summaryrefslogtreecommitdiff
path: root/src/gc/unix/gcenv.unix.cpp
blob: 45489c69a77eaf6131a10704d8b0a1e4e4c1f4df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

#include <cstdint>
#include <cstddef>
#include <cassert>
#include <memory>

// The CoreCLR PAL defines _POSIX_C_SOURCE to avoid calling non-posix pthread functions.
// This isn't something we want, because we're totally fine using non-posix functions.
#if defined(__APPLE__)
 #define _DARWIN_C_SOURCE
#endif // definfed(__APPLE__)

#include <pthread.h>
#include <signal.h>
#include "config.h"

// clang typedefs uint64_t to be unsigned long long, which clashes with
// PAL/MSVC's unsigned long, causing linker errors. This ugly hack
// will go away once the GC doesn't depend on PAL headers.
typedef unsigned long uint64_t_hack;
#define uint64_t uint64_t_hack
static_assert(sizeof(uint64_t) == 8, "unsigned long isn't 8 bytes");

#ifndef __out_z
#define __out_z
#endif // __out_z

#include "gcenv.structs.h"
#include "gcenv.base.h"
#include "gcenv.os.h"

#ifndef FEATURE_STANDALONE_GC
 #error "A GC-private implementation of GCToOSInterface should only be used with FEATURE_STANDALONE_GC"
#endif // FEATURE_STANDALONE_GC

#ifdef HAVE_SYS_TIME_H
 #include <sys/time.h>
#else
 #error "sys/time.h required by GC PAL for the time being"
#endif // HAVE_SYS_TIME_

#ifdef HAVE_SYS_MMAN_H
 #include <sys/mman.h>
#else
 #error "sys/mman.h required by GC PAL"
#endif // HAVE_SYS_MMAN_H

#ifdef __linux__
 #include <sys/syscall.h>
#endif // __linux__

#include <time.h> // nanosleep
#include <sched.h> // sched_yield
#include <errno.h>
#include <unistd.h> // sysconf

// The number of milliseconds in a second.
static const int tccSecondsToMilliSeconds = 1000;

// The number of microseconds in a second.
static const int tccSecondsToMicroSeconds = 1000000;

// The number of microseconds in a millisecond.
static const int tccMilliSecondsToMicroSeconds = 1000;

// The number of nanoseconds in a millisecond.
static const int tccMilliSecondsToNanoSeconds = 1000000;

// The cachced number of logical CPUs observed.
static uint32_t g_logicalCpuCount = 0;

// Helper memory page used by the FlushProcessWriteBuffers
static uint8_t g_helperPage[OS_PAGE_SIZE] __attribute__((aligned(OS_PAGE_SIZE)));

// Mutex to make the FlushProcessWriteBuffersMutex thread safe
static pthread_mutex_t g_flushProcessWriteBuffersMutex;

size_t GetRestrictedPhysicalMemoryLimit();
bool GetWorkingSetSize(size_t* val);

static size_t g_RestrictedPhysicalMemoryLimit = 0;

// Initialize the interface implementation
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::Initialize()
{
    // Calculate and cache the number of processors on this machine
    int cpuCount = sysconf(_SC_NPROCESSORS_ONLN);
    if (cpuCount == -1)
    {
        return false;
    }

    g_logicalCpuCount = cpuCount;

    // Verify that the s_helperPage is really aligned to the g_SystemInfo.dwPageSize
    assert((((size_t)g_helperPage) & (OS_PAGE_SIZE - 1)) == 0);

    // Locking the page ensures that it stays in memory during the two mprotect
    // calls in the FlushProcessWriteBuffers below. If the page was unmapped between
    // those calls, they would not have the expected effect of generating IPI.
    int status = mlock(g_helperPage, OS_PAGE_SIZE);

    if (status != 0)
    {
        return false;
    }

    status = pthread_mutex_init(&g_flushProcessWriteBuffersMutex, NULL);
    if (status != 0)
    {
        munlock(g_helperPage, OS_PAGE_SIZE);
        return false;
    }

    return true;
}

// Shutdown the interface implementation
void GCToOSInterface::Shutdown()
{
    int ret = munlock(g_helperPage, OS_PAGE_SIZE);
    assert(ret == 0);
    ret = pthread_mutex_destroy(&g_flushProcessWriteBuffersMutex);
    assert(ret == 0);
}

// Get numeric id of the current thread if possible on the
// current platform. It is indended for logging purposes only.
// Return:
//  Numeric id of the current thread, as best we can retrieve it.
uint64_t GCToOSInterface::GetCurrentThreadIdForLogging()
{
#if defined(__linux__)
    return (uint64_t)syscall(SYS_gettid);
#elif HAVE_PTHREAD_GETTHREADID_NP
    return (uint64_t)pthread_getthreadid_np();
#elif HAVE_PTHREAD_THREADID_NP
    unsigned long long tid;
    pthread_threadid_np(pthread_self(), &tid);
    return (uint64_t)tid;
#else
    // Fallback in case we don't know how to get integer thread id on the current platform
    return (uint64_t)pthread_self();
#endif
}

// Get the process ID of the process.
uint32_t GCToOSInterface::GetCurrentProcessId()
{
    return getpid();
}

// Set ideal affinity for the current thread
// Parameters:
//  affinity - ideal processor affinity for the thread
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::SetCurrentThreadIdealAffinity(GCThreadAffinity* affinity)
{
    // TODO(segilles)
    return false;
}

// Get the number of the current processor
uint32_t GCToOSInterface::GetCurrentProcessorNumber()
{
#if HAVE_SCHED_GETCPU
    int processorNumber = sched_getcpu();
    assert(processorNumber != -1);
    return processorNumber;
#else
    return 0;
#endif
}

// Check if the OS supports getting current processor number
bool GCToOSInterface::CanGetCurrentProcessorNumber()
{
    return HAVE_SCHED_GETCPU;
}

// Flush write buffers of processors that are executing threads of the current process
void GCToOSInterface::FlushProcessWriteBuffers()
{
    int status = pthread_mutex_lock(&g_flushProcessWriteBuffersMutex);
    assert(status == 0 && "Failed to lock the flushProcessWriteBuffersMutex lock");

    // Changing a helper memory page protection from read / write to no access
    // causes the OS to issue IPI to flush TLBs on all processors. This also
    // results in flushing the processor buffers.
    status = mprotect(g_helperPage, OS_PAGE_SIZE, PROT_READ | PROT_WRITE);
    assert(status == 0 && "Failed to change helper page protection to read / write");

    // Ensure that the page is dirty before we change the protection so that
    // we prevent the OS from skipping the global TLB flush.
    __sync_add_and_fetch((size_t*)g_helperPage, 1);

    status = mprotect(g_helperPage, OS_PAGE_SIZE, PROT_NONE);
    assert(status == 0 && "Failed to change helper page protection to no access");

    status = pthread_mutex_unlock(&g_flushProcessWriteBuffersMutex);
    assert(status == 0 && "Failed to unlock the flushProcessWriteBuffersMutex lock");
}

// Break into a debugger. Uses a compiler intrinsic if one is available,
// otherwise raises a SIGTRAP.
void GCToOSInterface::DebugBreak()
{
    // __has_builtin is only defined by clang. GCC doesn't have a debug
    // trap intrinsic anyway.
#ifndef __has_builtin
 #define __has_builtin(x) 0
#endif // __has_builtin

#if __has_builtin(__builtin_debugtrap)
    __builtin_debugtrap();
#else
    raise(SIGTRAP);
#endif
}

// Get number of logical processors
uint32_t GCToOSInterface::GetLogicalCpuCount()
{
    return g_logicalCpuCount;
}

// Causes the calling thread to sleep for the specified number of milliseconds
// Parameters:
//  sleepMSec   - time to sleep before switching to another thread
void GCToOSInterface::Sleep(uint32_t sleepMSec)
{
    if (sleepMSec == 0)
    {
        return;
    }

    timespec requested;
    requested.tv_sec = sleepMSec / tccSecondsToMilliSeconds;
    requested.tv_nsec = (sleepMSec - requested.tv_sec * tccSecondsToMilliSeconds) * tccMilliSecondsToNanoSeconds;

    timespec remaining;
    while (nanosleep(&requested, &remaining) == EINTR)
    {
        requested = remaining;
    }
}

// Causes the calling thread to yield execution to another thread that is ready to run on the current processor.
// Parameters:
//  switchCount - number of times the YieldThread was called in a loop
void GCToOSInterface::YieldThread(uint32_t switchCount)
{
    int ret = sched_yield();

    // sched_yield never fails on Linux, unclear about other OSes
    assert(ret == 0);
}

// Reserve virtual memory range.
// Parameters:
//  size      - size of the virtual memory range
//  alignment - requested memory alignment, 0 means no specific alignment requested
//  flags     - flags to control special settings like write watching
// Return:
//  Starting virtual address of the reserved range
void* GCToOSInterface::VirtualReserve(size_t size, size_t alignment, uint32_t flags)
{
    assert(!(flags & VirtualReserveFlags::WriteWatch) && "WriteWatch not supported on Unix");
    if (alignment == 0)
    {
        alignment = OS_PAGE_SIZE;
    }

    size_t alignedSize = size + (alignment - OS_PAGE_SIZE);
    void * pRetVal = mmap(nullptr, alignedSize, PROT_NONE, MAP_ANON | MAP_PRIVATE, -1, 0);

    if (pRetVal != NULL)
    {
        void * pAlignedRetVal = (void *)(((size_t)pRetVal + (alignment - 1)) & ~(alignment - 1));
        size_t startPadding = (size_t)pAlignedRetVal - (size_t)pRetVal;
        if (startPadding != 0)
        {
            int ret = munmap(pRetVal, startPadding);
            assert(ret == 0);
        }

        size_t endPadding = alignedSize - (startPadding + size);
        if (endPadding != 0)
        {
            int ret = munmap((void *)((size_t)pAlignedRetVal + size), endPadding);
            assert(ret == 0);
        }

        pRetVal = pAlignedRetVal;
    }

    return pRetVal;
}

// Release virtual memory range previously reserved using VirtualReserve
// Parameters:
//  address - starting virtual address
//  size    - size of the virtual memory range
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualRelease(void* address, size_t size)
{
    int ret = munmap(address, size);

    return (ret == 0);
}

// Commit virtual memory range. It must be part of a range reserved using VirtualReserve.
// Parameters:
//  address - starting virtual address
//  size    - size of the virtual memory range
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualCommit(void* address, size_t size)
{
    return mprotect(address, size, PROT_WRITE | PROT_READ) == 0;
}

// Decomit virtual memory range.
// Parameters:
//  address - starting virtual address
//  size    - size of the virtual memory range
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualDecommit(void* address, size_t size)
{
    return mprotect(address, size, PROT_NONE) == 0;
}

// Reset virtual memory range. Indicates that data in the memory range specified by address and size is no
// longer of interest, but it should not be decommitted.
// Parameters:
//  address - starting virtual address
//  size    - size of the virtual memory range
//  unlock  - true if the memory range should also be unlocked
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualReset(void * address, size_t size, bool unlock)
{
    // TODO(CoreCLR#1259) pipe to madvise?
    return false;
}

// Check if the OS supports write watching
bool GCToOSInterface::SupportsWriteWatch()
{
    return false;
}

// Reset the write tracking state for the specified virtual memory range.
// Parameters:
//  address - starting virtual address
//  size    - size of the virtual memory range
void GCToOSInterface::ResetWriteWatch(void* address, size_t size)
{
    assert(!"should never call ResetWriteWatch on Unix");
}

// Retrieve addresses of the pages that are written to in a region of virtual memory
// Parameters:
//  resetState         - true indicates to reset the write tracking state
//  address            - starting virtual address
//  size               - size of the virtual memory range
//  pageAddresses      - buffer that receives an array of page addresses in the memory region
//  pageAddressesCount - on input, size of the lpAddresses array, in array elements
//                       on output, the number of page addresses that are returned in the array.
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::GetWriteWatch(bool resetState, void* address, size_t size, void** pageAddresses, uintptr_t* pageAddressesCount)
{
    assert(!"should never call GetWriteWatch on Unix");
    return false;
}

// Get size of the largest cache on the processor die
// Parameters:
//  trueSize - true to return true cache size, false to return scaled up size based on
//             the processor architecture
// Return:
//  Size of the cache
size_t GCToOSInterface::GetLargestOnDieCacheSize(bool trueSize)
{
    // TODO(segilles) processor detection
    return 0;
}

// Get affinity mask of the current process
// Parameters:
//  processMask - affinity mask for the specified process
//  systemMask  - affinity mask for the system
// Return:
//  true if it has succeeded, false if it has failed
// Remarks:
//  A process affinity mask is a bit vector in which each bit represents the processors that
//  a process is allowed to run on. A system affinity mask is a bit vector in which each bit
//  represents the processors that are configured into a system.
//  A process affinity mask is a subset of the system affinity mask. A process is only allowed
//  to run on the processors configured into a system. Therefore, the process affinity mask cannot
//  specify a 1 bit for a processor when the system affinity mask specifies a 0 bit for that processor.
bool GCToOSInterface::GetCurrentProcessAffinityMask(uintptr_t* processMask, uintptr_t* systemMask)
{
    // TODO(segilles) processor detection
    return false;
}

// Get number of processors assigned to the current process
// Return:
//  The number of processors
uint32_t GCToOSInterface::GetCurrentProcessCpuCount()
{
    return g_logicalCpuCount;
}

// Return the size of the user-mode portion of the virtual address space of this process.
// Return:
//  non zero if it has succeeded, 0 if it has failed
size_t GCToOSInterface::GetVirtualMemoryLimit()
{
#ifdef BIT64
    // There is no API to get the total virtual address space size on
    // Unix, so we use a constant value representing 128TB, which is
    // the approximate size of total user virtual address space on
    // the currently supported Unix systems.
    static const uint64_t _128TB = (1ull << 47);
    return _128TB;
#else
    return (size_t)-1;
#endif
}

// Get the physical memory that this process can use.
// Return:
//  non zero if it has succeeded, 0 if it has failed
// Remarks:
//  If a process runs with a restricted memory limit, it returns the limit. If there's no limit 
//  specified, it returns amount of actual physical memory.
uint64_t GCToOSInterface::GetPhysicalMemoryLimit()
{
    size_t restricted_limit;
    // The limit was not cached
    if (g_RestrictedPhysicalMemoryLimit == 0)
    {
        restricted_limit = GetRestrictedPhysicalMemoryLimit();
        VolatileStore(&g_RestrictedPhysicalMemoryLimit, restricted_limit);
    }
    restricted_limit = g_RestrictedPhysicalMemoryLimit;

    if (restricted_limit != 0 && restricted_limit != SIZE_T_MAX)
        return restricted_limit;

    long pages = sysconf(_SC_PHYS_PAGES);
    if (pages == -1) 
    {
        return 0;
    }

    long pageSize = sysconf(_SC_PAGE_SIZE);
    if (pageSize == -1)
    {
        return 0;
    }

    return pages * pageSize;
}

// Get memory status
// Parameters:
//  memory_load - A number between 0 and 100 that specifies the approximate percentage of physical memory
//      that is in use (0 indicates no memory use and 100 indicates full memory use).
//  available_physical - The amount of physical memory currently available, in bytes.
//  available_page_file - The maximum amount of memory the current process can commit, in bytes.
void GCToOSInterface::GetMemoryStatus(uint32_t* memory_load, uint64_t* available_physical, uint64_t* available_page_file)
{
    if (memory_load != nullptr || available_physical != nullptr)
    {
        uint64_t total = GetPhysicalMemoryLimit();

        uint64_t available = 0;
        uint32_t load = 0;
        size_t used;

        // Get the physical memory in use - from it, we can get the physical memory available.
        // We do this only when we have the total physical memory available.
        if (total > 0 && GetWorkingSetSize(&used))
        {
            available = total > used ? total-used : 0; 
            load = (uint32_t)(((float)used * 100) / (float)total);
        }

        if (memory_load != nullptr)
            *memory_load = load;
        if (available_physical != nullptr)
            *available_physical = available;
    }

    if (available_page_file != nullptr)
        *available_page_file = 0;
}

// Get a high precision performance counter
// Return:
//  The counter value
int64_t GCToOSInterface::QueryPerformanceCounter()
{
    // TODO: This is not a particularly efficient implementation - we certainly could
    // do much more specific platform-dependent versions if we find that this method
    // runs hot. However, most likely it does not.
    struct timeval tv;
    if (gettimeofday(&tv, NULL) == -1)
    {
        assert(!"gettimeofday() failed");
        // TODO (segilles) unconditional asserts
        return 0;
    }
    return (int64_t) tv.tv_sec * (int64_t) tccSecondsToMicroSeconds + (int64_t) tv.tv_usec;
}

// Get a frequency of the high precision performance counter
// Return:
//  The counter frequency
int64_t GCToOSInterface::QueryPerformanceFrequency()
{
    // The counter frequency of gettimeofday is in microseconds.
    return tccSecondsToMicroSeconds;
}

// Get a time stamp with a low precision
// Return:
//  Time stamp in milliseconds
uint32_t GCToOSInterface::GetLowPrecisionTimeStamp()
{
    // TODO(segilles) this is pretty naive, we can do better
    uint64_t retval = 0;
    struct timeval tv;
    if (gettimeofday(&tv, NULL) == 0)
    {
        retval = (tv.tv_sec * tccSecondsToMilliSeconds) + (tv.tv_usec / tccMilliSecondsToMicroSeconds);
    }
    else
    {
        assert(!"gettimeofday() failed\n");
    }

    return retval;
}

// Parameters of the GC thread stub
struct GCThreadStubParam
{
    GCThreadFunction GCThreadFunction;
    void* GCThreadParam;
};

// GC thread stub to convert GC thread function to an OS specific thread function
static void* GCThreadStub(void* param)
{
    GCThreadStubParam *stubParam = (GCThreadStubParam*)param;
    GCThreadFunction function = stubParam->GCThreadFunction;
    void* threadParam = stubParam->GCThreadParam;

    delete stubParam;

    function(threadParam);

    return NULL;
}

// Create a new thread for GC use
// Parameters:
//  function - the function to be executed by the thread
//  param    - parameters of the thread
//  affinity - processor affinity of the thread
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::CreateThread(GCThreadFunction function, void* param, GCThreadAffinity* affinity)
{
    std::unique_ptr<GCThreadStubParam> stubParam(new (std::nothrow) GCThreadStubParam());
    if (!stubParam)
    {
        return false;
    }

    stubParam->GCThreadFunction = function;
    stubParam->GCThreadParam = param;

    pthread_attr_t attrs;

    int st = pthread_attr_init(&attrs);
    assert(st == 0);

    // Create the thread as detached, that means not joinable
    st = pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
    assert(st == 0);

    pthread_t threadId;
    st = pthread_create(&threadId, &attrs, GCThreadStub, stubParam.get());

    if (st == 0)
    {
        stubParam.release();
    }

    int st2 = pthread_attr_destroy(&attrs);
    assert(st2 == 0);

    return (st == 0);
}

// Initialize the critical section
void CLRCriticalSection::Initialize()
{
    int st = pthread_mutex_init(&m_cs.mutex, NULL);
    assert(st == 0);
}

// Destroy the critical section
void CLRCriticalSection::Destroy()
{
    int st = pthread_mutex_destroy(&m_cs.mutex);
    assert(st == 0);
}

// Enter the critical section. Blocks until the section can be entered.
void CLRCriticalSection::Enter()
{
    pthread_mutex_lock(&m_cs.mutex);
}

// Leave the critical section
void CLRCriticalSection::Leave()
{
    pthread_mutex_unlock(&m_cs.mutex);
}