summaryrefslogtreecommitdiff
path: root/src/gc/gcee.cpp
blob: a496979aeb833f9d8a66e1a0b090769c06dce250 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
//
// 

// 


// sets up vars for GC

#include "gcpriv.h"

#ifndef DACCESS_COMPILE

COUNTER_ONLY(PERF_COUNTER_TIMER_PRECISION g_TotalTimeInGC = 0);
COUNTER_ONLY(PERF_COUNTER_TIMER_PRECISION g_TotalTimeSinceLastGCEnd = 0);

void GCHeap::UpdatePreGCCounters()
{
#if defined(ENABLE_PERF_COUNTERS)
#ifdef MULTIPLE_HEAPS
    gc_heap* hp = 0;
#else
    gc_heap* hp = pGenGCHeap;
#endif //MULTIPLE_HEAPS

    size_t allocation_0 = 0;
    size_t allocation_3 = 0; 
    
    // Publish perf stats
    g_TotalTimeInGC = GET_CYCLE_COUNT();

#ifdef MULTIPLE_HEAPS
    int hn = 0;
    for (hn = 0; hn < gc_heap::n_heaps; hn++)
    {
        hp = gc_heap::g_heaps [hn];
            
        allocation_0 += 
            dd_desired_allocation (hp->dynamic_data_of (0))-
            dd_new_allocation (hp->dynamic_data_of (0));
        allocation_3 += 
            dd_desired_allocation (hp->dynamic_data_of (max_generation+1))-
            dd_new_allocation (hp->dynamic_data_of (max_generation+1));
    }
#else
    allocation_0 = 
        dd_desired_allocation (hp->dynamic_data_of (0))-
        dd_new_allocation (hp->dynamic_data_of (0));
    allocation_3 = 
        dd_desired_allocation (hp->dynamic_data_of (max_generation+1))-
        dd_new_allocation (hp->dynamic_data_of (max_generation+1));
        
#endif //MULTIPLE_HEAPS

    GetPerfCounters().m_GC.cbAlloc += allocation_0;
    GetPerfCounters().m_GC.cbAlloc += allocation_3;
    GetPerfCounters().m_GC.cbLargeAlloc += allocation_3;
    GetPerfCounters().m_GC.cPinnedObj = 0;

#ifdef _PREFAST_
    // prefix complains about us dereferencing hp in wks build even though we only access static members
    // this way. not sure how to shut it up except for this ugly workaround:
    PREFIX_ASSUME( hp != NULL);
#endif //_PREFAST_
    if (hp->settings.reason == reason_induced IN_STRESS_HEAP( && !hp->settings.stress_induced))
    {
        COUNTER_ONLY(GetPerfCounters().m_GC.cInducedGCs++);
    }

    GetPerfCounters().m_Security.timeRTchecks = 0;
    GetPerfCounters().m_Security.timeRTchecksBase = 1; // To avoid divide by zero

#endif //ENABLE_PERF_COUNTERS

#ifdef FEATURE_EVENT_TRACE
#ifdef MULTIPLE_HEAPS
        //take the first heap....
    gc_mechanisms *pSettings = &gc_heap::g_heaps[0]->settings;
#else
    gc_mechanisms *pSettings = &gc_heap::settings;
#endif //MULTIPLE_HEAPS

    ETW::GCLog::ETW_GC_INFO Info;

    Info.GCStart.Count = (uint32_t)pSettings->gc_index;
    Info.GCStart.Depth = (uint32_t)pSettings->condemned_generation;
    Info.GCStart.Reason = (ETW::GCLog::ETW_GC_INFO::GC_REASON)((int)(pSettings->reason));

    Info.GCStart.Type = ETW::GCLog::ETW_GC_INFO::GC_NGC;
    if (pSettings->concurrent)
    {
        Info.GCStart.Type = ETW::GCLog::ETW_GC_INFO::GC_BGC;
    }
#ifdef BACKGROUND_GC
    else if (Info.GCStart.Depth < max_generation)
    {
        if (pSettings->background_p)
            Info.GCStart.Type = ETW::GCLog::ETW_GC_INFO::GC_FGC;
    }
#endif //BACKGROUND_GC

    ETW::GCLog::FireGcStartAndGenerationRanges(&Info);
#endif // FEATURE_EVENT_TRACE
}

void GCHeap::UpdatePostGCCounters()
{
#ifdef FEATURE_EVENT_TRACE
    // Use of temporary variables to avoid rotor build warnings
    ETW::GCLog::ETW_GC_INFO Info;
#ifdef MULTIPLE_HEAPS
    //take the first heap....
    gc_mechanisms *pSettings = &gc_heap::g_heaps[0]->settings;
#else
    gc_mechanisms *pSettings = &gc_heap::settings;
#endif //MULTIPLE_HEAPS

    int condemned_gen = pSettings->condemned_generation;
    Info.GCEnd.Depth = condemned_gen;
    Info.GCEnd.Count = (uint32_t)pSettings->gc_index;
    ETW::GCLog::FireGcEndAndGenerationRanges(Info.GCEnd.Count, Info.GCEnd.Depth);

    int xGen;
    ETW::GCLog::ETW_GC_INFO HeapInfo;
    ZeroMemory(&HeapInfo, sizeof(HeapInfo));
    size_t youngest_gen_size = 0;
    
#ifdef MULTIPLE_HEAPS
    //take the first heap....
    gc_heap* hp1 = gc_heap::g_heaps[0];
#else
    gc_heap* hp1 = pGenGCHeap;
#endif //MULTIPLE_HEAPS

    size_t promoted_finalization_mem = 0;

    totalSurvivedSize = gc_heap::get_total_survived_size();

    for (xGen = 0; xGen <= (max_generation+1); xGen++)
    {
        size_t gensize = 0;
        size_t promoted_mem = 0; 

#ifdef MULTIPLE_HEAPS
        int hn = 0;

        for (hn = 0; hn < gc_heap::n_heaps; hn++)
        {
            gc_heap* hp2 = gc_heap::g_heaps [hn];
            dynamic_data* dd2 = hp2->dynamic_data_of (xGen);

            // Generation 0 is empty (if there isn't demotion) so its size is 0
            // It is more interesting to report the desired size before next collection.
            // Gen 1 is also more accurate if desired is reported due to sampling intervals.
            if (xGen == 0)
            {
                youngest_gen_size += dd_desired_allocation (hp2->dynamic_data_of (xGen));
            }

            gensize += hp2->generation_size(xGen);          

            if (xGen <= condemned_gen)
            {
                promoted_mem += dd_promoted_size (dd2);
            }

            if ((xGen == (max_generation+1)) && (condemned_gen == max_generation))
            {
                promoted_mem += dd_promoted_size (dd2);
            }

            if (xGen == 0)
            {
                promoted_finalization_mem +=  dd_freach_previous_promotion (dd2);
            }
        }
#else
        if (xGen == 0)
        {
            youngest_gen_size = dd_desired_allocation (hp1->dynamic_data_of (xGen));
        }

        gensize = hp1->generation_size(xGen);
        if (xGen <= condemned_gen)
        {
            promoted_mem = dd_promoted_size (hp1->dynamic_data_of (xGen));
        }

        if ((xGen == (max_generation+1)) && (condemned_gen == max_generation))
        {
            promoted_mem = dd_promoted_size (hp1->dynamic_data_of (max_generation+1));
        }

        if (xGen == 0)
        {
            promoted_finalization_mem =  dd_freach_previous_promotion (hp1->dynamic_data_of (xGen));
        }

#endif //MULTIPLE_HEAPS

        HeapInfo.HeapStats.GenInfo[xGen].GenerationSize = gensize;
        HeapInfo.HeapStats.GenInfo[xGen].TotalPromotedSize = promoted_mem;
    }

    {
#ifdef SIMPLE_DPRINTF
        dprintf (2, ("GC#%d: 0: %Id(%Id); 1: %Id(%Id); 2: %Id(%Id); 3: %Id(%Id)", 
            Info.GCEnd.Count,
            HeapInfo.HeapStats.GenInfo[0].GenerationSize,
            HeapInfo.HeapStats.GenInfo[0].TotalPromotedSize,
            HeapInfo.HeapStats.GenInfo[1].GenerationSize,
            HeapInfo.HeapStats.GenInfo[1].TotalPromotedSize,
            HeapInfo.HeapStats.GenInfo[2].GenerationSize,
            HeapInfo.HeapStats.GenInfo[2].TotalPromotedSize,
            HeapInfo.HeapStats.GenInfo[3].GenerationSize,
            HeapInfo.HeapStats.GenInfo[3].TotalPromotedSize));
#endif //SIMPLE_DPRINTF
    }

    HeapInfo.HeapStats.FinalizationPromotedSize = promoted_finalization_mem;
    HeapInfo.HeapStats.FinalizationPromotedCount = GetFinalizablePromotedCount();

#if defined(ENABLE_PERF_COUNTERS)
    
    // if a max gen garbage collection was performed, resync the GC Handle counter; 
    // if threads are currently suspended, we do not need to obtain a lock on each handle table
    if (condemned_gen == max_generation)
        GetPerfCounters().m_GC.cHandles = HndCountAllHandles(!GCHeap::IsGCInProgress());

    for (xGen = 0; xGen <= (max_generation+1); xGen++)
    {
        _ASSERTE(FitsIn<size_t>(HeapInfo.HeapStats.GenInfo[xGen].GenerationSize));
        _ASSERTE(FitsIn<size_t>(HeapInfo.HeapStats.GenInfo[xGen].TotalPromotedSize));

        if (xGen == (max_generation+1))
        {
            GetPerfCounters().m_GC.cLrgObjSize = static_cast<size_t>(HeapInfo.HeapStats.GenInfo[xGen].GenerationSize);
        }
        else
        {
            GetPerfCounters().m_GC.cGenHeapSize[xGen] = ((xGen == 0) ? 
                                                                youngest_gen_size : 
                                                                static_cast<size_t>(HeapInfo.HeapStats.GenInfo[xGen].GenerationSize));
        }

        // the perf counters only count the promoted size for gen0 and gen1.
        if (xGen < max_generation)
        {
            GetPerfCounters().m_GC.cbPromotedMem[xGen] = static_cast<size_t>(HeapInfo.HeapStats.GenInfo[xGen].TotalPromotedSize);
        }

        if (xGen <= max_generation)
        {
            GetPerfCounters().m_GC.cGenCollections[xGen] =
                dd_collection_count (hp1->dynamic_data_of (xGen));
        }
    }

    //Committed memory 
    {
        size_t committed_mem = 0;
        size_t reserved_mem = 0;
#ifdef MULTIPLE_HEAPS
        int hn = 0;
        for (hn = 0; hn < gc_heap::n_heaps; hn++)
        {
            gc_heap* hp2 = gc_heap::g_heaps [hn];
#else
            gc_heap* hp2 = hp1;
            {
#endif //MULTIPLE_HEAPS
                heap_segment* seg = 
                    generation_start_segment (hp2->generation_of (max_generation));
                while (seg)
                {
                    committed_mem += heap_segment_committed (seg) - 
                        heap_segment_mem (seg);
                    reserved_mem += heap_segment_reserved (seg) - 
                        heap_segment_mem (seg);
                    seg = heap_segment_next (seg);
                }
                //same for large segments
                seg = 
                    generation_start_segment (hp2->generation_of (max_generation + 1));
                while (seg)
                {
                    committed_mem += heap_segment_committed (seg) - 
                        heap_segment_mem (seg);
                    reserved_mem += heap_segment_reserved (seg) - 
                        heap_segment_mem (seg);
                    seg = heap_segment_next (seg);
                }
#ifdef MULTIPLE_HEAPS
            }
#else
        }
#endif //MULTIPLE_HEAPS

        GetPerfCounters().m_GC.cTotalCommittedBytes = 
            committed_mem;
        GetPerfCounters().m_GC.cTotalReservedBytes = 
            reserved_mem;
    }

    _ASSERTE(FitsIn<size_t>(HeapInfo.HeapStats.FinalizationPromotedSize));
    _ASSERTE(FitsIn<size_t>(HeapInfo.HeapStats.FinalizationPromotedCount));
    GetPerfCounters().m_GC.cbPromotedFinalizationMem = static_cast<size_t>(HeapInfo.HeapStats.FinalizationPromotedSize);
    GetPerfCounters().m_GC.cSurviveFinalize = static_cast<size_t>(HeapInfo.HeapStats.FinalizationPromotedCount);
    
    // Compute Time in GC
    PERF_COUNTER_TIMER_PRECISION _currentPerfCounterTimer = GET_CYCLE_COUNT();

    g_TotalTimeInGC = _currentPerfCounterTimer - g_TotalTimeInGC;
    PERF_COUNTER_TIMER_PRECISION _timeInGCBase = (_currentPerfCounterTimer - g_TotalTimeSinceLastGCEnd);

    if (_timeInGCBase < g_TotalTimeInGC)
        g_TotalTimeInGC = 0;        // isn't likely except on some SMP machines-- perhaps make sure that
                                    //  _timeInGCBase >= g_TotalTimeInGC by setting affinity in GET_CYCLE_COUNT
                                    
    while (_timeInGCBase > UINT_MAX) 
    {
        _timeInGCBase = _timeInGCBase >> 8;
        g_TotalTimeInGC = g_TotalTimeInGC >> 8;
    }

    // Update Total Time    
    GetPerfCounters().m_GC.timeInGC = (uint32_t)g_TotalTimeInGC;
    GetPerfCounters().m_GC.timeInGCBase = (uint32_t)_timeInGCBase;

    if (!GetPerfCounters().m_GC.cProcessID)
        GetPerfCounters().m_GC.cProcessID = (size_t)GetCurrentProcessId();
    
    g_TotalTimeSinceLastGCEnd = _currentPerfCounterTimer;

    HeapInfo.HeapStats.PinnedObjectCount = (uint32_t)(GetPerfCounters().m_GC.cPinnedObj);
    HeapInfo.HeapStats.SinkBlockCount =  (uint32_t)(GetPerfCounters().m_GC.cSinkBlocks);
    HeapInfo.HeapStats.GCHandleCount =  (uint32_t)(GetPerfCounters().m_GC.cHandles);
#endif //ENABLE_PERF_COUNTERS

    FireEtwGCHeapStats_V1(HeapInfo.HeapStats.GenInfo[0].GenerationSize, HeapInfo.HeapStats.GenInfo[0].TotalPromotedSize,
                       HeapInfo.HeapStats.GenInfo[1].GenerationSize, HeapInfo.HeapStats.GenInfo[1].TotalPromotedSize,
                       HeapInfo.HeapStats.GenInfo[2].GenerationSize, HeapInfo.HeapStats.GenInfo[2].TotalPromotedSize,
                       HeapInfo.HeapStats.GenInfo[3].GenerationSize, HeapInfo.HeapStats.GenInfo[3].TotalPromotedSize,
                       HeapInfo.HeapStats.FinalizationPromotedSize,
                       HeapInfo.HeapStats.FinalizationPromotedCount,
                       HeapInfo.HeapStats.PinnedObjectCount,
                       HeapInfo.HeapStats.SinkBlockCount,
                       HeapInfo.HeapStats.GCHandleCount, 
                       GetClrInstanceId());
#endif // FEATURE_EVENT_TRACE
}

size_t GCHeap::GetCurrentObjSize()
{
    return (totalSurvivedSize + gc_heap::get_total_allocated());
}

size_t GCHeap::GetLastGCStartTime(int generation)
{
#ifdef MULTIPLE_HEAPS
    gc_heap* hp = gc_heap::g_heaps[0];
#else
    gc_heap* hp = pGenGCHeap;
#endif //MULTIPLE_HEAPS

    return dd_time_clock (hp->dynamic_data_of (generation));
}

size_t GCHeap::GetLastGCDuration(int generation)
{
#ifdef MULTIPLE_HEAPS
    gc_heap* hp = gc_heap::g_heaps[0];
#else
    gc_heap* hp = pGenGCHeap;
#endif //MULTIPLE_HEAPS

    return dd_gc_elapsed_time (hp->dynamic_data_of (generation));
}

size_t GetHighPrecisionTimeStamp();

size_t GCHeap::GetNow()
{
    return GetHighPrecisionTimeStamp();
}

#if defined(GC_PROFILING) //UNIXTODO: Enable this for FEATURE_EVENT_TRACE
void ProfScanRootsHelper(Object** ppObject, ScanContext *pSC, uint32_t dwFlags)
{
#if  defined(FEATURE_EVENT_TRACE)
    Object *pObj = *ppObject;
#ifdef INTERIOR_POINTERS
    if (dwFlags & GC_CALL_INTERIOR)
    {
        uint8_t *o = (uint8_t*)pObj;
        gc_heap* hp = gc_heap::heap_of (o);

        if ((o < hp->gc_low) || (o >= hp->gc_high))
        {
            return;
        }
        pObj = (Object*) hp->find_object(o, hp->gc_low);
    }
#endif //INTERIOR_POINTERS
    ScanRootsHelper(&pObj, pSC, dwFlags);
#endif //  defined(FEATURE_EVENT_TRACE)
}

// This is called only if we've determined that either:
//     a) The Profiling API wants to do a walk of the heap, and it has pinned the
//     profiler in place (so it cannot be detached), and it's thus safe to call into the
//     profiler, OR
//     b) ETW infrastructure wants to do a walk of the heap either to log roots,
//     objects, or both.
// This can also be called to do a single walk for BOTH a) and b) simultaneously.  Since
// ETW can ask for roots, but not objects
void GCProfileWalkHeapWorker(BOOL fProfilerPinned, BOOL fShouldWalkHeapRootsForEtw, BOOL fShouldWalkHeapObjectsForEtw)
{
    {
        ProfilingScanContext SC(fProfilerPinned);

        // **** Scan roots:  Only scan roots if profiling API wants them or ETW wants them.
        if (fProfilerPinned || fShouldWalkHeapRootsForEtw)
        {
#ifdef MULTIPLE_HEAPS
            int hn;

            // Must emulate each GC thread number so we can hit each
            // heap for enumerating the roots.
            for (hn = 0; hn < gc_heap::n_heaps; hn++)
            {
                // Ask the vm to go over all of the roots for this specific
                // heap.
                gc_heap* hp = gc_heap::g_heaps [hn];
                SC.thread_number = hn;
                GCScan::GcScanRoots(&ProfScanRootsHelper, max_generation, max_generation, &SC);

                // The finalizer queue is also a source of roots
                SC.dwEtwRootKind = kEtwGCRootKindFinalizer;
                hp->finalize_queue->GcScanRoots(&ScanRootsHelper, hn, &SC);
            }
#else
            // Ask the vm to go over all of the roots
            GCScan::GcScanRoots(&ProfScanRootsHelper, max_generation, max_generation, &SC);

            // The finalizer queue is also a source of roots
            SC.dwEtwRootKind = kEtwGCRootKindFinalizer;
            pGenGCHeap->finalize_queue->GcScanRoots(&ScanRootsHelper, 0, &SC);

#endif // MULTIPLE_HEAPS
            // Handles are kept independent of wks/svr/concurrent builds
            SC.dwEtwRootKind = kEtwGCRootKindHandle;
            GCScan::GcScanHandlesForProfilerAndETW(max_generation, &SC);

            // indicate that regular handle scanning is over, so we can flush the buffered roots
            // to the profiler.  (This is for profapi only.  ETW will flush after the
            // entire heap was is complete, via ETW::GCLog::EndHeapDump.)
#if defined (GC_PROFILING)
            if (fProfilerPinned)
            {
                g_profControlBlock.pProfInterface->EndRootReferences2(&SC.pHeapId);
            }
#endif // defined (GC_PROFILING)
        }

        // **** Scan dependent handles: only if the profiler supports it or ETW wants roots
        if ((fProfilerPinned && CORProfilerTrackConditionalWeakTableElements()) ||
            fShouldWalkHeapRootsForEtw)
        {
            // GcScanDependentHandlesForProfiler double-checks
            // CORProfilerTrackConditionalWeakTableElements() before calling into the profiler

            GCScan::GcScanDependentHandlesForProfilerAndETW(max_generation, &SC);

            // indicate that dependent handle scanning is over, so we can flush the buffered roots
            // to the profiler.  (This is for profapi only.  ETW will flush after the
            // entire heap was is complete, via ETW::GCLog::EndHeapDump.)
            if (fProfilerPinned && CORProfilerTrackConditionalWeakTableElements())
            {
                g_profControlBlock.pProfInterface->EndConditionalWeakTableElementReferences(&SC.pHeapId);
            }
        }

        ProfilerWalkHeapContext profilerWalkHeapContext(fProfilerPinned, SC.pvEtwContext);

        // **** Walk objects on heap: only if profiling API wants them or ETW wants them.
        if (fProfilerPinned || fShouldWalkHeapObjectsForEtw)
        {
#ifdef MULTIPLE_HEAPS
            int hn;

            // Walk the heap and provide the objref to the profiler
            for (hn = 0; hn < gc_heap::n_heaps; hn++)
            {
                gc_heap* hp = gc_heap::g_heaps [hn];         
                hp->walk_heap(&HeapWalkHelper, &profilerWalkHeapContext, max_generation, TRUE /* walk the large object heap */);
            }
#else
            gc_heap::walk_heap(&HeapWalkHelper, &profilerWalkHeapContext, max_generation, TRUE);
#endif //MULTIPLE_HEAPS
        }

#ifdef FEATURE_EVENT_TRACE
        // **** Done! Indicate to ETW helpers that the heap walk is done, so any buffers
        // should be flushed into the ETW stream
        if (fShouldWalkHeapObjectsForEtw || fShouldWalkHeapRootsForEtw)
        {
            ETW::GCLog::EndHeapDump(&profilerWalkHeapContext);
        }
#endif // FEATURE_EVENT_TRACE
    }
}
#endif // defined(GC_PROFILING)

void GCProfileWalkHeap()
{
    BOOL fWalkedHeapForProfiler = FALSE;

#ifdef FEATURE_EVENT_TRACE
    if (ETW::GCLog::ShouldWalkStaticsAndCOMForEtw())
        ETW::GCLog::WalkStaticsAndCOMForETW();
    
    BOOL fShouldWalkHeapRootsForEtw = ETW::GCLog::ShouldWalkHeapRootsForEtw();
    BOOL fShouldWalkHeapObjectsForEtw = ETW::GCLog::ShouldWalkHeapObjectsForEtw();
#else // !FEATURE_EVENT_TRACE
    BOOL fShouldWalkHeapRootsForEtw = FALSE;
    BOOL fShouldWalkHeapObjectsForEtw = FALSE;
#endif // FEATURE_EVENT_TRACE

#if defined (GC_PROFILING)
    {
        BEGIN_PIN_PROFILER(CORProfilerTrackGC());
        GCProfileWalkHeapWorker(TRUE /* fProfilerPinned */, fShouldWalkHeapRootsForEtw, fShouldWalkHeapObjectsForEtw);
        fWalkedHeapForProfiler = TRUE;
        END_PIN_PROFILER();
    }
#endif // defined (GC_PROFILING)

#if  defined (GC_PROFILING)//UNIXTODO: Enable this for FEATURE_EVENT_TRACE
    // If the profiling API didn't want us to walk the heap but ETW does, then do the
    // walk here
    if (!fWalkedHeapForProfiler && 
        (fShouldWalkHeapRootsForEtw || fShouldWalkHeapObjectsForEtw))
    {
        GCProfileWalkHeapWorker(FALSE /* fProfilerPinned */, fShouldWalkHeapRootsForEtw, fShouldWalkHeapObjectsForEtw);
    }
#endif // FEATURE_EVENT_TRACE
}

BOOL GCHeap::IsGCInProgressHelper (BOOL bConsiderGCStart)
{
    return GcInProgress || (bConsiderGCStart? VolatileLoad(&gc_heap::gc_started) : FALSE);
}

uint32_t GCHeap::WaitUntilGCComplete(BOOL bConsiderGCStart)
{
    if (bConsiderGCStart)
    {
        if (gc_heap::gc_started)
        {
            gc_heap::wait_for_gc_done();
        }
    }

    uint32_t dwWaitResult = NOERROR;

    if (GcInProgress) 
    {
        ASSERT( WaitForGCEvent->IsValid() );

#ifdef DETECT_DEADLOCK
        // wait for GC to complete
BlockAgain:
        dwWaitResult = WaitForGCEvent->Wait(DETECT_DEADLOCK_TIMEOUT, FALSE );

        if (dwWaitResult == WAIT_TIMEOUT) {
            //  Even in retail, stop in the debugger if available.  Ideally, the
            //  following would use DebugBreak, but debspew.h makes this a null
            //  macro in retail.  Note that in debug, we don't use the debspew.h
            //  macros because these take a critical section that may have been
            //  taken by a suspended thread.
            FreeBuildDebugBreak();
            goto BlockAgain;
        }

#else  //DETECT_DEADLOCK
        
        dwWaitResult = WaitForGCEvent->Wait(INFINITE, FALSE );
        
#endif //DETECT_DEADLOCK
    }

    return dwWaitResult;
}

void GCHeap::SetGCInProgress(BOOL fInProgress)
{
    GcInProgress = fInProgress;
}

CLREvent * GCHeap::GetWaitForGCEvent()
{
    return WaitForGCEvent;
}

void GCHeap::WaitUntilConcurrentGCComplete()
{
#ifdef BACKGROUND_GC
    if (pGenGCHeap->settings.concurrent)
        pGenGCHeap->background_gc_wait();
#endif //BACKGROUND_GC
}

BOOL GCHeap::IsConcurrentGCInProgress()
{
#ifdef BACKGROUND_GC
    return pGenGCHeap->settings.concurrent;
#else
    return FALSE;
#endif //BACKGROUND_GC
}

#ifdef FEATURE_EVENT_TRACE
void gc_heap::fire_etw_allocation_event (size_t allocation_amount, int gen_number, uint8_t* object_address)
{
    void * typeId = nullptr;
    const WCHAR * name = nullptr;
#ifdef FEATURE_REDHAWK
    typeId = RedhawkGCInterface::GetLastAllocEEType();
#else
    TypeHandle th = GetThread()->GetTHAllocContextObj();
    if (th != 0)
    {
        InlineSString<MAX_CLASSNAME_LENGTH> strTypeName;
        th.GetName(strTypeName);
        typeId = th.GetMethodTable();
        name = strTypeName.GetUnicode();
    }
#endif

    if (typeId != nullptr)
    {
        FireEtwGCAllocationTick_V3((uint32_t)allocation_amount,
                                   ((gen_number == 0) ? ETW::GCLog::ETW_GC_INFO::AllocationSmall : ETW::GCLog::ETW_GC_INFO::AllocationLarge), 
                                   GetClrInstanceId(),
                                   allocation_amount,
                                   typeId, 
                                   name,
                                   heap_number,
                                   object_address
                                   );
    }
}
void gc_heap::fire_etw_pin_object_event (uint8_t* object, uint8_t** ppObject)
{
#ifdef FEATURE_REDHAWK
    UNREFERENCED_PARAMETER(object);
    UNREFERENCED_PARAMETER(ppObject);
#else
    Object* obj = (Object*)object;

    InlineSString<MAX_CLASSNAME_LENGTH> strTypeName; 
   
    EX_TRY
    {
        FAULT_NOT_FATAL();

        TypeHandle th = obj->GetGCSafeTypeHandleIfPossible();
        if(th != NULL)
        {
            th.GetName(strTypeName);
        }

        FireEtwPinObjectAtGCTime(ppObject,
                             object,
                             obj->GetSize(),
                             strTypeName.GetUnicode(),
                             GetClrInstanceId());
    }
    EX_CATCH {}
    EX_END_CATCH(SwallowAllExceptions)
#endif // FEATURE_REDHAWK
}
#endif // FEATURE_EVENT_TRACE

uint32_t gc_heap::user_thread_wait (CLREvent *event, BOOL no_mode_change, int time_out_ms)
{
    Thread* pCurThread = NULL;
    bool mode = false;
    uint32_t dwWaitResult = NOERROR;
    
    if (!no_mode_change)
    {
        pCurThread = GetThread();
        mode = pCurThread ? GCToEEInterface::IsPreemptiveGCDisabled(pCurThread) : false;
        if (mode)
        {
            GCToEEInterface::EnablePreemptiveGC(pCurThread);
        }
    }

    dwWaitResult = event->Wait(time_out_ms, FALSE);

    if (!no_mode_change && mode)
    {
        GCToEEInterface::DisablePreemptiveGC(pCurThread);
    }

    return dwWaitResult;
}

#ifdef BACKGROUND_GC
// Wait for background gc to finish
uint32_t gc_heap::background_gc_wait (alloc_wait_reason awr, int time_out_ms)
{
    dprintf(2, ("Waiting end of background gc"));
    assert (background_gc_done_event.IsValid());
    fire_alloc_wait_event_begin (awr);
    uint32_t dwRet = user_thread_wait (&background_gc_done_event, FALSE, time_out_ms);
    fire_alloc_wait_event_end (awr);
    dprintf(2, ("Waiting end of background gc is done"));

    return dwRet;
}

// Wait for background gc to finish sweeping large objects
void gc_heap::background_gc_wait_lh (alloc_wait_reason awr)
{
    dprintf(2, ("Waiting end of background large sweep"));
    assert (gc_lh_block_event.IsValid());
    fire_alloc_wait_event_begin (awr);
    user_thread_wait (&gc_lh_block_event, FALSE);
    fire_alloc_wait_event_end (awr);
    dprintf(2, ("Waiting end of background large sweep is done"));
}

#endif //BACKGROUND_GC


/******************************************************************************/
::GCHeap* CreateGCHeap() {
    return new(nothrow) GCHeap();   // we return wks or svr 
}

void GCHeap::TraceGCSegments()
{
#ifdef FEATURE_EVENT_TRACE
    heap_segment* seg = 0;
#ifdef MULTIPLE_HEAPS
    // walk segments in each heap
    for (int i = 0; i < gc_heap::n_heaps; i++)
    {
        gc_heap* h = gc_heap::g_heaps [i];
#else
    {
        gc_heap* h = pGenGCHeap;
#endif //MULTIPLE_HEAPS

        for (seg = generation_start_segment (h->generation_of (max_generation)); seg != 0; seg = heap_segment_next(seg))
        {
            ETW::GCLog::ETW_GC_INFO Info;
            Info.GCCreateSegment.Address = (size_t)heap_segment_mem(seg);
            Info.GCCreateSegment.Size = (size_t)(heap_segment_reserved (seg) - heap_segment_mem(seg));
            Info.GCCreateSegment.Type = (heap_segment_read_only_p (seg) ? 
                                         ETW::GCLog::ETW_GC_INFO::READ_ONLY_HEAP :
                                         ETW::GCLog::ETW_GC_INFO::SMALL_OBJECT_HEAP);
            FireEtwGCCreateSegment_V1(Info.GCCreateSegment.Address, Info.GCCreateSegment.Size, Info.GCCreateSegment.Type, GetClrInstanceId());
        }

        // large obj segments
        for (seg = generation_start_segment (h->generation_of (max_generation+1)); seg != 0; seg = heap_segment_next(seg))
        {
            FireEtwGCCreateSegment_V1((size_t)heap_segment_mem(seg), 
                                   (size_t)(heap_segment_reserved (seg) - heap_segment_mem(seg)), 
                                   ETW::GCLog::ETW_GC_INFO::LARGE_OBJECT_HEAP, 
                                   GetClrInstanceId());
        }
    }
#endif // FEATURE_EVENT_TRACE
}

#if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)
void GCHeap::DescrGenerationsToProfiler (gen_walk_fn fn, void *context)
{
    pGenGCHeap->descr_generations_to_profiler(fn, context);
}
#endif // defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)

#if defined(BACKGROUND_GC) && defined(FEATURE_REDHAWK)

// Helper used to wrap the start routine of background GC threads so we can do things like initialize the
// Redhawk thread state which requires running in the new thread's context.
uint32_t WINAPI gc_heap::rh_bgc_thread_stub(void * pContext)
{
    rh_bgc_thread_ctx * pStartContext = (rh_bgc_thread_ctx*)pContext;

    // Initialize the Thread for this thread. The false being passed indicates that the thread store lock
    // should not be acquired as part of this operation. This is necessary because this thread is created in
    // the context of a garbage collection and the lock is already held by the GC.
    ASSERT(GCHeap::GetGCHeap()->IsGCInProgress());
    GCToEEInterface::AttachCurrentThread();

    // Inform the GC which Thread* we are.
    pStartContext->m_pRealContext->bgc_thread = GetThread();

    // Run the real start procedure and capture its return code on exit.
    return pStartContext->m_pRealStartRoutine(pStartContext->m_pRealContext);
}

#endif // BACKGROUND_GC && FEATURE_REDHAWK

#ifdef FEATURE_BASICFREEZE
segment_handle GCHeap::RegisterFrozenSegment(segment_info *pseginfo)
{
    heap_segment * seg = new (nothrow) heap_segment;
    if (!seg)
    {
        return NULL;
    }

    uint8_t* base_mem = (uint8_t*)pseginfo->pvMem;
    heap_segment_mem(seg) = base_mem + pseginfo->ibFirstObject;
    heap_segment_allocated(seg) = base_mem + pseginfo->ibAllocated;
    heap_segment_committed(seg) = base_mem + pseginfo->ibCommit;
    heap_segment_reserved(seg) = base_mem + pseginfo->ibReserved;
    heap_segment_next(seg) = 0;
    heap_segment_used(seg) = heap_segment_allocated(seg);
    heap_segment_plan_allocated(seg) = 0;
    seg->flags = heap_segment_flags_readonly;

#if defined (MULTIPLE_HEAPS) && !defined (ISOLATED_HEAPS)
    gc_heap* heap = gc_heap::g_heaps[0];
    heap_segment_heap(seg) = heap;
#else
    gc_heap* heap = pGenGCHeap;
#endif //MULTIPLE_HEAPS && !ISOLATED_HEAPS

    if (heap->insert_ro_segment(seg) == FALSE)
    {
        delete seg;
        return NULL;
    }

    return reinterpret_cast< segment_handle >(seg);
}

void GCHeap::UnregisterFrozenSegment(segment_handle seg)
{
#if defined (MULTIPLE_HEAPS) && !defined (ISOLATED_HEAPS)
    gc_heap* heap = gc_heap::g_heaps[0];
#else
    gc_heap* heap = pGenGCHeap;
#endif //MULTIPLE_HEAPS && !ISOLATED_HEAPS

    heap->remove_ro_segment(reinterpret_cast<heap_segment*>(seg));
}
#endif // FEATURE_BASICFREEZE


#endif // !DACCESS_COMPILE