summaryrefslogtreecommitdiff
path: root/src/gc/sample/gcenv.windows.cpp
blob: 76187f2185502d03aeb262d03fbebc1253de971b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

//
// Implementation of the GC environment
//

#include "common.h"

#include "windows.h"

#include "gcenv.h"
#include "gc.h"

MethodTable * g_pFreeObjectMethodTable;

int32_t g_TrapReturningThreads;

bool g_fFinalizerRunOnShutDown;

GCSystemInfo g_SystemInfo;

static LARGE_INTEGER g_performanceFrequency;

// Initialize the interface implementation
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::Initialize()
{
    if (!::QueryPerformanceFrequency(&g_performanceFrequency))
    {
        return false;
    }

    SYSTEM_INFO systemInfo;
    GetSystemInfo(&systemInfo);

    g_SystemInfo.dwNumberOfProcessors = systemInfo.dwNumberOfProcessors;
    g_SystemInfo.dwPageSize = systemInfo.dwPageSize;
    g_SystemInfo.dwAllocationGranularity = systemInfo.dwAllocationGranularity;

    return true;
}

// Shutdown the interface implementation
void GCToOSInterface::Shutdown()
{
}

// Get numeric id of the current thread if possible on the
// current platform. It is indended for logging purposes only.
// Return:
//  Numeric id of the current thread or 0 if the 
uint64_t GCToOSInterface::GetCurrentThreadIdForLogging()
{
    return ::GetCurrentThreadId();
}

// Get id of the process
// Return:
//  Id of the current process
uint32_t GCToOSInterface::GetCurrentProcessId()
{
    return ::GetCurrentProcessId();
}

// Set ideal affinity for the current thread
// Parameters:
//  affinity - ideal processor affinity for the thread
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::SetCurrentThreadIdealAffinity(GCThreadAffinity* affinity)
{
    bool success = true;

#if !defined(FEATURE_CORESYSTEM)
    SetThreadIdealProcessor(GetCurrentThread(), (DWORD)affinity->Processor);
#else
    PROCESSOR_NUMBER proc;

    if (affinity->Group != -1)
    {
        proc.Group = (WORD)affinity->Group;
        proc.Number = (BYTE)affinity->Processor;
        proc.Reserved = 0;

        success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, NULL);
    }
    else
    {
        if (GetThreadIdealProcessorEx(GetCurrentThread(), &proc))
        {
            proc.Number = affinity->Processor;
            success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, NULL);
        }
    }
#endif

    return success;
}

// Get the number of the current processor
uint32_t GCToOSInterface::GetCurrentProcessorNumber()
{
    _ASSERTE(GCToOSInterface::CanGetCurrentProcessorNumber());
    return ::GetCurrentProcessorNumber();
}

// Check if the OS supports getting current processor number
bool GCToOSInterface::CanGetCurrentProcessorNumber()
{
    return true;
}

// Flush write buffers of processors that are executing threads of the current process
void GCToOSInterface::FlushProcessWriteBuffers()
{
    ::FlushProcessWriteBuffers();
}

// Break into a debugger
void GCToOSInterface::DebugBreak()
{
    ::DebugBreak();
}

// Get number of logical processors
uint32_t GCToOSInterface::GetLogicalCpuCount()
{
    return g_SystemInfo.dwNumberOfProcessors;
}

// Causes the calling thread to sleep for the specified number of milliseconds
// Parameters:
//  sleepMSec   - time to sleep before switching to another thread
void GCToOSInterface::Sleep(uint32_t sleepMSec)
{
    ::Sleep(sleepMSec);
}

// Causes the calling thread to yield execution to another thread that is ready to run on the current processor.
// Parameters:
//  switchCount - number of times the YieldThread was called in a loop
void GCToOSInterface::YieldThread(uint32_t switchCount)
{
    SwitchToThread();
}

// Reserve virtual memory range.
// Parameters:
//  address   - starting virtual address, it can be NULL to let the function choose the starting address
//  size      - size of the virtual memory range
//  alignment - requested memory alignment
//  flags     - flags to control special settings like write watching
// Return:
//  Starting virtual address of the reserved range
void* GCToOSInterface::VirtualReserve(void* address, size_t size, size_t alignment, uint32_t flags)
{
    DWORD memFlags = (flags & VirtualReserveFlags::WriteWatch) ? (MEM_RESERVE | MEM_WRITE_WATCH) : MEM_RESERVE;
    return ::VirtualAlloc(0, size, memFlags, PAGE_READWRITE);
}

// Release virtual memory range previously reserved using VirtualReserve
// Parameters:
//  address - starting virtual address
//  size    - size of the virtual memory range
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualRelease(void* address, size_t size)
{
    UNREFERENCED_PARAMETER(size);
    return !!::VirtualFree(address, 0, MEM_RELEASE);
}

// Commit virtual memory range. It must be part of a range reserved using VirtualReserve.
// Parameters:
//  address - starting virtual address
//  size    - size of the virtual memory range
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualCommit(void* address, size_t size)
{
    return ::VirtualAlloc(address, size, MEM_COMMIT, PAGE_READWRITE) != NULL;
}

// Decomit virtual memory range.
// Parameters:
//  address - starting virtual address
//  size    - size of the virtual memory range
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualDecommit(void* address, size_t size)
{
    return !!::VirtualFree(address, size, MEM_DECOMMIT);
}

// Reset virtual memory range. Indicates that data in the memory range specified by address and size is no 
// longer of interest, but it should not be decommitted.
// Parameters:
//  address - starting virtual address
//  size    - size of the virtual memory range
//  unlock  - true if the memory range should also be unlocked
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualReset(void * address, size_t size, bool unlock)
{
    bool success = ::VirtualAlloc(address, size, MEM_RESET, PAGE_READWRITE) != NULL;
    if (success && unlock)
    {
        // Remove the page range from the working set
        ::VirtualUnlock(address, size);
    }

    return success;
}

// Check if the OS supports write watching
bool GCToOSInterface::SupportsWriteWatch()
{
    return false;
}

// Reset the write tracking state for the specified virtual memory range.
// Parameters:
//  address - starting virtual address
//  size    - size of the virtual memory range
void GCToOSInterface::ResetWriteWatch(void* address, size_t size)
{
}

// Retrieve addresses of the pages that are written to in a region of virtual memory
// Parameters:
//  resetState         - true indicates to reset the write tracking state
//  address            - starting virtual address
//  size               - size of the virtual memory range
//  pageAddresses      - buffer that receives an array of page addresses in the memory region
//  pageAddressesCount - on input, size of the lpAddresses array, in array elements
//                       on output, the number of page addresses that are returned in the array.
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::GetWriteWatch(bool resetState, void* address, size_t size, void** pageAddresses, uintptr_t* pageAddressesCount)
{
    return false;
}

// Get size of the largest cache on the processor die
// Parameters:
//  trueSize - true to return true cache size, false to return scaled up size based on
//             the processor architecture
// Return:
//  Size of the cache
size_t GCToOSInterface::GetLargestOnDieCacheSize(bool trueSize)
{
    // TODO: implement
    return 0;
}

// Get affinity mask of the current process
// Parameters:
//  processMask - affinity mask for the specified process
//  systemMask  - affinity mask for the system
// Return:
//  true if it has succeeded, false if it has failed
// Remarks:
//  A process affinity mask is a bit vector in which each bit represents the processors that
//  a process is allowed to run on. A system affinity mask is a bit vector in which each bit
//  represents the processors that are configured into a system.
//  A process affinity mask is a subset of the system affinity mask. A process is only allowed
//  to run on the processors configured into a system. Therefore, the process affinity mask cannot
//  specify a 1 bit for a processor when the system affinity mask specifies a 0 bit for that processor.
bool GCToOSInterface::GetCurrentProcessAffinityMask(uintptr_t* processMask, uintptr_t* systemMask)
{
    return false;
}

// Get number of processors assigned to the current process
// Return:
//  The number of processors
uint32_t GCToOSInterface::GetCurrentProcessCpuCount()
{
    return g_SystemInfo.dwNumberOfProcessors;
}

// Return the size of the user-mode portion of the virtual address space of this process.
// Return:
//  non zero if it has succeeded, 0 if it has failed
size_t GCToOSInterface::GetVirtualMemoryLimit()
{
    MEMORYSTATUSEX memStatus;

    memStatus.dwLength = sizeof(MEMORYSTATUSEX);
    BOOL fRet = GlobalMemoryStatusEx(&memStatus);
    _ASSERTE(fRet);

    return (size_t)memStatus.ullTotalVirtual;
}

// Get the physical memory that this process can use.
// Return:
//  non zero if it has succeeded, 0 if it has failed
uint64_t GCToOSInterface::GetPhysicalMemoryLimit()
{
    MEMORYSTATUSEX memStatus;

    memStatus.dwLength = sizeof(MEMORYSTATUSEX);
    BOOL fRet = GlobalMemoryStatusEx(&memStatus);
    _ASSERTE(fRet);

    return memStatus.ullTotalPhys;
}

// Get memory status
// Parameters:
//  memory_load - A number between 0 and 100 that specifies the approximate percentage of physical memory
//      that is in use (0 indicates no memory use and 100 indicates full memory use).
//  available_physical - The amount of physical memory currently available, in bytes.
//  available_page_file - The maximum amount of memory the current process can commit, in bytes.
void GCToOSInterface::GetMemoryStatus(uint32_t* memory_load, uint64_t* available_physical, uint64_t* available_page_file)
{
    MEMORYSTATUSEX memStatus;

    memStatus.dwLength = sizeof(MEMORYSTATUSEX);
    BOOL fRet = GlobalMemoryStatusEx(&memStatus);
    _ASSERTE (fRet);

    // If the machine has more RAM than virtual address limit, let us cap it.
    // The GC can never use more than virtual address limit.
    if (memStatus.ullAvailPhys > memStatus.ullTotalVirtual)
    {
        memStatus.ullAvailPhys = memStatus.ullAvailVirtual;
    }

    if (memory_load != NULL)
        *memory_load = memStatus.dwMemoryLoad;
    if (available_physical != NULL)
        *available_physical = memStatus.ullAvailPhys;
    if (available_page_file != NULL)
        *available_page_file = memStatus.ullAvailPageFile;
}

// Get a high precision performance counter
// Return:
//  The counter value
int64_t GCToOSInterface::QueryPerformanceCounter()
{
    LARGE_INTEGER ts;
    if (!::QueryPerformanceCounter(&ts))
    {
        _ASSERTE(!"Fatal Error - cannot query performance counter.");
        abort();
    }

    return ts.QuadPart;
}

// Get a frequency of the high precision performance counter
// Return:
//  The counter frequency
int64_t GCToOSInterface::QueryPerformanceFrequency()
{
    return g_performanceFrequency.QuadPart;
}

// Get a time stamp with a low precision
// Return:
//  Time stamp in milliseconds
uint32_t GCToOSInterface::GetLowPrecisionTimeStamp()
{
    return ::GetTickCount();
}

// Parameters of the GC thread stub
struct GCThreadStubParam
{
    GCThreadFunction GCThreadFunction;
    void* GCThreadParam;
};

// GC thread stub to convert GC thread function to an OS specific thread function
static DWORD __stdcall GCThreadStub(void* param)
{
    GCThreadStubParam *stubParam = (GCThreadStubParam*)param;
    GCThreadFunction function = stubParam->GCThreadFunction;
    void* threadParam = stubParam->GCThreadParam;

    delete stubParam;

    function(threadParam);

    return 0;
}

// Create a new thread
// Parameters:
//  function - the function to be executed by the thread
//  param    - parameters of the thread
//  affinity - processor affinity of the thread
// Return:
//  true if it has succeeded, false if it has failed
bool GCToOSInterface::CreateThread(GCThreadFunction function, void* param, GCThreadAffinity* affinity)
{
    DWORD thread_id;

    GCThreadStubParam* stubParam = new (nothrow) GCThreadStubParam();
    if (stubParam == NULL)
    {
        return false;
    }

    stubParam->GCThreadFunction = function;
    stubParam->GCThreadParam = param;

    HANDLE gc_thread = ::CreateThread(NULL, 0, GCThreadStub, stubParam, CREATE_SUSPENDED, &thread_id);

    if (!gc_thread)
    {
        delete stubParam;
        return false;
    }

    SetThreadPriority(gc_thread, /* THREAD_PRIORITY_ABOVE_NORMAL );*/ THREAD_PRIORITY_HIGHEST );

    ResumeThread(gc_thread);

    CloseHandle(gc_thread);

    return true;
}

// Initialize the critical section
void CLRCriticalSection::Initialize()
{
    ::InitializeCriticalSection(&m_cs);
}

// Destroy the critical section
void CLRCriticalSection::Destroy()
{
    ::DeleteCriticalSection(&m_cs);
}

// Enter the critical section. Blocks until the section can be entered.
void CLRCriticalSection::Enter()
{
    ::EnterCriticalSection(&m_cs);
}

// Leave the critical section
void CLRCriticalSection::Leave()
{
    ::LeaveCriticalSection(&m_cs);
}