of bytes to localloc to properly STACK_ALIGN
        amount = AlignUp(amount, STACK_ALIGN);
    }
    else
    {
        // The localloc requested memory size is non-constant.

        // Put the size value in targetReg. If it is zero, bail out by returning null in targetReg.
        genConsumeRegAndCopy(size, targetReg);
        endLabel = genCreateTempLabel();
        getEmitter()->emitIns_R_R(INS_test, easz, targetReg, targetReg);
        inst_JMP(EJ_je, endLabel);

        // Compute the size of the block to allocate and perform alignment.
        // If compInitMem=true, we can reuse targetReg as regcnt,
        // since we don't need any internal registers.
        if (compiler->info.compInitMem)
        {
            assert(tree->AvailableTempRegCount() == 0);
            regCnt = targetReg;
        }
        else
        {
            regCnt = tree->ExtractTempReg();
            if (regCnt != targetReg)
            {
                // Above, we put the size in targetReg. Now, copy it to our new temp register if necessary.
                inst_RV_RV(INS_mov, regCnt, targetReg, size->TypeGet());
            }
        }

        // Round up the number of bytes to allocate to a STACK_ALIGN boundary. This is done
        // by code like:
        //      add reg, 15
        //      and reg, -16
        // However, in the initialized memory case, we need the count of STACK_ALIGN-sized
        // elements, not a byte count, after the alignment. So instead of the "and", which
        // becomes unnecessary, generate a shift, e.g.:
        //      add reg, 15
        //      shr reg, 4

        inst_RV_IV(INS_add, regCnt, STACK_ALIGN - 1, emitActualTypeSize(type));

        if (compiler->info.compInitMem)
        {
            // Convert the count from a count of bytes to a loop count. We will loop once per
            // stack alignment size, so each loop will zero 4 bytes on x86 and 16 bytes on x64.
            // Note that we zero a single reg-size word per iteration on x86, and 2 reg-size
            // words per iteration on x64. We will shift off all the stack alignment bits
            // added above, so there is no need for an 'and' instruction.

            // --- shr regCnt, 2 (or 4) ---
            inst_RV_SH(INS_SHIFT_RIGHT_LOGICAL, EA_PTRSIZE, regCnt, STACK_ALIGN_SHIFT_ALL);
        }
        else
        {
            // Otherwise, mask off the low bits to align the byte count.
            inst_RV_IV(INS_AND, regCnt, ~(STACK_ALIGN - 1), emitActualTypeSize(type));
        }
    }

#if FEATURE_FIXED_OUT_ARGS
    // If we have an outgoing arg area then we must adjust the SP by popping off the
    // outgoing arg area. We will restore it right before we return from this method.
    //
    // Localloc returns stack space that aligned to STACK_ALIGN bytes. The following
    // are the cases that need to be handled:
    //   i) Method has out-going arg area.
    //      It is guaranteed that size of out-going arg area is STACK_ALIGN'ed (see fgMorphArgs).
    //      Therefore, we will pop off the out-going arg area from RSP before allocating the localloc space.
    //  ii) Method has no out-going arg area.
    //      Nothing to pop off from the stack.
    if (compiler->lvaOutgoingArgSpaceSize > 0)
    {
        assert((compiler->lvaOutgoingArgSpaceSize % STACK_ALIGN) == 0); // This must be true for the stack to remain
                                                                        // aligned
        inst_RV_IV(INS_add, REG_SPBASE, compiler->lvaOutgoingArgSpaceSize, EA_PTRSIZE);
        stackAdjustment += compiler->lvaOutgoingArgSpaceSize;
    }
#endif

    if (size->IsCnsIntOrI())
    {
        // We should reach here only for non-zero, constant size allocations.
        assert(amount > 0);
        assert((amount % STACK_ALIGN) == 0);
        assert((amount % REGSIZE_BYTES) == 0);

        // For small allocations we will generate up to six push 0 inline
        size_t cntRegSizedWords = amount / REGSIZE_BYTES;
        if (cntRegSizedWords <= 6)
        {
            for (; cntRegSizedWords != 0; cntRegSizedWords--)
            {
                inst_IV(INS_push_hide, 0); // push_hide means don't track the stack
            }
            goto ALLOC_DONE;
        }

        bool doNoInitLessThanOnePageAlloc =
            !compiler->info.compInitMem && (amount < compiler->eeGetPageSize()); // must be < not <=

#ifdef _TARGET_X86_
        bool needRegCntRegister = true;
#else  // !_TARGET_X86_
        bool needRegCntRegister = !doNoInitLessThanOnePageAlloc;
#endif // !_TARGET_X86_

        if (needRegCntRegister)
        {
            // If compInitMem=true, we can reuse targetReg as regcnt.
            // Since size is a constant, regCnt is not yet initialized.
            assert(regCnt == REG_NA);
            if (compiler->info.compInitMem)
            {
                assert(tree->AvailableTempRegCount() == 0);
                regCnt = targetReg;
            }
            else
            {
                regCnt = tree->ExtractTempReg();
            }
        }

        if (doNoInitLessThanOnePageAlloc)
        {
            // Since the size is less than a page, simply adjust ESP.
            // ESP might already be in the guard page, so we must touch it BEFORE
            // the alloc, not after.
            CLANG_FORMAT_COMMENT_ANCHOR;

#ifdef _TARGET_X86_
            // For x86, we don't want to use "sub ESP" because we don't want the emitter to track the adjustment
            // to ESP. So do the work in the count register.
            // TODO-CQ: manipulate ESP directly, to share code, reduce #ifdefs, and improve CQ. This would require
            // creating a way to temporarily turn off the emitter's tracking of ESP, maybe marking instrDescs as "don't
            // track".
            inst_RV_RV(INS_mov, regCnt, REG_SPBASE, TYP_I_IMPL);
            getEmitter()->emitIns_AR_R(INS_TEST, EA_4BYTE, REG_SPBASE, REG_SPBASE, 0);
            inst_RV_IV(INS_sub, regCnt, amount, EA_PTRSIZE);
            inst_RV_RV(INS_mov, REG_SPBASE, regCnt, TYP_I_IMPL);
#else  // !_TARGET_X86_
            getEmitter()->emitIns_AR_R(INS_TEST, EA_4BYTE, REG_SPBASE, REG_SPBASE, 0);
            inst_RV_IV(INS_sub, REG_SPBASE, amount, EA_PTRSIZE);
#endif // !_TARGET_X86_

            goto ALLOC_DONE;
        }

        // else, "mov regCnt, amount"

        if (compiler->info.compInitMem)
        {
            // When initializing memory, we want 'amount' to be the loop count.
            assert((amount % STACK_ALIGN) == 0);
            amount /= STACK_ALIGN;
        }

        genSetRegToIcon(regCnt, amount, ((int)amount == amount) ? TYP_INT : TYP_LONG);
    }

    loop = genCreateTempLabel();
    if (compiler->info.compInitMem)
    {
        // At this point 'regCnt' is set to the number of loop iterations for this loop, if each
        // iteration zeros (and subtracts from the stack pointer) STACK_ALIGN bytes.
        // Since we have to zero out the allocated memory AND ensure that RSP is always valid
        // by tickling the pages, we will just push 0's on the stack.

        assert(genIsValidIntReg(regCnt));

        // Loop:
        genDefineTempLabel(loop);

        static_assert_no_msg((STACK_ALIGN % REGSIZE_BYTES) == 0);
        unsigned const count = (STACK_ALIGN / REGSIZE_BYTES);

        for (unsigned i = 0; i < count; i++)
        {
            inst_IV(INS_push_hide, 0); // --- push REG_SIZE bytes of 0
        }
        // Note that the stack must always be aligned to STACK_ALIGN bytes

        // Decrement the loop counter and loop if not done.
        inst_RV(INS_dec, regCnt, TYP_I_IMPL);
        inst_JMP(EJ_jne, loop);
    }
    else
    {
        // At this point 'regCnt' is set to the total number of bytes to localloc.
        //
        // We don't need to zero out the allocated memory. However, we do have
        // to tickle the pages to ensure that ESP is always valid and is
        // in sync with the "stack guard page".  Note that in the worst
        // case ESP is on the last byte of the guard page.  Thus you must
        // touch ESP+0 first not ESP+x01000.
        //
        // Another subtlety is that you don't want ESP to be exactly on the
        // boundary of the guard page because PUSH is predecrement, thus
        // call setup would not touch the guard page but just beyond it
        //
        // Note that we go through a few hoops so that ESP never points to
        // illegal pages at any time during the tickling process
        //
        //       neg   REGCNT
        //       add   REGCNT, ESP      // reg now holds ultimate ESP
        //       jb    loop             // result is smaller than orignial ESP (no wrap around)
        //       xor   REGCNT, REGCNT,  // Overflow, pick lowest possible number
        //  loop:
        //       test  ESP, [ESP+0]     // tickle the page
        //       mov   REGTMP, ESP
        //       sub   REGTMP, PAGE_SIZE
        //       mov   ESP, REGTMP
        //       cmp   ESP, REGCNT
        //       jae   loop
        //
        //       mov   ESP, REG
        //  end:
        inst_RV(INS_NEG, regCnt, TYP_I_IMPL);
        inst_RV_RV(INS_add, regCnt, REG_SPBASE, TYP_I_IMPL);
        inst_JMP(EJ_jb, loop);

        instGen_Set_Reg_To_Zero(EA_PTRSIZE, regCnt);

        genDefineTempLabel(loop);

        // Tickle the decremented value, and move back to ESP,
        // note that it has to be done BEFORE the update of ESP since
        // ESP might already be on the guard page.  It is OK to leave
        // the final value of ESP on the guard page
        getEmitter()->emitIns_AR_R(INS_TEST, EA_4BYTE, REG_SPBASE, REG_SPBASE, 0);

        // This is a harmless trick to avoid the emitter trying to track the
        // decrement of the ESP - we do the subtraction in another reg instead
        // of adjusting ESP directly.
        regNumber regTmp = tree->GetSingleTempReg();

        inst_RV_RV(INS_mov, regTmp, REG_SPBASE, TYP_I_IMPL);
        inst_RV_IV(INS_sub, regTmp, compiler->eeGetPageSize(), EA_PTRSIZE);
        inst_RV_RV(INS_mov, REG_SPBASE, regTmp, TYP_I_IMPL);

        inst_RV_RV(INS_cmp, REG_SPBASE, regCnt, TYP_I_IMPL);
        inst_JMP(EJ_jae, loop);

        // Move the final value to ESP
        inst_RV_RV(INS_mov, REG_SPBASE, regCnt);
    }

ALLOC_DONE:
    // Re-adjust SP to allocate out-going arg area
    if (stackAdjustment > 0)
    {
        assert((stackAdjustment % STACK_ALIGN) == 0); // This must be true for the stack to remain aligned
        inst_RV_IV(INS_sub, REG_SPBASE, stackAdjustment, EA_PTRSIZE);
    }

    // Return the stackalloc'ed address in result register.
    // TargetReg = RSP + stackAdjustment.
    getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, targetReg, REG_SPBASE, stackAdjustment);

    if (endLabel != nullptr)
    {
        genDefineTempLabel(endLabel);
    }

BAILOUT:

    // Write the lvaLocAllocSPvar stack frame slot
    if (compiler->lvaLocAllocSPvar != BAD_VAR_NUM)
    {
        getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SPBASE, compiler->lvaLocAllocSPvar, 0);
    }

#if STACK_PROBES
    if (compiler->opts.compNeedStackProbes)
    {
        genGenerateStackProbe();
    }
#endif

#ifdef DEBUG
    // Update new ESP
    if (compiler->opts.compStackCheckOnRet)
    {
        noway_assert(compiler->lvaReturnEspCheck != 0xCCCCCCCC &&
                     compiler->lvaTable[compiler->lvaReturnEspCheck].lvDoNotEnregister &&
                     compiler->lvaTable[compiler->lvaReturnEspCheck].lvOnFrame);
        getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SPBASE, compiler->lvaReturnEspCheck, 0);
    }
#endif

    genProduceReg(tree);
}

void CodeGen::genCodeForStoreBlk(GenTreeBlk* storeBlkNode)
{
#ifdef JIT32_GCENCODER
    assert(!storeBlkNode->gtBlkOpGcUnsafe);
#else
    if (storeBlkNode->gtBlkOpGcUnsafe)
    {
        getEmitter()->emitDisableGC();
    }
#endif // JIT32_GCENCODER

    bool isCopyBlk = storeBlkNode->OperIsCopyBlkOp();

    switch (storeBlkNode->gtBlkOpKind)
    {
#ifdef _TARGET_AMD64_
        case GenTreeBlk::BlkOpKindHelper:
            if (isCopyBlk)
            {
                genCodeForCpBlk(storeBlkNode);
            }
            else
            {
                genCodeForInitBlk(storeBlkNode);
            }
            break;
#endif // _TARGET_AMD64_
        case GenTreeBlk::BlkOpKindRepInstr:
            if (isCopyBlk)
            {
                genCodeForCpBlkRepMovs(storeBlkNode);
            }
            else
            {
                genCodeForInitBlkRepStos(storeBlkNode);
            }
            break;
        case GenTreeBlk::BlkOpKindUnroll:
            if (isCopyBlk)
            {
                genCodeForCpBlkUnroll(storeBlkNode);
            }
            else
            {
                genCodeForInitBlkUnroll(storeBlkNode);
            }
            break;
        default:
            unreached();
    }

#ifndef JIT32_GCENCODER
    if (storeBlkNode->gtBlkOpGcUnsafe)
    {
        getEmitter()->emitEnableGC();
    }
#endif // !defined(JIT32_GCENCODER)
}

//
//------------------------------------------------------------------------
// genCodeForInitBlkRepStos: Generate code for InitBlk using rep stos.
//
// Arguments:
//    initBlkNode - The Block store for which we are generating code.
//
// Preconditions:
//    On x64:
//      The size of the buffers must be a constant and also less than INITBLK_STOS_LIMIT bytes.
//      Any value larger than that, we'll use the helper even if both the fill byte and the
//      size are integer constants.
//  On x86:
//      The size must either be a non-constant or less than INITBLK_STOS_LIMIT bytes.
//
void CodeGen::genCodeForInitBlkRepStos(GenTreeBlk* initBlkNode)
{
    // Make sure we got the arguments of the initblk/initobj operation in the right registers.
    unsigned   size    = initBlkNode->Size();
    GenTreePtr dstAddr = initBlkNode->Addr();
    GenTreePtr initVal = initBlkNode->Data();
    if (initVal->OperIsInitVal())
    {
        initVal = initVal->gtGetOp1();
    }

#ifdef DEBUG
    assert(dstAddr->isUsedFromReg());
    assert(initVal->isUsedFromReg());
#ifdef _TARGET_AMD64_
    assert(size != 0);
#endif
    if (initVal->IsCnsIntOrI())
    {
#ifdef _TARGET_AMD64_
        assert(size > CPBLK_UNROLL_LIMIT && size < CPBLK_MOVS_LIMIT);
#else
        // Note that a size of zero means a non-constant size.
        assert((size == 0) || (size > CPBLK_UNROLL_LIMIT));
#endif
    }

#endif // DEBUG

    genConsumeBlockOp(initBlkNode, REG_RDI, REG_RAX, REG_RCX);
    instGen(INS_r_stosb);
}

// Generate code for InitBlk by performing a loop unroll
// Preconditions:
//   a) Both the size and fill byte value are integer constants.
//   b) The size of the struct to initialize is smaller than INITBLK_UNROLL_LIMIT bytes.
//
void CodeGen::genCodeForInitBlkUnroll(GenTreeBlk* initBlkNode)
{
    // Make sure we got the arguments of the initblk/initobj operation in the right registers
    unsigned   size    = initBlkNode->Size();
    GenTreePtr dstAddr = initBlkNode->Addr();
    GenTreePtr initVal = initBlkNode->Data();
    if (initVal->OperIsInitVal())
    {
        initVal = initVal->gtGetOp1();
    }

    assert(dstAddr->isUsedFromReg());
    assert(initVal->isUsedFromReg() || (initVal->IsIntegralConst(0) && ((size & 0xf) == 0)));
    assert(size != 0);
    assert(size <= INITBLK_UNROLL_LIMIT);
    assert(initVal->gtSkipReloadOrCopy()->IsCnsIntOrI());

    emitter* emit = getEmitter();

    genConsumeOperands(initBlkNode);

    // If the initVal was moved, or spilled and reloaded to a different register,
    // get the original initVal from below the GT_RELOAD, but only after capturing the valReg,
    // which needs to be the new register.
    regNumber valReg = initVal->gtRegNum;
    initVal          = initVal->gtSkipReloadOrCopy();

    unsigned offset = 0;

    // Perform an unroll using SSE2 loads and stores.
    if (size >= XMM_REGSIZE_BYTES)
    {
        regNumber tmpReg = initBlkNode->GetSingleTempReg();
        assert(genIsValidFloatReg(tmpReg));

        if (initVal->gtIntCon.gtIconVal != 0)
        {
            emit->emitIns_R_R(INS_mov_i2xmm, EA_PTRSIZE, tmpReg, valReg);
            emit->emitIns_R_R(INS_punpckldq, EA_8BYTE, tmpReg, tmpReg);
#ifdef _TARGET_X86_
            // For x86, we need one more to convert it from 8 bytes to 16 bytes.
            emit->emitIns_R_R(INS_punpckldq, EA_8BYTE, tmpReg, tmpReg);
#endif // _TARGET_X86_
        }
        else
        {
            emit->emitIns_R_R(INS_xorpd, EA_8BYTE, tmpReg, tmpReg);
        }

        // Determine how many 16 byte slots we're going to fill using SSE movs.
        size_t slots = size / XMM_REGSIZE_BYTES;

        while (slots-- > 0)
        {
            emit->emitIns_AR_R(INS_movdqu, EA_8BYTE, tmpReg, dstAddr->gtRegNum, offset);
            offset += XMM_REGSIZE_BYTES;
        }
    }

    // Fill the remainder (or a < 16 byte sized struct)
    if ((size & 8) != 0)
    {
#ifdef _TARGET_X86_
        // TODO-X86-CQ: [1091735] Revisit block ops codegen. One example: use movq for 8 byte movs.
        emit->emitIns_AR_R(INS_mov, EA_4BYTE, valReg, dstAddr->gtRegNum, offset);
        offset += 4;
        emit->emitIns_AR_R(INS_mov, EA_4BYTE, valReg, dstAddr->gtRegNum, offset);
        offset += 4;
#else // !_TARGET_X86_

        emit->emitIns_AR_R(INS_mov, EA_8BYTE, valReg, dstAddr->gtRegNum, offset);
        offset += 8;

#endif // !_TARGET_X86_
    }
    if ((size & 4) != 0)
    {
        emit->emitIns_AR_R(INS_mov, EA_4BYTE, valReg, dstAddr->gtRegNum, offset);
        offset += 4;
    }
    if ((size & 2) != 0)
    {
        emit->emitIns_AR_R(INS_mov, EA_2BYTE, valReg, dstAddr->gtRegNum, offset);
        offset += 2;
    }
    if ((size & 1) != 0)
    {
        emit->emitIns_AR_R(INS_mov, EA_1BYTE, valReg, dstAddr->gtRegNum, offset);
    }
}

// Generates code for InitBlk by calling the VM memset helper function.
// Preconditions:
// a) The size argument of the InitBlk is not an integer constant.
// b) The size argument of the InitBlk is >= INITBLK_STOS_LIMIT bytes.
void CodeGen::genCodeForInitBlk(GenTreeBlk* initBlkNode)
{
#ifdef _TARGET_AMD64_
    // Make sure we got the arguments of the initblk operation in the right registers
    unsigned   blockSize = initBlkNode->Size();
    GenTreePtr dstAddr   = initBlkNode->Addr();
    GenTreePtr initVal   = initBlkNode->Data();
    if (initVal->OperIsInitVal())
    {
        initVal = initVal->gtGetOp1();
    }

    assert(dstAddr->isUsedFromReg());
    assert(initVal->isUsedFromReg());

    if (blockSize != 0)
    {
        assert(blockSize >= CPBLK_MOVS_LIMIT);
    }

    genConsumeBlockOp(initBlkNode, REG_ARG_0, REG_ARG_1, REG_ARG_2);

    genEmitHelperCall(CORINFO_HELP_MEMSET, 0, EA_UNKNOWN);
#else  // !_TARGET_AMD64_
    NYI_X86("Helper call for InitBlk");
#endif // !_TARGET_AMD64_
}

// Generate code for a load from some address + offset
//   baseNode: tree node which can be either a local address or arbitrary node
//   offset: distance from the baseNode from which to load
void CodeGen::genCodeForLoadOffset(instruction ins, emitAttr size, regNumber dst, GenTree* baseNode, unsigned offset)
{
    emitter* emit = getEmitter();

    if (baseNode->OperIsLocalAddr())
    {
        if (baseNode->gtOper == GT_LCL_FLD_ADDR)
        {
            offset += baseNode->gtLclFld.gtLclOffs;
        }
        emit->emitIns_R_S(ins, size, dst, baseNode->gtLclVarCommon.gtLclNum, offset);
    }
    else
    {
        emit->emitIns_R_AR(ins, size, dst, baseNode->gtRegNum, offset);
    }
}

//------------------------------------------------------------------------
// genCodeForStoreOffset: Generate code to store a reg to [base + offset].
//
// Arguments:
//      ins         - the instruction to generate.
//      size        - the size that needs to be stored.
//      src         - the register which needs to be stored.
//      baseNode    - the base, relative to which to store the src register.
//      offset      - the offset that is added to the baseNode to calculate the address to store into.
//
void CodeGen::genCodeForStoreOffset(instruction ins, emitAttr size, regNumber src, GenTree* baseNode, unsigned offset)
{
    emitter* emit = getEmitter();

    if (baseNode->OperIsLocalAddr())
    {
        if (baseNode->gtOper == GT_LCL_FLD_ADDR)
        {
            offset += baseNode->gtLclFld.gtLclOffs;
        }

        emit->emitIns_S_R(ins, size, src, baseNode->AsLclVarCommon()->GetLclNum(), offset);
    }
    else
    {
        emit->emitIns_AR_R(ins, size, src, baseNode->gtRegNum, offset);
    }
}

// Generates CpBlk code by performing a loop unroll
// Preconditions:
//  The size argument of the CpBlk node is a constant and <= 64 bytes.
//  This may seem small but covers >95% of the cases in several framework assemblies.
//
void CodeGen::genCodeForCpBlkUnroll(GenTreeBlk* cpBlkNode)
{
    // Make sure we got the arguments of the cpblk operation in the right registers
    unsigned   size    = cpBlkNode->Size();
    GenTreePtr dstAddr = cpBlkNode->Addr();
    GenTreePtr source  = cpBlkNode->Data();
    GenTreePtr srcAddr = nullptr;
    assert(size <= CPBLK_UNROLL_LIMIT);

    emitter* emit = getEmitter();

    if (source->gtOper == GT_IND)
    {
        srcAddr = source->gtGetOp1();
        if (srcAddr->isUsedFromReg())
        {
            genConsumeReg(srcAddr);
        }
    }
    else
    {
        noway_assert(source->IsLocal());
        // TODO-Cleanup: Consider making the addrForm() method in Rationalize public, e.g. in GenTree.
        // OR: transform source to GT_IND(GT_LCL_VAR_ADDR)
        if (source->OperGet() == GT_LCL_VAR)
        {
            source->SetOper(GT_LCL_VAR_ADDR);
        }
        else
        {
            assert(source->OperGet() == GT_LCL_FLD);
            source->SetOper(GT_LCL_FLD_ADDR);
        }
        srcAddr = source;
    }

    if (dstAddr->isUsedFromReg())
    {
        genConsumeReg(dstAddr);
    }

    unsigned offset = 0;

    // If the size of this struct is larger than 16 bytes
    // let's use SSE2 to be able to do 16 byte at a time
    // loads and stores.

    if (size >= XMM_REGSIZE_BYTES)
    {
        regNumber xmmReg = cpBlkNode->GetSingleTempReg(RBM_ALLFLOAT);
        assert(genIsValidFloatReg(xmmReg));
        size_t slots = size / XMM_REGSIZE_BYTES;

        // TODO: In the below code the load and store instructions are for 16 bytes, but the
        //       type is EA_8BYTE. The movdqa/u are 16 byte instructions, so it works, but
        //       this probably needs to be changed.
        while (slots-- > 0)
        {
            // Load
            genCodeForLoadOffset(INS_movdqu, EA_8BYTE, xmmReg, srcAddr, offset);
            // Store
            genCodeForStoreOffset(INS_movdqu, EA_8BYTE, xmmReg, dstAddr, offset);
            offset += XMM_REGSIZE_BYTES;
        }
    }

    // Fill the remainder (15 bytes or less) if there's one.
    if ((size & 0xf) != 0)
    {
        // Grab the integer temp register to emit the remaining loads and stores.
        regNumber tmpReg = cpBlkNode->GetSingleTempReg(RBM_ALLINT);

        if ((size & 8) != 0)
        {
#ifdef _TARGET_X86_
            // TODO-X86-CQ: [1091735] Revisit block ops codegen. One example: use movq for 8 byte movs.
            for (unsigned savedOffs = offset; offset < savedOffs + 8; offset += 4)
            {
                genCodeForLoadOffset(INS_mov, EA_4BYTE, tmpReg, srcAddr, offset);
                genCodeForStoreOffset(INS_mov, EA_4BYTE, tmpReg, dstAddr, offset);
            }
#else  // !_TARGET_X86_
            genCodeForLoadOffset(INS_mov, EA_8BYTE, tmpReg, srcAddr, offset);
            genCodeForStoreOffset(INS_mov, EA_8BYTE, tmpReg, dstAddr, offset);
            offset += 8;
#endif // !_TARGET_X86_
        }
        if ((size & 4) != 0)
        {
            genCodeForLoadOffset(INS_mov, EA_4BYTE, tmpReg, srcAddr, offset);
            genCodeForStoreOffset(INS_mov, EA_4BYTE, tmpReg, dstAddr, offset);
            offset += 4;
        }
        if ((size & 2) != 0)
        {
            genCodeForLoadOffset(INS_mov, EA_2BYTE, tmpReg, srcAddr, offset);
            genCodeForStoreOffset(INS_mov, EA_2BYTE, tmpReg, dstAddr, offset);
            offset += 2;
        }
        if ((size & 1) != 0)
        {
            genCodeForLoadOffset(INS_mov, EA_1BYTE, tmpReg, srcAddr, offset);
            genCodeForStoreOffset(INS_mov, EA_1BYTE, tmpReg, dstAddr, offset);
        }
    }
}

// Generate code for CpBlk by using rep movs
// Preconditions:
// The size argument of the CpBlk is a constant and is between
// CPBLK_UNROLL_LIMIT and CPBLK_MOVS_LIMIT bytes.
void CodeGen::genCodeForCpBlkRepMovs(GenTreeBlk* cpBlkNode)
{
    // Make sure we got the arguments of the cpblk operation in the right registers
    unsigned   size    = cpBlkNode->Size();
    GenTreePtr dstAddr = cpBlkNode->Addr();
    GenTreePtr source  = cpBlkNode->Data();
    GenTreePtr srcAddr = nullptr;

#ifdef DEBUG
    assert(dstAddr->isUsedFromReg());
    assert(source->isContained());

#ifdef _TARGET_X86_
    if (size == 0)
    {
        noway_assert(cpBlkNode->OperGet() == GT_STORE_DYN_BLK);
    }
    else
#endif
    {
#ifdef _TARGET_X64_
        assert(size > CPBLK_UNROLL_LIMIT && size < CPBLK_MOVS_LIMIT);
#else
        assert(size > CPBLK_UNROLL_LIMIT);
#endif
    }
#endif // DEBUG

    genConsumeBlockOp(cpBlkNode, REG_RDI, REG_RSI, REG_RCX);
    instGen(INS_r_movsb);
}

#ifdef FEATURE_PUT_STRUCT_ARG_STK
//------------------------------------------------------------------------
// CodeGen::genMove8IfNeeded: Conditionally move 8 bytes of a struct to the argument area
//
// Arguments:
//    size       - The size of bytes remaining to be moved
//    longTmpReg - The tmp register to be used for the long value
//    srcAddr    - The address of the source struct
//    offset     - The current offset being copied
//
// Return Value:
//    Returns the number of bytes moved (8 or 0).
//
// Notes:
//    This is used in the PutArgStkKindUnroll case, to move any bytes that are
//    not an even multiple of 16.
//    On x86, longTmpReg must be an xmm reg; on x64 it must be an integer register.
//    This is checked by genStoreRegToStackArg.
//
unsigned CodeGen::genMove8IfNeeded(unsigned size, regNumber longTmpReg, GenTree* srcAddr, unsigned offset)
{
#ifdef _TARGET_X86_
    instruction longMovIns = INS_movq;
#else  // !_TARGET_X86_
    instruction longMovIns = INS_mov;
#endif // !_TARGET_X86_
    if ((size & 8) != 0)
    {
        genCodeForLoadOffset(longMovIns, EA_8BYTE, longTmpReg, srcAddr, offset);
        genStoreRegToStackArg(TYP_LONG, longTmpReg, offset);
        return 8;
    }
    return 0;
}

//------------------------------------------------------------------------
// CodeGen::genMove4IfNeeded: Conditionally move 4 bytes of a struct to the argument area
//
// Arguments:
//    size      - The size of bytes remaining to be moved
//    intTmpReg - The tmp register to be used for the long value
//    srcAddr   - The address of the source struct
//    offset    - The current offset being copied
//
// Return Value:
//    Returns the number of bytes moved (4 or 0).
//
// Notes:
//    This is used in the PutArgStkKindUnroll case, to move any bytes that are
//    not an even multiple of 16.
//    intTmpReg must be an integer register.
//    This is checked by genStoreRegToStackArg.
//
unsigned CodeGen::genMove4IfNeeded(unsigned size, regNumber intTmpReg, GenTree* srcAddr, unsigned offset)
{
    if ((size & 4) != 0)
    {
        genCodeForLoadOffset(INS_mov, EA_4BYTE, intTmpReg, srcAddr, offset);
        genStoreRegToStackArg(TYP_INT, intTmpReg, offset);
        return 4;
    }
    return 0;
}

//------------------------------------------------------------------------
// CodeGen::genMove2IfNeeded: Conditionally move 2 bytes of a struct to the argument area
//
// Arguments:
//    size      - The size of bytes remaining to be moved
//    intTmpReg - The tmp register to be used for the long value
//    srcAddr   - The address of the source struct
//    offset    - The current offset being copied
//
// Return Value:
//    Returns the number of bytes moved (2 or 0).
//
// Notes:
//    This is used in the PutArgStkKindUnroll case, to move any bytes that are
//    not an even multiple of 16.
//    intTmpReg must be an integer register.
//    This is checked by genStoreRegToStackArg.
//
unsigned CodeGen::genMove2IfNeeded(unsigned size, regNumber intTmpReg, GenTree* srcAddr, unsigned offset)
{
    if ((size & 2) != 0)
    {
        genCodeForLoadOffset(INS_mov, EA_2BYTE, intTmpReg, srcAddr, offset);
        genStoreRegToStackArg(TYP_SHORT, intTmpReg, offset);
        return 2;
    }
    return 0;
}

//------------------------------------------------------------------------
// CodeGen::genMove1IfNeeded: Conditionally move 1 byte of a struct to the argument area
//
// Arguments:
//    size      - The size of bytes remaining to be moved
//    intTmpReg - The tmp register to be used for the long value
//    srcAddr   - The address of the source struct
//    offset    - The current offset being copied
//
// Return Value:
//    Returns the number of bytes moved (1 or 0).
//
// Notes:
//    This is used in the PutArgStkKindUnroll case, to move any bytes that are
//    not an even multiple of 16.
//    intTmpReg must be an integer register.
//    This is checked by genStoreRegToStackArg.
//
unsigned CodeGen::genMove1IfNeeded(unsigned size, regNumber intTmpReg, GenTree* srcAddr, unsigned offset)
{

    if ((size & 1) != 0)
    {
        genCodeForLoadOffset(INS_mov, EA_1BYTE, intTmpReg, srcAddr, offset);
        genStoreRegToStackArg(TYP_BYTE, intTmpReg, offset);
        return 1;
    }
    return 0;
}

//---------------------------------------------------------------------------------------------------------------//
// genStructPutArgUnroll: Generates code for passing a struct arg on stack by value using loop unrolling.
//
// Arguments:
//     putArgNode  - the PutArgStk tree.
//
// Notes:
//     m_stkArgVarNum must be set to the base var number, relative to which the by-val struct will be copied to the
//     stack.
//
// TODO-Amd64-Unix: Try to share code with copyblk.
//      Need refactoring of copyblk before it could be used for putarg_stk.
//      The difference for now is that a putarg_stk contains its children, while cpyblk does not.
//      This creates differences in code. After some significant refactoring it could be reused.
//
void CodeGen::genStructPutArgUnroll(GenTreePutArgStk* putArgNode)
{
    // We will never call this method for SIMD types, which are stored directly
    // in genPutStructArgStk().
    noway_assert(putArgNode->TypeGet() == TYP_STRUCT);

    // Make sure we got the arguments of the cpblk operation in the right registers
    GenTreePtr dstAddr = putArgNode;
    GenTreePtr src     = putArgNode->gtOp.gtOp1;

    unsigned size = putArgNode->getArgSize();
    assert(size <= CPBLK_UNROLL_LIMIT);

    emitter* emit         = getEmitter();
    unsigned putArgOffset = putArgNode->getArgOffset();

    assert(src->isContained());

    assert(src->gtOper == GT_OBJ);

    if (src->gtOp.gtOp1->isUsedFromReg())
    {
        genConsumeReg(src->gtOp.gtOp1);
    }

    unsigned offset = 0;

    regNumber xmmTmpReg  = REG_NA;
    regNumber intTmpReg  = REG_NA;
    regNumber longTmpReg = REG_NA;
#ifdef _TARGET_X86_
    // On x86 we use an XMM register for both 16 and 8-byte chunks, but if it's
    // less than 16 bytes, we will just be using pushes
    if (size >= 8)
    {
        xmmTmpReg  = putArgNode->GetSingleTempReg(RBM_ALLFLOAT);
        longTmpReg = xmmTmpReg;
    }
    if ((size & 0x7) != 0)
    {
        intTmpReg = putArgNode->GetSingleTempReg(RBM_ALLINT);
    }
#else  // !_TARGET_X86_
    // On x64 we use an XMM register only for 16-byte chunks.
    if (size >= XMM_REGSIZE_BYTES)
    {
        xmmTmpReg = putArgNode->GetSingleTempReg(RBM_ALLFLOAT);
    }
    if ((size & 0xf) != 0)
    {
        intTmpReg  = putArgNode->GetSingleTempReg(RBM_ALLINT);
        longTmpReg = intTmpReg;
    }
#endif // !_TARGET_X86_

    // If the size of this struct is larger than 16 bytes
    // let's use SSE2 to be able to do 16 byte at a time
    // loads and stores.
    if (size >= XMM_REGSIZE_BYTES)
    {
#ifdef _TARGET_X86_
        assert(!m_pushStkArg);
#endif // _TARGET_X86_
        size_t slots = size / XMM_REGSIZE_BYTES;

        assert(putArgNode->gtGetOp1()->isContained());
        assert(putArgNode->gtGetOp1()->gtOp.gtOper == GT_OBJ);

        // TODO: In the below code the load and store instructions are for 16 bytes, but the
        //          type is EA_8BYTE. The movdqa/u are 16 byte instructions, so it works, but
        //          this probably needs to be changed.
        while (slots-- > 0)
        {
            // Load
            genCodeForLoadOffset(INS_movdqu, EA_8BYTE, xmmTmpReg, src->gtGetOp1(), offset);

            // Store
            genStoreRegToStackArg(TYP_STRUCT, xmmTmpReg, offset);

            offset += XMM_REGSIZE_BYTES;
        }
    }

    // Fill the remainder (15 bytes or less) if there's one.
    if ((size & 0xf) != 0)
    {
#ifdef _TARGET_X86_
        if (m_pushStkArg)
        {
            // This case is currently supported only for the case where the total size is
            // less than XMM_REGSIZE_BYTES. We need to push the remaining chunks in reverse
            // order. However, morph has ensured that we have a struct that is an even
            // multiple of TARGET_POINTER_SIZE, so we don't need to worry about alignment.
            assert(((size & 0xc) == size) && (offset == 0));
            // If we have a 4 byte chunk, load it from either offset 0 or 8, depending on
            // whether we've got an 8 byte chunk, and then push it on the stack.
            unsigned pushedBytes = genMove4IfNeeded(size, intTmpReg, src->gtOp.gtOp1, size & 0x8);
            // Now if we have an 8 byte chunk, load it from offset 0 (it's the first chunk)
            // and push it on the stack.
            pushedBytes += genMove8IfNeeded(size, longTmpReg, src->gtOp.gtOp1, 0);
        }
        else
#endif // _TARGET_X86_
        {
            offset += genMove8IfNeeded(size, longTmpReg, src->gtOp.gtOp1, offset);
            offset += genMove4IfNeeded(size, intTmpReg, src->gtOp.gtOp1, offset);
            offset += genMove2IfNeeded(size, intTmpReg, src->gtOp.gtOp1, offset);
            offset += genMove1IfNeeded(size, intTmpReg, src->gtOp.gtOp1, offset);
            assert(offset == size);
        }
    }
}

//------------------------------------------------------------------------
// genStructPutArgRepMovs: Generates code for passing a struct arg by value on stack using Rep Movs.
//
// Arguments:
//     putArgNode  - the PutArgStk tree.
//
// Preconditions:
//     The size argument of the PutArgStk (for structs) is a constant and is between
//     CPBLK_UNROLL_LIMIT and CPBLK_MOVS_LIMIT bytes.
//     m_stkArgVarNum must be set to the base var number, relative to which the by-val struct bits will go.
//
void CodeGen::genStructPutArgRepMovs(GenTreePutArgStk* putArgNode)
{
    assert(putArgNode->TypeGet() == TYP_STRUCT);
    assert(putArgNode->getArgSize() > CPBLK_UNROLL_LIMIT);

    // Make sure we got the arguments of the cpblk operation in the right registers
    GenTreePtr dstAddr = putArgNode;
    GenTreePtr srcAddr = putArgNode->gtGetOp1();

    // Validate state.
    assert(putArgNode->gtRsvdRegs == (RBM_RDI | RBM_RCX | RBM_RSI));
    assert(srcAddr->isContained());

    genConsumePutStructArgStk(putArgNode, REG_RDI, REG_RSI, REG_RCX);
    instGen(INS_r_movsb);
}

//------------------------------------------------------------------------
// If any Vector3 args are on stack and they are not pass-by-ref, the upper 32bits
// must be cleared to zeroes. The native compiler doesn't clear the upper bits
// and there is no way to know if the caller is native or not. So, the upper
// 32 bits of Vector argument on stack are always cleared to zero.
#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING) && defined(FEATURE_SIMD)
void CodeGen::genClearStackVec3ArgUpperBits()
{
#ifdef DEBUG
    if (verbose)
    {
        printf("*************** In genClearStackVec3ArgUpperBits()\n");
    }
#endif

    assert(compiler->compGeneratingProlog);

    unsigned varNum = 0;

    for (unsigned varNum = 0; varNum < compiler->info.compArgsCount; varNum++)
    {
        LclVarDsc* varDsc = &(compiler->lvaTable[varNum]);
        assert(varDsc->lvIsParam);

        // Does var has simd12 type?
        if (varDsc->lvType != TYP_SIMD12)
        {
            continue;
        }

        if (!varDsc->lvIsRegArg)
        {
            // Clear the upper 32 bits by mov dword ptr [V_ARG_BASE+0xC], 0
            getEmitter()->emitIns_S_I(ins_Store(TYP_INT), EA_4BYTE, varNum, genTypeSize(TYP_FLOAT) * 3, 0);
        }
        else
        {
            // Assume that for x64 linux, an argument is fully in registers
            // or fully on stack.
            regNumber argReg = varDsc->GetOtherArgReg();

            // Clear the upper 32 bits by two shift instructions.
            // argReg = argReg << 96
            getEmitter()->emitIns_R_I(INS_pslldq, emitActualTypeSize(TYP_SIMD12), argReg, 12);
            // argReg = argReg >> 96
            getEmitter()->emitIns_R_I(INS_psrldq, emitActualTypeSize(TYP_SIMD12), argReg, 12);
        }
    }
}
#endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING) && defined(FEATURE_SIMD)
#endif // FEATURE_PUT_STRUCT_ARG_STK

// Generate code for CpObj nodes wich copy structs that have interleaved
// GC pointers.
// This will generate a sequence of movsp instructions for the cases of non-gc members.
// Note that movsp is an alias for movsd on x86 and movsq on x64.
// and calls to the BY_REF_ASSIGN helper otherwise.
void CodeGen::genCodeForCpObj(GenTreeObj* cpObjNode)
{
    // Make sure we got the arguments of the cpobj operation in the right registers
    GenTreePtr dstAddr       = cpObjNode->Addr();
    GenTreePtr source        = cpObjNode->Data();
    GenTreePtr srcAddr       = nullptr;
    var_types  srcAddrType   = TYP_BYREF;
    bool       sourceIsLocal = false;

    assert(source->isContained());
    if (source->gtOper == GT_IND)
    {
        srcAddr = source->gtGetOp1();
        assert(srcAddr->isUsedFromReg());
    }
    else
    {
        noway_assert(source->IsLocal());
        sourceIsLocal = true;
    }

    bool dstOnStack = dstAddr->OperIsLocalAddr();

#ifdef DEBUG

    assert(dstAddr->isUsedFromReg());

    // If the GenTree node has data about GC pointers, this means we're dealing
    // with CpObj, so this requires special logic.
    assert(cpObjNode->gtGcPtrCount > 0);

    // MovSp (alias for movsq on x64 and movsd on x86) instruction is used for copying non-gcref fields
    // and it needs src = RSI and dst = RDI.
    // Either these registers must not contain lclVars, or they must be dying or marked for spill.
    // This is because these registers are incremented as we go through the struct.
    if (!sourceIsLocal)
    {
        GenTree* actualSrcAddr    = srcAddr->gtSkipReloadOrCopy();
        GenTree* actualDstAddr    = dstAddr->gtSkipReloadOrCopy();
        unsigned srcLclVarNum     = BAD_VAR_NUM;
        unsigned dstLclVarNum     = BAD_VAR_NUM;
        bool     isSrcAddrLiveOut = false;
        bool     isDstAddrLiveOut = false;
        if (genIsRegCandidateLocal(actualSrcAddr))
        {
            srcLclVarNum     = actualSrcAddr->AsLclVarCommon()->gtLclNum;
            isSrcAddrLiveOut = ((actualSrcAddr->gtFlags & (GTF_VAR_DEATH | GTF_SPILL)) == 0);
        }
        if (genIsRegCandidateLocal(actualDstAddr))
        {
            dstLclVarNum     = actualDstAddr->AsLclVarCommon()->gtLclNum;
            isDstAddrLiveOut = ((actualDstAddr->gtFlags & (GTF_VAR_DEATH | GTF_SPILL)) == 0);
        }
        assert((actualSrcAddr->gtRegNum != REG_RSI) || !isSrcAddrLiveOut ||
               ((srcLclVarNum == dstLclVarNum) && !isDstAddrLiveOut));
        assert((actualDstAddr->gtRegNum != REG_RDI) || !isDstAddrLiveOut ||
               ((srcLclVarNum == dstLclVarNum) && !isSrcAddrLiveOut));
        srcAddrType = srcAddr->TypeGet();
    }
#endif // DEBUG

    // Consume the operands and get them into the right registers.
    // They may now contain gc pointers (depending on their type; gcMarkRegPtrVal will "do the right thing").
    genConsumeBlockOp(cpObjNode, REG_RDI, REG_RSI, REG_NA);
    gcInfo.gcMarkRegPtrVal(REG_RSI, srcAddrType);
    gcInfo.gcMarkRegPtrVal(REG_RDI, dstAddr->TypeGet());

    unsigned slots = cpObjNode->gtSlots;

    // If we can prove it's on the stack we don't need to use the write barrier.
    if (dstOnStack)
    {
        if (slots >= CPOBJ_NONGC_SLOTS_LIMIT)
        {
            // If the destination of the CpObj is on the stack, make sure we allocated
            // RCX to emit the movsp (alias for movsd or movsq for 32 and 64 bits respectively).
            assert((cpObjNode->gtRsvdRegs & RBM_RCX) != 0);

            getEmitter()->emitIns_R_I(INS_mov, EA_4BYTE, REG_RCX, slots);
            instGen(INS_r_movsp);
        }
        else
        {
            // For small structs, it's better to emit a sequence of movsp than to
            // emit a rep movsp instruction.
            while (slots > 0)
            {
                instGen(INS_movsp);
                slots--;
            }
        }
    }
    else
    {
        BYTE*    gcPtrs     = cpObjNode->gtGcPtrs;
        unsigned gcPtrCount = cpObjNode->gtGcPtrCount;

        unsigned i = 0;
        while (i < slots)
        {
            switch (gcPtrs[i])
            {
                case TYPE_GC_NONE:
                    // Let's see if we can use rep movsp instead of a sequence of movsp instructions
                    // to save cycles and code size.
                    {
                        unsigned nonGcSlotCount = 0;

                        do
                        {
                            nonGcSlotCount++;
                            i++;
                        } while (i < slots && gcPtrs[i] == TYPE_GC_NONE);

                        // If we have a very small contiguous non-gc region, it's better just to
                        // emit a sequence of movsp instructions
                        if (nonGcSlotCount < CPOBJ_NONGC_SLOTS_LIMIT)
                        {
                            while (nonGcSlotCount > 0)
                            {
                                instGen(INS_movsp);
                                nonGcSlotCount--;
                            }
                        }
                        else
                        {
                            // Otherwise, we can save code-size and improve CQ by emitting
                            // rep movsp (alias for movsd/movsq for x86/x64)
                            assert((cpObjNode->gtRsvdRegs & RBM_RCX) != 0);

                            getEmitter()->emitIns_R_I(INS_mov, EA_4BYTE, REG_RCX, nonGcSlotCount);
                            instGen(INS_r_movsp);
                        }
                    }
                    break;
                default:
                    // We have a GC pointer, call the memory barrier.
                    genEmitHelperCall(CORINFO_HELP_ASSIGN_BYREF, 0, EA_PTRSIZE);
                    gcPtrCount--;
                    i++;
            }
        }

        assert(gcPtrCount == 0);
    }

    // Clear the gcInfo for RSI and RDI.
    // While we normally update GC info prior to the last instruction that uses them,
    // these actually live into the helper call.
    gcInfo.gcMarkRegSetNpt(RBM_RSI);
    gcInfo.gcMarkRegSetNpt(RBM_RDI);
}

// Generate code for a CpBlk node by the means of the VM memcpy helper call
// Preconditions:
// a) The size argument of the CpBlk is not an integer constant
// b) The size argument is a constant but is larger than CPBLK_MOVS_LIMIT bytes.
void CodeGen::genCodeForCpBlk(GenTreeBlk* cpBlkNode)
{
#ifdef _TARGET_AMD64_
    // Make sure we got the arguments of the cpblk operation in the right registers
    unsigned   blockSize = cpBlkNode->Size();
    GenTreePtr dstAddr   = cpBlkNode->Addr();
    GenTreePtr source    = cpBlkNode->Data();
    GenTreePtr srcAddr   = nullptr;

    // Size goes in arg2
    if (blockSize != 0)
    {
        assert(blockSize >= CPBLK_MOVS_LIMIT);
        assert((cpBlkNode->gtRsvdRegs & RBM_ARG_2) != 0);
    }
    else
    {
        noway_assert(cpBlkNode->gtOper == GT_STORE_DYN_BLK);
    }

    // Source address goes in arg1
    if (source->gtOper == GT_IND)
    {
        srcAddr = source->gtGetOp1();
        assert(srcAddr->isUsedFromReg());
    }
    else
    {
        noway_assert(source->IsLocal());
        assert((cpBlkNode->gtRsvdRegs & RBM_ARG_1) != 0);
        inst_RV_TT(INS_lea, REG_ARG_1, source, 0, EA_BYREF);
    }

    genConsumeBlockOp(cpBlkNode, REG_ARG_0, REG_ARG_1, REG_ARG_2);

    genEmitHelperCall(CORINFO_HELP_MEMCPY, 0, EA_UNKNOWN);
#else  // !_TARGET_AMD64_
    noway_assert(false && "Helper call for CpBlk is not needed.");
#endif // !_TARGET_AMD64_
}

// generate code do a switch statement based on a table of ip-relative offsets
void CodeGen::genTableBasedSwitch(GenTree* treeNode)
{
    genConsumeOperands(treeNode->AsOp());
    regNumber idxReg  = treeNode->gtOp.gtOp1->gtRegNum;
    regNumber baseReg = treeNode->gtOp.gtOp2->gtRegNum;

    regNumber tmpReg = treeNode->GetSingleTempReg();

    // load the ip-relative offset (which is relative to start of fgFirstBB)
    getEmitter()->emitIns_R_ARX(INS_mov, EA_4BYTE, baseReg, baseReg, idxReg, 4, 0);

    // add it to the absolute address of fgFirstBB
    compiler->fgFirstBB->bbFlags |= BBF_JMP_TARGET;
    getEmitter()->emitIns_R_L(INS_lea, EA_PTR_DSP_RELOC, compiler->fgFirstBB, tmpReg);
    getEmitter()->emitIns_R_R(INS_add, EA_PTRSIZE, baseReg, tmpReg);
    // jmp baseReg
    getEmitter()->emitIns_R(INS_i_jmp, emitTypeSize(TYP_I_IMPL), baseReg);
}

// emits the table and an instruction to get the address of the first element
void CodeGen::genJumpTable(GenTree* treeNode)
{
    noway_assert(compiler->compCurBB->bbJumpKind == BBJ_SWITCH);
    assert(treeNode->OperGet() == GT_JMPTABLE);

    unsigned     jumpCount = compiler->compCurBB->bbJumpSwt->bbsCount;
    BasicBlock** jumpTable = compiler->compCurBB->bbJumpSwt->bbsDstTab;
    unsigned     jmpTabOffs;
    unsigned     jmpTabBase;

    jmpTabBase = getEmitter()->emitBBTableDataGenBeg(jumpCount, true);

    jmpTabOffs = 0;

    JITDUMP("\n      J_M%03u_DS%02u LABEL   DWORD\n", Compiler::s_compMethodsCount, jmpTabBase);

    for (unsigned i = 0; i < jumpCount; i++)
    {
        BasicBlock* target = *jumpTable++;
        noway_assert(target->bbFlags & BBF_JMP_TARGET);

        JITDUMP("            DD      L_M%03u_BB%02u\n", Compiler::s_compMethodsCount, target->bbNum);

        getEmitter()->emitDataGenData(i, target);
    };

    getEmitter()->emitDataGenEnd();

    // Access to inline data is 'abstracted' by a special type of static member
    // (produced by eeFindJitDataOffs) which the emitter recognizes as being a reference
    // to constant data, not a real static field.
    getEmitter()->emitIns_R_C(INS_lea, emitTypeSize(TYP_I_IMPL), treeNode->gtRegNum,
                              compiler->eeFindJitDataOffs(jmpTabBase), 0);
    genProduceReg(treeNode);
}

// generate code for the locked operations:
// GT_LOCKADD, GT_XCHG, GT_XADD
void CodeGen::genLockedInstructions(GenTreeOp* treeNode)
{
    GenTree*    data      = treeNode->gtOp.gtOp2;
    GenTree*    addr      = treeNode->gtOp.gtOp1;
    regNumber   targetReg = treeNode->gtRegNum;
    regNumber   dataReg   = data->gtRegNum;
    regNumber   addrReg   = addr->gtRegNum;
    var_types   type      = genActualType(data->TypeGet());
    instruction ins;

    // The register allocator should have extended the lifetime of the address
    // so that it is not used as the target.
    noway_assert(addrReg != targetReg);

    // If data is a lclVar that's not a last use, we'd better have allocated a register
    // for the result (except in the case of GT_LOCKADD which does not produce a register result).
    assert(targetReg != REG_NA || treeNode->OperGet() == GT_LOCKADD || !genIsRegCandidateLocal(data) ||
           (data->gtFlags & GTF_VAR_DEATH) != 0);

    genConsumeOperands(treeNode);
    if (targetReg != REG_NA && dataReg != REG_NA && dataReg != targetReg)
    {
        inst_RV_RV(ins_Copy(type), targetReg, dataReg);
        data->gtRegNum = targetReg;

        // TODO-XArch-Cleanup: Consider whether it is worth it, for debugging purposes, to restore the
        // original gtRegNum on data, after calling emitInsBinary below.
    }
    switch (treeNode->OperGet())
    {
        case GT_LOCKADD:
            instGen(INS_lock);
            ins = INS_add;
            break;
        case GT_XCHG:
            // lock is implied by xchg
            ins = INS_xchg;
            break;
        case GT_XADD:
            instGen(INS_lock);
            ins = INS_xadd;
            break;
        default:
            unreached();
    }

    // all of these nodes implicitly do an indirection on op1
    // so create a temporary node to feed into the pattern matching
    GenTreeIndir i = indirForm(type, addr);
    getEmitter()->emitInsBinary(ins, emitTypeSize(type), &i, data);

    if (treeNode->gtRegNum != REG_NA)
    {
        genProduceReg(treeNode);
    }
}

// generate code for BoundsCheck nodes
void CodeGen::genRangeCheck(GenTreePtr oper)
{
#ifdef FEATURE_SIMD
    noway_assert(oper->OperGet() == GT_ARR_BOUNDS_CHECK || oper->OperGet() == GT_SIMD_CHK);
#else  // !FEATURE_SIMD
    noway_assert(oper->OperGet() == GT_ARR_BOUNDS_CHECK);
#endif // !FEATURE_SIMD

    GenTreeBoundsChk* bndsChk = oper->AsBoundsChk();

    GenTreePtr arrIndex  = bndsChk->gtIndex;
    GenTreePtr arrLen    = bndsChk->gtArrLen;
    GenTreePtr arrRef    = nullptr;
    int        lenOffset = 0;

    GenTree *    src1, *src2;
    emitJumpKind jmpKind;

    genConsumeRegs(arrIndex);
    genConsumeRegs(arrLen);

    if (arrIndex->isContainedIntOrIImmed())
    {
        // arrIndex is a contained constant.  In this case
        // we will generate one of the following
        //      cmp [mem], immed    (if arrLen is a memory op)
        //      cmp reg, immed      (if arrLen is in a reg)
        //
        // That is arrLen cannot be a contained immed.
        assert(!arrLen->isContainedIntOrIImmed());

        src1    = arrLen;
        src2    = arrIndex;
        jmpKind = EJ_jbe;
    }
    else
    {
        // arrIndex could either be a contained memory op or a reg
        // In this case we will generate one of the following
        //      cmp  [mem], immed   (if arrLen is a constant)
        //      cmp  [mem], reg     (if arrLen is in a reg)
        //      cmp  reg, immed     (if arrIndex is in a reg)
        //      cmp  reg1, reg2     (if arraIndex is in reg1)
        //      cmp  reg, [mem]     (if arrLen is a memory op)
        //
        // That is only one of arrIndex or arrLen can be a memory op.
        assert(!arrIndex->isUsedFromMemory() || !arrLen->isUsedFromMemory());

        src1    = arrIndex;
        src2    = arrLen;
        jmpKind = EJ_jae;
    }

    var_types bndsChkType = src2->TypeGet();
#if DEBUG
    // Bounds checks can only be 32 or 64 bit sized comparisons.
    assert(bndsChkType == TYP_INT || bndsChkType == TYP_LONG);

    // The type of the bounds check should always wide enough to compare against the index.
    assert(emitTypeSize(bndsChkType) >= emitTypeSize(src1->TypeGet()));
#endif // DEBUG

    getEmitter()->emitInsBinary(INS_cmp, emitTypeSize(bndsChkType), src1, src2);
    genJumpToThrowHlpBlk(jmpKind, bndsChk->gtThrowKind, bndsChk->gtIndRngFailBB);
}

//------------------------------------------------------------------------
// genOffsetOfMDArrayLowerBound: Returns the offset from the Array object to the
//   lower bound for the given dimension.
//
// Arguments:
//    elemType  - the element type of the array
//    rank      - the rank of the array
//    dimension - the dimension for which the lower bound offset will be returned.
//
// Return Value:
//    The offset.

unsigned CodeGen::genOffsetOfMDArrayLowerBound(var_types elemType, unsigned rank, unsigned dimension)
{
    // Note that the lower bound and length fields of the Array object are always TYP_INT, even on 64-bit targets.
    return compiler->eeGetArrayDataOffset(elemType) + genTypeSize(TYP_INT) * (dimension + rank);
}

//------------------------------------------------------------------------
// genOffsetOfMDArrayLength: Returns the offset from the Array object to the
//   size for the given dimension.
//
// Arguments:
//    elemType  - the element type of the array
//    rank      - the rank of the array
//    dimension - the dimension for which the lower bound offset will be returned.
//
// Return Value:
//    The offset.

unsigned CodeGen::genOffsetOfMDArrayDimensionSize(var_types elemType, unsigned rank, unsigned dimension)
{
    // Note that the lower bound and length fields of the Array object are always TYP_INT, even on 64-bit targets.
    return compiler->eeGetArrayDataOffset(elemType) + genTypeSize(TYP_INT) * dimension;
}

//------------------------------------------------------------------------
// genCodeForArrIndex: Generates code to bounds check the index for one dimension of an array reference,
//                     producing the effective index by subtracting the lower bound.
//
// Arguments:
//    arrIndex - the node for which we're generating code
//
// Return Value:
//    None.
//

void CodeGen::genCodeForArrIndex(GenTreeArrIndex* arrIndex)
{
    GenTreePtr arrObj    = arrIndex->ArrObj();
    GenTreePtr indexNode = arrIndex->IndexExpr();

    regNumber arrReg   = genConsumeReg(arrObj);
    regNumber indexReg = genConsumeReg(indexNode);
    regNumber tgtReg   = arrIndex->gtRegNum;

    unsigned  dim      = arrIndex->gtCurrDim;
    unsigned  rank     = arrIndex->gtArrRank;
    var_types elemType = arrIndex->gtArrElemType;

    noway_assert(tgtReg != REG_NA);

    // Subtract the lower bound for this dimension.
    // TODO-XArch-CQ: make this contained if it's an immediate that fits.
    if (tgtReg != indexReg)
    {
        inst_RV_RV(INS_mov, tgtReg, indexReg, indexNode->TypeGet());
    }
    getEmitter()->emitIns_R_AR(INS_sub, emitActualTypeSize(TYP_INT), tgtReg, arrReg,
                               genOffsetOfMDArrayLowerBound(elemType, rank, dim));
    getEmitter()->emitIns_R_AR(INS_cmp, emitActualTypeSize(TYP_INT), tgtReg, arrReg,
                               genOffsetOfMDArrayDimensionSize(elemType, rank, dim));
    genJumpToThrowHlpBlk(EJ_jae, SCK_RNGCHK_FAIL);

    genProduceReg(arrIndex);
}

//------------------------------------------------------------------------
// genCodeForArrOffset: Generates code to compute the flattened array offset for
//    one dimension of an array reference:
//        result = (prevDimOffset * dimSize) + effectiveIndex
//    where dimSize is obtained from the arrObj operand
//
// Arguments:
//    arrOffset - the node for which we're generating code
//
// Return Value:
//    None.
//
// Notes:
//    dimSize and effectiveIndex are always non-negative, the former by design,
//    and the latter because it has been normalized to be zero-based.

void CodeGen::genCodeForArrOffset(GenTreeArrOffs* arrOffset)
{
    GenTreePtr offsetNode = arrOffset->gtOffset;
    GenTreePtr indexNode  = arrOffset->gtIndex;
    GenTreePtr arrObj     = arrOffset->gtArrObj;

    regNumber tgtReg = arrOffset->gtRegNum;
    assert(tgtReg != REG_NA);

    unsigned  dim      = arrOffset->gtCurrDim;
    unsigned  rank     = arrOffset->gtArrRank;
    var_types elemType = arrOffset->gtArrElemType;

    // First, consume the operands in the correct order.
    regNumber offsetReg = REG_NA;
    regNumber tmpReg    = REG_NA;
    if (!offsetNode->IsIntegralConst(0))
    {
        offsetReg = genConsumeReg(offsetNode);

        // We will use a temp register for the offset*scale+effectiveIndex computation.
        tmpReg = arrOffset->GetSingleTempReg();
    }
    else
    {
        assert(offsetNode->isContained());
    }
    regNumber indexReg = genConsumeReg(indexNode);
    // Although arrReg may not be used in the constant-index case, if we have generated
    // the value into a register, we must consume it, otherwise we will fail to end the
    // live range of the gc ptr.
    // TODO-CQ: Currently arrObj will always have a register allocated to it.
    // We could avoid allocating a register for it, which would be of value if the arrObj
    // is an on-stack lclVar.
    regNumber arrReg = REG_NA;
    if (arrObj->gtHasReg())
    {
        arrReg = genConsumeReg(arrObj);
    }

    if (!offsetNode->IsIntegralConst(0))
    {
        assert(tmpReg != REG_NA);
        assert(arrReg != REG_NA);

        // Evaluate tgtReg = offsetReg*dim_size + indexReg.
        // tmpReg is used to load dim_size and the result of the multiplication.
        // Note that dim_size will never be negative.

        getEmitter()->emitIns_R_AR(INS_mov, emitActualTypeSize(TYP_INT), tmpReg, arrReg,
                                   genOffsetOfMDArrayDimensionSize(elemType, rank, dim));
        inst_RV_RV(INS_imul, tmpReg, offsetReg);

        if (tmpReg == tgtReg)
        {
            inst_RV_RV(INS_add, tmpReg, indexReg);
        }
        else
        {
            if (indexReg != tgtReg)
            {
                inst_RV_RV(INS_mov, tgtReg, indexReg, TYP_I_IMPL);
            }
            inst_RV_RV(INS_add, tgtReg, tmpReg);
        }
    }
    else
    {
        if (indexReg != tgtReg)
        {
            inst_RV_RV(INS_mov, tgtReg, indexReg, TYP_INT);
        }
    }
    genProduceReg(arrOffset);
}

// make a temporary indir we can feed to pattern matching routines
// in cases where we don't want to instantiate all the indirs that happen
//
GenTreeIndir CodeGen::indirForm(var_types type, GenTree* base)
{
    GenTreeIndir i(GT_IND, type, base, nullptr);
    i.gtRegNum = REG_NA;
    // has to be nonnull (because contained nodes can't be the last in block)
    // but don't want it to be a valid pointer
    i.gtNext = (GenTree*)(-1);
    return i;
}

// make a temporary int we can feed to pattern matching routines
// in cases where we don't want to instantiate
//
GenTreeIntCon CodeGen::intForm(var_types type, ssize_t value)
{
    GenTreeIntCon i(type, value);
    i.gtRegNum = REG_NA;
    // has to be nonnull (because contained nodes can't be the last in block)
    // but don't want it to be a valid pointer
    i.gtNext = (GenTree*)(-1);
    return i;
}

instruction CodeGen::genGetInsForOper(genTreeOps oper, var_types type)
{
    instruction ins;

    // Operations on SIMD vectors shouldn't come this path
    assert(!varTypeIsSIMD(type));
    if (varTypeIsFloating(type))
    {
        return ins_MathOp(oper, type);
    }

    switch (oper)
    {
        case GT_ADD:
            ins = INS_add;
            break;
        case GT_AND:
            ins = INS_and;
            break;
        case GT_LSH:
            ins = INS_shl;
            break;
        case GT_MUL:
            ins = INS_imul;
            break;
        case GT_NEG:
            ins = INS_neg;
            break;
        case GT_NOT:
            ins = INS_not;
            break;
        case GT_OR:
            ins = INS_or;
            break;
        case GT_ROL:
            ins = INS_rol;
            break;
        case GT_ROR:
            ins = INS_ror;
            break;
        case GT_RSH:
            ins = INS_sar;
            break;
        case GT_RSZ:
            ins = INS_shr;
            break;
        case GT_SUB:
            ins = INS_sub;
            break;
        case GT_XOR:
            ins = INS_xor;
            break;
#if !defined(_TARGET_64BIT_)
        case GT_ADD_LO:
            ins = INS_add;
            break;
        case GT_ADD_HI:
            ins = INS_adc;
            break;
        case GT_SUB_LO:
            ins = INS_sub;
            break;
        case GT_SUB_HI:
            ins = INS_sbb;
            break;
        case GT_LSH_HI:
            ins = INS_shld;
            break;
        case GT_RSH_LO:
            ins = INS_shrd;
            break;
#endif // !defined(_TARGET_64BIT_)
        default:
            unreached();
            break;
    }
    return ins;
}

//------------------------------------------------------------------------
// genCodeForShift: Generates the code sequence for a GenTree node that
// represents a bit shift or rotate operation (<<, >>, >>>, rol, ror).
//
// Arguments:
//    tree - the bit shift node (that specifies the type of bit shift to perform).
//
// Assumptions:
//    a) All GenTrees are register allocated.
//    b) The shift-by-amount in tree->gtOp.gtOp2 is either a contained constant or
//       it's a register-allocated expression. If it is in a register that is
//       not RCX, it will be moved to RCX (so RCX better not be in use!).
//
void CodeGen::genCodeForShift(GenTreePtr tree)
{
    // Only the non-RMW case here.
    assert(tree->OperIsShiftOrRotate());
    assert(tree->gtOp.gtOp1->isUsedFromReg());
    assert(tree->gtRegNum != REG_NA);

    genConsumeOperands(tree->AsOp());

    var_types   targetType = tree->TypeGet();
    instruction ins        = genGetInsForOper(tree->OperGet(), targetType);

    GenTreePtr operand    = tree->gtGetOp1();
    regNumber  operandReg = operand->gtRegNum;

    GenTreePtr shiftBy = tree->gtGetOp2();

    if (shiftBy->isContainedIntOrIImmed())
    {
        // First, move the operand to the destination register and
        // later on perform the shift in-place.
        // (LSRA will try to avoid this situation through preferencing.)
        if (tree->gtRegNum != operandReg)
        {
            inst_RV_RV(INS_mov, tree->gtRegNum, operandReg, targetType);
        }

        int shiftByValue = (int)shiftBy->AsIntConCommon()->IconValue();
        inst_RV_SH(ins, emitTypeSize(tree), tree->gtRegNum, shiftByValue);
    }
    else
    {
        // We must have the number of bits to shift stored in ECX, since we constrained this node to
        // sit in ECX. In case this didn't happen, LSRA expects the code generator to move it since it's a single
        // register destination requirement.
        genCopyRegIfNeeded(shiftBy, REG_RCX);

        // The operand to be shifted must not be in ECX
        noway_assert(operandReg != REG_RCX);

        if (tree->gtRegNum != operandReg)
        {
            inst_RV_RV(INS_mov, tree->gtRegNum, operandReg, targetType);
        }
        inst_RV_CL(ins, tree->gtRegNum, targetType);
    }

    genProduceReg(tree);
}

#ifdef _TARGET_X86_
//------------------------------------------------------------------------
// genCodeForShiftLong: Generates the code sequence for a GenTree node that
// represents a three operand bit shift or rotate operation (<<Hi, >>Lo).
//
// Arguments:
//    tree - the bit shift node (that specifies the type of bit shift to perform).
//
// Assumptions:
//    a) All GenTrees are register allocated.
//    b) The shift-by-amount in tree->gtOp.gtOp2 is a contained constant
//
void CodeGen::genCodeForShiftLong(GenTreePtr tree)
{
    // Only the non-RMW case here.
    genTreeOps oper = tree->OperGet();
    assert(oper == GT_LSH_HI || oper == GT_RSH_LO);

    GenTree* operand = tree->gtOp.gtOp1;
    assert(operand->OperGet() == GT_LONG);
    assert(operand->gtOp.gtOp1->isUsedFromReg());
    assert(operand->gtOp.gtOp2->isUsedFromReg());

    GenTree* operandLo = operand->gtGetOp1();
    GenTree* operandHi = operand->gtGetOp2();

    regNumber regLo = operandLo->gtRegNum;
    regNumber regHi = operandHi->gtRegNum;

    genConsumeOperands(tree->AsOp());

    var_types   targetType = tree->TypeGet();
    instruction ins        = genGetInsForOper(oper, targetType);

    GenTreePtr shiftBy = tree->gtGetOp2();

    assert(shiftBy->isContainedIntOrIImmed());

    unsigned int count = shiftBy->AsIntConCommon()->IconValue();

    regNumber regResult = (oper == GT_LSH_HI) ? regHi : regLo;

    if (regResult != tree->gtRegNum)
    {
        inst_RV_RV(INS_mov, tree->gtRegNum, regResult, targetType);
    }

    if (oper == GT_LSH_HI)
    {
        inst_RV_RV_IV(ins, emitTypeSize(targetType), tree->gtRegNum, regLo, count);
    }
    else
    {
        assert(oper == GT_RSH_LO);
        inst_RV_RV_IV(ins, emitTypeSize(targetType), tree->gtRegNum, regHi, count);
    }

    genProduceReg(tree);
}
#endif

//------------------------------------------------------------------------
// genCodeForShiftRMW: Generates the code sequence for a GT_STOREIND GenTree node that
// represents a RMW bit shift or rotate operation (<<, >>, >>>, rol, ror), for example:
//      GT_STOREIND( AddressTree, GT_SHL( Ind ( AddressTree ), Operand ) )
//
// Arguments:
//    storeIndNode: the GT_STOREIND node.
//
void CodeGen::genCodeForShiftRMW(GenTreeStoreInd* storeInd)
{
    GenTree* data = storeInd->Data();
    GenTree* addr = storeInd->Addr();

    assert(data->OperIsShiftOrRotate());

    // This function only handles the RMW case.
    assert(data->gtOp.gtOp1->isUsedFromMemory());
    assert(data->gtOp.gtOp1->isIndir());
    assert(Lowering::IndirsAreEquivalent(data->gtOp.gtOp1, storeInd));
    assert(data->gtRegNum == REG_NA);

    var_types   targetType = data->TypeGet();
    genTreeOps  oper       = data->OperGet();
    instruction ins        = genGetInsForOper(oper, targetType);
    emitAttr    attr       = EA_ATTR(genTypeSize(targetType));

    GenTree* shiftBy = data->gtOp.gtOp2;
    if (shiftBy->isContainedIntOrIImmed())
    {
        int shiftByValue = (int)shiftBy->AsIntConCommon()->IconValue();
        ins              = genMapShiftInsToShiftByConstantIns(ins, shiftByValue);
        if (shiftByValue == 1)
        {
            // There is no source in this case, as the shift by count is embedded in the instruction opcode itself.
            getEmitter()->emitInsRMW(ins, attr, storeInd);
        }
        else
        {
            getEmitter()->emitInsRMW(ins, attr, storeInd, shiftBy);
        }
    }
    else
    {
        // We must have the number of bits to shift stored in ECX, since we constrained this node to
        // sit in ECX. In case this didn't happen, LSRA expects the code generator to move it since it's a single
        // register destination requirement.
        regNumber shiftReg = shiftBy->gtRegNum;
        genCopyRegIfNeeded(shiftBy, REG_RCX);

        // The shiftBy operand is implicit, so call the unary version of emitInsRMW.
        getEmitter()->emitInsRMW(ins, attr, storeInd);
    }
}

void CodeGen::genRegCopy(GenTree* treeNode)
{
    assert(treeNode->OperGet() == GT_COPY);
    GenTree* op1 = treeNode->gtOp.gtOp1;

    if (op1->IsMultiRegCall())
    {
        genConsumeReg(op1);

        GenTreeCopyOrReload* copyTree    = treeNode->AsCopyOrReload();
        GenTreeCall*         call        = op1->AsCall();
        ReturnTypeDesc*      retTypeDesc = call->GetReturnTypeDesc();
        unsigned             regCount    = retTypeDesc->GetReturnRegCount();

        for (unsigned i = 0; i < regCount; ++i)
        {
            var_types type    = retTypeDesc->GetReturnRegType(i);
            regNumber fromReg = call->GetRegNumByIdx(i);
            regNumber toReg   = copyTree->GetRegNumByIdx(i);

            // A Multi-reg GT_COPY node will have valid reg only for those
            // positions that corresponding result reg of call node needs
            // to be copied.
            if (toReg != REG_NA)
            {
                assert(toReg != fromReg);
                inst_RV_RV(ins_Copy(type), toReg, fromReg, type);
            }
        }
    }
    else
    {
        var_types targetType = treeNode->TypeGet();
        regNumber targetReg  = treeNode->gtRegNum;
        assert(targetReg != REG_NA);

        // Check whether this node and the node from which we're copying the value have
        // different register types. This can happen if (currently iff) we have a SIMD
        // vector type that fits in an integer register, in which case it is passed as
        // an argument, or returned from a call, in an integer register and must be
        // copied if it's in an xmm register.

        bool srcFltReg = (varTypeIsFloating(op1) || varTypeIsSIMD(op1));
        bool tgtFltReg = (varTypeIsFloating(treeNode) || varTypeIsSIMD(treeNode));
        if (srcFltReg != tgtFltReg)
        {
            instruction ins;
            regNumber   fpReg;
            regNumber   intReg;
            if (tgtFltReg)
            {
                ins    = ins_CopyIntToFloat(op1->TypeGet(), treeNode->TypeGet());
                fpReg  = targetReg;
                intReg = op1->gtRegNum;
            }
            else
            {
                ins    = ins_CopyFloatToInt(op1->TypeGet(), treeNode->TypeGet());
                intReg = targetReg;
                fpReg  = op1->gtRegNum;
            }
            inst_RV_RV(ins, fpReg, intReg, targetType);
        }
        else
        {
            inst_RV_RV(ins_Copy(targetType), targetReg, genConsumeReg(op1), targetType);
        }

        if (op1->IsLocal())
        {
            // The lclVar will never be a def.
            // If it is a last use, the lclVar will be killed by genConsumeReg(), as usual, and genProduceReg will
            // appropriately set the gcInfo for the copied value.
            // If not, there are two cases we need to handle:
            // - If this is a TEMPORARY copy (indicated by the GTF_VAR_DEATH flag) the variable
            //   will remain live in its original register.
            //   genProduceReg() will appropriately set the gcInfo for the copied value,
            //   and genConsumeReg will reset it.
            // - Otherwise, we need to update register info for the lclVar.

            GenTreeLclVarCommon* lcl = op1->AsLclVarCommon();
            assert((lcl->gtFlags & GTF_VAR_DEF) == 0);

            if ((lcl->gtFlags & GTF_VAR_DEATH) == 0 && (treeNode->gtFlags & GTF_VAR_DEATH) == 0)
            {
                LclVarDsc* varDsc = &compiler->lvaTable[lcl->gtLclNum];

                // If we didn't just spill it (in genConsumeReg, above), then update the register info
                if (varDsc->lvRegNum != REG_STK)
                {
                    // The old location is dying
                    genUpdateRegLife(varDsc, /*isBorn*/ false, /*isDying*/ true DEBUGARG(op1));

                    gcInfo.gcMarkRegSetNpt(genRegMask(op1->gtRegNum));

                    genUpdateVarReg(varDsc, treeNode);

                    // The new location is going live
                    genUpdateRegLife(varDsc, /*isBorn*/ true, /*isDying*/ false DEBUGARG(treeNode));
                }
            }
        }
    }

    genProduceReg(treeNode);
}

//------------------------------------------------------------------------
// genStoreInd: Generate code for a GT_STOREIND node.
//
// Arguments:
//    treeNode - The GT_STOREIND node for which to generate code.
//
// Return Value:
//    none

void CodeGen::genStoreInd(GenTreePtr node)
{
    assert(node->OperGet() == GT_STOREIND);

#ifdef FEATURE_SIMD
    // Storing Vector3 of size 12 bytes through indirection
    if (node->TypeGet() == TYP_SIMD12)
    {
        genStoreIndTypeSIMD12(node);
        return;
    }
#endif // FEATURE_SIMD

    GenTreeStoreInd* storeInd   = node->AsStoreInd();
    GenTree*         data       = storeInd->Data();
    GenTree*         addr       = storeInd->Addr();
    var_types        targetType = storeInd->TypeGet();

    assert(!varTypeIsFloating(targetType) || (targetType == data->TypeGet()));

    GCInfo::WriteBarrierForm writeBarrierForm = gcInfo.gcIsWriteBarrierCandidate(storeInd, data);
    if (writeBarrierForm != GCInfo::WBF_NoBarrier)
    {
        // data and addr must be in registers.
        // Consume both registers so that any copies of interfering registers are taken care of.
        genConsumeOperands(storeInd->AsOp());

        if (genEmitOptimizedGCWriteBarrier(writeBarrierForm, addr, data))
        {
            return;
        }

        // At this point, we should not have any interference.
        // That is, 'data' must not be in REG_ARG_0, as that is where 'addr' must go.
        noway_assert(data->gtRegNum != REG_ARG_0);

        // addr goes in REG_ARG_0
        genCopyRegIfNeeded(addr, REG_ARG_0);

        // data goes in REG_ARG_1
        genCopyRegIfNeeded(data, REG_ARG_1);

        genGCWriteBarrier(storeInd, writeBarrierForm);
    }
    else
    {
        bool     reverseOps    = ((storeInd->gtFlags & GTF_REVERSE_OPS) != 0);
        bool     dataIsUnary   = false;
        bool     isRMWMemoryOp = storeInd->IsRMWMemoryOp();
        GenTree* rmwSrc        = nullptr;

        // We must consume the operands in the proper execution order, so that liveness is
        // updated appropriately.
        if (!reverseOps)
        {
            genConsumeAddress(addr);
        }

        // If storeInd represents a RMW memory op then its data is a non-leaf node marked as contained
        // and non-indir operand of data is the source of RMW memory op.
        if (isRMWMemoryOp)
        {
            assert(data->isContained() && !data->OperIsLeaf());

            GenTreePtr rmwDst = nullptr;

            dataIsUnary = (GenTree::OperIsUnary(data->OperGet()) != 0);
            if (!dataIsUnary)
            {
                if (storeInd->IsRMWDstOp1())
                {
                    rmwDst = data->gtGetOp1();
                    rmwSrc = data->gtGetOp2();
                }
                else
                {
                    assert(storeInd->IsRMWDstOp2());
                    rmwDst = data->gtGetOp2();
                    rmwSrc = data->gtGetOp1();
                }

                genConsumeRegs(rmwSrc);
            }
            else
            {
                // *(p) = oper *(p): Here addr = p, rmwsrc=rmwDst = *(p) i.e. GT_IND(p)
                // For unary RMW ops, src and dst of RMW memory op is the same.  Lower
                // clears operand counts on rmwSrc and we don't need to perform a
                // genConsumeReg() on it.
                assert(storeInd->IsRMWDstOp1());
                rmwSrc = data->gtGetOp1();
                rmwDst = data->gtGetOp1();
                assert(rmwSrc->isUsedFromMemory());
            }

            assert(rmwSrc != nullptr);
            assert(rmwDst != nullptr);
            assert(Lowering::IndirsAreEquivalent(rmwDst, storeInd));
        }
        else
        {
            genConsumeRegs(data);
        }

        if (reverseOps)
        {
            genConsumeAddress(addr);
        }

        if (isRMWMemoryOp)
        {
            if (dataIsUnary)
            {
                // generate code for unary RMW memory ops like neg/not
                getEmitter()->emitInsRMW(genGetInsForOper(data->OperGet(), data->TypeGet()), emitTypeSize(storeInd),
                                         storeInd);
            }
            else
            {
                if (data->OperIsShiftOrRotate())
                {
                    // Generate code for shift RMW memory ops.
                    // The data address needs to be op1 (it must be [addr] = [addr] <shift> <amount>, not [addr] =
                    // <amount> <shift> [addr]).
                    assert(storeInd->IsRMWDstOp1());
                    assert(rmwSrc == data->gtGetOp2());
                    genCodeForShiftRMW(storeInd);
                }
                else if (data->OperGet() == GT_ADD && (rmwSrc->IsIntegralConst(1) || rmwSrc->IsIntegralConst(-1)))
                {
                    // Generate "inc/dec [mem]" instead of "add/sub [mem], 1".
                    //
                    // Notes:
                    //  1) Global morph transforms GT_SUB(x, +/-1) into GT_ADD(x, -/+1).
                    //  2) TODO-AMD64: Debugger routine NativeWalker::Decode() runs into
                    //     an assert while decoding ModR/M byte of "inc dword ptr [rax]".
                    //     It is not clear whether Decode() can handle all possible
                    //     addr modes with inc/dec.  For this reason, inc/dec [mem]
                    //     is not generated while generating debuggable code.  Update
                    //     the above if condition once Decode() routine is fixed.
                    assert(rmwSrc->isContainedIntOrIImmed());
                    instruction ins = rmwSrc->IsIntegralConst(1) ? INS_inc : INS_dec;
                    getEmitter()->emitInsRMW(ins, emitTypeSize(storeInd), storeInd);
                }
                else
                {
                    // generate code for remaining binary RMW memory ops like add/sub/and/or/xor
                    getEmitter()->emitInsRMW(genGetInsForOper(data->OperGet(), data->TypeGet()), emitTypeSize(storeInd),
                                             storeInd, rmwSrc);
                }
            }
        }
        else
        {
            getEmitter()->emitInsMov(ins_Store(data->TypeGet()), emitTypeSize(storeInd), storeInd);
        }
    }
}

//------------------------------------------------------------------------
// genEmitOptimizedGCWriteBarrier: Generate write barrier store using the optimized
// helper functions.
//
// Arguments:
//    writeBarrierForm - the write barrier form to use
//    addr - the address at which to do the store
//    data - the data to store
//
// Return Value:
//    true if an optimized write barrier form was used, false if not. If this
//    function returns false, the caller must emit a "standard" write barrier.

bool CodeGen::genEmitOptimizedGCWriteBarrier(GCInfo::WriteBarrierForm writeBarrierForm, GenTree* addr, GenTree* data)
{
    assert(writeBarrierForm != GCInfo::WBF_NoBarrier);

#if defined(_TARGET_X86_) && NOGC_WRITE_BARRIERS
    bool useOptimizedWriteBarriers = true;

#ifdef DEBUG
    useOptimizedWriteBarriers =
        (writeBarrierForm != GCInfo::WBF_NoBarrier_CheckNotHeapInDebug); // This one is always a call to a C++ method.
#endif

    if (!useOptimizedWriteBarriers)
    {
        return false;
    }

    const static int regToHelper[2][8] = {
        // If the target is known to be in managed memory
        {
            CORINFO_HELP_ASSIGN_REF_EAX, CORINFO_HELP_ASSIGN_REF_ECX, -1, CORINFO_HELP_ASSIGN_REF_EBX, -1,
            CORINFO_HELP_ASSIGN_REF_EBP, CORINFO_HELP_ASSIGN_REF_ESI, CORINFO_HELP_ASSIGN_REF_EDI,
        },

        // Don't know if the target is in managed memory
        {
            CORINFO_HELP_CHECKED_ASSIGN_REF_EAX, CORINFO_HELP_CHECKED_ASSIGN_REF_ECX, -1,
            CORINFO_HELP_CHECKED_ASSIGN_REF_EBX, -1, CORINFO_HELP_CHECKED_ASSIGN_REF_EBP,
            CORINFO_HELP_CHECKED_ASSIGN_REF_ESI, CORINFO_HELP_CHECKED_ASSIGN_REF_EDI,
        },
    };

    noway_assert(regToHelper[0][REG_EAX] == CORINFO_HELP_ASSIGN_REF_EAX);
    noway_assert(regToHelper[0][REG_ECX] == CORINFO_HELP_ASSIGN_REF_ECX);
    noway_assert(regToHelper[0][REG_EBX] == CORINFO_HELP_ASSIGN_REF_EBX);
    noway_assert(regToHelper[0][REG_ESP] == -1);
    noway_assert(regToHelper[0][REG_EBP] == CORINFO_HELP_ASSIGN_REF_EBP);
    noway_assert(regToHelper[0][REG_ESI] == CORINFO_HELP_ASSIGN_REF_ESI);
    noway_assert(regToHelper[0][REG_EDI] == CORINFO_HELP_ASSIGN_REF_EDI);

    noway_assert(regToHelper[1][REG_EAX] == CORINFO_HELP_CHECKED_ASSIGN_REF_EAX);
    noway_assert(regToHelper[1][REG_ECX] == CORINFO_HELP_CHECKED_ASSIGN_REF_ECX);
    noway_assert(regToHelper[1][REG_EBX] == CORINFO_HELP_CHECKED_ASSIGN_REF_EBX);
    noway_assert(regToHelper[1][REG_ESP] == -1);
    noway_assert(regToHelper[1][REG_EBP] == CORINFO_HELP_CHECKED_ASSIGN_REF_EBP);
    noway_assert(regToHelper[1][REG_ESI] == CORINFO_HELP_CHECKED_ASSIGN_REF_ESI);
    noway_assert(regToHelper[1][REG_EDI] == CORINFO_HELP_CHECKED_ASSIGN_REF_EDI);

    regNumber reg = data->gtRegNum;
    noway_assert((reg != REG_ESP) && (reg != REG_WRITE_BARRIER));

    // Generate the following code:
    //            lea     edx, addr
    //            call    write_barrier_helper_reg

    // addr goes in REG_ARG_0
    genCopyRegIfNeeded(addr, REG_WRITE_BARRIER);

    unsigned tgtAnywhere = 0;
    if (writeBarrierForm != GCInfo::WBF_BarrierUnchecked)
    {
        tgtAnywhere = 1;
    }

    // We might want to call a modified version of genGCWriteBarrier() to get the benefit of
    // the FEATURE_COUNT_GC_WRITE_BARRIERS code there, but that code doesn't look like it works
    // with rationalized RyuJIT IR. So, for now, just emit the helper call directly here.

    genEmitHelperCall(regToHelper[tgtAnywhere][reg],
                      0,           // argSize
                      EA_PTRSIZE); // retSize

    return true;
#else  // !defined(_TARGET_X86_) || !NOGC_WRITE_BARRIERS
    return false;
#endif // !defined(_TARGET_X86_) || !NOGC_WRITE_BARRIERS
}

// Produce code for a GT_CALL node
void CodeGen::genCallInstruction(GenTreeCall* call)
{
    genAlignStackBeforeCall(call);

    gtCallTypes callType = (gtCallTypes)call->gtCallType;

    IL_OFFSETX ilOffset = BAD_IL_OFFSET;

    // all virtuals should have been expanded into a control expression
    assert(!call->IsVirtual() || call->gtControlExpr || call->gtCallAddr);

    // Insert a GS check if necessary
    if (call->IsTailCallViaHelper())
    {
        if (compiler->getNeedsGSSecurityCookie())
        {
#if FEATURE_FIXED_OUT_ARGS
            // If either of the conditions below is true, we will need a temporary register in order to perform the GS
            // cookie check. When FEATURE_FIXED_OUT_ARGS is disabled, we save and restore the temporary register using
            // push/pop. When FEATURE_FIXED_OUT_ARGS is enabled, however, we need an alternative solution. For now,
            // though, the tail prefix is ignored on all platforms that use fixed out args, so we should never hit this
            // case.
            assert(compiler->gsGlobalSecurityCookieAddr == nullptr);
            assert((int)compiler->gsGlobalSecurityCookieVal == (ssize_t)compiler->gsGlobalSecurityCookieVal);
#endif
            genEmitGSCookieCheck(true);
        }
    }

    // Consume all the arg regs
    for (GenTreePtr list = call->gtCallLateArgs; list; list = list->MoveNext())
    {
        assert(list->OperIsList());

        GenTreePtr argNode = list->Current();

        fgArgTabEntryPtr curArgTabEntry = compiler->gtArgEntryByNode(call, argNode->gtSkipReloadOrCopy());
        assert(curArgTabEntry);

        if (curArgTabEntry->regNum == REG_STK)
        {
            continue;
        }

#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
        // Deal with multi register passed struct args.
        if (argNode->OperGet() == GT_FIELD_LIST)
        {
            GenTreeFieldList* fieldListPtr = argNode->AsFieldList();
            unsigned          iterationNum = 0;
            for (; fieldListPtr != nullptr; fieldListPtr = fieldListPtr->Rest(), iterationNum++)
            {
                GenTreePtr putArgRegNode = fieldListPtr->gtOp.gtOp1;
                assert(putArgRegNode->gtOper == GT_PUTARG_REG);
                regNumber argReg = REG_NA;

                if (iterationNum == 0)
                {
                    argReg = curArgTabEntry->regNum;
                }
                else
                {
                    assert(iterationNum == 1);
                    argReg = curArgTabEntry->otherRegNum;
                }

                genConsumeReg(putArgRegNode);

                // Validate the putArgRegNode has the right type.
                assert(putArgRegNode->TypeGet() ==
                       compiler->GetTypeFromClassificationAndSizes(curArgTabEntry->structDesc
                                                                       .eightByteClassifications[iterationNum],
                                                                   curArgTabEntry->structDesc
                                                                       .eightByteSizes[iterationNum]));
                if (putArgRegNode->gtRegNum != argReg)
                {
                    inst_RV_RV(ins_Move_Extend(putArgRegNode->TypeGet(), putArgRegNode->InReg()), argReg,
                               putArgRegNode->gtRegNum);
                }
            }
        }
        else
#endif // FEATURE_UNIX_AMD64_STRUCT_PASSING
        {
            regNumber argReg = curArgTabEntry->regNum;
            genConsumeReg(argNode);
            if (argNode->gtRegNum != argReg)
            {
                inst_RV_RV(ins_Move_Extend(argNode->TypeGet(), argNode->InReg()), argReg, argNode->gtRegNum);
            }
        }

#if FEATURE_VARARG
        // In the case of a varargs call,
        // the ABI dictates that if we have floating point args,
        // we must pass the enregistered arguments in both the
        // integer and floating point registers so, let's do that.
        if (call->IsVarargs() && varTypeIsFloating(argNode))
        {
            regNumber   targetReg = compiler->getCallArgIntRegister(argNode->gtRegNum);
            instruction ins       = ins_CopyFloatToInt(argNode->TypeGet(), TYP_LONG);
            inst_RV_RV(ins, argNode->gtRegNum, targetReg);
        }
#endif // FEATURE_VARARG
    }

#if defined(_TARGET_X86_) || defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
    // The call will pop its arguments.
    // for each putarg_stk:
    ssize_t    stackArgBytes = 0;
    GenTreePtr args          = call->gtCallArgs;
    while (args)
    {
        GenTreePtr arg = args->gtOp.gtOp1;
        if (arg->OperGet() != GT_ARGPLACE && !(arg->gtFlags & GTF_LATE_ARG))
        {
#if defined(_TARGET_X86_)
            if ((arg->OperGet() == GT_PUTARG_STK) && (arg->gtGetOp1()->OperGet() == GT_FIELD_LIST))
            {
                fgArgTabEntryPtr curArgTabEntry = compiler->gtArgEntryByNode(call, arg);
                assert(curArgTabEntry);
                stackArgBytes += curArgTabEntry->numSlots * TARGET_POINTER_SIZE;
            }
            else
#endif // defined(_TARGET_X86_)

#ifdef FEATURE_PUT_STRUCT_ARG_STK
                if (genActualType(arg->TypeGet()) == TYP_STRUCT)
            {
                assert(arg->OperGet() == GT_PUTARG_STK);

                GenTreeObj* obj      = arg->gtGetOp1()->AsObj();
                unsigned    argBytes = (unsigned)roundUp(obj->gtBlkSize, TARGET_POINTER_SIZE);
#ifdef DEBUG
                fgArgTabEntryPtr curArgTabEntry = compiler->gtArgEntryByNode(call, arg);
                assert((curArgTabEntry->numSlots * TARGET_POINTER_SIZE) == argBytes);
#endif // DEBUG
                stackArgBytes += argBytes;
            }
            else
#endif // FEATURE_PUT_STRUCT_ARG_STK

            {
                stackArgBytes += genTypeSize(genActualType(arg->TypeGet()));
            }
        }
        args = args->gtOp.gtOp2;
    }
#endif // defined(_TARGET_X86_) || defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)

    // Insert a null check on "this" pointer if asked.
    if (call->NeedsNullCheck())
    {
        const regNumber regThis = genGetThisArgReg(call);
        getEmitter()->emitIns_AR_R(INS_cmp, EA_4BYTE, regThis, regThis, 0);
    }

    // Either gtControlExpr != null or gtCallAddr != null or it is a direct non-virtual call to a user or helper method.
    CORINFO_METHOD_HANDLE methHnd;
    GenTree*              target = call->gtControlExpr;
    if (callType == CT_INDIRECT)
    {
        assert(target == nullptr);
        target  = call->gtCallAddr;
        methHnd = nullptr;
    }
    else
    {
        methHnd = call->gtCallMethHnd;
    }

    CORINFO_SIG_INFO* sigInfo = nullptr;
#ifdef DEBUG
    // Pass the call signature information down into the emitter so the emitter can associate
    // native call sites with the signatures they were generated from.
    if (callType != CT_HELPER)
    {
        sigInfo = call->callSig;
    }
#endif // DEBUG

    // If fast tail call, then we are done.  In this case we setup the args (both reg args
    // and stack args in incoming arg area) and call target in rax.  Epilog sequence would
    // generate "jmp rax".
    if (call->IsFastTailCall())
    {
        // Don't support fast tail calling JIT helpers
        assert(callType != CT_HELPER);

        // Fast tail calls materialize call target either in gtControlExpr or in gtCallAddr.
        assert(target != nullptr);

        genConsumeReg(target);
        genCopyRegIfNeeded(target, REG_RAX);
        return;
    }

    // For a pinvoke to unmanged code we emit a label to clear
    // the GC pointer state before the callsite.
    // We can't utilize the typical lazy killing of GC pointers
    // at (or inside) the callsite.
    if (call->IsUnmanaged())
    {
        genDefineTempLabel(genCreateTempLabel());
    }

    // Determine return value size(s).
    ReturnTypeDesc* retTypeDesc   = call->GetReturnTypeDesc();
    emitAttr        retSize       = EA_PTRSIZE;
    emitAttr        secondRetSize = EA_UNKNOWN;

    if (call->HasMultiRegRetVal())
    {
        retSize       = emitTypeSize(retTypeDesc->GetReturnRegType(0));
        secondRetSize = emitTypeSize(retTypeDesc->GetReturnRegType(1));
    }
    else
    {
        assert(!varTypeIsStruct(call));

        if (call->gtType == TYP_REF || call->gtType == TYP_ARRAY)
        {
            retSize = EA_GCREF;
        }
        else if (call->gtType == TYP_BYREF)
        {
            retSize = EA_BYREF;
        }
    }

    bool            fPossibleSyncHelperCall = false;
    CorInfoHelpFunc helperNum               = CORINFO_HELP_UNDEF;

    // We need to propagate the IL offset information to the call instruction, so we can emit
    // an IL to native mapping record for the call, to support managed return value debugging.
    // We don't want tail call helper calls that were converted from normal calls to get a record,
    // so we skip this hash table lookup logic in that case.
    if (compiler->opts.compDbgInfo && compiler->genCallSite2ILOffsetMap != nullptr && !call->IsTailCall())
    {
        (void)compiler->genCallSite2ILOffsetMap->Lookup(call, &ilOffset);
    }

#if defined(_TARGET_X86_)
    bool fCallerPop = call->CallerPop();

#ifdef UNIX_X86_ABI
    if (!call->IsUnmanaged())
    {
        CorInfoCallConv callConv = CORINFO_CALLCONV_DEFAULT;

        if ((callType != CT_HELPER) && call->callSig)
        {
            callConv = call->callSig->callConv;
        }

        fCallerPop |= IsCallerPop(callConv);
    }
#endif // UNIX_X86_ABI

    // If the callee pops the arguments, we pass a positive value as the argSize, and the emitter will
    // adjust its stack level accordingly.
    // If the caller needs to explicitly pop its arguments, we must pass a negative value, and then do the
    // pop when we're done.
    ssize_t argSizeForEmitter = stackArgBytes;
    if (fCallerPop)
    {
        argSizeForEmitter = -stackArgBytes;
    }
#endif // defined(_TARGET_X86_)

#ifdef FEATURE_AVX_SUPPORT
    // When it's a PInvoke call and the call type is USER function, we issue VZEROUPPER here
    // if the function contains 256bit AVX instructions, this is to avoid AVX-256 to Legacy SSE
    // transition penalty, assuming the user function contains legacy SSE instruction.
    // To limit code size increase impact: we only issue VZEROUPPER before PInvoke call, not issue
    // VZEROUPPER after PInvoke call because transition penalty from legacy SSE to AVX only happens
    // when there's preceding 256-bit AVX to legacy SSE transition penalty.
    if (call->IsPInvoke() && (call->gtCallType == CT_USER_FUNC) && getEmitter()->Contains256bitAVX())
    {
        assert(compiler->getSIMDInstructionSet() == InstructionSet_AVX);
        instGen(INS_vzeroupper);
    }
#endif

    if (target != nullptr)
    {
#ifdef _TARGET_X86_
        if (call->IsVirtualStub() && (call->gtCallType == CT_INDIRECT))
        {
            // On x86, we need to generate a very specific pattern for indirect VSD calls:
            //
            //    3-byte nop
            //    call dword ptr [eax]
            //
            // Where EAX is also used as an argument to the stub dispatch helper. Make
            // sure that the call target address is computed into EAX in this case.

            assert(REG_VIRTUAL_STUB_PARAM == REG_VIRTUAL_STUB_TARGET);

            assert(target->isContainedIndir());
            assert(target->OperGet() == GT_IND);

            GenTree* addr = target->AsIndir()->Addr();
            assert(addr->isUsedFromReg());

            genConsumeReg(addr);
            genCopyRegIfNeeded(addr, REG_VIRTUAL_STUB_TARGET);

            getEmitter()->emitIns_Nop(3);

            // clang-format off
            getEmitter()->emitIns_Call(emitter::EmitCallType(emitter::EC_INDIR_ARD),
                                       methHnd,
                                       INDEBUG_LDISASM_COMMA(sigInfo)
                                       nullptr,
                                       argSizeForEmitter,
                                       retSize
                                       MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize),
                                       gcInfo.gcVarPtrSetCur,
                                       gcInfo.gcRegGCrefSetCur,
                                       gcInfo.gcRegByrefSetCur,
                                       ilOffset, REG_VIRTUAL_STUB_TARGET, REG_NA, 1, 0);
            // clang-format on
        }
        else
#endif
            if (target->isContainedIndir())
        {
            if (target->AsIndir()->HasBase() && target->AsIndir()->Base()->isContainedIntOrIImmed())
            {
                // Note that if gtControlExpr is an indir of an absolute address, we mark it as
                // contained only if it can be encoded as PC-relative offset.
                assert(target->AsIndir()->Base()->AsIntConCommon()->FitsInAddrBase(compiler));

                // clang-format off
                genEmitCall(emitter::EC_FUNC_TOKEN_INDIR,
                            methHnd,
                            INDEBUG_LDISASM_COMMA(sigInfo)
                            (void*) target->AsIndir()->Base()->AsIntConCommon()->IconValue()
                            X86_ARG(argSizeForEmitter),
                            retSize
                            MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize),
                            ilOffset);
                // clang-format on
            }
            else
            {
                // clang-format off
                genEmitCall(emitter::EC_INDIR_ARD,
                            methHnd,
                            INDEBUG_LDISASM_COMMA(sigInfo)
                            target->AsIndir()
                            X86_ARG(argSizeForEmitter),
                            retSize
                            MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize),
                            ilOffset);
                // clang-format on
            }
        }
        else
        {
            // We have already generated code for gtControlExpr evaluating it into a register.
            // We just need to emit "call reg" in this case.
            assert(genIsValidIntReg(target->gtRegNum));

            // clang-format off
            genEmitCall(emitter::EC_INDIR_R,
                        methHnd,
                        INDEBUG_LDISASM_COMMA(sigInfo)
                        nullptr // addr
                        X86_ARG(argSizeForEmitter),
                        retSize
                        MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize),
                        ilOffset,
                        genConsumeReg(target));
            // clang-format on
        }
    }
#ifdef FEATURE_READYTORUN_COMPILER
    else if (call->gtEntryPoint.addr != nullptr)
    {
        // clang-format off
        genEmitCall((call->gtEntryPoint.accessType == IAT_VALUE) ? emitter::EC_FUNC_TOKEN
                                                                 : emitter::EC_FUNC_TOKEN_INDIR,
                    methHnd,
                    INDEBUG_LDISASM_COMMA(sigInfo)
                    (void*) call->gtEntryPoint.addr
                    X86_ARG(argSizeForEmitter),
                    retSize
                    MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize),
                    ilOffset);
        // clang-format on
    }
#endif
    else
    {
        // Generate a direct call to a non-virtual user defined or helper method
        assert(callType == CT_HELPER || callType == CT_USER_FUNC);

        void* addr = nullptr;
        if (callType == CT_HELPER)
        {
            // Direct call to a helper method.
            helperNum = compiler->eeGetHelperNum(methHnd);
            noway_assert(helperNum != CORINFO_HELP_UNDEF);

            void* pAddr = nullptr;
            addr        = compiler->compGetHelperFtn(helperNum, (void**)&pAddr);

            if (addr == nullptr)
            {
                addr = pAddr;
            }

            // tracking of region protected by the monitor in synchronized methods
            if (compiler->info.compFlags & CORINFO_FLG_SYNCH)
            {
                fPossibleSyncHelperCall = true;
            }
        }
        else
        {
            // Direct call to a non-virtual user function.
            addr = call->gtDirectCallAddress;
        }

        // Non-virtual direct calls to known addresses

        // clang-format off
        genEmitCall(emitter::EC_FUNC_TOKEN,
                    methHnd,
                    INDEBUG_LDISASM_COMMA(sigInfo)
                    addr
                    X86_ARG(argSizeForEmitter),
                    retSize
                    MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize),
                    ilOffset);
        // clang-format on
    }

    // if it was a pinvoke we may have needed to get the address of a label
    if (genPendingCallLabel)
    {
        assert(call->IsUnmanaged());
        genDefineTempLabel(genPendingCallLabel);
        genPendingCallLabel = nullptr;
    }

    // Update GC info:
    // All Callee arg registers are trashed and no longer contain any GC pointers.
    // TODO-XArch-Bug?: As a matter of fact shouldn't we be killing all of callee trashed regs here?
    // For now we will assert that other than arg regs gc ref/byref set doesn't contain any other
    // registers from RBM_CALLEE_TRASH.
    assert((gcInfo.gcRegGCrefSetCur & (RBM_CALLEE_TRASH & ~RBM_ARG_REGS)) == 0);
    assert((gcInfo.gcRegByrefSetCur & (RBM_CALLEE_TRASH & ~RBM_ARG_REGS)) == 0);
    gcInfo.gcRegGCrefSetCur &= ~RBM_ARG_REGS;
    gcInfo.gcRegByrefSetCur &= ~RBM_ARG_REGS;

    var_types returnType = call->TypeGet();
    if (returnType != TYP_VOID)
    {
#ifdef _TARGET_X86_
        if (varTypeIsFloating(returnType))
        {
            // Spill the value from the fp stack.
            // Then, load it into the target register.
            call->gtFlags |= GTF_SPILL;
            regSet.rsSpillFPStack(call);
            call->gtFlags |= GTF_SPILLED;
            call->gtFlags &= ~GTF_SPILL;
        }
        else
#endif // _TARGET_X86_
        {
            regNumber returnReg;

            if (call->HasMultiRegRetVal())
            {
                assert(retTypeDesc != nullptr);
                unsigned regCount = retTypeDesc->GetReturnRegCount();

                // If regs allocated to call node are different from ABI return
                // regs in which the call has returned its result, move the result
                // to regs allocated to call node.
                for (unsigned i = 0; i < regCount; ++i)
                {
                    var_types regType      = retTypeDesc->GetReturnRegType(i);
                    returnReg              = retTypeDesc->GetABIReturnReg(i);
                    regNumber allocatedReg = call->GetRegNumByIdx(i);
                    if (returnReg != allocatedReg)
                    {
                        inst_RV_RV(ins_Copy(regType), allocatedReg, returnReg, regType);
                    }
                }

#ifdef FEATURE_SIMD
                // A Vector3 return value is stored in xmm0 and xmm1.
                // RyuJIT assumes that the upper unused bits of xmm1 are cleared but
                // the native compiler doesn't guarantee it.
                if (returnType == TYP_SIMD12)
                {
                    returnReg = retTypeDesc->GetABIReturnReg(1);
                    // Clear the upper 32 bits by two shift instructions.
                    // retReg = retReg << 96
                    // retReg = retReg >> 96
                    getEmitter()->emitIns_R_I(INS_pslldq, emitActualTypeSize(TYP_SIMD12), returnReg, 12);
                    getEmitter()->emitIns_R_I(INS_psrldq, emitActualTypeSize(TYP_SIMD12), returnReg, 12);
                }
#endif // FEATURE_SIMD
            }
            else
            {
#ifdef _TARGET_X86_
                if (call->IsHelperCall(compiler, CORINFO_HELP_INIT_PINVOKE_FRAME))
                {
                    // The x86 CORINFO_HELP_INIT_PINVOKE_FRAME helper uses a custom calling convention that returns with
                    // TCB in REG_PINVOKE_TCB. AMD64/ARM64 use the standard calling convention. fgMorphCall() sets the
                    // correct argument registers.
                    returnReg = REG_PINVOKE_TCB;
                }
                else
#endif // _TARGET_X86_
                    if (varTypeIsFloating(returnType))
                {
                    returnReg = REG_FLOATRET;
                }
                else
                {
                    returnReg = REG_INTRET;
                }

                if (call->gtRegNum != returnReg)
                {
                    inst_RV_RV(ins_Copy(returnType), call->gtRegNum, returnReg, returnType);
                }
            }

            genProduceReg(call);
        }
    }

    // If there is nothing next, that means the result is thrown away, so this value is not live.
    // However, for minopts or debuggable code, we keep it live to support managed return value debugging.
    if ((call->gtNext == nullptr) && !compiler->opts.MinOpts() && !compiler->opts.compDbgCode)
    {
        gcInfo.gcMarkRegSetNpt(RBM_INTRET);
    }

#if !FEATURE_EH_FUNCLETS
    //-------------------------------------------------------------------------
    // Create a label for tracking of region protected by the monitor in synchronized methods.
    // This needs to be here, rather than above where fPossibleSyncHelperCall is set,
    // so the GC state vars have been updated before creating the label.

    if (fPossibleSyncHelperCall)
    {
        switch (helperNum)
        {
            case CORINFO_HELP_MON_ENTER:
            case CORINFO_HELP_MON_ENTER_STATIC:
                noway_assert(compiler->syncStartEmitCookie == NULL);
                compiler->syncStartEmitCookie =
                    getEmitter()->emitAddLabel(gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, gcInfo.gcRegByrefSetCur);
                noway_assert(compiler->syncStartEmitCookie != NULL);
                break;
            case CORINFO_HELP_MON_EXIT:
            case CORINFO_HELP_MON_EXIT_STATIC:
                noway_assert(compiler->syncEndEmitCookie == NULL);
                compiler->syncEndEmitCookie =
                    getEmitter()->emitAddLabel(gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, gcInfo.gcRegByrefSetCur);
                noway_assert(compiler->syncEndEmitCookie != NULL);
                break;
            default:
                break;
        }
    }
#endif // !FEATURE_EH_FUNCLETS

    unsigned stackAdjustBias = 0;

#if defined(_TARGET_X86_)
    // Is the caller supposed to pop the arguments?
    if (fCallerPop && (stackArgBytes != 0))
    {
        stackAdjustBias = stackArgBytes;
    }

    SubtractStackLevel(stackArgBytes);
#endif // _TARGET_X86_

    genRemoveAlignmentAfterCall(call, stackAdjustBias);
}

// Produce code for a GT_JMP node.
// The arguments of the caller needs to be transferred to the callee before exiting caller.
// The actual jump to callee is generated as part of caller epilog sequence.
// Therefore the codegen of GT_JMP is to ensure that the callee arguments are correctly setup.
void CodeGen::genJmpMethod(GenTreePtr jmp)
{
    assert(jmp->OperGet() == GT_JMP);
    assert(compiler->compJmpOpUsed);

    // If no arguments, nothing to do
    if (compiler->info.compArgsCount == 0)
    {
        return;
    }

    // Make sure register arguments are in their initial registers
    // and stack arguments are put back as well.
    unsigned   varNum;
    LclVarDsc* varDsc;

    // First move any en-registered stack arguments back to the stack.
    // At the same time any reg arg not in correct reg is moved back to its stack location.
    //
    // We are not strictly required to spill reg args that are not in the desired reg for a jmp call
    // But that would require us to deal with circularity while moving values around.  Spilling
    // to stack makes the implementation simple, which is not a bad trade off given Jmp calls
    // are not frequent.
    for (varNum = 0; (varNum < compiler->info.compArgsCount); varNum++)
    {
        varDsc = compiler->lvaTable + varNum;

        if (varDsc->lvPromoted)
        {
            noway_assert(varDsc->lvFieldCnt == 1); // We only handle one field here

            unsigned fieldVarNum = varDsc->lvFieldLclStart;
            varDsc               = compiler->lvaTable + fieldVarNum;
        }
        noway_assert(varDsc->lvIsParam);

        if (varDsc->lvIsRegArg && (varDsc->lvRegNum != REG_STK))
        {
            // Skip reg args which are already in its right register for jmp call.
            // If not, we will spill such args to their stack locations.
            //
            // If we need to generate a tail call profiler hook, then spill all
            // arg regs to free them up for the callback.
            if (!compiler->compIsProfilerHookNeeded() && (varDsc->lvRegNum == varDsc->lvArgReg))
            {
                continue;
            }
        }
        else if (varDsc->lvRegNum == REG_STK)
        {
            // Skip args which are currently living in stack.
            continue;
        }

        // If we came here it means either a reg argument not in the right register or
        // a stack argument currently living in a register.  In either case the following
        // assert should hold.
        assert(varDsc->lvRegNum != REG_STK);

        assert(!varDsc->lvIsStructField || (compiler->lvaTable[varDsc->lvParentLcl].lvFieldCnt == 1));
        var_types storeType = genActualType(varDsc->lvaArgType()); // We own the memory and can use the full move.
        getEmitter()->emitIns_S_R(ins_Store(storeType), emitTypeSize(storeType), varDsc->lvRegNum, varNum, 0);

        // Update lvRegNum life and GC info to indicate lvRegNum is dead and varDsc stack slot is going live.
        // Note that we cannot modify varDsc->lvRegNum here because another basic block may not be expecting it.
        // Therefore manually update life of varDsc->lvRegNum.
        regMaskTP tempMask = varDsc->lvRegMask();
        regSet.RemoveMaskVars(tempMask);
        gcInfo.gcMarkRegSetNpt(tempMask);
        if (compiler->lvaIsGCTracked(varDsc))
        {
#ifdef DEBUG
            if (!VarSetOps::IsMember(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex))
            {
                JITDUMP("\t\t\t\t\t\t\tVar V%02u becoming live\n", varNum);
            }
            else
            {
                JITDUMP("\t\t\t\t\t\t\tVar V%02u continuing live\n", varNum);
            }
#endif // DEBUG

            VarSetOps::AddElemD(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex);
        }
    }

#ifdef PROFILING_SUPPORTED
    // At this point all arg regs are free.
    // Emit tail call profiler callback.
    genProfilingLeaveCallback(CORINFO_HELP_PROF_FCN_TAILCALL);
#endif

    // Next move any un-enregistered register arguments back to their register.
    regMaskTP fixedIntArgMask = RBM_NONE;    // tracks the int arg regs occupying fixed args in case of a vararg method.
    unsigned  firstArgVarNum  = BAD_VAR_NUM; // varNum of the first argument in case of a vararg method.
    for (varNum = 0; (varNum < compiler->info.compArgsCount); varNum++)
    {
        varDsc = compiler->lvaTable + varNum;
        if (varDsc->lvPromoted)
        {
            noway_assert(varDsc->lvFieldCnt == 1); // We only handle one field here

            unsigned fieldVarNum = varDsc->lvFieldLclStart;
            varDsc               = compiler->lvaTable + fieldVarNum;
        }
        noway_assert(varDsc->lvIsParam);

        // Skip if arg not passed in a register.
        if (!varDsc->lvIsRegArg)
        {
            continue;
        }

#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
        if (varTypeIsStruct(varDsc))
        {
            CORINFO_CLASS_HANDLE typeHnd = varDsc->lvVerTypeInfo.GetClassHandle();
            assert(typeHnd != nullptr);

            SYSTEMV_AMD64_CORINFO_STRUCT_REG_PASSING_DESCRIPTOR structDesc;
            compiler->eeGetSystemVAmd64PassStructInRegisterDescriptor(typeHnd, &structDesc);
            assert(structDesc.passedInRegisters);

            unsigned __int8 offset0 = 0;
            unsigned __int8 offset1 = 0;
            var_types       type0   = TYP_UNKNOWN;
            var_types       type1   = TYP_UNKNOWN;

            // Get the eightbyte data
            compiler->GetStructTypeOffset(structDesc, &type0, &type1, &offset0, &offset1);

            // Move the values into the right registers.
            //

            // Update varDsc->lvArgReg and lvOtherArgReg life and GC Info to indicate varDsc stack slot is dead and
            // argReg is going live. Note that we cannot modify varDsc->lvRegNum and lvOtherArgReg here because another
            // basic block may not be expecting it. Therefore manually update life of argReg.  Note that GT_JMP marks
            // the end of the basic block and after which reg life and gc info will be recomputed for the new block in
            // genCodeForBBList().
            if (type0 != TYP_UNKNOWN)
            {
                getEmitter()->emitIns_R_S(ins_Load(type0), emitTypeSize(type0), varDsc->lvArgReg, varNum, offset0);
                regSet.rsMaskVars |= genRegMask(varDsc->lvArgReg);
                gcInfo.gcMarkRegPtrVal(varDsc->lvArgReg, type0);
            }

            if (type1 != TYP_UNKNOWN)
            {
                getEmitter()->emitIns_R_S(ins_Load(type1), emitTypeSize(type1), varDsc->lvOtherArgReg, varNum, offset1);
                regSet.rsMaskVars |= genRegMask(varDsc->lvOtherArgReg);
                gcInfo.gcMarkRegPtrVal(varDsc->lvOtherArgReg, type1);
            }

            if (varDsc->lvTracked)
            {
                VarSetOps::RemoveElemD(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex);
            }
        }
        else
#endif // !defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
        {
            // Register argument
            noway_assert(isRegParamType(genActualType(varDsc->TypeGet())));

            // Is register argument already in the right register?
            // If not load it from its stack location.
            var_types loadType = varDsc->lvaArgType();
            regNumber argReg   = varDsc->lvArgReg; // incoming arg register

            if (varDsc->lvRegNum != argReg)
            {
                assert(genIsValidReg(argReg));
                getEmitter()->emitIns_R_S(ins_Load(loadType), emitTypeSize(loadType), argReg, varNum, 0);

                // Update argReg life and GC Info to indicate varDsc stack slot is dead and argReg is going live.
                // Note that we cannot modify varDsc->lvRegNum here because another basic block may not be expecting it.
                // Therefore manually update life of argReg.  Note that GT_JMP marks the end of the basic block
                // and after which reg life and gc info will be recomputed for the new block in genCodeForBBList().
                regSet.AddMaskVars(genRegMask(argReg));
                gcInfo.gcMarkRegPtrVal(argReg, loadType);
                if (compiler->lvaIsGCTracked(varDsc))
                {
#ifdef DEBUG
                    if (VarSetOps::IsMember(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex))
                    {
                        JITDUMP("\t\t\t\t\t\t\tVar V%02u becoming dead\n", varNum);
                    }
                    else
                    {
                        JITDUMP("\t\t\t\t\t\t\tVar V%02u continuing dead\n", varNum);
                    }
#endif // DEBUG

                    VarSetOps::RemoveElemD(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex);
                }
            }
        }

#if FEATURE_VARARG && defined(_TARGET_AMD64_)
        // In case of a jmp call to a vararg method also pass the float/double arg in the corresponding int arg
        // register. This is due to the AMD64 ABI which requires floating point values passed to varargs functions to
        // be passed in both integer and floating point registers. It doesn't apply to x86, which passes floating point
        // values on the stack.
        if (compiler->info.compIsVarArgs)
        {
            regNumber intArgReg;
            var_types loadType = varDsc->lvaArgType();
            regNumber argReg   = varDsc->lvArgReg; // incoming arg register

            if (varTypeIsFloating(loadType))
            {
                intArgReg       = compiler->getCallArgIntRegister(argReg);
                instruction ins = ins_CopyFloatToInt(loadType, TYP_LONG);
                inst_RV_RV(ins, argReg, intArgReg, loadType);
            }
            else
            {
                intArgReg = argReg;
            }

            fixedIntArgMask |= genRegMask(intArgReg);

            if (intArgReg == REG_ARG_0)
            {
                assert(firstArgVarNum == BAD_VAR_NUM);
                firstArgVarNum = varNum;
            }
        }
#endif // FEATURE_VARARG
    }

#if FEATURE_VARARG && defined(_TARGET_AMD64_)
    // Jmp call to a vararg method - if the method has fewer than 4 fixed arguments,
    // load the remaining arg registers (both int and float) from the corresponding
    // shadow stack slots.  This is for the reason that we don't know the number and type
    // of non-fixed params passed by the caller, therefore we have to assume the worst case
    // of caller passing float/double args both in int and float arg regs.
    //
    // This doesn't apply to x86, which doesn't pass floating point values in floating
    // point registers.
    //
    // The caller could have passed gc-ref/byref type var args.  Since these are var args
    // the callee no way of knowing their gc-ness.  Therefore, mark the region that loads
    // remaining arg registers from shadow stack slots as non-gc interruptible.
    if (fixedIntArgMask != RBM_NONE)
    {
        assert(compiler->info.compIsVarArgs);
        assert(firstArgVarNum != BAD_VAR_NUM);

        regMaskTP remainingIntArgMask = RBM_ARG_REGS & ~fixedIntArgMask;
        if (remainingIntArgMask != RBM_NONE)
        {
            instruction insCopyIntToFloat = ins_CopyIntToFloat(TYP_LONG, TYP_DOUBLE);
            getEmitter()->emitDisableGC();
            for (int argNum = 0, argOffset = 0; argNum < MAX_REG_ARG; ++argNum)
            {
                regNumber argReg     = intArgRegs[argNum];
                regMaskTP argRegMask = genRegMask(argReg);

                if ((remainingIntArgMask & argRegMask) != 0)
                {
                    remainingIntArgMask &= ~argRegMask;
                    getEmitter()->emitIns_R_S(INS_mov, EA_8BYTE, argReg, firstArgVarNum, argOffset);

                    // also load it in corresponding float arg reg
                    regNumber floatReg = compiler->getCallArgFloatRegister(argReg);
                    inst_RV_RV(insCopyIntToFloat, floatReg, argReg);
                }

                argOffset += REGSIZE_BYTES;
            }
            getEmitter()->emitEnableGC();
        }
    }
#endif // FEATURE_VARARG
}

// produce code for a GT_LEA subnode
void CodeGen::genLeaInstruction(GenTreeAddrMode* lea)
{
    emitAttr size = emitTypeSize(lea);
    genConsumeOperands(lea);

    if (lea->Base() && lea->Index())
    {
        regNumber baseReg  = lea->Base()->gtRegNum;
        regNumber indexReg = lea->Index()->gtRegNum;
        getEmitter()->emitIns_R_ARX(INS_lea, size, lea->gtRegNum, baseReg, indexReg, lea->gtScale, lea->gtOffset);
    }
    else if (lea->Base())
    {
        getEmitter()->emitIns_R_AR(INS_lea, size, lea->gtRegNum, lea->Base()->gtRegNum, lea->gtOffset);
    }
    else if (lea->Index())
    {
        getEmitter()->emitIns_R_ARX(INS_lea, size, lea->gtRegNum, REG_NA, lea->Index()->gtRegNum, lea->gtScale,
                                    lea->gtOffset);
    }

    genProduceReg(lea);
}

//-------------------------------------------------------------------------------------------
// genJumpKindsForTree:  Determine the number and kinds of conditional branches
//                       necessary to implement the given GT_CMP node
//
// Arguments:
//    cmpTree          - (input) The GenTree node that is used to set the Condition codes
//                     - The GenTree Relop node that was used to set the Condition codes
//   jmpKind[2]        - (output) One or two conditional branch instructions
//   jmpToTrueLabel[2] - (output) When true we branch to the true case
//                       When false we create a second label and branch to the false case
//                       Only GT_EQ for a floating point compares can have a false value.
//
// Return Value:
//    Sets the proper values into the array elements of jmpKind[] and jmpToTrueLabel[]
//
// Assumptions:
//    At least one conditional branch instruction will be returned.
//    Typically only one conditional branch is needed
//     and the second jmpKind[] value is set to EJ_NONE
//
// Notes:
//    jmpToTrueLabel[i]= true  implies branch when the compare operation is true.
//    jmpToTrueLabel[i]= false implies branch when the compare operation is false.
//-------------------------------------------------------------------------------------------

// static
void CodeGen::genJumpKindsForTree(GenTreePtr cmpTree, emitJumpKind jmpKind[2], bool jmpToTrueLabel[2])
{
    // Except for BEQ (=  ordered GT_EQ) both jumps are to the true label.
    jmpToTrueLabel[0] = true;
    jmpToTrueLabel[1] = true;

    // For integer comparisons just use genJumpKindForOper
    if (!varTypeIsFloating(cmpTree->gtOp.gtOp1->gtEffectiveVal()))
    {
        CompareKind compareKind = ((cmpTree->gtFlags & GTF_UNSIGNED) != 0) ? CK_UNSIGNED : CK_SIGNED;
        jmpKind[0]              = genJumpKindForOper(cmpTree->gtOper, compareKind);
        jmpKind[1]              = EJ_NONE;
    }
    else
    {
        assert(cmpTree->OperIsCompare());

        // For details on how we arrived at this mapping, see the comment block in genCodeForTreeNode()
        // while generating code for compare opererators (e.g. GT_EQ etc).
        if ((cmpTree->gtFlags & GTF_RELOP_NAN_UN) != 0)
        {
            // Must branch if we have an NaN, unordered
            switch (cmpTree->gtOper)
            {
                case GT_LT:
                case GT_GT:
                    jmpKind[0] = EJ_jb;
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_LE:
                case GT_GE:
                    jmpKind[0] = EJ_jbe;
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_NE:
                    jmpKind[0] = EJ_jpe;
                    jmpKind[1] = EJ_jne;
                    break;

                case GT_EQ:
                    jmpKind[0] = EJ_je;
                    jmpKind[1] = EJ_NONE;
                    break;

                default:
                    unreached();
            }
        }
        else // ((cmpTree->gtFlags & GTF_RELOP_NAN_UN) == 0)
        {
            // Do not branch if we have an NaN, unordered
            switch (cmpTree->gtOper)
            {
                case GT_LT:
                case GT_GT:
                    jmpKind[0] = EJ_ja;
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_LE:
                case GT_GE:
                    jmpKind[0] = EJ_jae;
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_NE:
                    jmpKind[0] = EJ_jne;
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_EQ:
                    jmpKind[0]        = EJ_jpe;
                    jmpKind[1]        = EJ_je;
                    jmpToTrueLabel[0] = false;
                    break;

                default:
                    unreached();
            }
        }
    }
}

#if !defined(_TARGET_64BIT_)
//------------------------------------------------------------------------
// genJumpKindsForTreeLongHi: Generate the jump types for compare
// operators of the high parts of a compare with long type operands
// on x86 for the case where rel-op result needs to be materialized into a
// register.
//
// Arguments:
//    cmpTree - The GT_CMP node
//    jmpKind - Return array of jump kinds
//    jmpToTrueLabel - Return array of if the jump is going to true label
//
// Return Value:
//    None.
//
void CodeGen::genJumpKindsForTreeLongHi(GenTreePtr cmpTree, emitJumpKind jmpKind[2])
{
    assert(cmpTree->OperIsCompare());
    CompareKind compareKind = ((cmpTree->gtFlags & GTF_UNSIGNED) != 0) ? CK_UNSIGNED : CK_SIGNED;

    switch (cmpTree->gtOper)
    {
        case GT_LT:
        case GT_LE:
            if (compareKind == CK_SIGNED)
            {
                jmpKind[0] = EJ_jl;
                jmpKind[1] = EJ_jg;
            }
            else
            {
                jmpKind[0] = EJ_jb;
                jmpKind[1] = EJ_ja;
            }
            break;

        case GT_GT:
        case GT_GE:
            if (compareKind == CK_SIGNED)
            {
                jmpKind[0] = EJ_jg;
                jmpKind[1] = EJ_jl;
            }
            else
            {
                jmpKind[0] = EJ_ja;
                jmpKind[1] = EJ_jb;
            }
            break;

        case GT_EQ:
            // GT_EQ will not jump to the true label if the hi parts are equal
            jmpKind[0] = EJ_NONE;
            jmpKind[1] = EJ_jne;
            break;

        case GT_NE:
            // GT_NE will always jump to the true label if the high parts are not equal
            jmpKind[0] = EJ_jne;
            jmpKind[1] = EJ_NONE;
            break;

        default:
            unreached();
    }
}

//------------------------------------------------------------------------
// genCompareLong: Generate code for comparing two longs on x86 when the result of the compare
// is manifested in a register.
//
// Arguments:
//    treeNode - the compare tree
//
// Return Value:
//    None.
// Comments:
// For long compares, we need to compare the high parts of operands first, then the low parts.
// If the high compare is false, we do not need to compare the low parts. For less than and
// greater than, if the high compare is true, we can assume the entire compare is true. For
// compares that are realized in a register, we will generate:
//
//    Opcode            x86 equivalent          Comment
//    ------            --------------          -------
//    GT_EQ             cmp hiOp1,hiOp2         If any part is not equal, the entire compare
//                      jne label               is false.
//                      cmp loOp1,loOp2
//                      label: sete
//
//    GT_NE             cmp hiOp1,hiOp2         If any part is not equal, the entire compare
//                      jne label               is true.
//                      cmp loOp1,loOp2
//                      label: setne
//
//    GT_LT; unsigned   cmp hiOp1,hiOp2         If hiOp1 is not equal to hiOp2, the flags are set
//                      jne label               correctly and we do not need to check lo. Otherwise,
//                      cmp loOp1,loOp2         we need to compare the lo halves
//                      label: setb
//
//    GT_LE; unsigned   cmp hiOp1,hiOp2         If hiOp1 is not equal to hiOp2, the flags are set
//                      jne label               correctly and we do not need to check lo. Otherwise,
//                      cmp loOp1,loOp2         we need to compare the lo halves
//                      label: setbe
//
//    GT_GT; unsigned   cmp hiOp1,hiOp2         If hiOp1 is not equal to hiOp2, the flags are set
//                      jne label               correctly and we do not need to check lo. Otherwise,
//                      cmp loOp1,loOp2         we need to compare the lo halves
//                      label: seta
//
//    GT_GE; unsigned   cmp hiOp1,hiOp2         If hiOp1 is not equal to hiOp2, the flags are set
//                      jne label               correctly and we do not need to check lo. Otherwise,
//                      cmp loOp1,loOp2         we need to compare the lo halves
//                      label: setae
//
// For signed long comparisons, we need additional labels, as we need to use signed conditions on the
// "set" instruction:
//
//    GT_LT; signed     cmp hiOp1,hiOp2         If hiOp1 is not equal to hiOp2, the flags are set
//                      jne labelHi             correctly and we do not need to check lo. Otherwise,
//                      cmp loOp1,loOp2         we need to compare the lo halves
//                      setb                    Unsigned set for lo compare
//                      jmp labelFinal
//                      labelHi: setl           Signed set for high compare
//                      labelFinal:
//
//    GT_LE; signed     cmp hiOp1,hiOp2         If hiOp1 is not equal to hiOp2, the flags are set
//                      jne labelHi             correctly and we do not need to check lo. Otherwise,
//                      cmp loOp1,loOp2         we need to compare the lo halves
//                      setbe                   Unsigend set for lo compare
//                      jmp labelFinal
//                      labelHi: setle          Signed set for hi compare
//                      labelFinal:
//
//    GT_GT; signed     cmp hiOp1,hiOp2         If hiOp1 is not equal to hiOp2, the flags are set
//                      jne labelHi             correctly and we do not need to check lo. Otherwise,
//                      cmp loOp1,loOp2         we need to compare the lo halves
//                      seta                    Unsigned set for lo compare
//                      jmp labelFinal
//                      labelHi: setg           Signed set for high compare
//                      labelFinal
//
//    GT_GE; signed     cmp hiOp1,hiOp2         If hiOp1 is not equal to hiOp2, the flags are set
//                      jne labelHi             correctly and we do not need to check lo. Otherwise,
//                      cmp loOp1,loOp2         we need to compare the lo halves
//                      setae                   Unsigned set for lo compare
//                      jmp labelFinal
//                      labelHi: setge          Signed set for hi compare
//                      labelFinal:
//
// TODO-X86-CQ: Check if hi or lo parts of op2 are 0 and change the compare to a test.
void CodeGen::genCompareLong(GenTreePtr treeNode)
{
    assert(treeNode->OperIsCompare());

    GenTreeOp* tree = treeNode->AsOp();
    GenTreePtr op1  = tree->gtOp1;
    GenTreePtr op2  = tree->gtOp2;

    assert(varTypeIsLong(op1->TypeGet()));
    assert(varTypeIsLong(op2->TypeGet()));

    regNumber targetReg = treeNode->gtRegNum;

    genConsumeOperands(tree);

    GenTreePtr loOp1 = op1->gtGetOp1();
    GenTreePtr hiOp1 = op1->gtGetOp2();
    GenTreePtr loOp2 = op2->gtGetOp1();
    GenTreePtr hiOp2 = op2->gtGetOp2();

    // Create compare for the high parts
    instruction ins     = INS_cmp;
    var_types   cmpType = TYP_INT;
    emitAttr    cmpAttr = emitTypeSize(cmpType);

    // Emit the compare instruction
    getEmitter()->emitInsBinary(ins, cmpAttr, hiOp1, hiOp2);

    // If the result is not being materialized in a register, we're done.
    if (targetReg == REG_NA)
    {
        return;
    }

    // Generate the first jump for the high compare
    CompareKind compareKind = ((tree->gtFlags & GTF_UNSIGNED) != 0) ? CK_UNSIGNED : CK_SIGNED;

    BasicBlock* labelHi    = genCreateTempLabel();
    BasicBlock* labelFinal = genCreateTempLabel();

    if (compareKind == CK_SIGNED && (tree->gtOper != GT_NE && tree->gtOper != GT_EQ))
    {
        // If we are doing a signed comparison, we need to do a signed set if the high compare is true,
        // but an unsigned set if we fall through to the low compare. If we have a GT_NE or GT_EQ, we do not
        // need to worry about the sign of the comparison, so we can use the simplified case.

        // We only have to check for equality for the hi comparison. If they are not equal, then the set will
        // do the right thing. If they are equal, we have to check the lo halves.
        inst_JMP(EJ_jne, labelHi);

        // Emit the comparison. Perform the set for the lo. Jump to labelFinal
        getEmitter()->emitInsBinary(ins, cmpAttr, loOp1, loOp2);

        // The low set must be unsigned
        emitJumpKind jumpKindLo = genJumpKindForOper(tree->gtOper, CK_UNSIGNED);

        inst_SET(jumpKindLo, targetReg);
        inst_JMP(EJ_jmp, labelFinal);

        // Define the label for hi jump target here. If we have jumped here, we want to set
        // the target register based on the jump kind of the actual compare type.

        genDefineTempLabel(labelHi);
        inst_SET(genJumpKindForOper(tree->gtOper, compareKind), targetReg);

        genDefineTempLabel(labelFinal);
        // Set the higher bytes to 0
        inst_RV_RV(ins_Move_Extend(TYP_UBYTE, true), targetReg, targetReg, TYP_UBYTE, emitTypeSize(TYP_UBYTE));
        genProduceReg(tree);
    }
    else
    {
        // If the compare is unsigned, or if the sign doesn't change the set instruction, we can use
        // the same set logic for both the hi and lo compare, so we don't need to jump to a high label,
        // we can just jump to the set that the lo compare will use.

        // We only have to check for equality for the hi comparison. If they are not equal, then the set will
        // do the right thing. If they are equal, we have to check the lo halves.
        inst_JMP(EJ_jne, labelFinal);

        // Emit the comparison
        getEmitter()->emitInsBinary(ins, cmpAttr, loOp1, loOp2);

        // Define the label for hi jump target here. If we have jumped here, we want to set
        // the target register based on the jump kind of the lower half (the actual compare
        // type). If we have fallen through, then we are doing a normal int compare for the
        // lower parts

        genDefineTempLabel(labelFinal);

        // The low set must be unsigned
        emitJumpKind jumpKindLo = genJumpKindForOper(tree->gtOper, CK_UNSIGNED);

        inst_SET(jumpKindLo, targetReg);
        // Set the higher bytes to 0
        inst_RV_RV(ins_Move_Extend(TYP_UBYTE, true), targetReg, targetReg, TYP_UBYTE, emitTypeSize(TYP_UBYTE));
        genProduceReg(tree);
    }
}
#endif //! defined(_TARGET_64BIT_)

//------------------------------------------------------------------------
// genCompareFloat: Generate code for comparing two floating point values
//
// Arguments:
//    treeNode - the compare tree
//
// Return Value:
//    None.
// Comments:
// SSE2 instruction ucomis[s|d] is performs unordered comparison and
// updates rFLAGS register as follows.
//        Result of compare         ZF  PF CF
//        -----------------        ------------
//        Unordered                 1   1   1     <-- this result implies one of operands of compare is a NAN.
//        Greater                   0   0   0
//        Less Than                 0   0   1
//        Equal                     1   0   0
//
// From the above table the following equalities follow. As per ECMA spec *.UN opcodes perform
// unordered comparison of floating point values.  That is *.UN comparisons result in true when
// one of the operands is a NaN whereas ordered comparisons results in false.
//
//    Opcode          Amd64 equivalent         Comment
//    ------          -----------------        --------
//    BLT.UN(a,b)      ucomis[s|d] a, b        Jb branches if CF=1, which means either a<b or unordered from the above
//                     jb                      table
//
//    BLT(a,b)         ucomis[s|d] b, a        Ja branches if CF=0 and ZF=0, which means b>a that in turn implies a<b
//                     ja
//
//    BGT.UN(a,b)      ucomis[s|d] b, a        branch if b<a or unordered ==> branch if a>b or unordered
//                     jb
//
//    BGT(a, b)        ucomis[s|d] a, b        branch if a>b
//                     ja
//
//    BLE.UN(a,b)      ucomis[s|d] a, b        jbe branches if CF=1 or ZF=1, which implies a<=b or unordered
//                     jbe
//
//    BLE(a,b)         ucomis[s|d] b, a        jae branches if CF=0, which mean b>=a or a<=b
//                     jae
//
//    BGE.UN(a,b)      ucomis[s|d] b, a        branch if b<=a or unordered ==> branch if a>=b or unordered
//                     jbe
//
//    BGE(a,b)         ucomis[s|d] a, b        branch if a>=b
//                     jae
//
//    BEQ.UN(a,b)      ucomis[s|d] a, b        branch if a==b or unordered.  There is no BEQ.UN opcode in ECMA spec.
//                     je                      This case is given for completeness, in case if JIT generates such
//                                             a gentree internally.
//
//    BEQ(a,b)         ucomis[s|d] a, b        From the above table, PF=0 and ZF=1 corresponds to a==b.
//                     jpe L1
//                     je <true label>
//                 L1:
//
//    BNE(a,b)         ucomis[s|d] a, b        branch if a!=b.  There is no BNE opcode in ECMA spec. This case is
//                     jne                     given for completeness, in case if JIT generates such a gentree
//                                             internally.
//
//    BNE.UN(a,b)      ucomis[s|d] a, b        From the above table, PF=1 or ZF=0 implies unordered or a!=b
//                     jpe <true label>
//                     jne <true label>
//
// As we can see from the above equalities that the operands of a compare operator need to be
// reveresed in case of BLT/CLT, BGT.UN/CGT.UN, BLE/CLE, BGE.UN/CGE.UN.
void CodeGen::genCompareFloat(GenTreePtr treeNode)
{
    assert(treeNode->OperIsCompare());

    GenTreeOp* tree    = treeNode->AsOp();
    GenTreePtr op1     = tree->gtOp1;
    GenTreePtr op2     = tree->gtOp2;
    var_types  op1Type = op1->TypeGet();
    var_types  op2Type = op2->TypeGet();

    genConsumeOperands(tree);

    assert(varTypeIsFloating(op1Type));
    assert(op1Type == op2Type);

    regNumber   targetReg = treeNode->gtRegNum;
    instruction ins;
    emitAttr    cmpAttr;

    bool reverseOps;
    if ((tree->gtFlags & GTF_RELOP_NAN_UN) != 0)
    {
        // Unordered comparison case
        reverseOps = (tree->gtOper == GT_GT || tree->gtOper == GT_GE);
    }
    else
    {
        reverseOps = (tree->gtOper == GT_LT || tree->gtOper == GT_LE);
    }

    if (reverseOps)
    {
        GenTreePtr tmp = op1;
        op1            = op2;
        op2            = tmp;
    }

    ins     = ins_FloatCompare(op1Type);
    cmpAttr = emitTypeSize(op1Type);

    getEmitter()->emitInsBinary(ins, cmpAttr, op1, op2);

    // Are we evaluating this into a register?
    if (targetReg != REG_NA)
    {
        genSetRegToCond(targetReg, tree);
        genProduceReg(tree);
    }
}

//------------------------------------------------------------------------
// genCompareInt: Generate code for comparing ints or, on amd64, longs.
//
// Arguments:
//    treeNode - the compare tree
//
// Return Value:
//    None.
void CodeGen::genCompareInt(GenTreePtr treeNode)
{
    assert(treeNode->OperIsCompare());

    GenTreeOp* tree      = treeNode->AsOp();
    GenTreePtr op1       = tree->gtOp1;
    GenTreePtr op2       = tree->gtOp2;
    var_types  op1Type   = op1->TypeGet();
    var_types  op2Type   = op2->TypeGet();
    regNumber  targetReg = tree->gtRegNum;

    // Case of op1 == 0 or op1 != 0:
    // Optimize generation of 'test' instruction if op1 sets flags.
    //
    // Note that if LSRA has inserted any GT_RELOAD/GT_COPY before
    // op1, it will not modify the flags set by codegen of op1.
    // Similarly op1 could also be reg-optional at its use and
    // it was spilled after producing its result in a register.
    // Spill code too will not modify the flags set by op1.
    GenTree* realOp1 = op1->gtSkipReloadOrCopy();
    if (realOp1->gtSetFlags())
    {
        // op1 must set ZF and SF flags
        assert(realOp1->gtSetZSFlags());

        // Must be (in)equality against zero.
        assert(tree->OperIs(GT_EQ, GT_NE));
        assert(op2->IsIntegralConst(0));
        assert(op2->isContained());

        // Just consume the operands
        genConsumeOperands(tree);

        // No need to generate test instruction since
        // op1 sets flags

        // Are we evaluating this into a register?
        if (targetReg != REG_NA)
        {
            genSetRegToCond(targetReg, tree);
            genProduceReg(tree);
        }

        return;
    }

#ifdef FEATURE_SIMD
    // If we have GT_JTRUE(GT_EQ/NE(GT_SIMD((in)Equality, v1, v2), true/false)),
    // then we don't need to generate code for GT_EQ/GT_NE, since SIMD (in)Equality intrinsic
    // would set or clear Zero flag.
    if ((targetReg == REG_NA) && tree->OperIs(GT_EQ, GT_NE))
    {
        // Is it a SIMD (in)Equality that doesn't need to materialize result into a register?
        if ((op1->gtRegNum == REG_NA) && op1->IsSIMDEqualityOrInequality())
        {
            // Must be comparing against true or false.
            assert(op2->IsIntegralConst(0) || op2->IsIntegralConst(1));
            assert(op2->isContainedIntOrIImmed());

            // In this case SIMD (in)Equality will set or clear
            // Zero flag, based on which GT_JTRUE would generate
            // the right conditional jump.
            return;
        }
    }
#endif // FEATURE_SIMD

    genConsumeOperands(tree);

    // TODO-CQ: We should be able to support swapping op1 and op2 to generate cmp reg, imm.
    // https://github.com/dotnet/coreclr/issues/7270
    assert(!op1->isContainedIntOrIImmed()); // We no longer support
    assert(!varTypeIsFloating(op2Type));

    instruction ins;

    if (tree->OperIs(GT_TEST_EQ, GT_TEST_NE))
    {
        ins = INS_test;
    }
    else if (op1->isUsedFromReg() && op2->IsIntegralConst(0))
    {
        // We're comparing a register to 0 so we can generate "test reg1, reg1"
        // instead of the longer "cmp reg1, 0"
        ins = INS_test;
        op2 = op1;
    }
    else
    {
        ins = INS_cmp;
    }

    var_types type;

    if (op1Type == op2Type)
    {
        type = op1Type;
    }
    else if (genTypeSize(op1Type) == genTypeSize(op2Type))
    {
        // If the types are different but have the same size then we'll use TYP_INT or TYP_LONG.
        // This primarily deals with small type mixes (e.g. byte/ubyte) that need to be widened
        // and compared as int. We should not get long type mixes here but handle that as well
        // just in case.
        type = genTypeSize(op1Type) == 8 ? TYP_LONG : TYP_INT;
    }
    else
    {
        // In the types are different simply use TYP_INT. This deals with small type/int type
        // mixes (e.g. byte/short ubyte/int) that need to be widened and compared as int.
        // Lowering is expected to handle any mixes that involve long types (e.g. int/long).
        type = TYP_INT;
    }

    // The common type cannot be larger than the machine word size
    assert(genTypeSize(type) <= genTypeSize(TYP_I_IMPL));
    // The common type cannot be smaller than any of the operand types, we're probably mixing int/long
    assert(genTypeSize(type) >= max(genTypeSize(op1Type), genTypeSize(op2Type)));
    // TYP_UINT and TYP_ULONG should not appear here, only small types can be unsigned
    assert(!varTypeIsUnsigned(type) || varTypeIsSmall(type));
    // Small unsigned int types (TYP_BOOL can use anything) should use unsigned comparisons
    assert(!(varTypeIsSmallInt(type) && varTypeIsUnsigned(type)) || ((tree->gtFlags & GTF_UNSIGNED) != 0));
    // If op1 is smaller then it cannot be in memory, we're probably missing a cast
    assert((genTypeSize(op1Type) >= genTypeSize(type)) || !op1->isUsedFromMemory());
    // If op2 is smaller then it cannot be in memory, we're probably missing a cast
    assert((genTypeSize(op2Type) >= genTypeSize(type)) || !op2->isUsedFromMemory());
    // If op2 is a constant then it should fit in the common type
    assert(!op2->IsCnsIntOrI() || genTypeCanRepresentValue(type, op2->AsIntCon()->IconValue()));

    getEmitter()->emitInsBinary(ins, emitTypeSize(type), op1, op2);

    // Are we evaluating this into a register?
    if (targetReg != REG_NA)
    {
        genSetRegToCond(targetReg, tree);
        genProduceReg(tree);
    }
}

//-------------------------------------------------------------------------------------------
// genSetRegToCond:  Set a register 'dstReg' to the appropriate one or zero value
//                   corresponding to a binary Relational operator result.
//
// Arguments:
//   dstReg          - The target register to set to 1 or 0
//   tree            - The GenTree Relop node that was used to set the Condition codes
//
// Return Value:     none
//
// Notes:
//    A full 64-bit value of either 1 or 0 is setup in the 'dstReg'
//-------------------------------------------------------------------------------------------

void CodeGen::genSetRegToCond(regNumber dstReg, GenTreePtr tree)
{
    noway_assert((genRegMask(dstReg) & RBM_BYTE_REGS) != 0);

    emitJumpKind jumpKind[2];
    bool         branchToTrueLabel[2];
    genJumpKindsForTree(tree, jumpKind, branchToTrueLabel);

    if (jumpKind[1] == EJ_NONE)
    {
        // Set (lower byte of) reg according to the flags
        inst_SET(jumpKind[0], dstReg);
    }
    else
    {
#ifdef DEBUG
        // jmpKind[1] != EJ_NONE implies BEQ and BEN.UN of floating point values.
        // These are represented by two conditions.
        if (tree->gtOper == GT_EQ)
        {
            // This must be an ordered comparison.
            assert((tree->gtFlags & GTF_RELOP_NAN_UN) == 0);
        }
        else
        {
            // This must be BNE.UN
            assert((tree->gtOper == GT_NE) && ((tree->gtFlags & GTF_RELOP_NAN_UN) != 0));
        }
#endif

        // Here is the sample code generated in each case:
        // BEQ ==  cmp, jpe <false label>, je <true label>
        // That is, to materialize comparison reg needs to be set if PF=0 and ZF=1
        //      setnp reg  // if (PF==0) reg = 1 else reg = 0
        //      jpe L1     // Jmp if PF==1
        //      sete reg
        //  L1:
        //
        // BNE.UN == cmp, jpe <true label>, jne <true label>
        // That is, to materialize the comparison reg needs to be set if either PF=1 or ZF=0;
        //     setp reg
        //     jpe L1
        //     setne reg
        //  L1:

        // reverse the jmpkind condition before setting dstReg if it is to false label.
        inst_SET(branchToTrueLabel[0] ? jumpKind[0] : emitter::emitReverseJumpKind(jumpKind[0]), dstReg);

        BasicBlock* label = genCreateTempLabel();
        inst_JMP(jumpKind[0], label);

        // second branch is always to true label
        assert(branchToTrueLabel[1]);
        inst_SET(jumpKind[1], dstReg);
        genDefineTempLabel(label);
    }

    var_types treeType = tree->TypeGet();
    if (treeType == TYP_INT || treeType == TYP_LONG)
    {
        // Set the higher bytes to 0
        inst_RV_RV(ins_Move_Extend(TYP_UBYTE, true), dstReg, dstReg, TYP_UBYTE, emitTypeSize(TYP_UBYTE));
    }
    else
    {
        noway_assert(treeType == TYP_BYTE);
    }
}

#if !defined(_TARGET_64BIT_)
//------------------------------------------------------------------------
// genLongToIntCast: Generate code for long to int casts on x86.
//
// Arguments:
//    cast - The GT_CAST node
//
// Return Value:
//    None.
//
// Assumptions:
//    The cast node and its sources (via GT_LONG) must have been assigned registers.
//    The destination cannot be a floating point type or a small integer type.
//
void CodeGen::genLongToIntCast(GenTree* cast)
{
    assert(cast->OperGet() == GT_CAST);

    GenTree* src = cast->gtGetOp1();
    noway_assert(src->OperGet() == GT_LONG);

    genConsumeRegs(src);

    var_types srcType  = ((cast->gtFlags & GTF_UNSIGNED) != 0) ? TYP_ULONG : TYP_LONG;
    var_types dstType  = cast->CastToType();
    regNumber loSrcReg = src->gtGetOp1()->gtRegNum;
    regNumber hiSrcReg = src->gtGetOp2()->gtRegNum;
    regNumber dstReg   = cast->gtRegNum;

    assert((dstType == TYP_INT) || (dstType == TYP_UINT));
    assert(genIsValidIntReg(loSrcReg));
    assert(genIsValidIntReg(hiSrcReg));
    assert(genIsValidIntReg(dstReg));

    if (cast->gtOverflow())
    {
        //
        // Generate an overflow check for [u]long to [u]int casts:
        //
        // long  -> int  - check if the upper 33 bits are all 0 or all 1
        //
        // ulong -> int  - check if the upper 33 bits are all 0
        //
        // long  -> uint - check if the upper 32 bits are all 0
        // ulong -> uint - check if the upper 32 bits are all 0
        //

        if ((srcType == TYP_LONG) && (dstType == TYP_INT))
        {
            BasicBlock* allOne  = genCreateTempLabel();
            BasicBlock* success = genCreateTempLabel();

            inst_RV_RV(INS_test, loSrcReg, loSrcReg, TYP_INT, EA_4BYTE);
            inst_JMP(EJ_js, allOne);

            inst_RV_RV(INS_test, hiSrcReg, hiSrcReg, TYP_INT, EA_4BYTE);
            genJumpToThrowHlpBlk(EJ_jne, SCK_OVERFLOW);
            inst_JMP(EJ_jmp, success);

            genDefineTempLabel(allOne);
            inst_RV_IV(INS_cmp, hiSrcReg, -1, EA_4BYTE);
            genJumpToThrowHlpBlk(EJ_jne, SCK_OVERFLOW);

            genDefineTempLabel(success);
        }
        else
        {
            if ((srcType == TYP_ULONG) && (dstType == TYP_INT))
            {
                inst_RV_RV(INS_test, loSrcReg, loSrcReg, TYP_INT, EA_4BYTE);
                genJumpToThrowHlpBlk(EJ_js, SCK_OVERFLOW);
            }

            inst_RV_RV(INS_test, hiSrcReg, hiSrcReg, TYP_INT, EA_4BYTE);
            genJumpToThrowHlpBlk(EJ_jne, SCK_OVERFLOW);
        }
    }

    if (dstReg != loSrcReg)
    {
        inst_RV_RV(INS_mov, dstReg, loSrcReg, TYP_INT, EA_4BYTE);
    }

    genProduceReg(cast);
}
#endif

//------------------------------------------------------------------------
// genIntToIntCast: Generate code for an integer cast
//    This method handles integer overflow checking casts
//    as well as ordinary integer casts.
//
// Arguments:
//    treeNode - The GT_CAST node
//
// Return Value:
//    None.
//
// Assumptions:
//    The treeNode is not a contained node and must have an assigned register.
//    For a signed convert from byte, the source must be in a byte-addressable register.
//    Neither the source nor target type can be a floating point type.
//
// TODO-XArch-CQ: Allow castOp to be a contained node without an assigned register.
// TODO: refactor to use getCastDescription
//
void CodeGen::genIntToIntCast(GenTreePtr treeNode)
{
    assert(treeNode->OperGet() == GT_CAST);

    GenTreePtr castOp  = treeNode->gtCast.CastOp();
    var_types  srcType = genActualType(castOp->TypeGet());
    noway_assert(genTypeSize(srcType) >= 4);

#ifdef _TARGET_X86_
    if (varTypeIsLong(srcType))
    {
        genLongToIntCast(treeNode);
        return;
    }
#endif // _TARGET_X86_

    regNumber targetReg     = treeNode->gtRegNum;
    regNumber sourceReg     = castOp->gtRegNum;
    var_types dstType       = treeNode->CastToType();
    bool      isUnsignedDst = varTypeIsUnsigned(dstType);
    bool      isUnsignedSrc = varTypeIsUnsigned(srcType);

    // if necessary, force the srcType to unsigned when the GT_UNSIGNED flag is set
    if (!isUnsignedSrc && (treeNode->gtFlags & GTF_UNSIGNED) != 0)
    {
        srcType       = genUnsignedType(srcType);
        isUnsignedSrc = true;
    }

    bool requiresOverflowCheck = false;

    assert(genIsValidIntReg(targetReg));
    assert(genIsValidIntReg(sourceReg));

    instruction ins     = INS_invalid;
    emitAttr    srcSize = EA_ATTR(genTypeSize(srcType));
    emitAttr    dstSize = EA_ATTR(genTypeSize(dstType));

    if (srcSize < dstSize)
    {
        // Widening cast
        // Is this an Overflow checking cast?
        // We only need to handle one case, as the other casts can never overflow.
        //   cast from TYP_INT to TYP_ULONG
        //
        if (treeNode->gtOverflow() && (srcType == TYP_INT) && (dstType == TYP_ULONG))
        {
            requiresOverflowCheck = true;
            ins                   = INS_mov;
        }
        else
        {
            noway_assert(srcSize < EA_PTRSIZE);

            ins = ins_Move_Extend(srcType, castOp->InReg());

            /*
                Special case: ins_Move_Extend assumes the destination type is no bigger
                than TYP_INT.  movsx and movzx can already extend all the way to
                64-bit, and a regular 32-bit mov clears the high 32 bits (like the non-existant movzxd),
                but for a sign extension from TYP_INT to TYP_LONG, we need to use movsxd opcode.
            */
            if (!isUnsignedSrc && !isUnsignedDst)
            {
#ifdef _TARGET_X86_
                NYI_X86("Cast to 64 bit for x86/RyuJIT");
#else  // !_TARGET_X86_
                ins = INS_movsxd;
#endif // !_TARGET_X86_
            }
        }
    }
    else
    {
        // Narrowing cast, or sign-changing cast
        noway_assert(srcSize >= dstSize);

        // Is this an Overflow checking cast?
        if (treeNode->gtOverflow())
        {
            requiresOverflowCheck = true;
            ins                   = INS_mov;
        }
        else
        {
            ins = ins_Move_Extend(dstType, castOp->InReg());
        }
    }

    noway_assert(ins != INS_invalid);

    genConsumeReg(castOp);

    if (requiresOverflowCheck)
    {
        ssize_t typeMin        = 0;
        ssize_t typeMax        = 0;
        ssize_t typeMask       = 0;
        bool    needScratchReg = false;
        bool    signCheckOnly  = false;

        /* Do we need to compare the value, or just check masks */

        switch (dstType)
        {
            case TYP_BYTE:
                typeMask = ssize_t((int)0xFFFFFF80);
                typeMin  = SCHAR_MIN;
                typeMax  = SCHAR_MAX;
                break;

            case TYP_UBYTE:
                typeMask = ssize_t((int)0xFFFFFF00L);
                break;

            case TYP_SHORT:
                typeMask = ssize_t((int)0xFFFF8000);
                typeMin  = SHRT_MIN;
                typeMax  = SHRT_MAX;
                break;

            case TYP_CHAR:
                typeMask = ssize_t((int)0xFFFF0000L);
                break;

            case TYP_INT:
                if (srcType == TYP_UINT)
                {
                    signCheckOnly = true;
                }
                else
                {
                    typeMask = 0xFFFFFFFF80000000LL;
                    typeMin  = INT_MIN;
                    typeMax  = INT_MAX;
                }
                break;

            case TYP_UINT:
                if (srcType == TYP_INT)
                {
                    signCheckOnly = true;
                }
                else
                {
                    needScratchReg = true;
                }
                break;

            case TYP_LONG:
                noway_assert(srcType == TYP_ULONG);
                signCheckOnly = true;
                break;

            case TYP_ULONG:
                noway_assert((srcType == TYP_LONG) || (srcType == TYP_INT));
                signCheckOnly = true;
                break;

            default:
                NO_WAY("Unknown type");
                return;
        }

        if (signCheckOnly)
        {
            // We only need to check for a negative value in sourceReg
            inst_RV_IV(INS_cmp, sourceReg, 0, srcSize);
            genJumpToThrowHlpBlk(EJ_jl, SCK_OVERFLOW);
        }
        else
        {
            // When we are converting from unsigned or to unsigned, we
            // will only have to check for any bits set using 'typeMask'
            if (isUnsignedSrc || isUnsignedDst)
            {
                if (needScratchReg)
                {
                    regNumber tmpReg = treeNode->GetSingleTempReg();
                    inst_RV_RV(INS_mov, tmpReg, sourceReg, TYP_LONG); // Move the 64-bit value to a writeable temp reg
                    inst_RV_SH(INS_SHIFT_RIGHT_LOGICAL, srcSize, tmpReg, 32); // Shift right by 32 bits
                    genJumpToThrowHlpBlk(EJ_jne, SCK_OVERFLOW);               // Throw if result shift is non-zero
                }
                else
                {
                    noway_assert(typeMask != 0);
                    inst_RV_IV(INS_TEST, sourceReg, typeMask, srcSize);
                    genJumpToThrowHlpBlk(EJ_jne, SCK_OVERFLOW);
                }
            }
            else
            {
                // For a narrowing signed cast
                //
                // We must check the value is in a signed range.

                // Compare with the MAX

                noway_assert((typeMin != 0) && (typeMax != 0));

                inst_RV_IV(INS_cmp, sourceReg, typeMax, srcSize);
                genJumpToThrowHlpBlk(EJ_jg, SCK_OVERFLOW);

                // Compare with the MIN

                inst_RV_IV(INS_cmp, sourceReg, typeMin, srcSize);
                genJumpToThrowHlpBlk(EJ_jl, SCK_OVERFLOW);
            }
        }

        if (targetReg != sourceReg
#ifdef _TARGET_AMD64_
            // On amd64, we can hit this path for a same-register
            // 4-byte to 8-byte widening conversion, and need to
            // emit the instruction to set the high bits correctly.
            || (dstSize == EA_8BYTE && srcSize == EA_4BYTE)
#endif // _TARGET_AMD64_
                )
            inst_RV_RV(ins, targetReg, sourceReg, srcType, srcSize);
    }
    else // non-overflow checking cast
    {
        // We may have code transformations that result in casts where srcType is the same as dstType.
        // e.g. Bug 824281, in which a comma is split by the rationalizer, leaving an assignment of a
        // long constant to a long lclVar.
        if (srcType == dstType)
        {
            ins = INS_mov;
        }
        /* Is the value sitting in a non-byte-addressable register? */
        else if (castOp->InReg() && (dstSize == EA_1BYTE) && !isByteReg(sourceReg))
        {
            if (isUnsignedDst)
            {
                // for unsigned values we can AND, so it need not be a byte register
                ins = INS_AND;
            }
            else
            {
                // Move the value into a byte register
                noway_assert(!"Signed byte convert from non-byte-addressable register");
            }

            /* Generate "mov targetReg, castOp->gtReg */
            if (targetReg != sourceReg)
            {
                inst_RV_RV(INS_mov, targetReg, sourceReg, srcType, srcSize);
            }
        }

        if (ins == INS_AND)
        {
            noway_assert(isUnsignedDst);

            /* Generate "and reg, MASK */
            unsigned fillPattern;
            if (dstSize == EA_1BYTE)
            {
                fillPattern = 0xff;
            }
            else if (dstSize == EA_2BYTE)
            {
                fillPattern = 0xffff;
            }
            else
            {
                fillPattern = 0xffffffff;
            }

            inst_RV_IV(INS_AND, targetReg, fillPattern, EA_4BYTE);
        }
#ifdef _TARGET_AMD64_
        else if (ins == INS_movsxd)
        {
            inst_RV_RV(ins, targetReg, sourceReg, srcType, srcSize);
        }
#endif // _TARGET_AMD64_
        else if (ins == INS_mov)
        {
            if (targetReg != sourceReg
#ifdef _TARGET_AMD64_
                // On amd64, 'mov' is the opcode used to zero-extend from
                // 4 bytes to 8 bytes.
                || (dstSize == EA_8BYTE && srcSize == EA_4BYTE)
#endif // _TARGET_AMD64_
                    )
            {
                inst_RV_RV(ins, targetReg, sourceReg, srcType, srcSize);
            }
        }
        else
        {
            noway_assert(ins == INS_movsx || ins == INS_movzx);
            noway_assert(srcSize >= dstSize);

            /* Generate "mov targetReg, castOp->gtReg */
            inst_RV_RV(ins, targetReg, sourceReg, srcType, dstSize);
        }
    }

    genProduceReg(treeNode);
}

//------------------------------------------------------------------------
// genFloatToFloatCast: Generate code for a cast between float and double
//
// Arguments:
//    treeNode - The GT_CAST node
//
// Return Value:
//    None.
//
// Assumptions:
//    Cast is a non-overflow conversion.
//    The treeNode must have an assigned register.
//    The cast is between float and double or vice versa.
//
void CodeGen::genFloatToFloatCast(GenTreePtr treeNode)
{
    // float <--> double conversions are always non-overflow ones
    assert(treeNode->OperGet() == GT_CAST);
    assert(!treeNode->gtOverflow());

    regNumber targetReg = treeNode->gtRegNum;
    assert(genIsValidFloatReg(targetReg));

    GenTreePtr op1 = treeNode->gtOp.gtOp1;
#ifdef DEBUG
    // If not contained, must be a valid float reg.
    if (op1->isUsedFromReg())
    {
        assert(genIsValidFloatReg(op1->gtRegNum));
    }
#endif

    var_types dstType = treeNode->CastToType();
    var_types srcType = op1->TypeGet();
    assert(varTypeIsFloating(srcType) && varTypeIsFloating(dstType));

    genConsumeOperands(treeNode->AsOp());
    if (srcType == dstType && (op1->isUsedFromReg() && (targetReg == op1->gtRegNum)))
    {
        // source and destinations types are the same and also reside in the same register.
        // we just need to consume and produce the reg in this case.
        ;
    }
    else
    {
        instruction ins = ins_FloatConv(dstType, srcType);
        getEmitter()->emitInsBinary(ins, emitTypeSize(dstType), treeNode, op1);
    }

    genProduceReg(treeNode);
}

//------------------------------------------------------------------------
// genIntToFloatCast: Generate code to cast an int/long to float/double
//
// Arguments:
//    treeNode - The GT_CAST node
//
// Return Value:
//    None.
//
// Assumptions:
//    Cast is a non-overflow conversion.
//    The treeNode must have an assigned register.
//    SrcType= int32/uint32/int64/uint64 and DstType=float/double.
//
void CodeGen::genIntToFloatCast(GenTreePtr treeNode)
{
    // int type --> float/double conversions are always non-overflow ones
    assert(treeNode->OperGet() == GT_CAST);
    assert(!treeNode->gtOverflow());

    regNumber targetReg = treeNode->gtRegNum;
    assert(genIsValidFloatReg(targetReg));

    GenTreePtr op1 = treeNode->gtOp.gtOp1;
#ifdef DEBUG
    if (op1->isUsedFromReg())
    {
        assert(genIsValidIntReg(op1->gtRegNum));
    }
#endif

    var_types dstType = treeNode->CastToType();
    var_types srcType = op1->TypeGet();
    assert(!varTypeIsFloating(srcType) && varTypeIsFloating(dstType));

#if !defined(_TARGET_64BIT_)
    // We expect morph to replace long to float/double casts with helper calls
    noway_assert(!varTypeIsLong(srcType));
#endif // !defined(_TARGET_64BIT_)

    // Since xarch emitter doesn't handle reporting gc-info correctly while casting away gc-ness we
    // ensure srcType of a cast is non gc-type.  Codegen should never see BYREF as source type except
    // for GT_LCL_VAR_ADDR and GT_LCL_FLD_ADDR that represent stack addresses and can be considered
    // as TYP_I_IMPL. In all other cases where src operand is a gc-type and not known to be on stack,
    // Front-end (see fgMorphCast()) ensures this by assigning gc-type local to a non gc-type
    // temp and using temp as operand of cast operation.
    if (srcType == TYP_BYREF)
    {
        noway_assert(op1->OperGet() == GT_LCL_VAR_ADDR || op1->OperGet() == GT_LCL_FLD_ADDR);
        srcType = TYP_I_IMPL;
    }

    // force the srcType to unsigned if GT_UNSIGNED flag is set
    if (treeNode->gtFlags & GTF_UNSIGNED)
    {
        srcType = genUnsignedType(srcType);
    }

    noway_assert(!varTypeIsGC(srcType));

    // We should never be seeing srcType whose size is not sizeof(int) nor sizeof(long).
    // For conversions from byte/sbyte/int16/uint16 to float/double, we would expect
    // either the front-end or lowering phase to have generated two levels of cast.
    // The first one is for widening smaller int type to int32 and the second one is
    // to the float/double.
    emitAttr srcSize = EA_ATTR(genTypeSize(srcType));
    noway_assert((srcSize == EA_ATTR(genTypeSize(TYP_INT))) || (srcSize == EA_ATTR(genTypeSize(TYP_LONG))));

    // Also we don't expect to see uint32 -> float/double and uint64 -> float conversions
    // here since they should have been lowered apropriately.
    noway_assert(srcType != TYP_UINT);
    noway_assert((srcType != TYP_ULONG) || (dstType != TYP_FLOAT));

    // To convert int to a float/double, cvtsi2ss/sd SSE2 instruction is used
    // which does a partial write to lower 4/8 bytes of xmm register keeping the other
    // upper bytes unmodified.  If "cvtsi2ss/sd xmmReg, r32/r64" occurs inside a loop,
    // the partial write could introduce a false dependency and could cause a stall
    // if there are further uses of xmmReg. We have such a case occuring with a
    // customer reported version of SpectralNorm benchmark, resulting in 2x perf
    // regression.  To avoid false dependency, we emit "xorps xmmReg, xmmReg" before
    // cvtsi2ss/sd instruction.

    genConsumeOperands(treeNode->AsOp());
    getEmitter()->emitIns_R_R(INS_xorps, EA_4BYTE, treeNode->gtRegNum, treeNode->gtRegNum);

    // Note that here we need to specify srcType that will determine
    // the size of source reg/mem operand and rex.w prefix.
    instruction ins = ins_FloatConv(dstType, TYP_INT);
    getEmitter()->emitInsBinary(ins, emitTypeSize(srcType), treeNode, op1);

    // Handle the case of srcType = TYP_ULONG. SSE2 conversion instruction
    // will interpret ULONG value as LONG.  Hence we need to adjust the
    // result if sign-bit of srcType is set.
    if (srcType == TYP_ULONG)
    {
        // The instruction sequence below is less accurate than what clang
        // and gcc generate. However, we keep the current sequence for backward compatiblity.
        // If we change the instructions below, FloatingPointUtils::convertUInt64ToDobule
        // should be also updated for consistent conversion result.
        assert(dstType == TYP_DOUBLE);
        assert(op1->isUsedFromReg());

        // Set the flags without modifying op1.
        // test op1Reg, op1Reg
        inst_RV_RV(INS_test, op1->gtRegNum, op1->gtRegNum, srcType);

        // No need to adjust result if op1 >= 0 i.e. positive
        // Jge label
        BasicBlock* label = genCreateTempLabel();
        inst_JMP(EJ_jge, label);

        // Adjust the result
        // result = result + 0x43f00000 00000000
        // addsd resultReg,  0x43f00000 00000000
        GenTreePtr* cns = &u8ToDblBitmask;
        if (*cns == nullptr)
        {
            double d;
            static_assert_no_msg(sizeof(double) == sizeof(__int64));
            *((__int64*)&d) = 0x43f0000000000000LL;

            *cns = genMakeConst(&d, dstType, treeNode, true);
        }
        inst_RV_TT(INS_addsd, treeNode->gtRegNum, *cns);

        genDefineTempLabel(label);
    }

    genProduceReg(treeNode);
}

//------------------------------------------------------------------------
// genFloatToIntCast: Generate code to cast float/double to int/long
//
// Arguments:
//    treeNode - The GT_CAST node
//
// Return Value:
//    None.
//
// Assumptions:
//    Cast is a non-overflow conversion.
//    The treeNode must have an assigned register.
//    SrcType=float/double and DstType= int32/uint32/int64/uint64
//
// TODO-XArch-CQ: (Low-pri) - generate in-line code when DstType = uint64
//
void CodeGen::genFloatToIntCast(GenTreePtr treeNode)
{
    // we don't expect to see overflow detecting float/double --> int type conversions here
    // as they should have been converted into helper calls by front-end.
    assert(treeNode->OperGet() == GT_CAST);
    assert(!treeNode->gtOverflow());

    regNumber targetReg = treeNode->gtRegNum;
    assert(genIsValidIntReg(targetReg));

    GenTreePtr op1 = treeNode->gtOp.gtOp1;
#ifdef DEBUG
    if (op1->isUsedFromReg())
    {
        assert(genIsValidFloatReg(op1->gtRegNum));
    }
#endif

    var_types dstType = treeNode->CastToType();
    var_types srcType = op1->TypeGet();
    assert(varTypeIsFloating(srcType) && !varTypeIsFloating(dstType));

    // We should never be seeing dstType whose size is neither sizeof(TYP_INT) nor sizeof(TYP_LONG).
    // For conversions to byte/sbyte/int16/uint16 from float/double, we would expect the
    // front-end or lowering phase to have generated two levels of cast. The first one is
    // for float or double to int32/uint32 and the second one for narrowing int32/uint32 to
    // the required smaller int type.
    emitAttr dstSize = EA_ATTR(genTypeSize(dstType));
    noway_assert((dstSize == EA_ATTR(genTypeSize(TYP_INT))) || (dstSize == EA_ATTR(genTypeSize(TYP_LONG))));

    // We shouldn't be seeing uint64 here as it should have been converted
    // into a helper call by either front-end or lowering phase.
    noway_assert(!varTypeIsUnsigned(dstType) || (dstSize != EA_ATTR(genTypeSize(TYP_LONG))));

    // If the dstType is TYP_UINT, we have 32-bits to encode the
    // float number. Any of 33rd or above bits can be the sign bit.
    // To acheive it we pretend as if we are converting it to a long.
    if (varTypeIsUnsigned(dstType) && (dstSize == EA_ATTR(genTypeSize(TYP_INT))))
    {
        dstType = TYP_LONG;
    }

    // Note that we need to specify dstType here so that it will determine
    // the size of destination integer register and also the rex.w prefix.
    genConsumeOperands(treeNode->AsOp());
    instruction ins = ins_FloatConv(TYP_INT, srcType);
    getEmitter()->emitInsBinary(ins, emitTypeSize(dstType), treeNode, op1);
    genProduceReg(treeNode);
}

//------------------------------------------------------------------------
// genCkfinite: Generate code for ckfinite opcode.
//
// Arguments:
//    treeNode - The GT_CKFINITE node
//
// Return Value:
//    None.
//
// Assumptions:
//    GT_CKFINITE node has reserved an internal register.
//
// TODO-XArch-CQ - mark the operand as contained if known to be in
// memory (e.g. field or an array element).
//
void CodeGen::genCkfinite(GenTreePtr treeNode)
{
    assert(treeNode->OperGet() == GT_CKFINITE);

    GenTreePtr op1        = treeNode->gtOp.gtOp1;
    var_types  targetType = treeNode->TypeGet();
    int        expMask    = (targetType == TYP_FLOAT) ? 0x7F800000 : 0x7FF00000; // Bit mask to extract exponent.
    regNumber  targetReg  = treeNode->gtRegNum;

    // Extract exponent into a register.
    regNumber tmpReg = treeNode->GetSingleTempReg();

    genConsumeReg(op1);

#ifdef _TARGET_64BIT_

    // Copy the floating-point value to an integer register. If we copied a float to a long, then
    // right-shift the value so the high 32 bits of the floating-point value sit in the low 32
    // bits of the integer register.
    instruction ins = ins_CopyFloatToInt(targetType, (targetType == TYP_FLOAT) ? TYP_INT : TYP_LONG);
    inst_RV_RV(ins, op1->gtRegNum, tmpReg, targetType);
    if (targetType == TYP_DOUBLE)
    {
        // right shift by 32 bits to get to exponent.
        inst_RV_SH(INS_shr, EA_8BYTE, tmpReg, 32);
    }

    // Mask exponent with all 1's and check if the exponent is all 1's
    inst_RV_IV(INS_and, tmpReg, expMask, EA_4BYTE);
    inst_RV_IV(INS_cmp, tmpReg, expMask, EA_4BYTE);

    // If exponent is all 1's, throw ArithmeticException
    genJumpToThrowHlpBlk(EJ_je, SCK_ARITH_EXCPN);

    // if it is a finite value copy it to targetReg
    if (targetReg != op1->gtRegNum)
    {
        inst_RV_RV(ins_Copy(targetType), targetReg, op1->gtRegNum, targetType);
    }

#else // !_TARGET_64BIT_

    // If the target type is TYP_DOUBLE, we want to extract the high 32 bits into the register.
    // There is no easy way to do this. To not require an extra register, we'll use shuffles
    // to move the high 32 bits into the low 32 bits, then then shuffle it back, since we
    // need to produce the value into the target register.
    //
    // For TYP_DOUBLE, we'll generate (for targetReg != op1->gtRegNum):
    //    movaps targetReg, op1->gtRegNum
    //    shufps targetReg, targetReg, 0xB1    // WZYX => ZWXY
    //    mov_xmm2i tmpReg, targetReg          // tmpReg <= Y
    //    and tmpReg, <mask>
    //    cmp tmpReg, <mask>
    //    je <throw block>
    //    movaps targetReg, op1->gtRegNum   // copy the value again, instead of un-shuffling it
    //
    // For TYP_DOUBLE with (targetReg == op1->gtRegNum):
    //    shufps targetReg, targetReg, 0xB1    // WZYX => ZWXY
    //    mov_xmm2i tmpReg, targetReg          // tmpReg <= Y
    //    and tmpReg, <mask>
    //    cmp tmpReg, <mask>
    //    je <throw block>
    //    shufps targetReg, targetReg, 0xB1    // ZWXY => WZYX
    //
    // For TYP_FLOAT, it's the same as _TARGET_64BIT_:
    //    mov_xmm2i tmpReg, targetReg          // tmpReg <= low 32 bits
    //    and tmpReg, <mask>
    //    cmp tmpReg, <mask>
    //    je <throw block>
    //    movaps targetReg, op1->gtRegNum      // only if targetReg != op1->gtRegNum

    regNumber copyToTmpSrcReg; // The register we'll copy to the integer temp.

    if (targetType == TYP_DOUBLE)
    {
        if (targetReg != op1->gtRegNum)
        {
            inst_RV_RV(ins_Copy(targetType), targetReg, op1->gtRegNum, targetType);
        }
        inst_RV_RV_IV(INS_shufps, EA_16BYTE, targetReg, targetReg, 0xb1);
        copyToTmpSrcReg = targetReg;
    }
    else
    {
        copyToTmpSrcReg = op1->gtRegNum;
    }

    // Copy only the low 32 bits. This will be the high order 32 bits of the floating-point
    // value, no matter the floating-point type.
    inst_RV_RV(ins_CopyFloatToInt(TYP_FLOAT, TYP_INT), copyToTmpSrcReg, tmpReg, TYP_FLOAT);

    // Mask exponent with all 1's and check if the exponent is all 1's
    inst_RV_IV(INS_and, tmpReg, expMask, EA_4BYTE);
    inst_RV_IV(INS_cmp, tmpReg, expMask, EA_4BYTE);

    // If exponent is all 1's, throw ArithmeticException
    genJumpToThrowHlpBlk(EJ_je, SCK_ARITH_EXCPN);

    if (targetReg != op1->gtRegNum)
    {
        // In both the TYP_FLOAT and TYP_DOUBLE case, the op1 register is untouched,
        // so copy it to the targetReg. This is faster and smaller for TYP_DOUBLE
        // than re-shuffling the targetReg.
        inst_RV_RV(ins_Copy(targetType), targetReg, op1->gtRegNum, targetType);
    }
    else if (targetType == TYP_DOUBLE)
    {
        // We need to re-shuffle the targetReg to get the correct result.
        inst_RV_RV_IV(INS_shufps, EA_16BYTE, targetReg, targetReg, 0xb1);
    }

#endif // !_TARGET_64BIT_

    genProduceReg(treeNode);
}

#ifdef _TARGET_AMD64_
int CodeGenInterface::genSPtoFPdelta()
{
    int delta;

#ifdef UNIX_AMD64_ABI

    // We require frame chaining on Unix to support native tool unwinding (such as
    // unwinding by the native debugger). We have a CLR-only extension to the
    // unwind codes (UWOP_SET_FPREG_LARGE) to support SP->FP offsets larger than 240.
    // If Unix ever supports EnC, the RSP == RBP assumption will have to be reevaluated.
    delta = genTotalFrameSize();

#else // !UNIX_AMD64_ABI

    // As per Amd64 ABI, RBP offset from initial RSP can be between 0 and 240 if
    // RBP needs to be reported in unwind codes.  This case would arise for methods
    // with localloc.
    if (compiler->compLocallocUsed)
    {
        // We cannot base delta computation on compLclFrameSize since it changes from
        // tentative to final frame layout and hence there is a possibility of
        // under-estimating offset of vars from FP, which in turn results in under-
        // estimating instruction size.
        //
        // To be predictive and so as never to under-estimate offset of vars from FP
        // we will always position FP at min(240, outgoing arg area size).
        delta = Min(240, (int)compiler->lvaOutgoingArgSpaceSize);
    }
    else if (compiler->opts.compDbgEnC)
    {
        // vm assumption on EnC methods is that rsp and rbp are equal
        delta = 0;
    }
    else
    {
        delta = genTotalFrameSize();
    }

#endif // !UNIX_AMD64_ABI

    return delta;
}

//---------------------------------------------------------------------
// genTotalFrameSize - return the total size of the stack frame, including local size,
// callee-saved register size, etc. For AMD64, this does not include the caller-pushed
// return address.
//
// Return value:
//    Total frame size
//

int CodeGenInterface::genTotalFrameSize()
{
    assert(!IsUninitialized(compiler->compCalleeRegsPushed));

    int totalFrameSize = compiler->compCalleeRegsPushed * REGSIZE_BYTES + compiler->compLclFrameSize;

    assert(totalFrameSize >= 0);
    return totalFrameSize;
}

//---------------------------------------------------------------------
// genCallerSPtoFPdelta - return the offset from Caller-SP to the frame pointer.
// This number is going to be negative, since the Caller-SP is at a higher
// address than the frame pointer.
//
// There must be a frame pointer to call this function!
//
// We can't compute this directly from the Caller-SP, since the frame pointer
// is based on a maximum delta from Initial-SP, so first we find SP, then
// compute the FP offset.

int CodeGenInterface::genCallerSPtoFPdelta()
{
    assert(isFramePointerUsed());
    int callerSPtoFPdelta;

    callerSPtoFPdelta = genCallerSPtoInitialSPdelta() + genSPtoFPdelta();

    assert(callerSPtoFPdelta <= 0);
    return callerSPtoFPdelta;
}

//---------------------------------------------------------------------
// genCallerSPtoInitialSPdelta - return the offset from Caller-SP to Initial SP.
//
// This number will be negative.

int CodeGenInterface::genCallerSPtoInitialSPdelta()
{
    int callerSPtoSPdelta = 0;

    callerSPtoSPdelta -= genTotalFrameSize();
    callerSPtoSPdelta -= REGSIZE_BYTES; // caller-pushed return address

    // compCalleeRegsPushed does not account for the frame pointer
    // TODO-Cleanup: shouldn't this be part of genTotalFrameSize?
    if (isFramePointerUsed())
    {
        callerSPtoSPdelta -= REGSIZE_BYTES;
    }

    assert(callerSPtoSPdelta <= 0);
    return callerSPtoSPdelta;
}
#endif // _TARGET_AMD64_

//-----------------------------------------------------------------------------------------
// genSSE2BitwiseOp - generate SSE2 code for the given oper as "Operand BitWiseOp BitMask"
//
// Arguments:
//    treeNode  - tree node
//
// Return value:
//    None
//
// Assumptions:
//     i) tree oper is one of GT_NEG or GT_INTRINSIC Abs()
//    ii) tree type is floating point type.
//   iii) caller of this routine needs to call genProduceReg()
void CodeGen::genSSE2BitwiseOp(GenTreePtr treeNode)
{
    regNumber targetReg  = treeNode->gtRegNum;
    var_types targetType = treeNode->TypeGet();
    assert(varTypeIsFloating(targetType));

    float       f;
    double      d;
    GenTreePtr* bitMask  = nullptr;
    instruction ins      = INS_invalid;
    void*       cnsAddr  = nullptr;
    bool        dblAlign = false;

    switch (treeNode->OperGet())
    {
        case GT_NEG:
            // Neg(x) = flip the sign bit.
            // Neg(f) = f ^ 0x80000000
            // Neg(d) = d ^ 0x8000000000000000
            ins = genGetInsForOper(GT_XOR, targetType);
            if (targetType == TYP_FLOAT)
            {
                bitMask = &negBitmaskFlt;

                static_assert_no_msg(sizeof(float) == sizeof(int));
                *((int*)&f) = 0x80000000;
                cnsAddr     = &f;
            }
            else
            {
                bitMask = &negBitmaskDbl;

                static_assert_no_msg(sizeof(double) == sizeof(__int64));
                *((__int64*)&d) = 0x8000000000000000LL;
                cnsAddr         = &d;
                dblAlign        = true;
            }
            break;

        case GT_INTRINSIC:
            assert(treeNode->gtIntrinsic.gtIntrinsicId == CORINFO_INTRINSIC_Abs);

            // Abs(x) = set sign-bit to zero
            // Abs(f) = f & 0x7fffffff
            // Abs(d) = d & 0x7fffffffffffffff
            ins = genGetInsForOper(GT_AND, targetType);
            if (targetType == TYP_FLOAT)
            {
                bitMask = &absBitmaskFlt;

                static_assert_no_msg(sizeof(float) == sizeof(int));
                *((int*)&f) = 0x7fffffff;
                cnsAddr     = &f;
            }
            else
            {
                bitMask = &absBitmaskDbl;

                static_assert_no_msg(sizeof(double) == sizeof(__int64));
                *((__int64*)&d) = 0x7fffffffffffffffLL;
                cnsAddr         = &d;
                dblAlign        = true;
            }
            break;

        default:
            assert(!"genSSE2: unsupported oper");
            unreached();
            break;
    }

    if (*bitMask == nullptr)
    {
        assert(cnsAddr != nullptr);
        *bitMask = genMakeConst(cnsAddr, targetType, treeNode, dblAlign);
    }

    // We need an additional register for bitmask.
    regNumber tmpReg = treeNode->GetSingleTempReg();

    // Move operand into targetReg only if the reg reserved for
    // internal purpose is not the same as targetReg.
    GenTreePtr op1 = treeNode->gtOp.gtOp1;
    assert(op1->isUsedFromReg());
    regNumber operandReg = genConsumeReg(op1);
    if (tmpReg != targetReg)
    {
        if (operandReg != targetReg)
        {
            inst_RV_RV(ins_Copy(targetType), targetReg, operandReg, targetType);
        }

        operandReg = tmpReg;
    }

    inst_RV_TT(ins_Load(targetType, false), tmpReg, *bitMask);
    assert(ins != INS_invalid);
    inst_RV_RV(ins, targetReg, operandReg, targetType);
}

//---------------------------------------------------------------------
// genIntrinsic - generate code for a given intrinsic
//
// Arguments
//    treeNode - the GT_INTRINSIC node
//
// Return value:
//    None
//
void CodeGen::genIntrinsic(GenTreePtr treeNode)
{
    // Right now only Sqrt/Abs are treated as math intrinsics.
    switch (treeNode->gtIntrinsic.gtIntrinsicId)
    {
        case CORINFO_INTRINSIC_Sqrt:
        {
            // Both operand and its result must be of the same floating point type.
            GenTreePtr srcNode = treeNode->gtOp.gtOp1;
            assert(varTypeIsFloating(srcNode));
            assert(srcNode->TypeGet() == treeNode->TypeGet());

            genConsumeOperands(treeNode->AsOp());
            getEmitter()->emitInsBinary(ins_FloatSqrt(treeNode->TypeGet()), emitTypeSize(treeNode), treeNode, srcNode);
            break;
        }

        case CORINFO_INTRINSIC_Abs:
            genSSE2BitwiseOp(treeNode);
            break;

        default:
            assert(!"genIntrinsic: Unsupported intrinsic");
            unreached();
    }

    genProduceReg(treeNode);
}

//-------------------------------------------------------------------------- //
// getBaseVarForPutArgStk - returns the baseVarNum for passing a stack arg.
//
// Arguments
//    treeNode - the GT_PUTARG_STK node
//
// Return value:
//    The number of the base variable.
//
// Note:
//    If tail call the outgoing args are placed in the caller's incoming arg stack space.
//    Otherwise, they go in the outgoing arg area on the current frame.
//
//    On Windows the caller always creates slots (homing space) in its frame for the
//    first 4 arguments of a callee (register passed args). So, the baseVarNum is always 0.
//    For System V systems there is no such calling convention requirement, and the code needs to find
//    the first stack passed argument from the caller. This is done by iterating over
//    all the lvParam variables and finding the first with lvArgReg equals to REG_STK.
//
unsigned CodeGen::getBaseVarForPutArgStk(GenTreePtr treeNode)
{
    assert(treeNode->OperGet() == GT_PUTARG_STK);

    unsigned baseVarNum;

    // Whether to setup stk arg in incoming or out-going arg area?
    // Fast tail calls implemented as epilog+jmp = stk arg is setup in incoming arg area.
    // All other calls - stk arg is setup in out-going arg area.
    if (treeNode->AsPutArgStk()->putInIncomingArgArea())
    {
        // See the note in the function header re: finding the first stack passed argument.
        baseVarNum = getFirstArgWithStackSlot();
        assert(baseVarNum != BAD_VAR_NUM);

#ifdef DEBUG
        // This must be a fast tail call.
        assert(treeNode->AsPutArgStk()->gtCall->AsCall()->IsFastTailCall());

        // Since it is a fast tail call, the existence of first incoming arg is guaranteed
        // because fast tail call requires that in-coming arg area of caller is >= out-going
        // arg area required for tail call.
        LclVarDsc* varDsc = &(compiler->lvaTable[baseVarNum]);
        assert(varDsc != nullptr);

#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
        assert(!varDsc->lvIsRegArg && varDsc->lvArgReg == REG_STK);
#else  // !FEATURE_UNIX_AMD64_STRUCT_PASSING
        // On Windows this assert is always true. The first argument will always be in REG_ARG_0 or REG_FLTARG_0.
        assert(varDsc->lvIsRegArg && (varDsc->lvArgReg == REG_ARG_0 || varDsc->lvArgReg == REG_FLTARG_0));
#endif // !FEATURE_UNIX_AMD64_STRUCT_PASSING
#endif // !DEBUG
    }
    else
    {
#if FEATURE_FIXED_OUT_ARGS
        baseVarNum = compiler->lvaOutgoingArgSpaceVar;
#else  // !FEATURE_FIXED_OUT_ARGS
        assert(!"No BaseVarForPutArgStk on x86");
        baseVarNum = BAD_VAR_NUM;
#endif // !FEATURE_FIXED_OUT_ARGS
    }

    return baseVarNum;
}

//---------------------------------------------------------------------
// genAlignStackBeforeCall: Align the stack if necessary before a call.
//
// Arguments:
//    putArgStk - the putArgStk node.
//
void CodeGen::genAlignStackBeforeCall(GenTreePutArgStk* putArgStk)
{
#if defined(UNIX_X86_ABI)

    genAlignStackBeforeCall(putArgStk->gtCall);

#endif // UNIX_X86_ABI
}

//---------------------------------------------------------------------
// genAlignStackBeforeCall: Align the stack if necessary before a call.
//
// Arguments:
//    call - the call node.
//
void CodeGen::genAlignStackBeforeCall(GenTreeCall* call)
{
#if defined(UNIX_X86_ABI)

    // Have we aligned the stack yet?
    if (!call->fgArgInfo->IsStkAlignmentDone())
    {
        // We haven't done any stack alignment yet for this call.  We might need to create
        // an alignment adjustment, even if this function itself doesn't have any stack args.
        // This can happen if this function call is part of a nested call sequence, and the outer
        // call has already pushed some arguments.

        unsigned stkLevel = genStackLevel + call->fgArgInfo->GetStkSizeBytes();
        call->fgArgInfo->ComputeStackAlignment(stkLevel);

        unsigned padStkAlign = call->fgArgInfo->GetStkAlign();
        if (padStkAlign != 0)
        {
            // Now generate the alignment
            inst_RV_IV(INS_sub, REG_SPBASE, padStkAlign, EA_PTRSIZE);
            AddStackLevel(padStkAlign);
            AddNestedAlignment(padStkAlign);
        }

        call->fgArgInfo->SetStkAlignmentDone();
    }

#endif // UNIX_X86_ABI
}

//---------------------------------------------------------------------
// genRemoveAlignmentAfterCall: After a call, remove the alignment
// added before the call, if any.
//
// Arguments:
//    call - the call node.
//    bias - additional stack adjustment
//
// Note:
//    When bias > 0, caller should adjust stack level appropriately as
//    bias is not considered when adjusting stack level.
//
void CodeGen::genRemoveAlignmentAfterCall(GenTreeCall* call, unsigned bias)
{
#if defined(_TARGET_X86_)
#if defined(UNIX_X86_ABI)
    // Put back the stack pointer if there was any padding for stack alignment
    unsigned padStkAlign  = call->fgArgInfo->GetStkAlign();
    unsigned padStkAdjust = padStkAlign + bias;

    if (padStkAdjust != 0)
    {
        inst_RV_IV(INS_add, REG_SPBASE, padStkAdjust, EA_PTRSIZE);
        SubtractStackLevel(padStkAlign);
        SubtractNestedAlignment(padStkAlign);
    }
#else  // UNIX_X86_ABI
    if (bias != 0)
    {
        genAdjustSP(bias);
    }
#endif // !UNIX_X86_ABI_
#else  // _TARGET_X86_
    assert(bias == 0);
#endif // !_TARGET_X86
}

#ifdef _TARGET_X86_

//---------------------------------------------------------------------
// genAdjustStackForPutArgStk:
//    adjust the stack pointer for a putArgStk node if necessary.
//
// Arguments:
//    putArgStk - the putArgStk node.
//
// Returns: true if the stack pointer was adjusted; false otherwise.
//
// Notes:
//    Sets `m_pushStkArg` to true if the stack arg needs to be pushed,
//    false if the stack arg needs to be stored at the current stack
//    pointer address. This is exactly the opposite of the return value
//    of this function.
//
bool CodeGen::genAdjustStackForPutArgStk(GenTreePutArgStk* putArgStk)
{
#ifdef FEATURE_SIMD
    if (varTypeIsSIMD(putArgStk))
    {
        const unsigned argSize = genTypeSize(putArgStk);
        inst_RV_IV(INS_sub, REG_SPBASE, argSize, EA_PTRSIZE);
        AddStackLevel(argSize);
        m_pushStkArg = false;
        return true;
    }
#endif // FEATURE_SIMD

    const unsigned argSize = putArgStk->getArgSize();

    // If the gtPutArgStkKind is one of the push types, we do not pre-adjust the stack.
    // This is set in Lowering, and is true if and only if:
    // - This argument contains any GC pointers OR
    // - It is a GT_FIELD_LIST OR
    // - It is less than 16 bytes in size.
    CLANG_FORMAT_COMMENT_ANCHOR;

#ifdef DEBUG
    switch (putArgStk->gtPutArgStkKind)
    {
        case GenTreePutArgStk::Kind::RepInstr:
        case GenTreePutArgStk::Kind::Unroll:
            assert((putArgStk->gtNumberReferenceSlots == 0) && (putArgStk->gtGetOp1()->OperGet() != GT_FIELD_LIST) &&
                   (argSize >= 16));
            break;
        case GenTreePutArgStk::Kind::Push:
        case GenTreePutArgStk::Kind::PushAllSlots:
            assert((putArgStk->gtNumberReferenceSlots != 0) || (putArgStk->gtGetOp1()->OperGet() == GT_FIELD_LIST) ||
                   (argSize < 16));
            break;
        case GenTreePutArgStk::Kind::Invalid:
        default:
            assert(!"Uninitialized GenTreePutArgStk::Kind");
            break;
    }
#endif // DEBUG

    if (putArgStk->isPushKind())
    {
        m_pushStkArg = true;
        return false;
    }
    else
    {
        m_pushStkArg = false;
        inst_RV_IV(INS_sub, REG_SPBASE, argSize, EA_PTRSIZE);
        AddStackLevel(argSize);
        return true;
    }
}

//---------------------------------------------------------------------
// genPutArgStkFieldList - generate code for passing a GT_FIELD_LIST arg on the stack.
//
// Arguments
//    treeNode      - the GT_PUTARG_STK node whose op1 is a GT_FIELD_LIST
//
// Return value:
//    None
//
void CodeGen::genPutArgStkFieldList(GenTreePutArgStk* putArgStk)
{
    GenTreeFieldList* const fieldList = putArgStk->gtOp1->AsFieldList();
    assert(fieldList != nullptr);

    // Set m_pushStkArg and pre-adjust the stack if necessary.
    const bool preAdjustedStack = genAdjustStackForPutArgStk(putArgStk);

    // For now, we only support the "push" case; we will push a full slot for the first field of each slot
    // within the struct.
    assert((putArgStk->isPushKind()) && !preAdjustedStack && m_pushStkArg);

    // If we have pre-adjusted the stack and are simply storing the fields in order, set the offset to 0.
    // (Note that this mode is not currently being used.)
    // If we are pushing the arguments (i.e. we have not pre-adjusted the stack), then we are pushing them
    // in reverse order, so we start with the current field offset at the size of the struct arg (which must be
    // a multiple of the target pointer size).
    unsigned  currentOffset   = (preAdjustedStack) ? 0 : putArgStk->getArgSize();
    unsigned  prevFieldOffset = currentOffset;
    regNumber intTmpReg       = REG_NA;
    regNumber simdTmpReg      = REG_NA;
    if (putArgStk->AvailableTempRegCount() != 0)
    {
        regMaskTP rsvdRegs = putArgStk->gtRsvdRegs;
        if ((rsvdRegs & RBM_ALLINT) != 0)
        {
            intTmpReg = putArgStk->GetSingleTempReg(RBM_ALLINT);
            assert(genIsValidIntReg(intTmpReg));
        }
        if ((rsvdRegs & RBM_ALLFLOAT) != 0)
        {
            simdTmpReg = putArgStk->GetSingleTempReg(RBM_ALLFLOAT);
            assert(genIsValidFloatReg(simdTmpReg));
        }
        assert(genCountBits(rsvdRegs) == (unsigned)((intTmpReg == REG_NA) ? 0 : 1) + ((simdTmpReg == REG_NA) ? 0 : 1));
    }

    for (GenTreeFieldList* current = fieldList; current != nullptr; current = current->Rest())
    {
        GenTree* const fieldNode   = current->Current();
        const unsigned fieldOffset = current->gtFieldOffset;
        var_types      fieldType   = current->gtFieldType;

        // Long-typed nodes should have been handled by the decomposition pass, and lowering should have sorted the
        // field list in descending order by offset.
        assert(!varTypeIsLong(fieldType));
        assert(fieldOffset <= prevFieldOffset);

        // Consume the register, if any, for this field. Note that genConsumeRegs() will appropriately
        // update the liveness info for a lclVar that has been marked RegOptional, which hasn't been
        // assigned a register, and which is therefore contained.
        // Unlike genConsumeReg(), it handles the case where no registers are being consumed.
        genConsumeRegs(fieldNode);
        regNumber argReg = fieldNode->isUsedFromSpillTemp() ? REG_NA : fieldNode->gtRegNum;

        // If the field is slot-like, we can use a push instruction to store the entire register no matter the type.
        //
        // The GC encoder requires that the stack remain 4-byte aligned at all times. Round the adjustment up
        // to the next multiple of 4. If we are going to generate a `push` instruction, the adjustment must
        // not require rounding.
        // NOTE: if the field is of GC type, we must use a push instruction, since the emitter is not otherwise
        // able to detect stores into the outgoing argument area of the stack on x86.
        const bool fieldIsSlot = ((fieldOffset % 4) == 0) && ((prevFieldOffset - fieldOffset) >= 4);
        int        adjustment  = roundUp(currentOffset - fieldOffset, 4);
        if (fieldIsSlot && !varTypeIsSIMD(fieldType))
        {
            fieldType         = genActualType(fieldType);
            unsigned pushSize = genTypeSize(fieldType);
            assert((pushSize % 4) == 0);
            adjustment -= pushSize;
            while (adjustment != 0)
            {
                inst_IV(INS_push, 0);
                currentOffset -= pushSize;
                AddStackLevel(pushSize);
                adjustment -= pushSize;
            }
            m_pushStkArg = true;
        }
        else
        {
            m_pushStkArg = false;

            // We always "push" floating point fields (i.e. they are full slot values that don't
            // require special handling).
            assert(varTypeIsIntegralOrI(fieldNode) || varTypeIsSIMD(fieldNode));

            // If we can't push this field, it needs to be in a register so that we can store
            // it to the stack location.
            if (adjustment != 0)
            {
                // This moves the stack pointer to fieldOffset.
                // For this case, we must adjust the stack and generate stack-relative stores rather than pushes.
                // Adjust the stack pointer to the next slot boundary.
                inst_RV_IV(INS_sub, REG_SPBASE, adjustment, EA_PTRSIZE);
                currentOffset -= adjustment;
                AddStackLevel(adjustment);
            }

            // Does it need to be in a byte register?
            // If so, we'll use intTmpReg, which must have been allocated as a byte register.
            // If it's already in a register, but not a byteable one, then move it.
            if (varTypeIsByte(fieldType) && ((argReg == REG_NA) || ((genRegMask(argReg) & RBM_BYTE_REGS) == 0)))
            {
                assert(intTmpReg != REG_NA);
                noway_assert((genRegMask(intTmpReg) & RBM_BYTE_REGS) != 0);
                if (argReg != REG_NA)
                {
                    inst_RV_RV(INS_mov, intTmpReg, argReg, fieldType);
                    argReg = intTmpReg;
                }
            }
        }

        if (argReg == REG_NA)
        {
            if (m_pushStkArg)
            {
                if (fieldNode->isUsedFromSpillTemp())
                {
                    assert(!varTypeIsSIMD(fieldType)); // Q: can we get here with SIMD?
                    assert(fieldNode->IsRegOptional());
                    TempDsc* tmp = getSpillTempDsc(fieldNode);
                    getEmitter()->emitIns_S(INS_push, emitActualTypeSize(fieldNode->TypeGet()), tmp->tdTempNum(), 0);
                    compiler->tmpRlsTemp(tmp);
                }
                else
                {
                    assert(varTypeIsIntegralOrI(fieldNode));
                    switch (fieldNode->OperGet())
                    {
                        case GT_LCL_VAR:
                            inst_TT(INS_push, fieldNode, 0, 0, emitActualTypeSize(fieldNode->TypeGet()));
                            break;
                        case GT_CNS_INT:
                            if (fieldNode->IsIconHandle())
                            {
                                inst_IV_handle(INS_push, fieldNode->gtIntCon.gtIconVal);
                            }
                            else
                            {
                                inst_IV(INS_push, fieldNode->gtIntCon.gtIconVal);
                            }
                            break;
                        default:
                            unreached();
                    }
                }
                currentOffset -= TARGET_POINTER_SIZE;
                AddStackLevel(TARGET_POINTER_SIZE);
            }
            else
            {
                // The stack has been adjusted and we will load the field to intTmpReg and then store it on the stack.
                assert(varTypeIsIntegralOrI(fieldNode));
                switch (fieldNode->OperGet())
                {
                    case GT_LCL_VAR:
                        inst_RV_TT(INS_mov, intTmpReg, fieldNode);
                        break;
                    case GT_CNS_INT:
                        genSetRegToConst(intTmpReg, fieldNode->TypeGet(), fieldNode);
                        break;
                    default:
                        unreached();
                }
                genStoreRegToStackArg(fieldType, intTmpReg, fieldOffset - currentOffset);
            }
        }
        else
        {
#if defined(FEATURE_SIMD)
            if (fieldType == TYP_SIMD12)
            {
                assert(genIsValidFloatReg(simdTmpReg));
                genStoreSIMD12ToStack(argReg, simdTmpReg);
            }
            else
#endif // defined(FEATURE_SIMD)
            {
                genStoreRegToStackArg(fieldType, argReg, fieldOffset - currentOffset);
            }
            if (m_pushStkArg)
            {
                // We always push a slot-rounded size
                currentOffset -= genTypeSize(fieldType);
            }
        }

        prevFieldOffset = fieldOffset;
    }
    if (currentOffset != 0)
    {
        // We don't expect padding at the beginning of a struct, but it could happen with explicit layout.
        inst_RV_IV(INS_sub, REG_SPBASE, currentOffset, EA_PTRSIZE);
        AddStackLevel(currentOffset);
    }
}
#endif // _TARGET_X86_

//---------------------------------------------------------------------
// genPutArgStk - generate code for passing an arg on the stack.
//
// Arguments
//    treeNode      - the GT_PUTARG_STK node
//    targetType    - the type of the treeNode
//
// Return value:
//    None
//
void CodeGen::genPutArgStk(GenTreePutArgStk* putArgStk)
{
    var_types targetType = putArgStk->TypeGet();

#ifdef _TARGET_X86_

    genAlignStackBeforeCall(putArgStk);

    if (varTypeIsStruct(targetType))
    {
        (void)genAdjustStackForPutArgStk(putArgStk);
        genPutStructArgStk(putArgStk);
        return;
    }

    // The following logic is applicable for x86 arch.
    assert(!varTypeIsFloating(targetType) || (targetType == putArgStk->gtOp1->TypeGet()));

    GenTreePtr data = putArgStk->gtOp1;

    // On a 32-bit target, all of the long arguments are handled with GT_FIELD_LIST,
    // and the type of the putArgStk is TYP_VOID.
    assert(targetType != TYP_LONG);

    const unsigned argSize = putArgStk->getArgSize();
    assert((argSize % TARGET_POINTER_SIZE) == 0);

    if (data->isContainedIntOrIImmed())
    {
        if (data->IsIconHandle())
        {
            inst_IV_handle(INS_push, data->gtIntCon.gtIconVal);
        }
        else
        {
            inst_IV(INS_push, data->gtIntCon.gtIconVal);
        }
        AddStackLevel(argSize);
    }
    else if (data->OperGet() == GT_FIELD_LIST)
    {
        genPutArgStkFieldList(putArgStk);
    }
    else
    {
        // We should not see any contained nodes that are not immediates.
        assert(data->isUsedFromReg());
        genConsumeReg(data);
        genPushReg(targetType, data->gtRegNum);
    }
#else // !_TARGET_X86_
    {
        unsigned baseVarNum = getBaseVarForPutArgStk(putArgStk);

#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING

        if (varTypeIsStruct(targetType))
        {
            m_stkArgVarNum = baseVarNum;
            m_stkArgOffset = putArgStk->getArgOffset();
            genPutStructArgStk(putArgStk);
            m_stkArgVarNum = BAD_VAR_NUM;
            return;
        }
#endif // FEATURE_UNIX_AMD64_STRUCT_PASSING

        noway_assert(targetType != TYP_STRUCT);
        assert(!varTypeIsFloating(targetType) || (targetType == putArgStk->gtOp1->TypeGet()));

        // Get argument offset on stack.
        // Here we cross check that argument offset hasn't changed from lowering to codegen since
        // we are storing arg slot number in GT_PUTARG_STK node in lowering phase.
        int              argOffset      = putArgStk->getArgOffset();

#ifdef DEBUG
        fgArgTabEntryPtr curArgTabEntry = compiler->gtArgEntryByNode(putArgStk->gtCall, putArgStk);
        assert(curArgTabEntry);
        assert(argOffset == (int)curArgTabEntry->slotNum * TARGET_POINTER_SIZE);
#endif

        GenTreePtr data = putArgStk->gtOp1;

        if (data->isContainedIntOrIImmed())
        {
            getEmitter()->emitIns_S_I(ins_Store(targetType), emitTypeSize(targetType), baseVarNum, argOffset,
                                      (int)data->AsIntConCommon()->IconValue());
        }
        else
        {
            assert(data->isUsedFromReg());
            genConsumeReg(data);
            getEmitter()->emitIns_S_R(ins_Store(targetType), emitTypeSize(targetType), data->gtRegNum, baseVarNum,
                                      argOffset);
        }
    }
#endif // !_TARGET_X86_
}

#ifdef _TARGET_X86_
// genPushReg: Push a register value onto the stack and adjust the stack level
//
// Arguments:
//    type   - the type of value to be stored
//    reg    - the register containing the value
//
// Notes:
//    For TYP_LONG, the srcReg must be a floating point register.
//    Otherwise, the register type must be consistent with the given type.
//
void CodeGen::genPushReg(var_types type, regNumber srcReg)
{
    unsigned size = genTypeSize(type);
    if (varTypeIsIntegralOrI(type) && type != TYP_LONG)
    {
        assert(genIsValidIntReg(srcReg));
        inst_RV(INS_push, srcReg, type);
    }
    else
    {
        instruction ins;
        emitAttr    attr = emitTypeSize(type);
        if (type == TYP_LONG)
        {
            // On x86, the only way we can push a TYP_LONG from a register is if it is in an xmm reg.
            // This is only used when we are pushing a struct from memory to memory, and basically is
            // handling an 8-byte "chunk", as opposed to strictly a long type.
            ins = INS_movq;
        }
        else
        {
            ins = ins_Store(type);
        }
        assert(genIsValidFloatReg(srcReg));
        inst_RV_IV(INS_sub, REG_SPBASE, size, EA_PTRSIZE);
        getEmitter()->emitIns_AR_R(ins, attr, srcReg, REG_SPBASE, 0);
    }
    AddStackLevel(size);
}
#endif // _TARGET_X86_

#if defined(FEATURE_PUT_STRUCT_ARG_STK)
// genStoreRegToStackArg: Store a register value into the stack argument area
//
// Arguments:
//    type   - the type of value to be stored
//    reg    - the register containing the value
//    offset - the offset from the base (see Assumptions below)
//
// Notes:
//    A type of TYP_STRUCT instructs this method to store a 16-byte chunk
//    at the given offset (i.e. not the full struct).
//
// Assumptions:
//    The caller must set the context appropriately before calling this method:
//    - On x64, m_stkArgVarNum must be set according to whether this is a regular or tail call.
//    - On x86, the caller must set m_pushStkArg if this method should push the argument.
//      Otherwise, the argument is stored at the given offset from sp.
//
// TODO: In the below code the load and store instructions are for 16 bytes, but the
//          type is EA_8BYTE. The movdqa/u are 16 byte instructions, so it works, but
//          this probably needs to be changed.
//
void CodeGen::genStoreRegToStackArg(var_types type, regNumber srcReg, int offset)
{
    assert(srcReg != REG_NA);
    instruction ins;
    emitAttr    attr;
    unsigned    size;

    if (type == TYP_STRUCT)
    {
        ins = INS_movdqu;
        // This should be changed!
        attr = EA_8BYTE;
        size = 16;
    }
    else
    {
#ifdef FEATURE_SIMD
        if (varTypeIsSIMD(type))
        {
            assert(genIsValidFloatReg(srcReg));
            ins = ins_Store(type); // TODO-CQ: pass 'aligned' correctly
        }
        else
#endif // FEATURE_SIMD
#ifdef _TARGET_X86_
            if (type == TYP_LONG)
        {
            assert(genIsValidFloatReg(srcReg));
            ins = INS_movq;
        }
        else
#endif // _TARGET_X86_
        {
            assert((varTypeIsFloating(type) && genIsValidFloatReg(srcReg)) ||
                   (varTypeIsIntegralOrI(type) && genIsValidIntReg(srcReg)));
            ins = ins_Store(type);
        }
        attr = emitTypeSize(type);
        size = genTypeSize(type);
    }

#ifdef _TARGET_X86_
    if (m_pushStkArg)
    {
        genPushReg(type, srcReg);
    }
    else
    {
        getEmitter()->emitIns_AR_R(ins, attr, srcReg, REG_SPBASE, offset);
    }
#else  // !_TARGET_X86_
    assert(m_stkArgVarNum != BAD_VAR_NUM);
    getEmitter()->emitIns_S_R(ins, attr, srcReg, m_stkArgVarNum, m_stkArgOffset + offset);
#endif // !_TARGET_X86_
}

//---------------------------------------------------------------------
// genPutStructArgStk - generate code for copying a struct arg on the stack by value.
//                In case there are references to heap object in the struct,
//                it generates the gcinfo as well.
//
// Arguments
//    putArgStk - the GT_PUTARG_STK node
//
// Notes:
//    In the case of fixed out args, the caller must have set m_stkArgVarNum to the variable number
//    corresponding to the argument area (where we will put the argument on the stack).
//    For tail calls this is the baseVarNum = 0.
//    For non tail calls this is the outgoingArgSpace.
void CodeGen::genPutStructArgStk(GenTreePutArgStk* putArgStk)
{
    var_types targetType = putArgStk->TypeGet();

#if defined(_TARGET_X86_) && defined(FEATURE_SIMD)
    if (targetType == TYP_SIMD12)
    {
        genPutArgStkSIMD12(putArgStk);
        return;
    }
#endif // defined(_TARGET_X86_) && defined(FEATURE_SIMD)

    if (varTypeIsSIMD(targetType))
    {
        regNumber srcReg = genConsumeReg(putArgStk->gtGetOp1());
        assert((srcReg != REG_NA) && (genIsValidFloatReg(srcReg)));
        genStoreRegToStackArg(targetType, srcReg, 0);
        return;
    }

    assert(targetType == TYP_STRUCT);

    if (putArgStk->gtNumberReferenceSlots == 0)
    {
        switch (putArgStk->gtPutArgStkKind)
        {
            case GenTreePutArgStk::Kind::RepInstr:
                genStructPutArgRepMovs(putArgStk);
                break;
            case GenTreePutArgStk::Kind::Unroll:
                genStructPutArgUnroll(putArgStk);
                break;
            case GenTreePutArgStk::Kind::Push:
                genStructPutArgUnroll(putArgStk);
                break;
            default:
                unreached();
        }
    }
    else
    {
        // No need to disable GC the way COPYOBJ does. Here the refs are copied in atomic operations always.
        CLANG_FORMAT_COMMENT_ANCHOR;

#ifdef _TARGET_X86_
        // On x86, any struct that has contains GC references must be stored to the stack using `push` instructions so
        // that the emitter properly detects the need to update the method's GC information.
        //
        // Strictly speaking, it is only necessary to use `push` to store the GC references themselves, so for structs
        // with large numbers of consecutive non-GC-ref-typed fields, we may be able to improve the code size in the
        // future.
        assert(m_pushStkArg);

        GenTree*       srcAddr  = putArgStk->gtGetOp1()->gtGetOp1();
        BYTE*          gcPtrs   = putArgStk->gtGcPtrs;
        const unsigned numSlots = putArgStk->gtNumSlots;

        regNumber  srcRegNum    = srcAddr->gtRegNum;
        const bool srcAddrInReg = srcRegNum != REG_NA;

        unsigned srcLclNum    = 0;
        unsigned srcLclOffset = 0;
        if (srcAddrInReg)
        {
            genConsumeReg(srcAddr);
        }
        else
        {
            assert(srcAddr->OperIsLocalAddr());

            srcLclNum = srcAddr->AsLclVarCommon()->gtLclNum;
            if (srcAddr->OperGet() == GT_LCL_FLD_ADDR)
            {
                srcLclOffset = srcAddr->AsLclFld()->gtLclOffs;
            }
        }

        for (int i = numSlots - 1; i >= 0; --i)
        {
            emitAttr slotAttr;
            if (gcPtrs[i] == TYPE_GC_NONE)
            {
                slotAttr = EA_4BYTE;
            }
            else if (gcPtrs[i] == TYPE_GC_REF)
            {
                slotAttr = EA_GCREF;
            }
            else
            {
                assert(gcPtrs[i] == TYPE_GC_BYREF);
                slotAttr = EA_BYREF;
            }

            const unsigned offset = i * TARGET_POINTER_SIZE;
            if (srcAddrInReg)
            {
                getEmitter()->emitIns_AR_R(INS_push, slotAttr, REG_NA, srcRegNum, offset);
            }
            else
            {
                getEmitter()->emitIns_S(INS_push, slotAttr, srcLclNum, srcLclOffset + offset);
            }
            AddStackLevel(TARGET_POINTER_SIZE);
        }
#else // !defined(_TARGET_X86_)

        // Consume these registers.
        // They may now contain gc pointers (depending on their type; gcMarkRegPtrVal will "do the right thing").
        genConsumePutStructArgStk(putArgStk, REG_RDI, REG_RSI, REG_NA);

        const bool     srcIsLocal       = putArgStk->gtOp1->AsObj()->gtOp1->OperIsLocalAddr();
        const emitAttr srcAddrAttr      = srcIsLocal ? EA_PTRSIZE : EA_BYREF;

#if DEBUG
        unsigned       numGCSlotsCopied = 0;
#endif // DEBUG

        BYTE*          gcPtrs   = putArgStk->gtGcPtrs;
        const unsigned numSlots = putArgStk->gtNumSlots;
        for (unsigned i = 0; i < numSlots;)
        {
            if (gcPtrs[i] == TYPE_GC_NONE)
            {
                // Let's see if we can use rep movsp (alias for movsd or movsq for 32 and 64 bits respectively)
                // instead of a sequence of movsp instructions to save cycles and code size.
                unsigned adjacentNonGCSlotCount = 0;
                do
                {
                    adjacentNonGCSlotCount++;
                    i++;
                } while ((i < numSlots) && (gcPtrs[i] == TYPE_GC_NONE));

                // If we have a very small contiguous non-ref region, it's better just to
                // emit a sequence of movsp instructions
                if (adjacentNonGCSlotCount < CPOBJ_NONGC_SLOTS_LIMIT)
                {
                    for (; adjacentNonGCSlotCount > 0; adjacentNonGCSlotCount--)
                    {
                        instGen(INS_movsp);
                    }
                }
                else
                {
                    getEmitter()->emitIns_R_I(INS_mov, EA_4BYTE, REG_RCX, adjacentNonGCSlotCount);
                    instGen(INS_r_movsp);
                }
            }
            else
            {
                assert((gcPtrs[i] == TYPE_GC_REF) || (gcPtrs[i] == TYPE_GC_BYREF));

                // We have a GC (byref or ref) pointer
                // TODO-Amd64-Unix: Here a better solution (for code size and CQ) would be to use movsp instruction,
                // but the logic for emitting a GC info record is not available (it is internal for the emitter
                // only.) See emitGCVarLiveUpd function. If we could call it separately, we could do
                // instGen(INS_movsp); and emission of gc info.

                var_types memType = (gcPtrs[i] == TYPE_GC_REF) ? TYP_REF : TYP_BYREF;
                getEmitter()->emitIns_R_AR(ins_Load(memType), emitTypeSize(memType), REG_RCX, REG_RSI, 0);
                genStoreRegToStackArg(memType, REG_RCX, i * TARGET_POINTER_SIZE);

#ifdef DEBUG
                numGCSlotsCopied++;
#endif // DEBUG

                i++;
                if (i < numSlots)
                {
                    // Source for the copy operation.
                    // If a LocalAddr, use EA_PTRSIZE - copy from stack.
                    // If not a LocalAddr, use EA_BYREF - the source location is not on the stack.
                    getEmitter()->emitIns_R_I(INS_add, srcAddrAttr, REG_RSI, TARGET_POINTER_SIZE);

                    // Always copying to the stack - outgoing arg area
                    // (or the outgoing arg area of the caller for a tail call) - use EA_PTRSIZE.
                    getEmitter()->emitIns_R_I(INS_add, EA_PTRSIZE, REG_RDI, TARGET_POINTER_SIZE);
                }
            }
        }

        assert(numGCSlotsCopied == putArgStk->gtNumberReferenceSlots);
#endif // _TARGET_X86_
    }
}
#endif // defined(FEATURE_PUT_STRUCT_ARG_STK)

/*****************************************************************************
 *
 *  Create and record GC Info for the function.
 */
#ifndef JIT32_GCENCODER
void
#else  // !JIT32_GCENCODER
void*
#endif // !JIT32_GCENCODER
CodeGen::genCreateAndStoreGCInfo(unsigned codeSize, unsigned prologSize, unsigned epilogSize DEBUGARG(void* codePtr))
{
#ifdef JIT32_GCENCODER
    return genCreateAndStoreGCInfoJIT32(codeSize, prologSize, epilogSize DEBUGARG(codePtr));
#else  // !JIT32_GCENCODER
    genCreateAndStoreGCInfoX64(codeSize, prologSize DEBUGARG(codePtr));
#endif // !JIT32_GCENCODER
}

#ifdef JIT32_GCENCODER
void* CodeGen::genCreateAndStoreGCInfoJIT32(unsigned codeSize,
                                            unsigned prologSize,
                                            unsigned epilogSize DEBUGARG(void* codePtr))
{
    BYTE    headerBuf[64];
    InfoHdr header;

    int s_cached;
#ifdef DEBUG
    size_t headerSize =
#endif
        compiler->compInfoBlkSize =
            gcInfo.gcInfoBlockHdrSave(headerBuf, 0, codeSize, prologSize, epilogSize, &header, &s_cached);

    size_t argTabOffset = 0;
    size_t ptrMapSize   = gcInfo.gcPtrTableSize(header, codeSize, &argTabOffset);

#if DISPLAY_SIZES

    if (genInterruptible)
    {
        gcHeaderISize += compiler->compInfoBlkSize;
        gcPtrMapISize += ptrMapSize;
    }
    else
    {
        gcHeaderNSize += compiler->compInfoBlkSize;
        gcPtrMapNSize += ptrMapSize;
    }

#endif // DISPLAY_SIZES

    compiler->compInfoBlkSize += ptrMapSize;

    /* Allocate the info block for the method */

    compiler->compInfoBlkAddr = (BYTE*)compiler->info.compCompHnd->allocGCInfo(compiler->compInfoBlkSize);

#if 0 // VERBOSE_SIZES
    // TODO-X86-Cleanup: 'dataSize', below, is not defined

//  if  (compiler->compInfoBlkSize > codeSize && compiler->compInfoBlkSize > 100)
    {
        printf("[%7u VM, %7u+%7u/%7u x86 %03u/%03u%%] %s.%s\n",
               compiler->info.compILCodeSize,
               compiler->compInfoBlkSize,
               codeSize + dataSize,
               codeSize + dataSize - prologSize - epilogSize,
               100 * (codeSize + dataSize) / compiler->info.compILCodeSize,
               100 * (codeSize + dataSize + compiler->compInfoBlkSize) / compiler->info.compILCodeSize,
               compiler->info.compClassName,
               compiler->info.compMethodName);
}

#endif

    /* Fill in the info block and return it to the caller */

    void* infoPtr = compiler->compInfoBlkAddr;

    /* Create the method info block: header followed by GC tracking tables */

    compiler->compInfoBlkAddr +=
        gcInfo.gcInfoBlockHdrSave(compiler->compInfoBlkAddr, -1, codeSize, prologSize, epilogSize, &header, &s_cached);

    assert(compiler->compInfoBlkAddr == (BYTE*)infoPtr + headerSize);
    compiler->compInfoBlkAddr = gcInfo.gcPtrTableSave(compiler->compInfoBlkAddr, header, codeSize, &argTabOffset);
    assert(compiler->compInfoBlkAddr == (BYTE*)infoPtr + headerSize + ptrMapSize);

#ifdef DEBUG

    if (0)
    {
        BYTE*    temp = (BYTE*)infoPtr;
        unsigned size = compiler->compInfoBlkAddr - temp;
        BYTE*    ptab = temp + headerSize;

        noway_assert(size == headerSize + ptrMapSize);

        printf("Method info block - header [%u bytes]:", headerSize);

        for (unsigned i = 0; i < size; i++)
        {
            if (temp == ptab)
            {
                printf("\nMethod info block - ptrtab [%u bytes]:", ptrMapSize);
                printf("\n    %04X: %*c", i & ~0xF, 3 * (i & 0xF), ' ');
            }
            else
            {
                if (!(i % 16))
                    printf("\n    %04X: ", i);
            }

            printf("%02X ", *temp++);
        }

        printf("\n");
    }

#endif // DEBUG

#if DUMP_GC_TABLES

    if (compiler->opts.dspGCtbls)
    {
        const BYTE* base = (BYTE*)infoPtr;
        unsigned    size;
        unsigned    methodSize;
        InfoHdr     dumpHeader;

        printf("GC Info for method %s\n", compiler->info.compFullName);
        printf("GC info size = %3u\n", compiler->compInfoBlkSize);

        size = gcInfo.gcInfoBlockHdrDump(base, &dumpHeader, &methodSize);
        // printf("size of header encoding is %3u\n", size);
        printf("\n");

        if (compiler->opts.dspGCtbls)
        {
            base += size;
            size = gcInfo.gcDumpPtrTable(base, dumpHeader, methodSize);
            // printf("size of pointer table is %3u\n", size);
            printf("\n");
            noway_assert(compiler->compInfoBlkAddr == (base + size));
        }
    }

#ifdef DEBUG
    if (jitOpts.testMask & 128)
    {
        for (unsigned offs = 0; offs < codeSize; offs++)
        {
            gcInfo.gcFindPtrsInFrame(infoPtr, codePtr, offs);
        }
    }
#endif // DEBUG
#endif // DUMP_GC_TABLES

    /* Make sure we ended up generating the expected number of bytes */

    noway_assert(compiler->compInfoBlkAddr == (BYTE*)infoPtr + compiler->compInfoBlkSize);

    return infoPtr;
}

#else  // !JIT32_GCENCODER
void CodeGen::genCreateAndStoreGCInfoX64(unsigned codeSize, unsigned prologSize DEBUGARG(void* codePtr))
{
    IAllocator*    allowZeroAlloc = new (compiler, CMK_GC) AllowZeroAllocator(compiler->getAllocatorGC());
    GcInfoEncoder* gcInfoEncoder  = new (compiler, CMK_GC)
        GcInfoEncoder(compiler->info.compCompHnd, compiler->info.compMethodInfo, allowZeroAlloc, NOMEM);
    assert(gcInfoEncoder);

    // Follow the code pattern of the x86 gc info encoder (genCreateAndStoreGCInfoJIT32).
    gcInfo.gcInfoBlockHdrSave(gcInfoEncoder, codeSize, prologSize);

    // We keep the call count for the second call to gcMakeRegPtrTable() below.
    unsigned callCnt = 0;
    // First we figure out the encoder ID's for the stack slots and registers.
    gcInfo.gcMakeRegPtrTable(gcInfoEncoder, codeSize, prologSize, GCInfo::MAKE_REG_PTR_MODE_ASSIGN_SLOTS, &callCnt);
    // Now we've requested all the slots we'll need; "finalize" these (make more compact data structures for them).
    gcInfoEncoder->FinalizeSlotIds();
    // Now we can actually use those slot ID's to declare live ranges.
    gcInfo.gcMakeRegPtrTable(gcInfoEncoder, codeSize, prologSize, GCInfo::MAKE_REG_PTR_MODE_DO_WORK, &callCnt);

    if (compiler->opts.compDbgEnC)
    {
        // what we have to preserve is called the "frame header" (see comments in VM\eetwain.cpp)
        // which is:
        //  -return address
        //  -saved off RBP
        //  -saved 'this' pointer and bool for synchronized methods

        // 4 slots for RBP + return address + RSI + RDI
        int preservedAreaSize = 4 * REGSIZE_BYTES;

        if (compiler->info.compFlags & CORINFO_FLG_SYNCH)
        {
            if (!(compiler->info.compFlags & CORINFO_FLG_STATIC))
            {
                preservedAreaSize += REGSIZE_BYTES;
            }

            // bool in synchronized methods that tracks whether the lock has been taken (takes 4 bytes on stack)
            preservedAreaSize += 4;
        }

        // Used to signal both that the method is compiled for EnC, and also the size of the block at the top of the
        // frame
        gcInfoEncoder->SetSizeOfEditAndContinuePreservedArea(preservedAreaSize);
    }

    if (compiler->opts.IsReversePInvoke())
    {
        unsigned reversePInvokeFrameVarNumber = compiler->lvaReversePInvokeFrameVar;
        assert(reversePInvokeFrameVarNumber != BAD_VAR_NUM && reversePInvokeFrameVarNumber < compiler->lvaRefCount);
        LclVarDsc& reversePInvokeFrameVar = compiler->lvaTable[reversePInvokeFrameVarNumber];
        gcInfoEncoder->SetReversePInvokeFrameSlot(reversePInvokeFrameVar.lvStkOffs);
    }

    gcInfoEncoder->Build();

    // GC Encoder automatically puts the GC info in the right spot using ICorJitInfo::allocGCInfo(size_t)
    // let's save the values anyway for debugging purposes
    compiler->compInfoBlkAddr = gcInfoEncoder->Emit();
    compiler->compInfoBlkSize = 0; // not exposed by the GCEncoder interface
}
#endif // !JIT32_GCENCODER

/*****************************************************************************
 *  Emit a call to a helper function.
 *
 */

void CodeGen::genEmitHelperCall(unsigned helper, int argSize, emitAttr retSize, regNumber callTargetReg)
{
    void* addr  = nullptr;
    void* pAddr = nullptr;

    emitter::EmitCallType callType = emitter::EC_FUNC_TOKEN;
    addr                           = compiler->compGetHelperFtn((CorInfoHelpFunc)helper, &pAddr);
    regNumber callTarget           = REG_NA;
    regMaskTP killMask             = compiler->compHelperCallKillSet((CorInfoHelpFunc)helper);

    if (!addr)
    {
        assert(pAddr != nullptr);

        // Absolute indirect call addr
        // Note: Order of checks is important. First always check for pc-relative and next
        // zero-relative.  Because the former encoding is 1-byte smaller than the latter.
        if (genCodeIndirAddrCanBeEncodedAsPCRelOffset((size_t)pAddr) ||
            genCodeIndirAddrCanBeEncodedAsZeroRelOffset((size_t)pAddr))
        {
            // generate call whose target is specified by 32-bit offset relative to PC or zero.
            callType = emitter::EC_FUNC_TOKEN_INDIR;
            addr     = pAddr;
        }
        else
        {
#ifdef _TARGET_AMD64_
            // If this indirect address cannot be encoded as 32-bit offset relative to PC or Zero,
            // load it into REG_HELPER_CALL_TARGET and use register indirect addressing mode to
            // make the call.
            //    mov   reg, addr
            //    call  [reg]

            if (callTargetReg == REG_NA)
            {
                // If a callTargetReg has not been explicitly provided, we will use REG_DEFAULT_HELPER_CALL_TARGET, but
                // this is only a valid assumption if the helper call is known to kill REG_DEFAULT_HELPER_CALL_TARGET.
                callTargetReg            = REG_DEFAULT_HELPER_CALL_TARGET;
                regMaskTP callTargetMask = genRegMask(callTargetReg);
                noway_assert((callTargetMask & killMask) == callTargetMask);
            }
            else
            {
                // The call target must not overwrite any live variable, though it may not be in the
                // kill set for the call.
                regMaskTP callTargetMask = genRegMask(callTargetReg);
                noway_assert((callTargetMask & regSet.rsMaskVars) == RBM_NONE);
            }
#endif

            callTarget = callTargetReg;
            CodeGen::genSetRegToIcon(callTarget, (ssize_t)pAddr, TYP_I_IMPL);
            callType = emitter::EC_INDIR_ARD;
        }
    }

    // clang-format off
    getEmitter()->emitIns_Call(callType,
                               compiler->eeFindHelper(helper),
                               INDEBUG_LDISASM_COMMA(nullptr) addr,
                               argSize,
                               retSize
                               MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(EA_UNKNOWN),
                               gcInfo.gcVarPtrSetCur,
                               gcInfo.gcRegGCrefSetCur,
                               gcInfo.gcRegByrefSetCur,
                               BAD_IL_OFFSET, // IL offset
                               callTarget,    // ireg
                               REG_NA, 0, 0,  // xreg, xmul, disp
                               false,         // isJump
                               emitter::emitNoGChelper(helper));
    // clang-format on

    regTracker.rsTrashRegSet(killMask);
    regTracker.rsTrashRegsForGCInterruptability();
}

#if !defined(_TARGET_64BIT_)
//-----------------------------------------------------------------------------
//
// Code Generation for Long integers
//
//-----------------------------------------------------------------------------

//------------------------------------------------------------------------
// genStoreLongLclVar: Generate code to store a non-enregistered long lclVar
//
// Arguments:
//    treeNode - A TYP_LONG lclVar node.
//
// Return Value:
//    None.
//
// Assumptions:
//    'treeNode' must be a TYP_LONG lclVar node for a lclVar that has NOT been promoted.
//    Its operand must be a GT_LONG node.
//
void CodeGen::genStoreLongLclVar(GenTree* treeNode)
{
    emitter* emit = getEmitter();

    GenTreeLclVarCommon* lclNode = treeNode->AsLclVarCommon();
    unsigned             lclNum  = lclNode->gtLclNum;
    LclVarDsc*           varDsc  = &(compiler->lvaTable[lclNum]);
    assert(varDsc->TypeGet() == TYP_LONG);
    assert(!varDsc->lvPromoted);
    GenTreePtr op1 = treeNode->gtOp.gtOp1;
    noway_assert(op1->OperGet() == GT_LONG || op1->OperGet() == GT_MUL_LONG);
    genConsumeRegs(op1);

    if (op1->OperGet() == GT_LONG)
    {
        // Definitions of register candidates will have been lowered to 2 int lclVars.
        assert(!treeNode->InReg());

        GenTreePtr loVal = op1->gtGetOp1();
        GenTreePtr hiVal = op1->gtGetOp2();

        // NYI: Contained immediates.
        NYI_IF((loVal->gtRegNum == REG_NA) || (hiVal->gtRegNum == REG_NA),
               "Store of long lclVar with contained immediate");

        emit->emitIns_S_R(ins_Store(TYP_INT), EA_4BYTE, loVal->gtRegNum, lclNum, 0);
        emit->emitIns_S_R(ins_Store(TYP_INT), EA_4BYTE, hiVal->gtRegNum, lclNum, genTypeSize(TYP_INT));
    }
    else if (op1->OperGet() == GT_MUL_LONG)
    {
        assert((op1->gtFlags & GTF_MUL_64RSLT) != 0);

        // Stack store
        getEmitter()->emitIns_S_R(ins_Store(TYP_INT), emitTypeSize(TYP_INT), REG_LNGRET_LO, lclNum, 0);
        getEmitter()->emitIns_S_R(ins_Store(TYP_INT), emitTypeSize(TYP_INT), REG_LNGRET_HI, lclNum,
                                  genTypeSize(TYP_INT));
    }
}
#endif // !defined(_TARGET_64BIT_)

/*****************************************************************************
* Unit testing of the XArch emitter: generate a bunch of instructions into the prolog
* (it's as good a place as any), then use COMPlus_JitLateDisasm=* to see if the late
* disassembler thinks the instructions as the same as we do.
*/

// Uncomment "#define ALL_ARM64_EMITTER_UNIT_TESTS" to run all the unit tests here.
// After adding a unit test, and verifying it works, put it under this #ifdef, so we don't see it run every time.
//#define ALL_XARCH_EMITTER_UNIT_TESTS

#if defined(DEBUG) && defined(LATE_DISASM) && defined(_TARGET_AMD64_)
void CodeGen::genAmd64EmitterUnitTests()
{
    if (!verbose)
    {
        return;
    }

    if (!compiler->opts.altJit)
    {
        // No point doing this in a "real" JIT.
        return;
    }

    // Mark the "fake" instructions in the output.
    printf("*************** In genAmd64EmitterUnitTests()\n");

    // We use this:
    //      genDefineTempLabel(genCreateTempLabel());
    // to create artificial labels to help separate groups of tests.

    //
    // Loads
    //
    CLANG_FORMAT_COMMENT_ANCHOR;

#ifdef ALL_XARCH_EMITTER_UNIT_TESTS
#ifdef FEATURE_AVX_SUPPORT
    genDefineTempLabel(genCreateTempLabel());

    // vhaddpd     ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_haddpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vaddss      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_addss, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vaddsd      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_addsd, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vaddps      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_addps, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vaddps      ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_addps, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vaddpd      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_addpd, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vaddpd      ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_addpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vsubss      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_subss, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vsubsd      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_subsd, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vsubps      ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_subps, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vsubps      ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_subps, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vsubpd      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_subpd, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vsubpd      ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_subpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vmulss      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_mulss, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vmulsd      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_mulsd, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vmulps      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_mulps, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vmulpd      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_mulpd, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vmulps      ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_mulps, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vmulpd      ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_mulpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vandps      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_andps, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vandpd      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_andpd, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vandps      ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_andps, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vandpd      ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_andpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vorps      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_orps, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vorpd      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_orpd, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vorps      ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_orps, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vorpd      ymm0,ymm1,ymm2
    getEmitter()->emitIns_R_R_R(INS_orpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vdivss      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_divss, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vdivsd      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_divsd, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vdivss      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_divss, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vdivsd      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_divsd, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2);

    // vdivss      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_cvtss2sd, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
    // vdivsd      xmm0,xmm1,xmm2
    getEmitter()->emitIns_R_R_R(INS_cvtsd2ss, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2);
#endif // FEATURE_AVX_SUPPORT
#endif // ALL_XARCH_EMITTER_UNIT_TESTS
    printf("*************** End of genAmd64EmitterUnitTests()\n");
}

#endif // defined(DEBUG) && defined(LATE_DISASM) && defined(_TARGET_AMD64_)

#endif // _TARGET_AMD64_

#endif // !LEGACY_BACKEND