summaryrefslogtreecommitdiff
path: root/src/inc/CrstTypeTool.cs
blob: d6d90e427bfc78d2fa7472d7655e114f42f8165e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

// 
// This tool exists to transform a high level description of Crst dependencies (i.e. which Crst type may be
// acquired before or after other Crst types) into a header file that defines a enum to describe each Crst
// type and tables that map type to numerical ranking and a string based name.
//
// To use the tool, run "csc.exe CrstTypeTool.cs" and run the resulting executable.
// 
// The Crst type definition file is written in a very simple language. Comments begin with '//' and continue
// to the end of the line. All remaining tokens after comment removal are simply sequences of non-whitespace
// characters separated by whitespace. Keywords are case-insensitive and identifiers (which are always Crst
// type names) are case sensitive. The language grammar is given below in EBNF-like form:
//
//      TopLevel        ::= CrstDefinition*
//
//      CrstDefinition  ::= 'Crst' <Crst type name> CrstDependency* 'End'
//
//      CrstDependency  ::= 'AcquiredBefore' <Crst type name>*
//                      |   'AcquiredAfter' <Crst type name>*
//                      |   'SameLevelAs' <Crst type name>*
//                      |   'Unordered'
//
// Crst type names match the CrstType enums used in the source code minus the 'Crst' prefix. For example
// CrstAppDomainCache is written as 'AppDomainCache' in the .def file.
//
// The dependency "A 'AcquiredBefore' B" indicates that CrstA may be legally held while CrstB is acquired.
// Similarly "A 'AcquiredAfter' B" indicates that CrstA may be legally acquired while CrstB is held. "A
// 'AcquiredBefore' B" is logically equivalent to "B 'AcquiredAfter' A" and authors may enter the dependency
// is whichever seems to make the most sense to them (or add both rules if they so desire).
//
// 'Unordered' indicates that the Crst type does not participate in ranking (there should be very few Crsts
// like this and those that are know how to avoid or deal with deadlocks manually).
//
// 'SameLevelAs' indicates the given Crst type may be acquired alongside any number of instances of the Crst
// types indicated. "A 'SameLevel' B" automatically implies "B 'SameLevel' A" so it's not necessary to specify
// the dependency both ways though authors can do so if they wish.
//
// Simple validation of the .def file (over and above syntax checking) is performed by this tool prior to
// emitting the header file. This will catch logic errors such as referencing a Crst type that is not
// defined or using the 'Unordered' attribute along with any other attribute within a single definition. It
// will also catch cycles in the dependency graph (i.e. definitions that logically describe a system where the
// Crst types can't be ranked).
//

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Text.RegularExpressions;

// The main application class containing the program entry point.
class CrstTypeTool
{
    // A hash containing every Crst type defined by the input .def file along with its attributes. Keyed by
    // Crst type name (which is case sensitive and doesn't include the 'Crst' enum prefix).
    Dictionary<string, CrstType> m_crsts = new Dictionary<string, CrstType>();

    // The program entry point.
    public static int Main()
    {
        try
        {
            // Calculate the filenames of the input and output files.
            string inputFile = "CrstTypes.def";
            string outputFile = "CrstTypes.h";

            // A common error is to forget to check out the CrstTypes.h file first. Handle this case specially
            // so we can give a good error message.
            if (File.Exists(outputFile) && (File.GetAttributes(outputFile) & FileAttributes.ReadOnly) != 0)
            {
                Console.WriteLine(outputFile + " is read-only, you must check it out of TFS/SD first");
                return 2;
            }

            // Create an instance of our application class to store state in (specifically the collection of
            // Crst type definitions).
            CrstTypeTool app = new CrstTypeTool();

            // Create a parser for the CrstTypes.def file and run it over the input file (errors are signalled
            // via exception, in common with all the following steps except validation).
            new TypeFileParser().ParseFile(inputFile, app.m_crsts);

            // Validate the collection of Crst type definitions we built up during parsing for common logic
            // errors and the presence of dependency cycles. False is returned from ValidateCrsts if an error
            // was detected (an error message will have already been output to the console at this point).
            if (!app.ValidateCrsts())
                return 3;

            // Perform a topological sort to map each Crst type to a numeric ranking.
            app.LevelCrsts();

            // Emit the new header file containing Crst type definitions and ranking information.
            app.WriteHeaderFile(outputFile);

            // If we get here the transformation was successful; inform the user and we're done.
            Console.WriteLine(outputFile + " successfully updated");
            return 0;
        }
        catch (TypeFileParser.ParseError pe)
        {
            // Syntax errors specific to parsing the input file.
            Console.WriteLine("ParseError: " + pe.Message);
            return 4;
        }
        catch (Exception e)
        {
            // Any other general errors (file I/O problems, out of memory etc.).
            Console.WriteLine("Unexpected exception:");
            Console.WriteLine(e);
            return 5;
        }
    }

    // Emit the CrstTypes.h output file.
    void WriteHeaderFile(string fileName)
    {
        FileStream stream = new FileStream(fileName, FileMode.Create, FileAccess.Write, FileShare.None);
        StreamWriter writer = new StreamWriter(stream);

        // Create a collection based on all the Crst types we've stored in the hash. We do this so we can sort
        // the Crst types we emit (lexically, based on type name).
        Dictionary<string, CrstType>.ValueCollection crstCollection = m_crsts.Values;
        CrstType[] crsts = new CrstType[crstCollection.Count];
        crstCollection.CopyTo(crsts, 0);
        Array.Sort(crsts);

        // Emit the header. Contains copyright information, the usual goop to avoid multiple inclusion and a
        // header comment to discourage direct editing and point the user at the CrstTypes.def file instead
        // (where all will be explained in greater detail).
        writer.WriteLine("//");
        writer.WriteLine("// Licensed to the .NET Foundation under one or more agreements.");
        writer.WriteLine("// The .NET Foundation licenses this file to you under the MIT license.");
        writer.WriteLine("// See the LICENSE file in the project root for more information.");
        writer.WriteLine("//");
        writer.WriteLine();
        writer.WriteLine("#ifndef __CRST_TYPES_INCLUDED");
        writer.WriteLine("#define __CRST_TYPES_INCLUDED");
        writer.WriteLine();
        writer.WriteLine("// **** THIS IS AN AUTOMATICALLY GENERATED HEADER FILE -- DO NOT EDIT!!! ****");
        writer.WriteLine();
        writer.WriteLine("// This file describes the range of Crst types available and their mapping to a numeric level (used by the");
        writer.WriteLine("// runtime in debug mode to validate we're deadlock free). To modify these settings edit the");
        writer.WriteLine("// file:CrstTypes.def file and run the clr\\bin\\CrstTypeTool utility to generate a new version of this file.");
        writer.WriteLine();

        // Emit the CrstType enum to define a value for each crst type (along with the kNumberOfCrstTypes
        // constant).
        writer.WriteLine("// Each Crst type is declared as a value in the following CrstType enum.");
        writer.WriteLine("enum CrstType");
        writer.WriteLine("{");
        for (int i = 0; i < crsts.Length; i++)
            writer.WriteLine("    Crst" + crsts[i].Name + " = " + i.ToString() + ",");
        writer.WriteLine("    kNumberOfCrstTypes = " + crsts.Length.ToString());
        writer.WriteLine("};");
        writer.WriteLine();

        // This is the end of the regular part of the header included by most files.
        writer.WriteLine("#endif // __CRST_TYPES_INCLUDED");
        writer.WriteLine();

        // There is a second section of the header intended for inclusion only by vm\Crst.cpp. This contains
        // some data tables used to map crst type to rank or name. We could instead define two separate
        // headers, but on the whole it seems simpler to do it this way.
        writer.WriteLine("// Define some debug data in one module only -- vm\\crst.cpp.");
        writer.WriteLine("#if defined(__IN_CRST_CPP) && defined(_DEBUG)");
        writer.WriteLine();

        // Emit the crst type to rank mapping table.
        writer.WriteLine("// An array mapping CrstType to level.");
        writer.WriteLine("int g_rgCrstLevelMap[] =");
        writer.WriteLine("{");
        foreach (CrstType crst in crsts)
            writer.WriteLine("    " + crst.Level + ",\t\t\t// Crst" + crst.Name);
        writer.WriteLine("};");
        writer.WriteLine();

        // Emit the crst type to name mapping table.
        writer.WriteLine("// An array mapping CrstType to a stringized name.");
        writer.WriteLine("LPCSTR g_rgCrstNameMap[] =");
        writer.WriteLine("{");
        foreach (CrstType crst in crsts)
            writer.WriteLine("    \"Crst" + crst.Name + "\",");
        writer.WriteLine("};");
        writer.WriteLine();

        // Emit the constant Crst.cpp uses to record an unordered rank.
        writer.WriteLine("// Define a special level constant for unordered locks.");
        writer.WriteLine("#define CRSTUNORDERED (-1)");
        writer.WriteLine();

        // Emit a couple of inline helpers to map type to rank or name (and validate the type while they're at
        // it).
        writer.WriteLine("// Define inline helpers to map Crst types to names and levels.");
        writer.WriteLine("inline static int GetCrstLevel(CrstType crstType)");
        writer.WriteLine("{");
        writer.WriteLine("    LIMITED_METHOD_CONTRACT;");
        writer.WriteLine("    _ASSERTE(crstType >= 0 && crstType < kNumberOfCrstTypes);");
        writer.WriteLine("    return g_rgCrstLevelMap[crstType];");
        writer.WriteLine("}");
        writer.WriteLine("inline static LPCSTR GetCrstName(CrstType crstType)");
        writer.WriteLine("{");
        writer.WriteLine("    LIMITED_METHOD_CONTRACT;");
        writer.WriteLine("    _ASSERTE(crstType >= 0 && crstType < kNumberOfCrstTypes);");
        writer.WriteLine("    return g_rgCrstNameMap[crstType];");
        writer.WriteLine("}");
        writer.WriteLine();

        // And that's the end of the second section of the header file.
        writer.WriteLine("#endif // defined(__IN_CRST_CPP) && defined(_DEBUG)");

        writer.Close();
        stream.Close();
    }

    // Peform checking of the Crst type definitions we've read just read. Various forms of logic error are
    // scanned for including cycles in the dependency graph. Returns true if no errors are found. If false is
    // returned a descriptive error message will have already been written to the console.
    bool ValidateCrsts()
    {
        // Look at each Crst type definition in turn.
        foreach (CrstType crst in m_crsts.Values)
        {
            // Catch Crst types that are referenced but never defined.
            if (!crst.Defined)
            {
                Console.WriteLine(String.Format("Error: CrstType 'Crst{0}' is referenced without being defined",
                                                crst.Name));
                return false;
            }

            // Catch the use of the 'Unordered' attribute alongside the 'AcquiredBefore' attribute (which
            // indicates an ordering).
            if (crst.Level == CrstType.CrstUnordered && (crst.AcquiredBeforeList.Count > 0 ||
                                                         crst.Group != null))
            {
                Console.WriteLine(String.Format("Error: CrstType 'Crst{0}' is declared as both unordered and acquired before 'Crst{1}'",
                                                crst.Name, crst.AcquiredBeforeList[0].Name));
                return false;
            }

            // Catch the use of the 'Unordered' attribute alongside the 'SameLevelAs' attribute (which
            // indicates an ordering).
            if (crst.Level == CrstType.CrstUnordered && crst.Group != null)
            {
                Console.WriteLine(String.Format("Error: CrstType 'Crst{0}' is declared as both unordered and in the same level as another CrstType",
                                                crst.Name));
                return false;
            }

            // Catch the simple cycle where the Crst type depends on itself.
            if (crst.AcquiredBeforeList.Contains(crst))
            {
                Console.WriteLine(String.Format("Error: CrstType 'Crst{0}' is declared as being acquired before itself",
                                                crst.Name));
                return false;
            }

            // Look for deeper cycles using a recursive algorithm in 'FindCycle()'.
            List<CrstType> cycleList = new List<CrstType>();
            if (FindCycle(crst, crst, cycleList))
            {
                Console.WriteLine(String.Format("Error: CrstType 'Crst{0}' is involved in a dependency cycle with the following CrstTypes:",
                                                crst.Name));
                foreach (CrstType cycleCrst in cycleList)
                    Console.WriteLine(String.Format("    Crst{0}", cycleCrst.Name));
                return false;
            }
        }

        // Perform normalization of each set of Crst types that are included in the same group (i.e. have a
        // 'SameLevelAs' relationship). Normalization means that each Crst type in a group will have exactly
        // the same set of dependency rules as all the others.
        CrstTypeGroup.NormalizeAllRules();

        // The normalization process could have introduced cycles in the dependency graph so run the cycle
        // detection pass again. We do separate passes like this since normalizing can lead to less intuitive
        // error messages if a cycle is found: so if the cycle exists before normalization takes place we want
        // to generate an error message then.
        foreach (CrstType crst in m_crsts.Values)
        {
            List<CrstType> cycleList = new List<CrstType>();
            if (FindCycle(crst, crst, cycleList))
            {
                Console.WriteLine(String.Format("Error: CrstType 'Crst{0}' is involved in a dependency cycle with the following CrstTypes:",
                                                crst.Name));
                foreach (CrstType cycleCrst in cycleList)
                    Console.WriteLine(String.Format("    Crst{0}", cycleCrst));
                Console.WriteLine("Note that the cycle was detected only after 'SameLevelAs' processing was performed so some CrstType dependencies are implied by peer CrstTypes");
                return false;
            }
        }

        return true;
    }

    // Recursively determine if a cycle exists in the Crst type dependency graph rooted at the 'rootCrst'
    // type. The 'currCrst' indicates the next dependency to be examined (it will be the same as the
    // 'rootCrst' when we're first called). The 'cycleList' argument contains a list of Crst types we've
    // already examined in this branch of the algorithm and serves both to avoid checking the same node twice
    // and to provide a list of the involved Crst types should a cycle be detected.
    // Note that this algorithm is not designed to detect general cycles in the graph, only those that involve
    // the 'rootCrst' directly. This is somewhat inefficient but gives us a simple way to generate clear error
    // messages.
    bool FindCycle(CrstType rootCrst, CrstType currCrst, List<CrstType> cycleList)
    {
        // Add the current Crst type to the list of those we've seen.
        cycleList.Add(currCrst);

        // Look through all the dependencies of the current Crst type.
        foreach (CrstType childCrst in currCrst.AcquiredBeforeList)
        {
            // If we find a reference back to the root Crst type then we've found a cycle. Start backing out
            // from the recursion (keeping the list of nodes we visited intact) by returning true.
            if (childCrst == rootCrst)
                return true;

            // Otherwise iterate over the dependencies of the current node and for each one that we haven't
            // already seen and recursively extend the search.
            if (!cycleList.Contains(childCrst))
                if (FindCycle(rootCrst, childCrst, cycleList))
                    return true;
        }

        // Didn't find any cycles involving the root and this node; remove this node from the potential cycle
        // list and return up to our caller indicating such.
        cycleList.RemoveAt(cycleList.Count - 1);

        return false;
    }

    // Topologically sort all the Crsts so we can assign a total ordering to them (in the form of a numeric
    // ranking). Ranks start from 0 (Crst types that may be acquired at any time) and increment from there
    // (Crst types that may only be acquired if a lower type is not already held).
    // **** NOTE: The leveling process is destructive in that we will lose all dependency information from the
    // Crst type definitions during the course of the algorithm.
    void LevelCrsts()
    {
        // Note that Crst type dependency rules have been normalized (by the input parser) so that all
        // AcquiredBefore/AcquiredAfter relationships have been reduced to AcquiredBefore relationships (i.e.
        // any rule of the form "A AcquiredAfter B" has been converted to "B AcquiredBefore A". Any
        // normalization makes the algorithm easier to program, but a normaliztion to AcquiredBefore
        // relationships was chosen since it makes it particularly easy to implement an algorithm that assigns
        // ranks beginning with zero and moving up to an arbitrary level. Any type that doesn't have any
        // AcquiredBefore dependencies can always be ranked at a lower level than any remaining unranked types
        // by definition and from this we can derive a simple iterative process to rank all the crst types.

        // Calculate how many Crst types we have left to rank (some are not included in this step because
        // they've been marked as 'Unordered' in the input file).
        int unsorted = 0;
        foreach (CrstType crst in m_crsts.Values)
            if (crst.Level == CrstType.CrstUnassigned)
                unsorted++;

        // The ranking level we're going to assign to Crst types on the next pass of the algorithm.
        int currLevel = 0;

        // Iterate while we still have Crst types left to rank. On each pass we'll assign a rank to those
        // types that no longer have any dependencies forcing them to have a higher rank and then remove
        // dependency rules involving those newly ranked types from the remaining types.
        while (unsorted > 0)
        {
            // Record a flag indicating whether we manage to assign a rank to at least one Crst type on this
            // pass. If we ever fail to do this we've hit a cycle (this is just paranoia, the Crst declaration
            // validation performed in ValidateCrsts() should have detected such a cycle first).
            bool madeProgress = false;

            // If we spot any types that are in a group (SameLevelAs relationship) then we defer assigning a
            // rank till we've dealt with any non-group types (we wish to always place type groups in their
            // very own rank else the Crst rank violation detection code won't detect violations between
            // members of the group and singleton types that happened to be assigned rank on the same pass).
            List<CrstTypeGroup> deferredGroups = new List<CrstTypeGroup>();

            // Scan through all the Crst types.
            foreach (CrstType crst in m_crsts.Values)
            {
                // Skip those types that already have a rank assigned.
                if (crst.Level != CrstType.CrstUnassigned)
                    continue;

                // We're looking for Crst types that no longer have any types that can be acquired while they
                // are already held. This indicates that it's safe to assign the current rank to them (since
                // there are no remaining dependencies that need to be ranked first (i.e. with a lower rank
                // value than this type).
                if (crst.AcquiredBeforeList.Count == 0)
                {
                    if (crst.Group == null)
                    {
                        // If this type is not part of the group we can go and assign the rank right away.
                        crst.Level = currLevel;
                        madeProgress = true;
                        unsorted--;
                    }
                    else if (!deferredGroups.Contains(crst.Group))
                        // Otherwise we'll defer ranking this group member until all the singletons are
                        // processed.
                        deferredGroups.Add(crst.Group);
                }
            }

            // We've gone through the entire collection of Crst types and assigned the current rank level to
            // any singleton Crst types that qualify. Now deal with any group members we detected (it's
            // possible that more than one group qualifies for ranking at this level but we need to be careful
            // to assign distinct rank values to each group to avoid hiding lock rank violations (since group
            // members are always allowed to be acquired alongside any other type with the same rank value).
            // Iterate over each distinct group that we found in this pass.
            foreach (CrstTypeGroup group in deferredGroups)
            {
                // Look at our progress flag here. If it is false then we didn't have any singleton Crst types
                // ranked at this level and we haven't processed any other groups at this level either. Thus
                // we can rank this group at the current level. Otherwise at least one type was already ranked
                // with this level so we need to increment to a new, distinct level to avoid ranking
                // ambiguity.
                if (madeProgress)
                    currLevel++;

                // Iterate through each Crst type that is a member of this group assigning them the (same)
                // current rank.
                foreach (CrstType crst in group.Members)
                {
                    // Double check that each member has the same dependencies (i.e. they should all be empty
                    // by now). There should be no way that this error should ever occur, it's just paranoia
                    // on my part.
                    if (crst.AcquiredBeforeList.Count != 0)
                        throw new Exception("Internal error: SameLevel CrstTypes with differing rulesets");

                    crst.Level = currLevel;
                    unsorted--;
                }

                // Once we've processed at least one group we've made progress this iteration.
                madeProgress = true;
            }

            // If we didn't manage to assign rank to at least one Crst type then we're not going to do any
            // better next iteration either (because no state was updated in this iteration). This should only
            // occur in the presence of a dependency cycle and we shouldn't get that here after a successful
            // call to ValidateCrsts(), so this check is pure paranoia.
            if (!madeProgress)
            {
                Console.WriteLine(String.Format("{0} unsorted remain", unsorted));
                throw new Exception("Cycle detected trying to assign level " + currLevel.ToString());
            }

            // Loop through all the unranked Crsts types and remove any AcquiredBefore relationships that
            // involve types we've already leveled (since those types, by definition, have already been
            // assigned a lower rank).
            foreach (CrstType crst in m_crsts.Values)
            {
                if (crst.Level != CrstType.CrstUnassigned)
                    continue;
                List<CrstType> prunedCrsts = crst.AcquiredBeforeList.FindAll(Unleveled);
                crst.AcquiredBeforeList = prunedCrsts;
            }

            // Done with this rank level, move to the next.
            currLevel++;
        }
    }

    // Predicate method used with List<T>.FindAll() to locate Crst types that haven't had their rank assigned
    // yet.
    static bool Unleveled(CrstType crst)
    {
        return crst.Level == CrstType.CrstUnassigned;
    }
}

// Class used to parse a CrstTypes.def file into a dictionary of Crst type definitions. It uses a simple lexer
// that removes comments then forms tokens out of any consecutive non-whitespace characters. An equally simple
// recursive descent parser forms Crst instances by parsing the token stream.
class TypeFileParser
{
    // Remember the input file name and the dictionary we're meant to populate.
    string                          m_typeFileName;
    Dictionary<string, CrstType>    m_crsts;

    // Compile regular expressions for detecting comments and tokens in the parser input.
    Regex                           m_commentRegex = new Regex(@"//.*");
    Regex                           m_tokenRegex = new Regex(@"^(\s*(\S+)\s*)*");

    // Input is lexed into an array of tokens. We record the index of the token being currently parsed.
    Token[]                         m_tokens;
    int                             m_currToken;

    // Parse the given file into Crst type definitions and place these definitions in the dictionary provided.
    // Syntax errors are signalled via ParseError derived exceptions.
    public void ParseFile(string typeFileName, Dictionary<string, CrstType> crsts)
    {
        m_typeFileName = typeFileName;
        m_crsts = crsts;

        // Lex the file into tokens.
        InitTokenStream();

        // Parse the tokens according to the grammar set out at the top of this file.
        // Loop until we have no further tokens to process.
        while (!IsEof())
        {
            // Grab the next token.
            Token token = NextToken();

            // We're at the top level, so the token had better be 'Crst'.
            if (token.Id != KeywordId.Crst)
                throw new UnexpectedTokenError(token, KeywordId.Crst);

            // OK, parse the rest of this single Crst type definition.
            ParseCrst();
        }
    }

    // Parse a single Crst type definition.
    void ParseCrst()
    {
        // The next token had better be an identifier (the Crst type name).
        Token token = NextToken();
        if (token.Id != KeywordId.Id)
            throw new UnexpectedTokenError(token, KeywordId.Id);

        // The Crst instance might already exist in the dictionary (forward references to a Crst type cause
        // these entries to auto-vivify). But in that case the entry better not be marked as 'Defined' which
        // would indicate a double declaration.
        CrstType crst;
        if (m_crsts.ContainsKey(token.Text))
        {
            crst = m_crsts[token.Text];
            if (crst.Defined)
                throw new ParseError(String.Format("Duplicate definition for CrstType '{0}'", token.Text), token);
        }
        else
        {
            // Otherwise this Crst type hasn't been seen thus far so we allocate a new instance and add it to
            // the dictionary.
            crst = new CrstType(token.Text);
            m_crsts.Add(crst.Name, crst);
        }

        // We're defining, not just referencing this type.
        crst.Defined = true;

        // Parse any attributes inside this definition (until we see an 'End' token).
        bool parsingCrst = true;
        while (parsingCrst)
        {
            // Get the next token. Either some attribute keyword or 'End'.
            token = NextToken();
            List<CrstType> list;

            switch (token.Id)
            {

            case KeywordId.AcquiredBefore:
                // Simply parse the following list of Crst types into the current type's AcquiredBefore list.
                ParseList(crst.AcquiredBeforeList);
                break;

            case KeywordId.AcquiredAfter:
                // AcquiredAfter is trickier. To make the ranking algorithm's life easier we actually
                // normalize all rules to the AcquiredBefore form (see LevelCrsts() for the reasoning). So we
                // capture the list of Crst types that follow the AcquiredAfter keyword and then append the
                // current type to the AcquiredBefore list of each type found.
                list = new List<CrstType>();
                ParseList(list);
                foreach (CrstType priorCrst in list)
                    priorCrst.AcquiredBeforeList.Add(crst);
                break;

            case KeywordId.SameLevelAs:
                // Parse the following list of Crst types them let the CrstTypeGroup class handle the
                // resulting updates to the type groups we're currently maintaining. See the comments for the
                // CrstTypeGroup class for more details.
                list = new List<CrstType>();
                ParseList(list);
                foreach (CrstType sameLevelCrst in list)
                    CrstTypeGroup.Join(crst, sameLevelCrst);
                break;

            case KeywordId.Unordered:
                crst.Level = CrstType.CrstUnordered;
                break;

            case KeywordId.End:
                parsingCrst = false;
                break;

            default:
                throw new UnexpectedTokenError(token,
                                               KeywordId.AcquiredBefore,
                                               KeywordId.AcquiredAfter,
                                               KeywordId.SameLevelAs,
                                               KeywordId.Unordered);
            }
        }
    }

    // Parse a list of Crst type names. Any other token terminates the list (without error and without
    // consuming that token from the stream). The list of tokens is returned as a list of corresponding
    // CrstTypes (which are auto-vivified in the output dictionary if they haven't been declared yet).
    void ParseList(List<CrstType> list)
    {
        // Parse tokens until we find a non-indentifier.
        while (true)
        {
            Token token = NextToken();
            if (token.Id != KeywordId.Id)
            {
                // We found the list terminator. Push the non-identifier token back into the stream for our
                // caller to parse correctly.
                UnwindToken();
                return;
            }

            // Look up or add a new CrstType corresponding to this type name.
            CrstType crst;
            if (m_crsts.ContainsKey(token.Text))
                crst = m_crsts[token.Text];
            else
            {
                crst = new CrstType(token.Text);
                m_crsts[crst.Name] = crst;
            }

            // Add the type to the output list we're building.
            list.Add(crst);
        }
    }

    // Lex the input file into an array of tokens.
    void InitTokenStream()
    {
        StreamReader    file = new StreamReader(m_typeFileName);
        int             lineNumber = 1;
        List<Token>     tokenList = new List<Token>();

        // Read the file a line at a time.
        string line;
        while ((line = file.ReadLine()) != null)
        {
            // Remove comments from the current line.
            line = m_commentRegex.Replace(line, "");

            // Match all contiguous non-whitespace characters as individual tokens.
            Match match = m_tokenRegex.Match(line);
            if (match.Success)
            {
                // For each token captured build a token instance and record the token text and the file, line
                // and column at which it was encountered (these latter in order to produce useful syntax
                // error messages).
                CaptureCollection cap = match.Groups[2].Captures;
                for (int i = 0; i < cap.Count; i++)
                    tokenList.Add(new Token(m_typeFileName, cap[i].Value, lineNumber, cap[i].Index));
            }

            lineNumber++;
        }

        // Record the list of tokens we captured as an array and reset the index of the next token to be
        // handled by the parser.
        m_tokens = tokenList.ToArray();
        m_currToken = 0;
    }

    // Have we run out of tokens to parse?
    bool IsEof()
    {
        return m_currToken >= m_tokens.Length;
    }

    // Get the next token and throw an exception if we ran out.
    Token NextToken()
    {
        if (m_currToken >= m_tokens.Length)
            throw new UnexpectedEofError();
        return m_tokens[m_currToken++];
    }

    // Push the last token parsed back into the stream.
    void UnwindToken()
    {
        if (m_currToken <= 0)
            throw new InvalidOperationException();
        m_currToken--;
    }

    // The various keywords we can encounter (plus Id for identifiers, which are currently always Crst type
    // names).
    internal enum KeywordId
    {
        Id,
        Crst,
        End,
        AcquiredBefore,
        AcquiredAfter,
        Unordered,
        SameLevelAs,
    }

    // Class encapsulating a single token captured from the input file.
    internal class Token
    {
        // Hash of keyword text to enum values.
        static Dictionary<string, KeywordId> s_keywords;

        // The characters comprising the text of the token from the input file.
        string      m_text;

        // Where the token was found (for error messages).
        string      m_file;
        int         m_line;
        int         m_column;

        // The ID of the keyword this token represents (or KeywordId.Id).
        KeywordId   m_id;

        // Static class initialization.
        static Token()
        {
            // Populate the keyword hash. No sense building complex finite state machines to improve the
            // efficiency of keyword lexing here since the input file (and keyword set) is never going to be
            // big enough to justify the extra work.
            s_keywords = new Dictionary<string, KeywordId>();
            s_keywords.Add("crst", KeywordId.Crst);
            s_keywords.Add("end", KeywordId.End);
            s_keywords.Add("acquiredbefore", KeywordId.AcquiredBefore);
            s_keywords.Add("acquiredafter", KeywordId.AcquiredAfter);
            s_keywords.Add("unordered", KeywordId.Unordered);
            s_keywords.Add("samelevelas", KeywordId.SameLevelAs);
        }

        public Token(string file, string text, int line, int column)
        {
            m_file = file;
            m_text = text;
            m_line = line;
            m_column = column;

            // Map token text to keyword ID. True keywords (not identifiers) are case insensitive so normalize
            // the text to lower case before performing the keyword hash lookup.
            string canonName = m_text.ToLower();
            if (s_keywords.ContainsKey(canonName))
                m_id = s_keywords[canonName];
            else
                m_id = KeywordId.Id;
        }

        public string Text {get { return m_text; }}
        public string Location {get { return String.Format("{0} line {1}, column {2}", m_file, m_line, m_column); }}
        public KeywordId Id {get { return m_id; }}
    }

    // Base class for all syntax errors reported by the parser.
    internal class ParseError : Exception
    {
        // A raw error message.
        public ParseError(string message)
            : base(message)
        {}

        // An error message tagged with a file, line and column (coming from an error token).
        public ParseError(string message, Token errorToken)
            : base(String.Format("{0}: {1}", errorToken.Location, message))
        {}

        // Produce a textual name for the given keyword type.
        protected static string IdToName(KeywordId id)
        {
            if (id == KeywordId.Id)
                return "a CrstType name";
            return String.Format("'{0}'", id.ToString());
        }
    }

    // Syntax error used when an unexpected token is encountered which further lists the valid tokens that
    // would otherwise have been accepted.
    internal class UnexpectedTokenError : ParseError
    {
        // Produce an unexpected token message with a file, line and column coming from an error token and
        // optionally the names of zero or more tokens that would have been accepted.
        public UnexpectedTokenError(Token errorToken, params KeywordId[] expected)
            : base(FormatErrorMessage(errorToken, expected))
        {}

        static string FormatErrorMessage(Token errorToken, KeywordId[] expected)
        {
            StringBuilder message = new StringBuilder(String.Format("Unexpected token '{0}' at {1}",
                                                                    errorToken.Text, errorToken.Location));
            if (expected.Length == 0)
            {
            }
            else if (expected.Length == 1)
            {
                message.Append(String.Format("; expected {0}", IdToName(expected[0])));
            }
            else
            {
                message.Append("; expected one of ");
                for (int i = 0; i < expected.Length - 1; i++)
                    message.Append(String.Format("{0}, ", IdToName(expected[i])));
                message.Append(IdToName(expected[expected.Length - 1]));
                    
            }

            return message.ToString();
        }
    }

    // Syntax error used when we unexpectedly ran out of tokens.
    internal class UnexpectedEofError : ParseError
    {
        public UnexpectedEofError()
            : base("Unexpected end of file")
        {}
    }
}

// This class represents an instance of a Crst type. These are unqiuely identified by case-sensitive name (the
// same as the enum name used in vm code, minus the 'Crst' prefix).
class CrstType : IComparable
{
    // Special level constants used to indicate unordered Crst types or those types we haven't gotten around
    // to ranking yet.
    public static readonly int CrstUnordered = -1;
    public static readonly int CrstUnassigned = -2;

    // Name of the type, e.g. "AppDomainCache" for the CrstAppDomainCache type.
    string          m_name;

    // The numeric ranking assigned to this type. Starts as CrstUnassigned and then becomes either
    // CrstUnordered (while parsing the input file) or a number >= 0 (during LevelCrsts()).
    int             m_level;

    // List of Crst types that can be legally acquired while this one is held. (AcquiredAfter relationships
    // are by switching the terms and adding to the second type's AcquiredBefore list).
    List<CrstType>  m_acquiredBeforeCrsts;

    // Either null if this Crst type is not in (or has not yet been determined to be in) a SameLevelAs
    // relationship or points to a CrstTypeGroup that records all the sibling types at the same level (that
    // have been discovered thus far during parsing).
    CrstTypeGroup   m_group;

    // Set once a definition for this type has been discovered. Used to detect double definitions and types
    // referenced without definitions.
    bool            m_defined;

    public CrstType(string name)
    {
        m_name = name;
        m_level = CrstUnassigned;
        m_acquiredBeforeCrsts = new List<CrstType>();
        m_group = null;
        m_defined = false;
    }

    public string Name {get { return m_name; }}
    public int Level {get { return m_level; } set { m_level = value; }}
    public List<CrstType> AcquiredBeforeList {get { return m_acquiredBeforeCrsts; } set { m_acquiredBeforeCrsts = value; }}
    public CrstTypeGroup Group {get { return m_group; } set { m_group = value; }}
    public bool Defined {get {return m_defined; } set { m_defined = value; }}

    // Helper used to sort CrstTypes. The sort order is lexical based on the type name.
    public int CompareTo(object other)
    {
        return m_name.CompareTo(((CrstType)other).m_name);
    }
}

// Every time a SameLevelAs relationship is used we need to be careful to keep track of the transitive closure
// of all types bound in the relationship. That's because such a relationship impacts the other dependency
// rules (each member of a SameLevelAs group must behave as though it has exactly the same dependency rules as
// all the others). Identifying all the members is tricky because "A SameLevelAs B" and "B SameLevelAs C"
// implies "A SameLevelAs C". So we use a separate tracking structure, instances of the CrstTypeGroup type, to
// do the bookkeeping for us. Each Crst type belongs to either zero or one CrstTypeGroups. As we find new
// SameLevelAs relationships we create new groups, add types to existing groups or merge groups (as previous
// distinct groups are merged by the discovery of a SameLevelAs relationship that links them). By the time
// parsing has finished we are guaranteed to have discovered all the distinct, disjoint groups and to have
// fully populated them with the transitive closure of all related types. We can them normalize all groups
// members so they share the same AcquiredBefore relationships.
class CrstTypeGroup
{
    // We record every group that has been formed so far. This makes normalizing all groups easier.
    static List<CrstTypeGroup>  s_groups = new List<CrstTypeGroup>();

    // Crst types that are members of the current group. There are no duplicates in this list.
    List<CrstType>              m_members = new List<CrstType>();

    // Declare a SameLevelAs relationship between the two Crst types given. Groups will be assigned, created
    // or merged as required to maintain our guarantees (each CrstType is a member of at most one group and
    // all CrstTypes involved in the same transitive closure of a SameLevelAs relationship are members of one
    // group).
    public static void Join(CrstType crst1, CrstType crst2)
    {
        CrstTypeGroup group;

        if (crst1 == crst2)
        {
            // In this case the type refers to itself. Create a singleton group for this type if it doesn't
            // already exist.
            if (crst1.Group == null)
            {
                group = new CrstTypeGroup();
                group.m_members.Add(crst1);

                s_groups.Add(group);

                crst1.Group = group;
            }
        }
        else if (crst1.Group == null && crst2.Group == null)
        {
            // Neither types belong to a group already. So we can create a new one and add both types to it.
            group = new CrstTypeGroup();
            group.m_members.Add(crst1);
            group.m_members.Add(crst2);

            s_groups.Add(group);

            crst1.Group = group;
            crst2.Group = group;
        }
        else if (crst1.Group == null)
        {
            // The first type doesn't belong to a group yet but the second does. So we can simply add the
            // first type to the second group.
            group = crst2.Group;
            group.m_members.Add(crst1);

            crst1.Group = group;
        }
        else if (crst2.Group == null)
        {
            // As for the case above but the group/no-group positions are reversed.
            group = crst1.Group;
            group.m_members.Add(crst2);

            crst2.Group = group;
        }
        else if (crst1.Group != crst2.Group)
        {
            // Both types belong to different groups so we'll have to merge them. Add the members of group 2
            // to group 1 and throw away group 2.
            group = crst1.Group;
            CrstTypeGroup absorbGroup = crst2.Group;
            foreach (CrstType crst in absorbGroup.m_members)
            {
                group.m_members.Add(crst);
                crst.Group = group;
            }

            s_groups.Remove(absorbGroup);
        }

        // The only case left is when both types are already in the same group and there's no work needed in
        // this case.
    }

    // Normalize all the groups we created during parsing. See below for the definition of normalization.
    public static void NormalizeAllRules()
    {
        foreach (CrstTypeGroup group in s_groups)
            group.NormalizeRules();
    }

    // Normalize this group. This involves adjusting the AcquiredBefore list of each member to be the union of
    // all such rules within the group. This step allows us to detect cycles in the dependency graph that
    // would otherwise remain hidden if we only examined the unnormalized AcquiredBefore rules.
    void NormalizeRules()
    {
        // This local will contain the union of all AcquiredBefore rules.
        List<CrstType> acquiredBeforeList = new List<CrstType>();

        // Iterate through each member of the group.
        foreach (CrstType crst in m_members)
        {
            // Add each AcquiredBefore rule we haven't already seen to the union.
            foreach (CrstType afterCrst in crst.AcquiredBeforeList)
                if (!acquiredBeforeList.Contains(afterCrst))
                    acquiredBeforeList.Add(afterCrst);
        }

        // Reset each member's AcquiredBefore list to a copy of the union we calculated. Note it's important
        // to make a (shallow) copy because the ranking process modifies this list and so a shared copy would
        // cause unexpected results.
        foreach (CrstType crst in m_members)
            crst.AcquiredBeforeList = acquiredBeforeList.GetRange(0, acquiredBeforeList.Count);
    }

    public List<CrstType> Members {get { return m_members; }}
}