summaryrefslogtreecommitdiff
path: root/src/debug/di/process.cpp
blob: 243e21d15bb20bb716b4195e2a2f89054a709b58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
//*****************************************************************************
// File: process.cpp
//

//
//*****************************************************************************
#include "stdafx.h"
#include "primitives.h"
#include "safewrap.h"

#include "check.h"

#ifndef SM_REMOTESESSION
#define SM_REMOTESESSION 0x1000
#endif

#include "corpriv.h"
#include "corexcep.h"
#include "../../dlls/mscorrc/resource.h"
#include <limits.h>

#include <sstring.h>

// @dbgtodo shim: process has some private hooks into the shim.
#include "shimpriv.h"

#include "metadataexports.h"
#include "readonlydatatargetfacade.h"
#include "metahost.h"

// Keep this around for retail debugging. It's very very useful because
// it's global state that we can always find, regardless of how many locals the compiler
// optimizes away ;)
struct RSDebuggingInfo;
extern RSDebuggingInfo * g_pRSDebuggingInfo;

//---------------------------------------------------------------------------------------
//
// OpenVirtualProcessImpl method called by the shim to get an ICorDebugProcess4 instance
//
// Arguments:
//    clrInstanceId - target pointer identifying which CLR in the Target to debug.
//    pDataTarget - data target abstraction.
//    hDacModule - the handle of the appropriate DAC dll for this runtime
//    riid - interface ID to query for.
//    ppProcessOut - new object for target, interface ID matches riid.
//    ppFlagsOut - currently only has 1 bit to indicate whether or not this runtime
//                 instance will send a managed event after attach
//
// Return Value:
//    S_OK on success. Else failure
//
// Assumptions:
//
// Notes:
//    The outgoing process object can be cleaned up by calling Detach (which
//    will reset the Attach bit.)
//    @dbgtodo attach-bit: need to determine fate of attach bit.
//
//---------------------------------------------------------------------------------------
STDAPI DLLEXPORT OpenVirtualProcessImpl(
    ULONG64 clrInstanceId,
    IUnknown * pDataTarget,
    HMODULE hDacModule,
    CLR_DEBUGGING_VERSION * pMaxDebuggerSupportedVersion,
    REFIID riid,
    IUnknown ** ppInstance,
    CLR_DEBUGGING_PROCESS_FLAGS* pFlagsOut)
{
    HRESULT hr = S_OK;
    RSExtSmartPtr<CordbProcess> pProcess;
    PUBLIC_API_ENTRY(NULL);
    EX_TRY
    {

        if ( (pDataTarget == NULL) || (clrInstanceId == 0) || (pMaxDebuggerSupportedVersion == NULL) ||
            ((pFlagsOut == NULL) && (ppInstance == NULL))
            )
        {
            ThrowHR(E_INVALIDARG);
        }

        // We consider the top 8 bits of the struct version to be the only part that represents
        // a breaking change.  This gives us some freedom in the future to have the debugger
        // opt into getting more data.
        const WORD kMajorMask = 0xff00;
        const WORD kMaxStructMajor = 0;
        if ((pMaxDebuggerSupportedVersion->wStructVersion & kMajorMask) > kMaxStructMajor)
        {
            // Don't know how to interpret the version structure
            ThrowHR(CORDBG_E_UNSUPPORTED_VERSION_STRUCT);
        }

        // This process object is intended to be used for the V3 pipeline, and so
        // much of the process from V2 is not being used. For example,
        // - there is no ShimProcess object
        // - there is no w32et thread (all threads are effectively an event thread)
        // - the stop state is 'live', which corresponds to CordbProcess not knowing what
        // its stop state really is (because that is now controlled by the shim).
        ProcessDescriptor pd = ProcessDescriptor::CreateUninitialized();
        IfFailThrow(CordbProcess::OpenVirtualProcess(
            clrInstanceId,
            pDataTarget,  // takes a reference
            hDacModule,
            NULL, // Cordb
            &pd, // 0 for V3 cases (pShim == NULL).
            NULL, // no Shim in V3 cases
            &pProcess));

        // CordbProcess::OpenVirtualProcess already did the external addref to pProcess.
        // Since pProcess is a smart ptr, it will external release in this function.
        // Living reference will be the one from the QI.

        // get the managed debug event pending flag
        if(pFlagsOut != NULL)
        {
            hr = pProcess->GetAttachStateFlags(pFlagsOut);
            if(FAILED(hr))
            {
                ThrowHR(hr);
            }
        }

        //
        // Check to make sure the debugger supports debugging this version
        // Note that it's important that we still store the flags (above) in this case
        //
        if (!CordbProcess::IsCompatibleWith(pMaxDebuggerSupportedVersion->wMajor))
        {
            // Not compatible - don't keep the process instance, and return this specific error-code
            ThrowHR(CORDBG_E_UNSUPPORTED_FORWARD_COMPAT);
        }

        //
        // Now Query for the requested interface
        //
        if(ppInstance != NULL)
        {
            IfFailThrow(pProcess->QueryInterface(riid, reinterpret_cast<void**> (ppInstance)));
        }

        // if you have to add code here that could fail make sure ppInstance gets released and NULL'ed at exit
    }
    EX_CATCH_HRESULT(hr);

    if((FAILED(hr) || ppInstance == NULL) && pProcess != NULL)
    {
        // The process has a strong reference to itself which is only released by neutering it.
        // Since we aren't handing out the ref then we need to clean it up
        _ASSERTE(ppInstance == NULL || *ppInstance == NULL);
        pProcess->Neuter();
    }
    return hr;
};

//---------------------------------------------------------------------------------------
//
// OpenVirtualProcessImpl2 method called by the dbgshim to get an ICorDebugProcess4 instance
//
// Arguments:
//    clrInstanceId - target pointer identifying which CLR in the Target to debug.
//    pDataTarget - data target abstraction.
//    pDacModulePath - the module path of the appropriate DAC dll for this runtime
//    riid - interface ID to query for.
//    ppProcessOut - new object for target, interface ID matches riid.
//    ppFlagsOut - currently only has 1 bit to indicate whether or not this runtime
//                 instance will send a managed event after attach
//
// Return Value:
//    S_OK on success. Else failure
//---------------------------------------------------------------------------------------
STDAPI DLLEXPORT OpenVirtualProcessImpl2(
    ULONG64 clrInstanceId,
    IUnknown * pDataTarget,
    LPCWSTR pDacModulePath,
    CLR_DEBUGGING_VERSION * pMaxDebuggerSupportedVersion,
    REFIID riid,
    IUnknown ** ppInstance,
    CLR_DEBUGGING_PROCESS_FLAGS* pFlagsOut)
{
    HMODULE hDac = LoadLibraryW(pDacModulePath);
    if (hDac == NULL)
    {
        return HRESULT_FROM_WIN32(GetLastError());
    }
    return OpenVirtualProcessImpl(clrInstanceId, pDataTarget, hDac, pMaxDebuggerSupportedVersion, riid, ppInstance, pFlagsOut);
}

//---------------------------------------------------------------------------------------
// DEPRECATED - use OpenVirtualProcessImpl
// OpenVirtualProcess method used by the shim in CLR v4 Beta1
// We'd like a beta1 shim/VS to still be able to open dumps using a CLR v4 Beta2+ mscordbi.dll,
// so we'll leave this in place (at least until after Beta2 is in wide use).
//---------------------------------------------------------------------------------------
STDAPI DLLEXPORT OpenVirtualProcess2(
    ULONG64 clrInstanceId,
    IUnknown * pDataTarget,
    HMODULE hDacModule,
    REFIID riid,
    IUnknown ** ppInstance,
    CLR_DEBUGGING_PROCESS_FLAGS* pFlagsOut)
{
    CLR_DEBUGGING_VERSION maxVersion = {0};
    maxVersion.wMajor = 4;
    return OpenVirtualProcessImpl(clrInstanceId, pDataTarget, hDacModule, &maxVersion, riid, ppInstance, pFlagsOut);
}

//---------------------------------------------------------------------------------------
// DEPRECATED - use OpenVirtualProcessImpl
// Public OpenVirtualProcess method to get an ICorDebugProcess4 instance
// Used directly in CLR v4 pre Beta1 - can probably be safely removed now
//---------------------------------------------------------------------------------------
STDAPI DLLEXPORT OpenVirtualProcess(
    ULONG64 clrInstanceId,
    IUnknown * pDataTarget,
    REFIID riid,
    IUnknown ** ppInstance)
{
    return OpenVirtualProcess2(clrInstanceId, pDataTarget, NULL, riid, ppInstance, NULL);
};

//-----------------------------------------------------------------------------
// Most Hresults to Unrecoverable error indicate an internal error
// in the Right-Side.
// However, a few are legal (eg, "could actually happen in a retail scenario and
// not indicate an issue in mscorbi"). Track that here.
//-----------------------------------------------------------------------------

bool IsLegalFatalError(HRESULT hr)
{
    return
        (hr == CORDBG_E_INCOMPATIBLE_PROTOCOL) ||
        (hr == CORDBG_E_CANNOT_DEBUG_FIBER_PROCESS) ||
        (hr == CORDBG_E_UNCOMPATIBLE_PLATFORMS) ||
        (hr == CORDBG_E_MISMATCHED_CORWKS_AND_DACWKS_DLLS) ||
        // This should only happen in the case of a security attack on us.
        (hr == E_ACCESSDENIED) ||
        (hr == E_FAIL);
}

//-----------------------------------------------------------------------------
// Safe wait. Use this anytime we're waiting on:
// - an event signaled by the helper thread.
// - something signaled by a thread that holds the process lock.
// Note that we must preserve GetLastError() semantics.
//-----------------------------------------------------------------------------
inline DWORD SafeWaitForSingleObject(CordbProcess * p, HANDLE h, DWORD dwTimeout)
{
    // Can't hold process lock while blocking
    _ASSERTE(!p->ThreadHoldsProcessLock());

    return ::WaitForSingleObject(h, dwTimeout);
}

#define CORDB_WAIT_TIMEOUT 360000 // milliseconds

//---------------------------------------------------------------------------------------
//
// Get the timeout value used in waits.
//
// Return Value:
//    Number of milliseconds to waite or possible INFINITE (-1).
//
//
// Notes:
//    Uses registry values for fine tuning.
//

// static
static inline DWORD CordbGetWaitTimeout()
{
#ifdef _DEBUG
    // 0 = Wait forever
    // 1 = Wait for CORDB_WAIT_TIMEOUT
    // n = Wait for n milliseconds
    static ConfigDWORD cordbWaitTimeout;
    DWORD dwTimeoutVal = cordbWaitTimeout.val(CLRConfig::INTERNAL_DbgWaitTimeout);
    if (dwTimeoutVal == 0)
        return DWORD(-1);
    else if (dwTimeoutVal != 1)
        return dwTimeoutVal;
    else
#endif
    {
        return CORDB_WAIT_TIMEOUT;
    }
}

//----------------------------------------------------------------------------
// Implementation of IDacDbiInterface::IMetaDataLookup.
// lookup Internal Metadata Importer keyed by PEFile
// isILMetaDataForNGENImage is true iff the IMDInternalImport returned represents a pointer to
// metadata from an IL image when the module was an ngen'ed image.
IMDInternalImport * CordbProcess::LookupMetaData(VMPTR_PEFile vmPEFile, bool &isILMetaDataForNGENImage)
{
    INTERNAL_DAC_CALLBACK(this);

    HASHFIND hashFindAppDomain;
    HASHFIND hashFindModule;
    IMDInternalImport * pMDII = NULL;
    isILMetaDataForNGENImage = false;

    // Check to see if one of the cached modules has the metadata we need
    // If not we will do a more exhaustive search below
    for (CordbAppDomain * pAppDomain = m_appDomains.FindFirst(&hashFindAppDomain);
         pAppDomain != NULL;
         pAppDomain = m_appDomains.FindNext(&hashFindAppDomain))
    {
        for (CordbModule * pModule = pAppDomain->m_modules.FindFirst(&hashFindModule);
             pModule != NULL;
             pModule = pAppDomain->m_modules.FindNext(&hashFindModule))
        {
            if (pModule->GetPEFile() == vmPEFile)
            {
                pMDII = NULL;
                ALLOW_DATATARGET_MISSING_MEMORY(
                    pMDII = pModule->GetInternalMD();
                );
                if(pMDII != NULL)
                    return pMDII;
            }
        }
    }

    // Cache didn't have it... time to search harder
    PrepopulateAppDomainsOrThrow();

    // There may be perf issues here. The DAC may make a lot of metadata requests, and so
    // this may be an area for potential perf optimizations if we find things running slow.

    // enumerate through all Modules
    for (CordbAppDomain * pAppDomain = m_appDomains.FindFirst(&hashFindAppDomain);
         pAppDomain != NULL;
         pAppDomain = m_appDomains.FindNext(&hashFindAppDomain))
    {
        pAppDomain->PrepopulateModules();

        for (CordbModule * pModule = pAppDomain->m_modules.FindFirst(&hashFindModule);
             pModule != NULL;
             pModule = pAppDomain->m_modules.FindNext(&hashFindModule))
        {
            if (pModule->GetPEFile() == vmPEFile)
            {
                pMDII = NULL;
                ALLOW_DATATARGET_MISSING_MEMORY(
                    pMDII = pModule->GetInternalMD();
                );

                if ( pMDII == NULL)
                {
                    // If we couldn't get metadata from the CordbModule, then we need to ask the
                    // debugger if it can find the metadata elsewhere.
                    // If this was live debugging, we should have just gotten the memory contents.
                    // Thus this code is for dump debugging, when you don't have the metadata in the dump.
                    pMDII = LookupMetaDataFromDebugger(vmPEFile, isILMetaDataForNGENImage, pModule);
                }
                return pMDII;
            }
        }
    }

    return NULL;
}


IMDInternalImport * CordbProcess::LookupMetaDataFromDebugger(
    VMPTR_PEFile vmPEFile,
    bool &isILMetaDataForNGENImage,
    CordbModule * pModule)
{
    DWORD dwImageTimeStamp = 0;
    DWORD dwImageSize = 0;
    bool isNGEN = false;
    StringCopyHolder filePath;
    IMDInternalImport * pMDII = NULL;

    // First, see if the debugger can locate the exact metadata we want.
    if (this->GetDAC()->GetMetaDataFileInfoFromPEFile(vmPEFile, dwImageTimeStamp, dwImageSize, isNGEN, &filePath))
    {
        _ASSERTE(filePath.IsSet());

        // Since we track modules by their IL images, that presents a little bit of oddness here.  The correct
        // thing to do is preferentially load the NI content.
        // We don't discriminate between timestamps & sizes becuase CLRv4 deterministic NGEN guarantees that the
        // IL image and NGEN image have the same timestamp and size.  Should that guarantee change, this code
        // will be horribly broken.

        // If we happen to have an NI file path, use it instead.
        const WCHAR * pwszFilePath = pModule->GetNGenImagePath();
        if (pwszFilePath)
        {
            // Force the issue, regardless of the older codepath's opinion.
            isNGEN = true;
        }
        else
        {
            pwszFilePath = (WCHAR *)filePath;
        }

        ALLOW_DATATARGET_MISSING_MEMORY(
            pMDII = LookupMetaDataFromDebuggerForSingleFile(pModule, pwszFilePath, dwImageTimeStamp, dwImageSize);
        );

        // If it's an ngen'ed image and the debugger couldn't find it, we can use the metadata from
        // the corresponding IL image if the debugger can locate it.
        filePath.Clear();
        if ((pMDII == NULL) &&
            (isNGEN) &&
            (this->GetDAC()->GetILImageInfoFromNgenPEFile(vmPEFile, dwImageTimeStamp, dwImageSize, &filePath)))
        {
            _ASSERTE(filePath.IsSet());

            WCHAR *mutableFilePath = (WCHAR *)filePath;

#if defined(FEATURE_CORESYSTEM)
            size_t pathLen = wcslen(mutableFilePath);

            const wchar_t *nidll = W(".ni.dll");
            const wchar_t *niexe = W(".ni.exe");
            const size_t dllLen = wcslen(nidll);  // used for ni.exe as well

            const wchar_t *niwinmd = W(".ni.winmd");
            const size_t winmdLen = wcslen(niwinmd);

            if (pathLen > dllLen && _wcsicmp(mutableFilePath+pathLen-dllLen, nidll) == 0)
            {
                wcscpy_s(mutableFilePath+pathLen-dllLen, dllLen, W(".dll"));
            }
            else if (pathLen > dllLen && _wcsicmp(mutableFilePath+pathLen-dllLen, niexe) == 0)
            {
                wcscpy_s(mutableFilePath+pathLen-dllLen, dllLen, W(".exe"));
            }
            else if (pathLen > winmdLen && _wcsicmp(mutableFilePath+pathLen-winmdLen, niwinmd) == 0)
            {
                wcscpy_s(mutableFilePath+pathLen-winmdLen, winmdLen, W(".winmd"));
            }
#endif//FEATURE_CORESYSTEM

            ALLOW_DATATARGET_MISSING_MEMORY(
                pMDII = LookupMetaDataFromDebuggerForSingleFile(pModule, mutableFilePath, dwImageTimeStamp, dwImageSize);
            );

            if (pMDII != NULL)
            {
                isILMetaDataForNGENImage = true;
            }
        }
    }
    return pMDII;
}

// We do not know if the image being sent to us is an IL image or ngen image.
// CordbProcess::LookupMetaDataFromDebugger() has this knowledge when it looks up the file to hand off
// to this function.
// DacDbiInterfaceImpl::GetMDImport() has this knowledge in the isNGEN flag.
// The CLR v2 code that windbg used made a distinction whether the metadata came from
// the exact binary or not (i.e. were we getting metadata from the IL image and using
// it against the ngen image?) but that information was never used and so not brought forward.
// It would probably be more interesting generally to track whether the debugger gives us back
// a file that bears some relationship to the file we asked for, which would catch the NI/IL case
// as well.
IMDInternalImport * CordbProcess::LookupMetaDataFromDebuggerForSingleFile(
    CordbModule * pModule,
    LPCWSTR pwszFilePath,
    DWORD dwTimeStamp,
    DWORD dwSize)
{
    INTERNAL_DAC_CALLBACK(this);

    ULONG32 cchLocalImagePath = MAX_LONGPATH;
    ULONG32 cchLocalImagePathRequired;
    NewArrayHolder<WCHAR> pwszLocalFilePath = NULL;
    IMDInternalImport * pMDII = NULL;

    const HRESULT E_NSF_BUFFER = HRESULT_FROM_WIN32(ERROR_INSUFFICIENT_BUFFER);
    HRESULT hr = E_NSF_BUFFER;
    for(unsigned i=0; i<2 && hr == E_NSF_BUFFER; i++)
    {
        if (pwszLocalFilePath != NULL)
            pwszLocalFilePath.Release();

        if (NULL == (pwszLocalFilePath = new (nothrow) WCHAR[cchLocalImagePath+1]))
            ThrowHR(E_OUTOFMEMORY);

        cchLocalImagePathRequired = 0;

        hr = m_pMetaDataLocator->GetMetaData(pwszFilePath,
                                             dwTimeStamp,
                                             dwSize,
                                             cchLocalImagePath,
                                             &cchLocalImagePathRequired,
                                             pwszLocalFilePath);

        pwszLocalFilePath[cchLocalImagePath] = W('\0');
        cchLocalImagePath = cchLocalImagePathRequired;
    }

    if (SUCCEEDED(hr))
    {
        hr = pModule->InitPublicMetaDataFromFile(pwszLocalFilePath, ofReadOnly, false);
        if (SUCCEEDED(hr))
        {
            // While we're successfully returning a metadata reader, remember that there's
            // absolutely no guarantee this metadata is an exact match for the vmPEFile.
            // The debugger could literally send us back a path to any managed file with
            // metadata content that is readable and we'll 'succeed'.
            // For now, this is by-design.  A debugger should be allowed to decide if it wants
            // to take a risk by returning 'mostly matching' metadata to see if debugging is
            // possible in the absence of a true match.
            pMDII = pModule->GetInternalMD();
        }
    }

    return pMDII;
}


//---------------------------------------------------------------------------------------
//
// Implement IDacDbiInterface::IAllocator::Alloc
// Expected to throws on error.
//
// Arguments:
//    lenBytes - size of the byte array to allocate
//
// Return Value:
//    Return the newly allocated byte array, or throw on OOM
//
// Notes:
//    Since this function is a callback from DAC, it must not take the process lock.
//    If it does, we may deadlock between the DD lock and the process lock.
//    If we really need to take the process lock for whatever reason, we must take it in the DBI functions
//    which call the DAC API that ends up calling this function.
//    See code:InternalDacCallbackHolder for more information.
//

void * CordbProcess::Alloc(SIZE_T lenBytes)
{
    return new BYTE[lenBytes]; // throws
}

//---------------------------------------------------------------------------------------
//
// Implements IDacDbiInterface::IAllocator::Free
//
// Arguments:
//    p - pointer to the memory to be released
//
// Notes:
//    Since this function is a callback from DAC, it must not take the process lock.
//    If it does, we may deadlock between the DD lock and the process lock.
//    If we really need to take the process lock for whatever reason, we must take it in the DBI functions
//    which call the DAC API that ends up calling this function.
//    See code:InternalDacCallbackHolder for more information.
//

void CordbProcess::Free(void * p)
{
    // This shouldn't throw.
    delete [] ((BYTE *) p);
}


//---------------------------------------------------------------------------------------
//
// #DBIVersionChecking
//
// There are a few checks we need to do to make sure we are using the matching DBI and DAC for a particular
// version of the runtime.
//
// 1. Runtime vs. DBI
//     - Desktop
//         This is done by making sure that the CorDebugInterfaceVersion passed to code:CreateCordbObject is
//         compatible with the version of the DBI.
//
//     - Windows CoreCLR
//         This is done by dbgshim.dll.  It checks whether the runtime DLL and the DBI DLL have the same
//         product version.  See CreateDebuggingInterfaceForVersion() in dbgshim.cpp.
//
//     - Remote transport (Mac CoreCLR + CoreSystem CoreCLR)
//         Since there is no dbgshim.dll for a remote CoreCLR, we have to do this check in some other place.
//         We do this in code:CordbProcess::CreateDacDbiInterface, by calling
//         code:DacDbiInterfaceImpl::CheckDbiVersion right after we have created the DDMarshal.
//         The IDacDbiInterface implementation on remote device checks the product version of the device
//         coreclr by:
//             mac - looking at the Info.plist file in the CoreCLR bundle.
//             CoreSystem - this check is skipped at the moment, but should be implemented if we release it
//
//         The one twist here is that the DBI needs to communicate with the IDacDbiInterface
//         implementation on the device BEFORE it can verify the product versions.  This means that we need to
//         have one IDacDbiInterface API which is consistent across all versions of the IDacDbiInterface.
//         This puts two constraints on CheckDbiVersion():
//
//             1.  It has to be the first API on the IDacDbiInterface.
//             - Otherwise, a wrong version of the DBI may end up calling a different API on the
//               IDacDbiInterface and getting random results. (Really what matters is that it is
//               protocol message id 0, at present the source code position implies the message id)
//
//             2.  Its parameters cannot change.
//             - Otherwise, we may run into random errors when we marshal/unmarshal the arguments for the
//               call to CheckDbiVersion().  Debugging will still fail, but we won't get the
//               version mismatch error. (Again, the protocol is what ultimately matters)
//             - To mitigate the impact of this constraint, we use the code:DbiVersion structure.
//               In addition to the DBI version, it also contains a format number (in case we decide to
//               check something else in the future), a breaking change number so that we can force
//               breaking changes between a DBI and a DAC, and space reserved for future use.
//
// 2. DBI vs. DAC
//     - Desktop and Windows CoreCLR (old architecture)
//          No verification is done. There is a transitive implication that if DBI matches runtime and DAC matches
//          runtime then DBI matches DAC. Technically because the DBI only matches runtime on major version number
//          runtime and DAC could be from different builds. However because we service all three binaries together
//          and DBI always loads the DAC that is sitting in the same directory DAC and DBI generally get tight
//          version coupling. A user with admin privleges could put different builds together and no version check
//          would ever fail though.
//
//      - Desktop and Windows CoreCLR (new architecture)
//          No verification is done. Similar to above its implied that if DBI matches runtime and runtime matches
//          DAC then DBI matches DAC. The only difference is that here both the DBI and DAC are provided by the
//          debugger. We provide timestamp and filesize for both binaries which are relatively strongly bound hints,
//          but there is no enforcement on the returned binaries beyond the runtime compat checking.
//
//      - Remote transport (Mac CoreCLR and CoreSystem CoreCLR)
//          Because the transport exists between DBI and DAC it becomes much more important to do a versioning check
//
//          Mac - currently does a tightly bound version check between DBI and the runtime (CheckDbiVersion() above),
//             which transitively gives a tightly bound check to DAC. In same function there is also a check that is
//             logically a DAC DBI protocol check, verifying that the m_dwProtocolBreakingChangeCounter of DbiVersion
//             matches. However this check should be weaker than the build version check and doesn't add anything here.
//
//          CoreSystem - currently skips the tightly bound version check to make internal deployment and usage easier.
//             We want to use old desktop side debugger components to target newer CoreCLR builds, only forcing a desktop
//             upgrade when the protocol actually does change. To do this we use two checks:
//             1. The breaking change counter in CheckDbiVersion() whenever a dev knows they are breaking back
//                compat and wants to be explicit about it. This is the same as mac above.
//             2. During the auto-generation of the DDMarshal classes we take an MD5 hash of IDacDbiInterface source
//                code and embed it in two DDMarshal functions, one which runs locally and one that runs remotely.
//                If both DBI and DAC were built from the same source then the local and remote hashes will match. If the
//                hashes don't match then we assume there has been a been a breaking change in the protocol. Note
//                this hash could have both false-positives and false-negatives. False positives could occur when
//                IDacDbiInterface is changed in a trivial way, such as changing a comment. False negatives could
//                occur when the semantics of the protocol are changed even though the interface is not. Another
//                case would be changing the DDMarshal proxy generation code. In addition to the hashes we also
//                embed timestamps when the auto-generated code was produced. However this isn't used for version
//                matching, only as a hint to indicate which of two mismatched versions is newer.
//
//
// 3. Runtime vs. DAC
//     - Desktop, Windows CoreCLR, CoreSystem CoreCLR
//         In both cases we check this by matching the timestamp in the debug directory of the runtime image
//         and the timestamp we store in the DAC table when we generate the DAC dll.  This is done in
//         code:ClrDataAccess::VerifyDlls.
//
//     - Mac CoreCLR
//         On Mac, we don't have a timestamp in the runtime image.  Instead, we rely on checking the 16-byte
//         UUID in the image.  This UUID is used to check whether a symbol file matches the image, so
//         conceptually it's the same as the timestamp we use on Windows.  This is also done in
//         code:ClrDataAccess::VerifyDlls.
//
//---------------------------------------------------------------------------------------
//
// Instantiates a DacDbi Interface object in a live-debugging scenario that matches
// the current instance of mscorwks in this process.
//
// Return Value:
//    Returns on success. Else throws.
//
// Assumptions:
//    Client will code:CordbProcess::FreeDac when its done with the DacDbi interface.
//    Caller has initialized clrInstanceId.
//
// Notes:
//    This looks for the DAC next to this current DBI. This assumes that Dac and Dbi are both on
//    the local file system. That assumption will break in zero-copy deployment scenarios.
//
//---------------------------------------------------------------------------------------
void
CordbProcess::CreateDacDbiInterface()
{
    _ASSERTE(m_pDACDataTarget != NULL);
    _ASSERTE(m_pDacPrimitives == NULL); // don't double-init

    // Caller has already determined which CLR in the target is being debugged.
    _ASSERTE(m_clrInstanceId != 0);

    m_pDacPrimitives = NULL;

    HRESULT hrStatus = S_OK;

    // Non-marshalling path for live local dac.
    // in the new arch we can get the module from OpenVirtualProcess2 but in the shim case
    // and the deprecated OpenVirtualProcess case we must assume it comes from DAC in the
    // same directory as DBI
    if(m_hDacModule == NULL)
    {
        m_hDacModule.Assign(ShimProcess::GetDacModule());
    }

    //
    // Get the access interface, passing our callback interfaces (data target, allocator and metadata lookup)
    //

    IDacDbiInterface::IAllocator * pAllocator = this;
    IDacDbiInterface::IMetaDataLookup * pMetaDataLookup = this;


    typedef HRESULT (STDAPICALLTYPE * PFN_DacDbiInterfaceInstance)(
        ICorDebugDataTarget *,
        CORDB_ADDRESS,
        IDacDbiInterface::IAllocator *,
        IDacDbiInterface::IMetaDataLookup *,
        IDacDbiInterface **);

    IDacDbiInterface* pInterfacePtr = NULL;
    PFN_DacDbiInterfaceInstance pfnEntry = (PFN_DacDbiInterfaceInstance)GetProcAddress(m_hDacModule, "DacDbiInterfaceInstance");
    if (!pfnEntry)
    {
        ThrowLastError();
    }

    hrStatus = pfnEntry(m_pDACDataTarget, m_clrInstanceId, pAllocator, pMetaDataLookup, &pInterfacePtr);
    IfFailThrow(hrStatus);

    // We now have a resource, pInterfacePtr, that needs to be freed.
    m_pDacPrimitives = pInterfacePtr;

    // Setup DAC target consistency checking based on what we're using for DBI
    m_pDacPrimitives->DacSetTargetConsistencyChecks( m_fAssertOnTargetInconsistency );
}

//---------------------------------------------------------------------------------------
//
// Is the DAC/DBI interface initialized?
//
// Return Value:
//    TRUE iff init.
//
// Notes:
//    The RS will try to initialize DD as soon as it detects the runtime as loaded.
//    If the DD interface has not initialized, then it very likely the runtime has not
//    been loaded into the target.
//
BOOL CordbProcess::IsDacInitialized()
{
    return m_pDacPrimitives != NULL;
}

//---------------------------------------------------------------------------------------
//
// Get the DAC interface.
//
// Return Value:
//    the Dac/Dbi interface pointer to the process.
//    Never returns NULL.
//
// Assumptions:
//    Caller is responsible for ensuring Data-Target is safe to access (eg, not
//    currently running).
//    Caller is responsible for ensuring DAC-cache is flushed. Call code:CordbProcess::ForceDacFlush
//    as needed.
//
//---------------------------------------------------------------------------------------
IDacDbiInterface * CordbProcess::GetDAC()
{
    // Since the DD primitives may throw, easiest way to model that is to make this throw.
    CONTRACTL
    {
        THROWS;
    }
    CONTRACTL_END;

    // We should always have the DAC/DBI interface.
    _ASSERTE(m_pDacPrimitives != NULL);
    return m_pDacPrimitives;
}

//---------------------------------------------------------------------------------------
// Get the Data-Target
//
// Returns:
//     pointer to the data-target. Should be non-null.
//     Lifetime of the pointer is until this process object is neutered.
//
ICorDebugDataTarget * CordbProcess::GetDataTarget()
{
    return m_pDACDataTarget;
}

//---------------------------------------------------------------------------------------
// Create a CordbProcess object around an existing OS process.
//
// Arguments:
//     pDataTarget - abstracts access to the debuggee.
//     clrInstanceId - identifies the CLR instance within the debuggee. (This is the
//         base address of mscorwks)
//     pCordb - Pointer to the implementation of the owning Cordb object implementing the
//         owning ICD interface.
//         This should go away - we can get the functionality from the pShim.
//         If this is null, then pShim must be null too.
//     processID - OS process ID of target process. 0 if pShim == NULL.
//     pShim - shim counter part object. This allows hooks back for v2 compat. This will
//         go away once we no longer support V2 backwards compat.
//         This must be non-null for any V2 paths (including non-DAC-ized code).
//         If this is null, then we're in a V3 path.
//     ppProcess - out parameter for new process object. This gets addreffed.
//
// Return Value:
//     S_OK on success, and *ppProcess set to newly created debuggee object. Else error.
//
// Notes:
//    @dbgtodo - , shim: Cordb, and pShim will all eventually go away.
//
//---------------------------------------------------------------------------------------

// static
HRESULT CordbProcess::OpenVirtualProcess(
    ULONG64 clrInstanceId,
    IUnknown * pDataTarget,
    HMODULE hDacModule,
    Cordb* pCordb,
    const ProcessDescriptor * pProcessDescriptor,
    ShimProcess * pShim,
    CordbProcess ** ppProcess)
{
    _ASSERTE(pDataTarget != NULL);

    // In DEBUG builds, verify that we do actually have an ICorDebugDataTarget (i.e. that
    // someone hasn't messed up the COM interop marshalling, etc.).
#ifdef _DEBUG
    {
        IUnknown * pTempDt;
        HRESULT hrQi = pDataTarget->QueryInterface(IID_ICorDebugDataTarget, (void**)&pTempDt);
        _ASSERTE_MSG(SUCCEEDED(hrQi), "OpenVirtualProcess was passed something that isn't actually an ICorDebugDataTarget");
        pTempDt->Release();
    }
#endif

    // If we're emulating V2, then both pCordb and pShim are non-NULL.
    // If we're doing a real V3 path, then they're both NULL.
    // Either way, they should have the same null-status.
    _ASSERTE((pCordb == NULL) == (pShim == NULL));

    // If we're doing real V3, then we must have a real instance ID
    _ASSERTE(!((pShim == NULL) && (clrInstanceId == 0)));

    *ppProcess = NULL;

    HRESULT hr = S_OK;
    RSUnsafeExternalSmartPtr<CordbProcess> pProcess;
    pProcess.Assign(new (nothrow) CordbProcess(clrInstanceId, pDataTarget, hDacModule, pCordb, pProcessDescriptor, pShim));

    if (pProcess == NULL)
    {
        return E_OUTOFMEMORY;
    }

    ICorDebugProcess * pThis = pProcess;
    (void)pThis; //prevent "unused variable" error from GCC

    // CordbProcess::Init may need shim hooks, so connect Shim now.
    // This will bump reference count.
    if (pShim != NULL)
    {
        pShim->SetProcess(pProcess);

        _ASSERTE(pShim->GetProcess() == pThis);
        _ASSERTE(pShim->GetWin32EventThread() != NULL);
    }

    hr = pProcess->Init();

    if (SUCCEEDED(hr))
    {
        *ppProcess = pProcess;
        pProcess->ExternalAddRef();
    }
    else
    {
        // handle failure path
        pProcess->CleanupHalfBakedLeftSide();

        if (pShim != NULL)
        {
            // Shim still needs to be disposed to clean up other resources.
            pShim->SetProcess(NULL);
        }

        // In failure case, pProcess's dtor will do the final release.
    }


    return hr;
}

//---------------------------------------------------------------------------------------
// CordbProcess constructor
//
// Arguments:
//     pDataTarget - Pointer to an implementation of ICorDebugDataTarget
//         (or ICorDebugMutableDataTarget), which virtualizes access to the process.
//     clrInstanceId - representation of the CLR to debug in the process.  Must be specified
//         (non-zero) if pShim is NULL.  If 0, use the first CLR that we see.
//     pCordb - Pointer to the implementation of the owning Cordb object implementing the
//         owning ICD interface.
//     pW32 - Pointer to the Win32 event thread to use when processing events for this
//         process.
//     dwProcessID - For V3, 0.
//         Else for shim codepaths, the processID of the process this object will represent.
//     pShim - Pointer to the shim for handling V2 debuggers on the V3 architecture.
//
//---------------------------------------------------------------------------------------

CordbProcess::CordbProcess(ULONG64 clrInstanceId,
                           IUnknown * pDataTarget,
                           HMODULE hDacModule,
                           Cordb * pCordb,
                           const ProcessDescriptor * pProcessDescriptor,
                           ShimProcess * pShim)
  : CordbBase(NULL, pProcessDescriptor->m_Pid, enumCordbProcess),
    m_fDoDelayedManagedAttached(false),
    m_cordb(pCordb),
    m_handle(NULL),
    m_processDescriptor(*pProcessDescriptor),
    m_detached(false),
    m_uninitializedStop(false),
    m_exiting(false),
    m_terminated(false),
    m_unrecoverableError(false),
    m_specialDeferment(false),
    m_helperThreadDead(false),
    m_loaderBPReceived(false),
    m_cOutstandingEvals(0),
    m_cOutstandingHandles(0),
    m_clrInstanceId(clrInstanceId),
    m_stopCount(0),
    m_synchronized(false),
    m_syncCompleteReceived(false),
    m_pShim(pShim),
    m_userThreads(11),
    m_oddSync(false),
#ifdef FEATURE_INTEROP_DEBUGGING
    m_unmanagedThreads(11),
#endif
    m_appDomains(11),
    m_sharedAppDomain(0),
    m_steppers(11),
    m_continueCounter(1),
    m_flushCounter(0),
    m_leftSideEventAvailable(NULL),
    m_leftSideEventRead(NULL),
#if defined(FEATURE_INTEROP_DEBUGGING)
    m_leftSideUnmanagedWaitEvent(NULL),
#endif // FEATURE_INTEROP_DEBUGGING
    m_initialized(false),
    m_stopRequested(false),
    m_stopWaitEvent(NULL),
#ifdef FEATURE_INTEROP_DEBUGGING
    m_cFirstChanceHijackedThreads(0),
    m_unmanagedEventQueue(NULL),
    m_lastQueuedUnmanagedEvent(NULL),
    m_lastQueuedOOBEvent(NULL),
    m_outOfBandEventQueue(NULL),
    m_lastDispatchedIBEvent(NULL),
    m_dispatchingUnmanagedEvent(false),
    m_dispatchingOOBEvent(false),
    m_doRealContinueAfterOOBBlock(false),
    m_state(0),
#endif // FEATURE_INTEROP_DEBUGGING
    m_helperThreadId(0),
    m_pPatchTable(NULL),
    m_cPatch(0),
    m_rgData(NULL),
    m_rgNextPatch(NULL),
    m_rgUncommitedOpcode(NULL),
    m_minPatchAddr(MAX_ADDRESS),
    m_maxPatchAddr(MIN_ADDRESS),
    m_iFirstPatch(0),
    m_hHelperThread(NULL),
    m_dispatchedEvent(DB_IPCE_DEBUGGER_INVALID),
    m_pDefaultAppDomain(NULL),
    m_hDacModule(hDacModule),
    m_pDacPrimitives(NULL),
    m_pEventChannel(NULL),
    m_fAssertOnTargetInconsistency(false),
    m_runtimeOffsetsInitialized(false),
    m_writableMetadataUpdateMode(LegacyCompatPolicy)
{
    _ASSERTE((m_id == 0) == (pShim == NULL));

    HRESULT hr = pDataTarget->QueryInterface(IID_ICorDebugDataTarget, reinterpret_cast<void **>(&m_pDACDataTarget));
    IfFailThrow(hr);

#ifdef FEATURE_INTEROP_DEBUGGING
    m_DbgSupport.m_DebugEventQueueIdx = 0;
    m_DbgSupport.m_TotalNativeEvents = 0;
    m_DbgSupport.m_TotalIB = 0;
    m_DbgSupport.m_TotalOOB = 0;
    m_DbgSupport.m_TotalCLR = 0;
#endif // FEATURE_INTEROP_DEBUGGING

    g_pRSDebuggingInfo->m_MRUprocess = this;

    // This is a strong reference to ourselves.
    // This is cleared in code:CordbProcess::Neuter
    m_pProcess.Assign(this);

#ifdef _DEBUG
    // On Debug builds, we'll ASSERT by default whenever the target appears to be corrupt or
    // otherwise inconsistent (both in DAC and DBI).  But we also need the ability to
    // explicitly test corrupt targets.
    // Tests should set COMPlus_DbgIgnoreInconsistentTarget=1 to suppress these asserts
    // Note that this controls two things:
    //     1) DAC behavior - see code:IDacDbiInterface::DacSetTargetConsistencyChecks
    //     2) RS-only consistency asserts - see code:CordbProcess::TargetConsistencyCheck
    if( !CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgDisableTargetConsistencyAsserts) )
    {
        m_fAssertOnTargetInconsistency = true;
    }
#endif
}

/*
    A list of which resources owned by this object are accounted for.

    UNKNOWN
        Cordb*                      m_cordb;
        CordbHashTable              m_unmanagedThreads; // Released in CordbProcess but not removed from hash
        DebuggerIPCEvent*           m_lastQueuedEvent;

        // CordbUnmannagedEvent is a struct which is not derrived from CordbBase.
        // It contains a CordbUnmannagedThread which may need to be released.
        CordbUnmanagedEvent         *m_unmanagedEventQueue;
        CordbUnmanagedEvent         *m_lastQueuedUnmanagedEvent;
        CordbUnmanagedEvent         *m_outOfBandEventQueue;
        CordbUnmanagedEvent         *m_lastQueuedOOBEvent;

        BYTE*                       m_pPatchTable;
        BYTE                        *m_rgData;
        void                        *m_pbRemoteBuf;

   RESOLVED
        // Nutered
        CordbHashTable        m_userThreads;
        CordbHashTable        m_appDomains;

        // Cleaned up in ExitProcess
        DebuggerIPCEvent*     m_queuedEventList;

        CordbHashTable        m_steppers; // Closed in ~CordbProcess

        // Closed in CloseIPCEventHandles called from ~CordbProcess
        HANDLE                m_leftSideEventAvailable;
        HANDLE                m_leftSideEventRead;

        // Closed in ~CordbProcess
        HANDLE                m_handle;
        HANDLE                m_leftSideUnmanagedWaitEvent;
        HANDLE                m_stopWaitEvent;

        // Deleted in ~CordbProcess
        CRITICAL_SECTION      m_processMutex;

*/


CordbProcess::~CordbProcess()
{
    LOG((LF_CORDB, LL_INFO1000, "CP::~CP: deleting process 0x%08x\n", this));

    DTOR_ENTRY(this);

    _ASSERTE(IsNeutered());

    _ASSERTE(m_cordb == NULL);

    // We shouldn't still be in Cordb's list of processes. Unfortunately, our root Cordb object
    // may have already been deleted b/c we're at the mercy of ref-counting, so we can't check.

	_ASSERTE(m_sharedAppDomain == NULL);

    m_processMutex.Destroy();
    m_StopGoLock.Destroy();

    // These handles were cleared in neuter
    _ASSERTE(m_handle == NULL);
#if defined(FEATURE_INTEROP_DEBUGGING)
    _ASSERTE(m_leftSideUnmanagedWaitEvent == NULL);
#endif // FEATURE_INTEROP_DEBUGGING
    _ASSERTE(m_stopWaitEvent == NULL);

    // Set this to mark that we really did cleanup.
}

//-----------------------------------------------------------------------------
// Static build helper.
// This will create a process under the pCordb root, and add it to the list.
// We don't return the process - caller gets the pid and looks it up under
// the Cordb object.
//
// Arguments:
//     pCordb - Pointer to the implementation of the owning Cordb object implementing the
//         owning ICD interface.
//     szProgramName - Name of the program to execute.
//     szProgramArgs - Command line arguments for the process.
//     lpProcessAttributes - OS-specific attributes for process creation.
//     lpThreadAttributes - OS-specific attributes for thread creation.
//     fInheritFlags - OS-specific flag for child process inheritance.
//     dwCreationFlags - OS-specific creation flags.
//     lpEnvironment - OS-specific environmental strings.
//     szCurrentDirectory - OS-specific string for directory to run in.
//     lpStartupInfo - OS-specific info on startup.
//     lpProcessInformation - OS-specific process information buffer.
//     corDebugFlags - What type of process to create, currently always managed.
//-----------------------------------------------------------------------------
HRESULT ShimProcess::CreateProcess(
      Cordb * pCordb,
      ICorDebugRemoteTarget * pRemoteTarget,
      LPCWSTR szProgramName,
      __in_z LPWSTR  szProgramArgs,
      LPSECURITY_ATTRIBUTES lpProcessAttributes,
      LPSECURITY_ATTRIBUTES lpThreadAttributes,
      BOOL fInheritHandles,
      DWORD dwCreationFlags,
      PVOID lpEnvironment,
      LPCWSTR szCurrentDirectory,
      LPSTARTUPINFOW lpStartupInfo,
      LPPROCESS_INFORMATION lpProcessInformation,
      CorDebugCreateProcessFlags corDebugFlags
)
{
    _ASSERTE(pCordb != NULL);

#if defined(FEATURE_DBGIPC_TRANSPORT_DI)
    // The transport cannot deal with creating a suspended process (it needs the debugger to start up and
    // listen for connections).
    _ASSERTE((dwCreationFlags & CREATE_SUSPENDED) == 0);
#endif // FEATURE_DBGIPC_TRANSPORT_DI

    HRESULT hr = S_OK;

    RSExtSmartPtr<ShimProcess> pShim;
    EX_TRY
    {
        pShim.Assign(new ShimProcess());

        // Indicate that this process was started under the debugger as opposed to attaching later.
        pShim->m_attached = false;

        hr = pShim->CreateAndStartWin32ET(pCordb);
        IfFailThrow(hr);

        // Call out to newly created Win32-event Thread to create the process.
        // If this succeeds, new CordbProcess will add a ref to the ShimProcess
        hr = pShim->GetWin32EventThread()->SendCreateProcessEvent(pShim->GetMachineInfo(),
                                                                  szProgramName,
                                                                  szProgramArgs,
                                                                  lpProcessAttributes,
                                                                  lpThreadAttributes,
                                                                  fInheritHandles,
                                                                  dwCreationFlags,
                                                                  lpEnvironment,
                                                                  szCurrentDirectory,
                                                                  lpStartupInfo,
                                                                  lpProcessInformation,
                                                                  corDebugFlags);
        IfFailThrow(hr);
    }
    EX_CATCH_HRESULT(hr);

    // If this succeeds, then process takes ownership of thread. Else we need to kill it.
    if (FAILED(hr))
    {
        if (pShim != NULL)
        {
            pShim->Dispose();
        }
    }
    // Always release our ref to ShimProcess. If the Process was created, then it takes a reference.

    return hr;
}

//-----------------------------------------------------------------------------
// Static build helper for the attach case.
// On success, this will add the process to the pCordb list, and then
// callers can look it up there by pid.
//
// Arguments:
//     pCordb - root under which this all lives
//     dwProcessID - OS process ID to attach to
//     fWin32Attach - are we interop debugging?
//-----------------------------------------------------------------------------
HRESULT ShimProcess::DebugActiveProcess(
    Cordb * pCordb,
    ICorDebugRemoteTarget * pRemoteTarget,
    const ProcessDescriptor * pProcessDescriptor,
    BOOL fWin32Attach
)
{
    _ASSERTE(pCordb != NULL);

    HRESULT hr = S_OK;

    RSExtSmartPtr<ShimProcess> pShim;

    EX_TRY
    {
        pShim.Assign(new ShimProcess());

        // Indicate that this process was attached to, asopposed to being started under the debugger.
        pShim->m_attached = true;

        hr = pShim->CreateAndStartWin32ET(pCordb);
        IfFailThrow(hr);

        // If this succeeds, new CordbProcess will add a ref to the ShimProcess
        hr = pShim->GetWin32EventThread()->SendDebugActiveProcessEvent(pShim->GetMachineInfo(),
                                                                       pProcessDescriptor,
                                                                       fWin32Attach == TRUE,
                                                                       NULL);
        IfFailThrow(hr);

        _ASSERTE(SUCCEEDED(hr));

#if !defined(FEATURE_DBGIPC_TRANSPORT_DI)
        // Don't do this when we are remote debugging since we won't be getting the loader breakpoint.
        // We don't support JIT attach in remote debugging scenarios anyway.
        //
        // When doing jit attach for pure managed debugging we allow the native attach event to be signaled
        // after DebugActiveProcess completes which means we must wait here long enough to have set the debuggee
        // bit indicating managed attach is coming.
        // However in interop debugging we can't do that because there are debug events which come before the
        // loader breakpoint (which is how far we need to get to set the debuggee bit). If we blocked
        // DebugActiveProcess there then the debug events would be refering to an ICorDebugProcess that hasn't
        // yet been returned to the caller of DebugActiveProcess. Instead, for interop debugging we force the
        // native debugger to wait until it gets the loader breakpoint to set the event. Note we can't converge
        // on that solution for the pure managed case because there is no loader breakpoint event. Hence pure
        // managed and interop debugging each require their own solution
        //
        // See bugs Dev10 600873 and 595322 for examples of what happens if we wait in interop or don't wait
        // in pure managed respectively
        //
        // Long term this should all go away because we won't need to set a managed attach pending bit because
        // there shouldn't be any IPC events involved in managed attach. There might not even be a notion of
        // being 'managed attached'
        if(!pShim->m_fIsInteropDebugging)
        {
            DWORD  dwHandles = 2;
            HANDLE arrHandles[2];

            arrHandles[0] = pShim->m_terminatingEvent;
            arrHandles[1] = pShim->m_markAttachPendingEvent;

            // Wait for the completion of marking pending attach bit or debugger detaching
            WaitForMultipleObjectsEx(dwHandles, arrHandles, FALSE, INFINITE, FALSE);
        }
#endif //!FEATURE_DBGIPC_TRANSPORT_DI
    }
    EX_CATCH_HRESULT(hr);

    // If this succeeds, then process takes ownership of thread. Else we need to kill it.
    if (FAILED(hr))
    {
        if (pShim!= NULL)
        {
            pShim->Dispose();
        }
    }

    // Always release our ref to ShimProcess. If the Process was created, then it takes a reference.

    return hr;
}

//-----------------------------------------------------------------------------
// Neuter all of all children, but not the actual process object.
//
// Assumptions:
//   This clears Right-side state. Assumptions about left-side state are either:
//   1. We're in a shutdown scenario, where all left-side state is already
//   freed.
//   2. Caller already verified there are no left-side resources (eg, by calling
//   code:CordbProcess::IsReadyForDetach)
//   3. Caller did code:CordbProcess::NeuterLeftSideResources first
//   to clean up left-side resources.
//
// Notes:
//   This could be called multiple times (code:CordbProcess::FlushAll), so
//   be sure to null out any potential dangling pointers. State may be rebuilt
//   up after each time.
void CordbProcess::NeuterChildren()
{
    _ASSERTE(GetProcessLock()->HasLock());

    // Frees left-side resources. See assumptions above.
    m_LeftSideResourceCleanupList.NeuterAndClear(this);


    m_EvalTable.Clear();


    // Sweep neuter lists.
    m_ExitNeuterList.NeuterAndClear(this);
    m_ContinueNeuterList.NeuterAndClear(this);

    m_userThreads.NeuterAndClear(GetProcessLock());

    m_pDefaultAppDomain = NULL;

    // Frees per-appdomain left-side resources. See assumptions above.
    m_appDomains.NeuterAndClear(GetProcessLock());
    if (m_sharedAppDomain != NULL)
    {
        m_sharedAppDomain->Neuter();
        m_sharedAppDomain->InternalRelease();
        m_sharedAppDomain = NULL;
    }

    m_steppers.NeuterAndClear(GetProcessLock());

#ifdef FEATURE_INTEROP_DEBUGGING
    m_unmanagedThreads.NeuterAndClear(GetProcessLock());
#endif // FEATURE_INTEROP_DEBUGGING

    // Explicitly keep the Win32EventThread alive so that we can use it in the window
    // between NeuterChildren + Neuter.
}

//-----------------------------------------------------------------------------
// Neuter
//
// When the process dies, remove all the resources associated with this object.
//
// Notes:
//   Once we neuter ourself, we can no longer send IPC events. So this is useful
//   on detach. This will be called on FlushAll (which has Whidbey detach
//   semantics)
//-----------------------------------------------------------------------------
void CordbProcess::Neuter()
{
    // Process's Neuter is at the top of the neuter tree. So we take the process-lock
    // here and then all child items (appdomains, modules, etc) will assert
    // that they hold the lock.
    _ASSERTE(!this->ThreadHoldsProcessLock());

    // Take the process lock.
    RSLockHolder lockHolder(GetProcessLock());


    NeuterChildren();

    // Release the metadata interfaces
    m_pMetaDispenser.Clear();


    if (m_hHelperThread != NULL)
    {
        CloseHandle(m_hHelperThread);
        m_hHelperThread = NULL;
    }

    {
        lockHolder.Release();
        {
            // We may still hold the Stop-Go lock.
            // @dbgtodo - left-side resources / shutdown, shim: Currently
            // the shim shutdown is too interwoven with CordbProcess to split
            // it out from the locks. Must fully hoist the W32ET and make
            // it safely outside the RS, and outside the protection of RS
            // locks.
            PUBLIC_API_UNSAFE_ENTRY_FOR_SHIM(this);

            // Now that all of our children are neutered, it should be safe to kill the W32ET.
            // Shutdown the shim, and this will also shutdown the W32ET.
            // Do this outside of the process-lock so that we can shutdown the
            // W23ET.
            if (m_pShim != NULL)
            {
                m_pShim->Dispose();
                m_pShim.Clear();
            }
        }

        lockHolder.Acquire();
    }

    // Unload DAC, and then release our final data target references
    FreeDac();
    m_pDACDataTarget.Clear();
    m_pMutableDataTarget.Clear();
    m_pMetaDataLocator.Clear();

    if (m_pEventChannel != NULL)
    {
        m_pEventChannel->Delete();
        m_pEventChannel = NULL;
    }

    // Need process lock to clear the patch table
    ClearPatchTable();

    CordbProcess::CloseIPCHandles();

    CordbBase::Neuter();

    m_cordb.Clear();

    // Need to release this reference to ourselves. Other leaf objects may still hold
    // strong references back to this CordbProcess object.
    _ASSERTE(m_pProcess == this);
    m_pProcess.Clear();
}

// Wrapper to return metadata dispenser.
//
// Notes:
//    Does not adjust reference count of dispenser.
//    Dispenser is destroyed in code:CordbProcess::Neuter
//    Dispenser is non-null.
IMetaDataDispenserEx * CordbProcess::GetDispenser()
{
    _ASSERTE(m_pMetaDispenser != NULL);
    return m_pMetaDispenser;
}


void CordbProcess::CloseIPCHandles()
{
    INTERNAL_API_ENTRY(this);

    // Close off Right Side's handles.
    if (m_leftSideEventAvailable != NULL)
    {
        CloseHandle(m_leftSideEventAvailable);
        m_leftSideEventAvailable = NULL;
    }

    if (m_leftSideEventRead != NULL)
    {
        CloseHandle(m_leftSideEventRead);
        m_leftSideEventRead = NULL;
    }

    if (m_handle != NULL)
    {
        // @dbgtodo  - We should probably add asserts to all calls to CloseHandles(), but this has been
        // a particularly problematic spot in the past for Mac debugging.
        BOOL fSuccess = CloseHandle(m_handle);
        (void)fSuccess; //prevent "unused variable" error from GCC
        _ASSERTE(fSuccess);

        m_handle = NULL;
    }

#if defined(FEATURE_INTEROP_DEBUGGING)
    if (m_leftSideUnmanagedWaitEvent != NULL)
    {
        CloseHandle(m_leftSideUnmanagedWaitEvent);
        m_leftSideUnmanagedWaitEvent = NULL;
    }
#endif // FEATURE_INTEROP_DEBUGGING

    if (m_stopWaitEvent != NULL)
    {
        CloseHandle(m_stopWaitEvent);
        m_stopWaitEvent = NULL;
    }
}


//-----------------------------------------------------------------------------
// Create new OS Thread for the Win32 Event Thread (the thread used in interop-debugging to sniff
// native debug events). This is 1:1 w/ a CordbProcess object.
// This will then be used to actuall create the CordbProcess object.
// The process object will then take ownership of the thread.
//
// Arguments:
//     pCordb - the root object that the process lives under
//
// Return values:
//     S_OK on success.
//-----------------------------------------------------------------------------
HRESULT ShimProcess::CreateAndStartWin32ET(Cordb * pCordb)
{

    //
    // Create the win32 event listening thread
    //
    CordbWin32EventThread * pWin32EventThread = new (nothrow) CordbWin32EventThread(pCordb, this);

    HRESULT hr = S_OK;

    if (pWin32EventThread != NULL)
    {
        hr = pWin32EventThread->Init();

        if (SUCCEEDED(hr))
        {
            hr = pWin32EventThread->Start();
        }

        if (FAILED(hr))
        {
            delete pWin32EventThread;
            pWin32EventThread = NULL;
        }
    }
    else
    {
        hr = E_OUTOFMEMORY;
    }

    m_pWin32EventThread = pWin32EventThread;
    return ErrWrapper(hr);
}


//---------------------------------------------------------------------------------------
//
// Try to initialize the DAC. Called in scenarios where it may fail.
//
// Return Value:
//    TRUE  - DAC is initialized.
//    FALSE  - Not initialized, but can try again later. Common case if
//          target has not yet loaded the runtime.
//    Throws exception - fatal.
//
// Assumptions:
//    Target is stopped by OS, so we can safely inspect it without it moving on us.
//
// Notes:
//    This can be called eagerly to sniff if the LS is initialized.
//
//---------------------------------------------------------------------------------------
BOOL CordbProcess::TryInitializeDac()
{
    CONTRACTL
    {
        THROWS;
    }
    CONTRACTL_END;

    // Target is stopped by OS, so we can safely inspect it without it moving on us.

    // We want to avoid exceptions in the normal case, so we do some pre-checks
    // to detect failure without relying on exceptions.
    // Can't initialize DAC until mscorwks is loaded. So that's a sanity test.
    HRESULT hr = EnsureClrInstanceIdSet();
    if (FAILED(hr))
    {
        return FALSE;
    }

    // By this point, we know which CLR in the target to debug. That means there is a CLR
    // in the target, and it's safe to initialize DAC.
    _ASSERTE(m_clrInstanceId != 0);

    // Now expect it to succeed
    InitializeDac();
    return TRUE;
}

//---------------------------------------------------------------------------------------
//
// Load & Init DAC, expecting to succeed.
//
// Return Value:
//    Throws on failure.
//
// Assumptions:
//    Caller invokes this at a point where they can expect it to succeed.
//    This is called early in the startup path because DAC is needed for accessing
//    data in the target.
//
// Notes:
//    This needs to succeed, and should always succeed (baring a bad installation)
//    so we assert on failure paths.
//    This may be called mutliple times.
//
//---------------------------------------------------------------------------------------
void CordbProcess::InitializeDac()
{
    CONTRACTL
    {
        THROWS;
    }
    CONTRACTL_END;
    INTERNAL_API_ENTRY(this);

    // For Mac debugginger, m_hDacModule is not used, and it will always be NULL.  To check whether DAC has
    // been initialized, we need to check something else, namely m_pDacPrimitives.
    if (m_pDacPrimitives == NULL)
    {
        LOG((LF_CORDB, LL_INFO1000, "About to load DAC\n"));
        CreateDacDbiInterface(); // throws
    }
    else
    {
        LOG((LF_CORDB, LL_INFO1000, "Dac already loaded, 0x%p\n", (HMODULE)m_hDacModule));
    }

    // Always flush dac.
    ForceDacFlush();
}

//---------------------------------------------------------------------------------------
//
// Free DAC resources
//
// Notes:
//    This should clean up state such that code:CordbProcess::InitializeDac could be called again.
//
//---------------------------------------------------------------------------------------
void CordbProcess::FreeDac()
{
    CONTRACTL
    {
        NOTHROW; // backout code.
    }
    CONTRACTL_END;

    if (m_pDacPrimitives != NULL)
    {
        m_pDacPrimitives->Destroy();
        m_pDacPrimitives = NULL;
    }

    if (m_hDacModule != NULL)
    {
        LOG((LF_CORDB, LL_INFO1000, "Unloading DAC\n"));
        m_hDacModule.Clear();
    }
}

IEventChannel * CordbProcess::GetEventChannel()
{
    _ASSERTE(m_pEventChannel != NULL);
    return m_pEventChannel;
}

//---------------------------------------------------------------------------------------
// Mark that the process is being interop-debugged.
//
// Notes:
//   @dbgtodo shim: this should eventually move into the shim or go away.
//   It's only to support V2 legacy interop-debugging.
//   Called after code:CordbProcess::Init if we want to enable interop debugging.
//   This allows us to separate out Interop-debugging flags from the core initialization,
//   and paves the way for us to eventually remove it.
//
//   Since we're always on the naitve-pipeline, the Enabling interop debugging just changes
//   how the native debug events are being handled. So this must be called after Init, but
//   before any events are actually handled.
//   This mus be calle on the win32 event thread to gaurantee that it's called before WFDE.
void CordbProcess::EnableInteropDebugging()
{
    CONTRACTL
    {
        THROWS;
        PRECONDITION(m_pShim != NULL);
    }
    CONTRACTL_END;

    // Must be on W32ET to gaurantee that we're called after Init yet before WFDE (which
    // are both called on the W32et).
    _ASSERTE(IsWin32EventThread());
#ifdef FEATURE_INTEROP_DEBUGGING

    m_state |= PS_WIN32_ATTACHED;
    if (GetDCB() != NULL)
    {
        GetDCB()->m_rightSideIsWin32Debugger = true;
        UpdateLeftSideDCBField(&(GetDCB()->m_rightSideIsWin32Debugger), sizeof(GetDCB()->m_rightSideIsWin32Debugger));
    }

    // Tell the Shim we're interop-debugging.
    m_pShim->SetIsInteropDebugging(true);
#else
    ThrowHR(CORDBG_E_INTEROP_NOT_SUPPORTED);
#endif
}

//---------------------------------------------------------------------------------------
//
// Init -- create any objects that the process object needs to operate.
//
// Arguments:
//
// Return Value:
//    S_OK on success
//
// Assumptions:
//    Called on Win32 Event Thread, after OS debugging pipeline is established but
//    before WaitForDebugEvent / ContinueDebugEvent. This means the target is stopped.
//
// Notes:
//    To enable interop-debugging, call code:CordbProcess::EnableInteropDebugging
//---------------------------------------------------------------------------------------
HRESULT CordbProcess::Init()
{
    INTERNAL_API_ENTRY(this);

    HRESULT hr = S_OK;
    BOOL fIsLSStarted = FALSE; // see meaning below.

    FAIL_IF_NEUTERED(this);


    EX_TRY
    {
        m_processMutex.Init("Process Lock", RSLock::cLockReentrant, RSLock::LL_PROCESS_LOCK);
        m_StopGoLock.Init("Stop-Go Lock", RSLock::cLockReentrant, RSLock::LL_STOP_GO_LOCK);

#ifdef _DEBUG
        m_appDomains.DebugSetRSLock(GetProcessLock());
        m_userThreads.DebugSetRSLock(GetProcessLock());
#ifdef FEATURE_INTEROP_DEBUGGING
        m_unmanagedThreads.DebugSetRSLock(GetProcessLock());
#endif
        m_steppers.DebugSetRSLock(GetProcessLock());
#endif

        // See if the data target is mutable, and cache the mutable interface if it is
        // We must initialize this before we try to use the data target to access the memory in the target process.
        m_pMutableDataTarget.Clear();            // if we were called already, release
        hr = m_pDACDataTarget->QueryInterface(IID_ICorDebugMutableDataTarget, (void**)&m_pMutableDataTarget);
        if (!SUCCEEDED(hr))
        {
            // The data target doesn't support mutation.  We'll fail any requests that require mutation.
            m_pMutableDataTarget.Assign(new ReadOnlyDataTargetFacade());
        }

        m_pMetaDataLocator.Clear();
        hr = m_pDACDataTarget->QueryInterface(IID_ICorDebugMetaDataLocator, reinterpret_cast<void **>(&m_pMetaDataLocator));

        // Get the metadata dispenser.
        hr = InternalCreateMetaDataDispenser(IID_IMetaDataDispenserEx, (void **)&m_pMetaDispenser);

        // We statically link in the dispenser. We expect it to succeed, except for OOM, which
        // debugger doesn't yet handle.
        SIMPLIFYING_ASSUMPTION_SUCCEEDED(hr);
        IfFailThrow(hr);

        _ASSERTE(m_pMetaDispenser != NULL);

        // In order to allow users to call the metadata reader from multiple threads we need to set
        // a flag on the dispenser to create threadsafe readers. This is done best-effort but
        // really shouldn't ever fail. See issue 696511.
        VARIANT optionValue;
        VariantInit(&optionValue);
        V_VT(&optionValue) = VT_UI4;
        V_UI4(&optionValue) = MDThreadSafetyOn;
        m_pMetaDispenser->SetOption(MetaDataThreadSafetyOptions, &optionValue);

        //
        // Setup internal events.
        // @dbgtodo shim: these events should eventually be in the shim.
        //


        // Managed debugging is built on the native-pipeline, and that will detect against double-attaches.

        // @dbgtodo shim: In V2, LSEA + LSER were used by the LS's helper thread. Now with the V3 pipeline,
        // that helper-thread uses native-debug events. The W32ET gets those events and then uses LSEA, LSER to
        // signal existing RS infrastructure. Eventually get rid of LSEA, LSER completely.
        //

        m_leftSideEventAvailable = WszCreateEvent(NULL, FALSE, FALSE, NULL);
        if (m_leftSideEventAvailable == NULL)
        {
            ThrowLastError();
        }

        m_leftSideEventRead = WszCreateEvent(NULL, FALSE, FALSE, NULL);
        if (m_leftSideEventRead == NULL)
        {
            ThrowLastError();
        }

        m_stopWaitEvent = WszCreateEvent(NULL, TRUE, FALSE, NULL);
        if (m_stopWaitEvent == NULL)
        {
            ThrowLastError();
        }

        if (m_pShim != NULL)
        {
            // Get a handle to the debuggee.
            // This is not needed in the V3 pipeline because we don't assume we have a live, local, process.
            m_handle = GetShim()->GetNativePipeline()->GetProcessHandle();

            if (m_handle == NULL)
            {
                ThrowLastError();
            }
        }

        // The LS startup goes through the following phases:
        // 1) mscorwks not yet loaded (eg, any unmanaged app)
        // 2) mscorwks loaded (DAC can now be used)
        // 3) IPC Block created at OS level
        // 4) IPC block data initialized (so we can read meainingful data from it)
        // 5) LS marks that it's initialized (queryable by a DAC primitive) (may not be atomic)
        // 6) LS fires a "Startup" exception (sniffed by WFDE).
        //
        // LS is currently stopped by OS debugging, so it's doesn't shift phases.
        // From the RS's perspective:
        // - after phase 5 is an attach
        // - before phase 6 is a launch.
        // This means there's an overlap: if we catch it at phase 5, we'll just get
        // an extra Startup exception from phase 6, which is safe. This overlap is good
        // because it means there's no bad window to do an attach in.

        // fIsLSStarted means before phase 6 (eg, RS should expect a startup exception)

        // Determines if the LS is started.

        {
            BOOL fReady = TryInitializeDac();

            if (fReady)
            {
                // Invoke DAC primitive.
                _ASSERTE(m_pDacPrimitives != NULL);
                fIsLSStarted = m_pDacPrimitives->IsLeftSideInitialized();
            }
            else
            {
                _ASSERTE(m_pDacPrimitives == NULL);

                // DAC is not yet loaded, so we're at least before phase 2, which is before phase 6.
                // So leave fIsLSStarted = false. We'll get a startup exception later.
                _ASSERTE(!fIsLSStarted);
            }
        }


        if (fIsLSStarted)
        {
            // Left-side has started up. This is common for Attach cases when managed-code is already running.

            if (m_pShim != NULL)
            {
                FinishInitializeIPCChannelWorker(); // throws

                // At this point, the control block is complete and all four
                // events are available and valid for the remote process.

                // Request that the process object send an Attach IPC event.
                // This is only used in an attach case.
                // @dbgtodo sync: this flag can go away once the
                // shim can use real sync APIs.
                m_fDoDelayedManagedAttached = true;
            }
            else
            {
                // In the V3 pipeline case, if we have the DD-interface, then the runtime is loaded
                // and we consider it initialized.
                if (IsDacInitialized())
                {
                    m_initialized = true;
                }
            }
        }
        else
        {
            // LS is not started yet. This would be common for "Launch" cases.
            // We will get a Startup Exception notification when it does start.
        }
    }
    EX_CATCH_HRESULT(hr);

    if (FAILED(hr))
    {
        CleanupHalfBakedLeftSide();
    }

    return hr;
}


COM_METHOD CordbProcess::CanCommitChanges(ULONG cSnapshots,
                ICorDebugEditAndContinueSnapshot *pSnapshots[],
                ICorDebugErrorInfoEnum **pError)
{
    return E_NOTIMPL;
}

COM_METHOD CordbProcess::CommitChanges(ULONG cSnapshots,
    ICorDebugEditAndContinueSnapshot *pSnapshots[],
    ICorDebugErrorInfoEnum **pError)
{
    return E_NOTIMPL;
}


//
// Terminating -- places the process into the terminated state. This should
// also get any blocking process functions unblocked so they'll return
// a failure code.
//
void CordbProcess::Terminating(BOOL fDetach)
{
    INTERNAL_API_ENTRY(this);

    LOG((LF_CORDB, LL_INFO1000,"CP::T: Terminating process 0x%x detach=%d\n", m_id, fDetach));
    m_terminated = true;

    m_cordb->ProcessStateChanged();

    // Set events that may be blocking stuff.
    // But don't set RSER unless we actually read the event. We don't block on RSER
    // since that wait also checks the leftside's process handle.
    SetEvent(m_leftSideEventRead);
    SetEvent(m_leftSideEventAvailable);
    SetEvent(m_stopWaitEvent);

    if (m_pShim != NULL)
        m_pShim->SetTerminatingEvent();

    if (fDetach && (m_pEventChannel != NULL))
    {
        m_pEventChannel->Detach();
    }
}


// Wrapper to give shim access to code:CordbProcess::QueueManagedAttachIfNeededWorker
void CordbProcess::QueueManagedAttachIfNeeded()
{
    PUBLIC_API_ENTRY_FOR_SHIM(this);
    QueueManagedAttachIfNeededWorker();
}

//---------------------------------------------------------------------------------------
// Hook from Shim to request a managed attach IPC event
//
// Notes:
//   Called by shim after the loader-breakpoint is handled.
//   @dbgtodo sync: ths should go away once the shim can initiate
//   a sync
void CordbProcess::QueueManagedAttachIfNeededWorker()
{
    HRESULT hrQueue = S_OK;

    // m_fDoDelayedManagedAttached ensures that we only send an Attach event if the LS is actually present.
    if (m_fDoDelayedManagedAttached && GetShim()->GetAttached())
    {
        RSLockHolder lockHolder(&this->m_processMutex);
        GetDAC()->MarkDebuggerAttachPending();

        hrQueue = this->QueueManagedAttach();
    }

    if (m_pShim != NULL)
        m_pShim->SetMarkAttachPendingEvent();

    IfFailThrow(hrQueue);
}

//---------------------------------------------------------------------------------------
//
// QueueManagedAttach
//
// Send a managed attach. This is asynchronous and will return immediately.
//
// Return Value:
//    S_OK on success
//
//---------------------------------------------------------------------------------------
HRESULT CordbProcess::QueueManagedAttach()
{
    INTERNAL_API_ENTRY(this);

    _ASSERTE(ThreadHoldsProcessLock());

    _ASSERTE(m_fDoDelayedManagedAttached);
    m_fDoDelayedManagedAttached = false;

    _ASSERTE(IsDacInitialized());

    // We don't know what Queue it.
    SendAttachProcessWorkItem * pItem = new (nothrow) SendAttachProcessWorkItem(this);

    if (pItem == NULL)
    {
        return E_OUTOFMEMORY;
    }

    this->m_cordb->m_rcEventThread->QueueAsyncWorkItem(pItem);

    return S_OK;
}

// However, we still want to synchronize.
// @dbgtodo sync: when we hoist attaching, we can send an DB_IPCE_ASYNC_BREAK event instead or Attach
// (for V2 semantics, we still need to synchronize the process)?
void SendAttachProcessWorkItem::Do()
{
    HRESULT hr;

    // This is being processed on the RCET, where it's safe to take the Stop-Go lock.
    RSLockHolder ch(this->GetProcess()->GetStopGoLock());

    DebuggerIPCEvent *event = (DebuggerIPCEvent*) _alloca(CorDBIPC_BUFFER_SIZE);

    // This just acts like an async-break, which will kick off things.
    // This will not induce any faked attach events from the VM (like it did in V2).
    // The Left-side will still slip foward allowing the async-break to happen, so
    // we may get normal debug events in addition to the sync-complete.
    //
    // 1. In the common attach case, we should just get a sync-complete.
    // 2. In Jit-attach cases, the LS is sending an event, and so we'll get that event and then the sync-complete.
    GetProcess()->InitAsyncIPCEvent(event, DB_IPCE_ATTACHING, VMPTR_AppDomain::NullPtr());

    // This should result in a sync-complete from the Left-side, which will be raised as an exception
    // that the debugger passes into Filter and then internally goes through code:CordbProcess::TriageSyncComplete
    // and that triggers code:CordbRCEventThread::FlushQueuedEvents to be called on the RCET.
    // We already pre-queued a fake CreateProcess event.

    // The left-side will also mark itself as attached in response to this event.
    // We explicitly don't mark it as attached from the right-side because we want to let the left-side
    // synchronize first (to stop all running threads) before marking the debugger as attached.
    LOG((LF_CORDB, LL_INFO1000, "[%x] CP::S: sending attach.\n", GetCurrentThreadId()));

    hr = GetProcess()->SendIPCEvent(event, CorDBIPC_BUFFER_SIZE);

    LOG((LF_CORDB, LL_INFO1000, "[%x] CP::S: sent attach.\n", GetCurrentThreadId()));
}

//---------------------------------------------------------------------------------------
// Try to lookup a cached thread object
//
// Arguments:
//     vmThread - vm identifier for thread.
//
// Returns:
//     Thread object if cached; null if not yet cached.
//
// Notes:
//     This does not create the thread object if it's not cached. Caching is unpredictable,
//     and so this may appear to randomly return NULL.
//     Callers should prefer code:CordbProcess::LookupOrCreateThread unless they expicitly
//     want to check RS state.
CordbThread * CordbProcess::TryLookupThread(VMPTR_Thread vmThread)
{
    return m_userThreads.GetBase(VmPtrToCookie(vmThread));
}

//---------------------------------------------------------------------------------------
// Lookup (or create) a CordbThread object by the given volatile OS id. Returns null if not a manged thread
//
// Arguments:
//      dwThreadId - os thread id that a managed thread may be using.
//
// Returns:
//      Thread instance if there is currently a managed thread scheduled to run on dwThreadId.
//      NULL if this tid is not a valid Managed thread. (This is considered a common case)
//      Throws on error.
//
// Notes:
//      OS Thread ID is not fiber-safe, so this is a dangerous function to call.
//      Avoid this as much as possible. Prefer using VMPTR_Thread and
//      code:CordbProcess::LookupOrCreateThread instead of OS thread IDs.
//      See code:CordbThread::GetID for details.
CordbThread * CordbProcess::TryLookupOrCreateThreadByVolatileOSId(DWORD dwThreadId)
{
    PrepopulateThreadsOrThrow();
    return TryLookupThreadByVolatileOSId(dwThreadId);
}

//---------------------------------------------------------------------------------------
// Lookup a cached CordbThread object by the tid. Returns null if not in the cache (which
// includes unmanged thread)
//
// Arguments:
//      dwThreadId - os thread id that a managed thread may be using.
//
// Returns:
//      Thread instance if there is currently a managed thread scheduled to run on dwThreadId.
//      NULL if this tid is not a valid Managed thread. (This is considered a common case)
//      Throws on error.
//
// Notes:
//   Avoids this method:
//   * OS Thread ID is not fiber-safe, so this is a dangerous function to call.
//   * This is juts a Lookup, not LookupOrCreate, so it should only be used by methods
//    that care about the RS state (instead of just LS state).
//   Prefer using VMPTR_Thread and code:CordbProcess::LookupOrCreateThread
//
CordbThread * CordbProcess::TryLookupThreadByVolatileOSId(DWORD dwThreadId)
{
    HASHFIND find;
    for (CordbThread * pThread = m_userThreads.FindFirst(&find);
         pThread != NULL;
         pThread =  m_userThreads.FindNext(&find))
    {
        _ASSERTE(pThread != NULL);

        // Get the OS tid. This returns 0 if the thread is switched out.
        DWORD dwThreadId2 = GetDAC()->TryGetVolatileOSThreadID(pThread->m_vmThreadToken);
        if (dwThreadId2 == dwThreadId)
        {
            return pThread;
        }
    }

    // This OS thread ID does not match any managed thread id.
    return NULL;
}

//---------------------------------------------------------------------------------------
// Preferred CordbThread lookup routine.
//
// Arguments:
//     vmThread - LS thread to lookup. Must be non-null.
//
// Returns:
//     CordbThread instance for given vmThread. May return a previously cached
//     instance or create a new instance. Never returns NULL.
//     Throw on error.
CordbThread * CordbProcess::LookupOrCreateThread(VMPTR_Thread vmThread)
{
    _ASSERTE(!vmThread.IsNull());

    // Return if we have an existing instance.
    CordbThread * pReturn = TryLookupThread(vmThread);
    if (pReturn != NULL)
    {
        return pReturn;
    }

    RSInitHolder<CordbThread> pThread(new CordbThread(this, vmThread)); // throws
    pReturn = pThread.TransferOwnershipToHash(&m_userThreads);

    return pReturn;
}




HRESULT CordbProcess::QueryInterface(REFIID id, void **pInterface)
{
    if (id == IID_ICorDebugProcess)
    {
        *pInterface = static_cast<ICorDebugProcess*>(this);
    }
    else if (id == IID_ICorDebugController)
    {
        *pInterface = static_cast<ICorDebugController*>(static_cast<ICorDebugProcess*>(this));
    }
    else if (id == IID_ICorDebugProcess2)

    {
        *pInterface = static_cast<ICorDebugProcess2*>(this);
    }
    else if (id == IID_ICorDebugProcess3)
    {
        *pInterface = static_cast<ICorDebugProcess3*>(this);
    }
    else if (id == IID_ICorDebugProcess4)
    {
        *pInterface = static_cast<ICorDebugProcess4*>(this);
    }
    else if (id == IID_ICorDebugProcess5)
    {
        *pInterface = static_cast<ICorDebugProcess5*>(this);
    }
    else if (id == IID_ICorDebugProcess7)
    {
        *pInterface = static_cast<ICorDebugProcess7*>(this);
    }
    else if (id == IID_ICorDebugProcess8)
    {
        *pInterface = static_cast<ICorDebugProcess8*>(this);
    }
    else if (id == IID_ICorDebugProcess10)
    {
        *pInterface = static_cast<ICorDebugProcess10*>(this);
    }
    else if (id == IID_IUnknown)
    {
        *pInterface = static_cast<IUnknown*>(static_cast<ICorDebugProcess*>(this));
    }

    else
    {
        *pInterface = NULL;
        return E_NOINTERFACE;
    }

    ExternalAddRef();
    return S_OK;
}




// Public implementation of ICorDebugProcess4::ProcessStateChanged
HRESULT CordbProcess::ProcessStateChanged(CorDebugStateChange eChange)
{
    HRESULT hr = S_OK;
    PUBLIC_API_BEGIN(this)
    {
        switch(eChange)
        {
        case PROCESS_RUNNING:
            FlushProcessRunning();
            break;

        case FLUSH_ALL:
            FlushAll();
            break;

        default:
            ThrowHR(E_INVALIDARG);

        }
    }
    PUBLIC_API_END(hr);
    return hr;
}


HRESULT CordbProcess::EnumerateHeap(ICorDebugHeapEnum **ppObjects)
{
    if (!ppObjects)
        return E_POINTER;

    HRESULT hr = S_OK;
    PUBLIC_API_ENTRY(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(this);

    EX_TRY
    {
        if (m_pDacPrimitives->AreGCStructuresValid())
        {
            CordbHeapEnum *pHeapEnum = new CordbHeapEnum(this);
            GetContinueNeuterList()->Add(this, pHeapEnum);
            hr = pHeapEnum->QueryInterface(__uuidof(ICorDebugHeapEnum), (void**)ppObjects);
        }
        else
        {
            hr = CORDBG_E_GC_STRUCTURES_INVALID;
        }
    }
    EX_CATCH_HRESULT(hr);

    return hr;
}

HRESULT CordbProcess::GetGCHeapInformation(COR_HEAPINFO *pHeapInfo)
{
    if (!pHeapInfo)
        return E_INVALIDARG;

    HRESULT hr = S_OK;
    PUBLIC_API_ENTRY(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(this);

    EX_TRY
    {
        GetDAC()->GetGCHeapInformation(pHeapInfo);
    }
    EX_CATCH_HRESULT(hr);

    return hr;
}

HRESULT CordbProcess::EnumerateHeapRegions(ICorDebugHeapSegmentEnum **ppRegions)
{
    if (!ppRegions)
        return E_INVALIDARG;

    HRESULT hr = S_OK;
    PUBLIC_API_ENTRY(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(this);

    EX_TRY
    {
        DacDbiArrayList<COR_SEGMENT> segments;
        hr = GetDAC()->GetHeapSegments(&segments);

        if (SUCCEEDED(hr))
        {
            if (!segments.IsEmpty())
            {
                CordbHeapSegmentEnumerator *segEnum = new CordbHeapSegmentEnumerator(this, &segments[0], (DWORD)segments.Count());
                GetContinueNeuterList()->Add(this, segEnum);
                hr = segEnum->QueryInterface(__uuidof(ICorDebugHeapSegmentEnum), (void**)ppRegions);
            }
            else
            {
                hr = E_OUTOFMEMORY;
            }
        }
    }
    EX_CATCH_HRESULT(hr);

    return hr;
}

HRESULT CordbProcess::GetObject(CORDB_ADDRESS addr, ICorDebugObjectValue **ppObject)
{
    return this->GetObjectInternal(addr, nullptr, ppObject);
}

HRESULT CordbProcess::GetObjectInternal(CORDB_ADDRESS addr, CordbAppDomain* pAppDomainOverride, ICorDebugObjectValue **pObject)
{
    HRESULT hr = S_OK;

    PUBLIC_REENTRANT_API_ENTRY(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(this);

    EX_TRY
    {
        if (!m_pDacPrimitives->IsValidObject(addr))
        {
            hr = CORDBG_E_CORRUPT_OBJECT;
        }
        else if (pObject == NULL)
        {
            hr = E_INVALIDARG;
        }
        else
        {
            RSLockHolder ch(GetProcess()->GetStopGoLock());
            RSLockHolder procLock(this->GetProcess()->GetProcessLock());

            CordbAppDomain *cdbAppDomain = NULL;
            CordbType *pType = NULL;
            hr = GetTypeForObject(addr, pAppDomainOverride, &pType, &cdbAppDomain);

            if (SUCCEEDED(hr))
            {
                _ASSERTE(pType != NULL);
                _ASSERTE(cdbAppDomain != NULL);

                DebuggerIPCE_ObjectData objData;
                m_pDacPrimitives->GetBasicObjectInfo(addr, ELEMENT_TYPE_CLASS, cdbAppDomain->GetADToken(), &objData);

                NewHolder<CordbObjectValue> pNewObjectValue(new CordbObjectValue(cdbAppDomain, pType, TargetBuffer(addr, (ULONG)objData.objSize), &objData));
                hr = pNewObjectValue->Init();

                if (SUCCEEDED(hr))
                {
                    hr = pNewObjectValue->QueryInterface(__uuidof(ICorDebugObjectValue), (void**)pObject);
                    if (SUCCEEDED(hr))
                        pNewObjectValue.SuppressRelease();
                }
            }
        }
    }
    EX_CATCH_HRESULT(hr);

    return hr;
}


HRESULT CordbProcess::EnumerateGCReferences(BOOL enumerateWeakReferences, ICorDebugGCReferenceEnum **ppEnum)
{
    if (!ppEnum)
        return E_POINTER;

    HRESULT hr = S_OK;
    PUBLIC_API_ENTRY(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(this);

    EX_TRY
    {
        CordbRefEnum *pRefEnum = new CordbRefEnum(this, enumerateWeakReferences);
        GetContinueNeuterList()->Add(this, pRefEnum);
        hr = pRefEnum->QueryInterface(IID_ICorDebugGCReferenceEnum, (void**)ppEnum);
    }
    EX_CATCH_HRESULT(hr);
    return hr;
}

HRESULT CordbProcess::EnumerateHandles(CorGCReferenceType types, ICorDebugGCReferenceEnum **ppEnum)
{
    if (!ppEnum)
        return E_POINTER;

    HRESULT hr = S_OK;
    PUBLIC_API_ENTRY(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(this);

    EX_TRY
    {
        CordbRefEnum *pRefEnum = new CordbRefEnum(this, types);
        GetContinueNeuterList()->Add(this, pRefEnum);
        hr = pRefEnum->QueryInterface(IID_ICorDebugGCReferenceEnum, (void**)ppEnum);
    }
    EX_CATCH_HRESULT(hr);

    return hr;
}

HRESULT CordbProcess::EnableNGENPolicy(CorDebugNGENPolicy ePolicy)
{
    return E_NOTIMPL;
}


HRESULT CordbProcess::GetTypeID(CORDB_ADDRESS obj, COR_TYPEID *pId)
{
    if (pId == NULL)
        return E_POINTER;

    HRESULT hr = S_OK;
    PUBLIC_API_ENTRY(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(this);

    EX_TRY
    {
        hr = GetProcess()->GetDAC()->GetTypeID(obj, pId);
    }
    EX_CATCH_HRESULT(hr);

    return hr;
}

HRESULT CordbProcess::GetTypeForTypeID(COR_TYPEID id, ICorDebugType **ppType)
{
    if (ppType == NULL)
        return E_POINTER;

    HRESULT hr = S_OK;

    PUBLIC_API_ENTRY(this);
    RSLockHolder stopGoLock(this->GetProcess()->GetStopGoLock());
    RSLockHolder procLock(this->GetProcess()->GetProcessLock());

    EX_TRY
    {
        DebuggerIPCE_ExpandedTypeData data;
        GetDAC()->GetObjectExpandedTypeInfoFromID(AllBoxed, VMPTR_AppDomain::NullPtr(), id, &data);

        CordbType *type = 0;
        hr = CordbType::TypeDataToType(GetSharedAppDomain(), &data, &type);

        if (SUCCEEDED(hr))
            hr = type->QueryInterface(IID_ICorDebugType, (void**)ppType);
    }
    EX_CATCH_HRESULT(hr);

    return hr;
}


COM_METHOD CordbProcess::GetArrayLayout(COR_TYPEID id, COR_ARRAY_LAYOUT *pLayout)
{
    if (pLayout == NULL)
        return E_POINTER;

    HRESULT hr = S_OK;
    PUBLIC_API_BEGIN(this);

    hr = GetProcess()->GetDAC()->GetArrayLayout(id, pLayout);

    PUBLIC_API_END(hr);
    return hr;
}

COM_METHOD CordbProcess::GetTypeLayout(COR_TYPEID id, COR_TYPE_LAYOUT *pLayout)
{
    if (pLayout == NULL)
        return E_POINTER;

    HRESULT hr = S_OK;
    PUBLIC_API_BEGIN(this);

    hr = GetProcess()->GetDAC()->GetTypeLayout(id, pLayout);

    PUBLIC_API_END(hr);
    return hr;
}

COM_METHOD CordbProcess::GetTypeFields(COR_TYPEID id, ULONG32 celt, COR_FIELD fields[], ULONG32 *pceltNeeded)
{
    HRESULT hr = S_OK;
    PUBLIC_API_BEGIN(this);

    hr = GetProcess()->GetDAC()->GetObjectFields(id, celt, fields, pceltNeeded);

    PUBLIC_API_END(hr);
    return hr;
}

COM_METHOD CordbProcess::SetWriteableMetadataUpdateMode(WriteableMetadataUpdateMode flags)
{
    HRESULT hr = S_OK;
    PUBLIC_API_BEGIN(this);

    if(flags != LegacyCompatPolicy &&
       flags != AlwaysShowUpdates)
    {
        hr = E_INVALIDARG;
    }
    else if(m_pShim != NULL)
    {
        if(flags != LegacyCompatPolicy)
        {
            hr = CORDBG_E_UNSUPPORTED;
        }
    }

    if(SUCCEEDED(hr))
    {
        m_writableMetadataUpdateMode = flags;
    }

    PUBLIC_API_END(hr);
    return hr;
}

COM_METHOD CordbProcess::EnableExceptionCallbacksOutsideOfMyCode(BOOL enableExceptionsOutsideOfJMC)
{
    HRESULT hr = S_OK;
    PUBLIC_API_BEGIN(this);

    hr = GetProcess()->GetDAC()->SetSendExceptionsOutsideOfJMC(enableExceptionsOutsideOfJMC);

    PUBLIC_API_END(hr);
    return hr;
}

COM_METHOD CordbProcess::EnableGCNotificationEvents(BOOL fEnable)
{
    HRESULT hr = S_OK;
    PUBLIC_API_BEGIN(this)
    {
        hr = this->m_pDacPrimitives->EnableGCNotificationEvents(fEnable);
    }
    PUBLIC_API_END(hr);
    return hr;
}

HRESULT CordbProcess::GetTypeForObject(CORDB_ADDRESS addr, CordbAppDomain* pAppDomainOverride, CordbType **ppType, CordbAppDomain **pAppDomain)
{
    VMPTR_AppDomain appDomain;
    VMPTR_Module mod;
    VMPTR_DomainFile domainFile;

    HRESULT hr = E_FAIL;
    if (GetDAC()->GetAppDomainForObject(addr, &appDomain, &mod, &domainFile))
    {
        if (pAppDomainOverride)
        {
            appDomain = pAppDomainOverride->GetADToken();
        }
        CordbAppDomain *cdbAppDomain = appDomain.IsNull() ? GetSharedAppDomain() : LookupOrCreateAppDomain(appDomain);

        _ASSERTE(cdbAppDomain);

        DebuggerIPCE_ExpandedTypeData data;
        GetDAC()->GetObjectExpandedTypeInfo(AllBoxed, appDomain, addr, &data);

        CordbType *type = 0;
        hr = CordbType::TypeDataToType(cdbAppDomain, &data, &type);

        if (SUCCEEDED(hr))
        {
            *ppType = type;
            if (pAppDomain)
                *pAppDomain = cdbAppDomain;
        }
    }

    return hr;
}


// ******************************************
// CordbRefEnum
// ******************************************
CordbRefEnum::CordbRefEnum(CordbProcess *proc, BOOL walkWeakRefs)
    : CordbBase(proc, 0, enumCordbHeap), mRefHandle(0), mEnumStacksFQ(TRUE),
      mHandleMask((UINT32)(walkWeakRefs ? CorHandleAll : CorHandleStrongOnly))
{
}

CordbRefEnum::CordbRefEnum(CordbProcess *proc, CorGCReferenceType types)
    : CordbBase(proc, 0, enumCordbHeap), mRefHandle(0), mEnumStacksFQ(FALSE),
      mHandleMask((UINT32)types)
{
}

void CordbRefEnum::Neuter()
{
    EX_TRY
    {
        if (mRefHandle)
        {
            GetProcess()->GetDAC()->DeleteRefWalk(mRefHandle);
            mRefHandle = 0;
        }
    }
    EX_CATCH
    {
        _ASSERTE(!"Hit an error freeing a ref walk.");
    }
    EX_END_CATCH(SwallowAllExceptions)

    CordbBase::Neuter();
}

HRESULT CordbRefEnum::QueryInterface(REFIID riid, void **ppInterface)
{
    if (ppInterface == NULL)
        return E_INVALIDARG;

    if (riid == IID_ICorDebugGCReferenceEnum)
    {
        *ppInterface = static_cast<ICorDebugGCReferenceEnum*>(this);
    }
    else if (riid == IID_IUnknown)
    {
        *ppInterface = static_cast<IUnknown*>(static_cast<ICorDebugGCReferenceEnum*>(this));
    }
    else
    {
        *ppInterface = NULL;
        return E_NOINTERFACE;
    }

    ExternalAddRef();
    return S_OK;
}

HRESULT CordbRefEnum::Skip(ULONG celt)
{
    return E_NOTIMPL;
}

HRESULT CordbRefEnum::Reset()
{
    PUBLIC_API_ENTRY(this);
    HRESULT hr = S_OK;
    EX_TRY
    {
        if (mRefHandle)
        {
            GetProcess()->GetDAC()->DeleteRefWalk(mRefHandle);
            mRefHandle = 0;
        }
    }
    EX_CATCH_HRESULT(hr);

    return hr;
}

HRESULT CordbRefEnum::Clone(ICorDebugEnum **ppEnum)
{
    return E_NOTIMPL;
}

HRESULT CordbRefEnum::GetCount(ULONG *pcelt)
{
    return E_NOTIMPL;
}


//

HRESULT CordbRefEnum::Next(ULONG celt, COR_GC_REFERENCE refs[], ULONG *pceltFetched)
{
    if (refs == NULL || pceltFetched == NULL)
        return E_POINTER;

    CordbProcess *process = GetProcess();
    HRESULT hr = S_OK;

    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(process);

    RSLockHolder procLockHolder(process->GetProcessLock());

    EX_TRY
    {
        if (!mRefHandle)
            hr = process->GetDAC()->CreateRefWalk(&mRefHandle, mEnumStacksFQ, mEnumStacksFQ, mHandleMask);

        if (SUCCEEDED(hr))
        {
            DacGcReference dacRefs[32];
            ULONG toFetch = _countof(dacRefs);
            ULONG total = 0;

            for (ULONG c = 0; SUCCEEDED(hr) && c < (celt/_countof(dacRefs) + 1); ++c)
            {
                // Fetch 32 references at a time, the last time, only fetch the remainder (that is, if
                // the user didn't fetch a multiple of 32).
                if (c == celt/_countof(dacRefs))
                    toFetch = celt % _countof(dacRefs);

                ULONG fetched = 0;
                hr = process->GetDAC()->WalkRefs(mRefHandle, toFetch, dacRefs, &fetched);

                if (SUCCEEDED(hr))
                {
                    for (ULONG i = 0; i < fetched; ++i)
                    {
                        CordbAppDomain *pDomain = process->LookupOrCreateAppDomain(dacRefs[i].vmDomain);

                        ICorDebugAppDomain *pAppDomain;
                        ICorDebugValue *pOutObject = NULL;
                        if (dacRefs[i].pObject & 1)
                        {
                            dacRefs[i].pObject &= ~1;
                            ICorDebugObjectValue *pObjValue = NULL;

                            hr = process->GetObject(dacRefs[i].pObject, &pObjValue);

                            if (SUCCEEDED(hr))
                            {
                                hr = pObjValue->QueryInterface(IID_ICorDebugValue, (void**)&pOutObject);
                                pObjValue->Release();
                            }
                        }
                        else
                        {
                            ICorDebugReferenceValue *tmpValue = NULL;
                            IfFailThrow(CordbReferenceValue::BuildFromGCHandle(pDomain,
                                                                   dacRefs[i].objHnd,
                                                                   &tmpValue));

                            if (SUCCEEDED(hr))
                            {
                                hr = tmpValue->QueryInterface(IID_ICorDebugValue, (void**)&pOutObject);
                                tmpValue->Release();
                            }
                        }

                        if (SUCCEEDED(hr) && pDomain)
                        {
                            hr = pDomain->QueryInterface(IID_ICorDebugAppDomain, (void**)&pAppDomain);
                        }

                        if (FAILED(hr))
                            break;

                        refs[total].Domain = pAppDomain;
                        refs[total].Location = pOutObject;
                        refs[total].Type = (CorGCReferenceType)dacRefs[i].dwType;
                        refs[total].ExtraData = dacRefs[i].i64ExtraData;

                        total++;
                    }
                }
            }

            *pceltFetched = total;
        }
    }
    EX_CATCH_HRESULT(hr);

    return hr;
}


// ******************************************
// CordbHeapEnum
// ******************************************
CordbHeapEnum::CordbHeapEnum(CordbProcess *proc)
    : CordbBase(proc, 0, enumCordbHeap), mHeapHandle(0)
{
}

HRESULT CordbHeapEnum::QueryInterface(REFIID riid, void **ppInterface)
{
    if (ppInterface == NULL)
        return E_INVALIDARG;

    if (riid == IID_ICorDebugHeapEnum)
    {
        *ppInterface = static_cast<ICorDebugHeapEnum*>(this);
    }
    else if (riid == IID_IUnknown)
    {
        *ppInterface = static_cast<IUnknown*>(static_cast<ICorDebugHeapEnum*>(this));
    }
    else
    {
        *ppInterface = NULL;
        return E_NOINTERFACE;
    }

    ExternalAddRef();
    return S_OK;
}

HRESULT CordbHeapEnum::Skip(ULONG celt)
{
    return E_NOTIMPL;
}

HRESULT CordbHeapEnum::Reset()
{
    Clear();
    return S_OK;
}

void CordbHeapEnum::Clear()
{
    EX_TRY
    {
        if (mHeapHandle)
        {
            GetProcess()->GetDAC()->DeleteHeapWalk(mHeapHandle);
            mHeapHandle = 0;
        }
    }
    EX_CATCH
    {
        _ASSERTE(!"Hit an error freeing the heap walk.");
    }
    EX_END_CATCH(SwallowAllExceptions)
}

HRESULT CordbHeapEnum::Clone(ICorDebugEnum **ppEnum)
{
    return E_NOTIMPL;
}

HRESULT CordbHeapEnum::GetCount(ULONG *pcelt)
{
    return E_NOTIMPL;
}

HRESULT CordbHeapEnum::Next(ULONG celt, COR_HEAPOBJECT objects[], ULONG *pceltFetched)
{
    HRESULT hr = S_OK;
    PUBLIC_API_ENTRY(this);
    RSLockHolder stopGoLock(this->GetProcess()->GetStopGoLock());
    RSLockHolder procLock(this->GetProcess()->GetProcessLock());
    ULONG fetched = 0;

    EX_TRY
    {
        if (mHeapHandle == 0)
        {
            hr = GetProcess()->GetDAC()->CreateHeapWalk(&mHeapHandle);
        }

        if (SUCCEEDED(hr))
        {
            hr = GetProcess()->GetDAC()->WalkHeap(mHeapHandle, celt, objects, &fetched);
            _ASSERTE(fetched <= celt);
        }

        if (SUCCEEDED(hr))
        {
            // Return S_FALSE if we've reached the end of the enum.
            if (fetched < celt)
                hr = S_FALSE;
        }
    }
    EX_CATCH_HRESULT(hr);

    // Set the fetched parameter to reflect the number of elements (if any)
    // that were successfully saved to "objects"
    if (pceltFetched)
        *pceltFetched = fetched;

    return hr;
}

//---------------------------------------------------------------------------------------
// Flush state for when the process starts running.
//
// Notes:
//   Helper for code:CordbProcess::ProcessStateChanged.
//   Since ICD Arrowhead does not own the eventing pipeline, it needs the debugger to
//   notifying it of when the process is running again.  This is like the counterpart
//   to code:CordbProcess::Filter
void CordbProcess::FlushProcessRunning()
{
    _ASSERTE(GetProcessLock()->HasLock());

    // Update the continue counter.
    m_continueCounter++;

    // Safely dispose anything that should be neutered on continue.
    MarkAllThreadsDirty();
    ForceDacFlush();
}

//---------------------------------------------------------------------------------------
// Flush all cached state and bring us back to "cold startup"
//
// Notes:
//   Helper for code:CordbProcess::ProcessStateChanged.
//   This is used if the data-target changes underneath us in a way that is
//   not consistent with the process running forward. For example, if for
//   a time-travel debugger, the data-target may flow "backwards" in time.
//
void CordbProcess::FlushAll()
{
    CONTRACTL
    {
        THROWS;
    }
    CONTRACTL_END;

    HRESULT hr;
    _ASSERTE(GetProcessLock()->HasLock());

    //
    // First, determine if it's safe to Flush
    //

    hr = IsReadyForDetach();
    IfFailThrow(hr);

    // Check for outstanding CordbHandle values.
    if (OutstandingHandles())
    {
        ThrowHR(CORDBG_E_DETACH_FAILED_OUTSTANDING_TARGET_RESOURCES);
    }

    // FlushAll is a superset of FlushProcessRunning.
    // This will also ensure we clear the DAC cache.
    FlushProcessRunning();

    // If we detach before the CLR is loaded into the debuggee, then we can no-op a lot of work.
    // We sure can't be sending IPC events to the LS before it exists.
    NeuterChildren();
}

//---------------------------------------------------------------------------------------
//
// Detach the Debugger from the LS process.
//
//
// Return Value:
//    S_OK on successful detach. Else errror.
//
// Assumptions:
//    Target is stopped.
//
// Notes:
//    Once we're detached, the LS can resume running and exit.
//    So it's possible to get an ExitProcess callback in the middle of the Detach phase. If that happens,
//    we must return CORDBG_E_PROCESS_TERMINATED and pretend that the exit happened before we tried to detach.
//    Else if we detach successfully, return S_OK.
//
//    @dbgtodo attach-bit: need to figure out semantics of Detach
//    in V3, especially w.r.t to an attach bit.
//---------------------------------------------------------------------------------------
HRESULT CordbProcess::Detach()
{
    PUBLIC_API_ENTRY(this);

    FAIL_IF_NEUTERED(this);

    if (IsInteropDebugging())
    {
        return CORDBG_E_INTEROP_NOT_SUPPORTED;
    }


    HRESULT hr = S_OK;
    // A very important note: we require that the process is synchronized before doing a detach. This ensures
    // that no events are on their way from the Left Side. We also require that the user has drained the
    // managed event queue, but there is currently no way to really enforce that here.
    // @todo-  why can't we enforce that the managed event Q is drained?
    ATT_REQUIRE_SYNCED_OR_NONINIT_MAY_FAIL(this);


    hr = IsReadyForDetach();
    if (FAILED(hr))
    {
        // Avoid neutering. Gives client a chance to fix detach issue and retry.
        return hr;
    }

    // Since the detach may resume the LS and allow it to exit, which may invoke the EP callback
    // which may destroy this process object, be sure to protect us w/ an extra AddRef/Release
    RSSmartPtr<CordbProcess> pRef(this);



    LOG((LF_CORDB, LL_INFO1000, "CP::Detach - beginning\n"));
    if (m_pShim == NULL) // This API is moved off to the shim
    {

        // This is still invasive.
        // Ignore failures. This will fail for a non-invasive target.
        if (IsDacInitialized())
        {
            HRESULT hrIgnore = S_OK;
            EX_TRY
            {
                GetDAC()->MarkDebuggerAttached(FALSE);
            }
            EX_CATCH_HRESULT(hrIgnore);
        }
    }
    else
    {
        EX_TRY
        {
            DetachShim();
        }
        EX_CATCH_HRESULT(hr);
    }

    // Either way, neuter everything.
    this->Neuter();

    // Implicit release on pRef
    LOG((LF_CORDB, LL_INFO1000, "CP::Detach - returning w/ hr=0x%x\n", hr));
    return hr;
}

// Free up key left-side resources
//
// Called on detach
// This does key neutering of objects that hold left-side resources and require
// preemptively freeing the resources.
// After this, code:CordbProcess::Neuter should only affect right-side state.
void CordbProcess::NeuterChildrenLeftSideResources()
{
    _ASSERTE(GetStopGoLock()->HasLock());

    _ASSERTE(!GetProcessLock()->HasLock());
    RSLockHolder lockHolder(GetProcessLock());


    // Need process-lock to operate on hashtable, but can't yet Neuter under process-lock,
    // so we have to copy the contents to an auxilary list which we can then traverse outside the lock.
    RSPtrArray<CordbAppDomain> listAppDomains;
    m_appDomains.CopyToArray(&listAppDomains);



    // Must not hold process lock so that we can be safe to send IPC events
    // to cleanup left-side resources.
    lockHolder.Release();
    _ASSERTE(!GetProcessLock()->HasLock());

    // Frees left-side resources. This may send IPC events.
    // This will make normal neutering a nop.
    m_LeftSideResourceCleanupList.NeuterLeftSideResourcesAndClear(this);

    for(unsigned int idx = 0; idx < listAppDomains.Length(); idx++)
    {
        CordbAppDomain * pAppDomain = listAppDomains[idx];

        // CordbHandleValue is in the appdomain exit list, and that needs
        // to send an IPC event to cleanup and release the handle from
        // the GCs handle table.
        pAppDomain->GetSweepableExitNeuterList()->NeuterLeftSideResourcesAndClear(this);
    }
    listAppDomains.Clear();

}

//---------------------------------------------------------------------------------------
// Detach the Debugger from the LS process for the V2 case
//
// Assumptions:
//      This will NeuterChildren(), caller will do the real Neuter()
//      Caller has already ensured that detach is safe.
//
//   @dbgtodo attach-bit: this should be moved into the shim; need
//   to figure out semantics for freeing left-side resources (especially GC
//   handles) on detach.
void CordbProcess::DetachShim()
{

    HASHFIND hashFind;
    HRESULT hr = S_OK;

    // If we detach before the CLR is loaded into the debuggee, then we can no-op a lot of work.
    // We sure can't be sending IPC events to the LS before it exists.
    if (m_initialized)
    {
        // The managed event queue is not necessarily drained. Cordbg could call detach between any callback.
        // While the process is still stopped, neuter all of our children.
        // This will make our Neuter() a nop and saves the W32ET from having to do dangerous work.
        this->NeuterChildrenLeftSideResources();
        {
            RSLockHolder lockHolder(GetProcessLock());
            this->NeuterChildren();
        }

        // Go ahead and detach from the entire process now. This is like sending a "Continue".
        DebuggerIPCEvent * pIPCEvent = (DebuggerIPCEvent *) _alloca(CorDBIPC_BUFFER_SIZE);
        InitIPCEvent(pIPCEvent, DB_IPCE_DETACH_FROM_PROCESS, true, VMPTR_AppDomain::NullPtr());

        hr = m_cordb->SendIPCEvent(this, pIPCEvent, CorDBIPC_BUFFER_SIZE);
        hr = WORST_HR(hr, pIPCEvent->hr);
        IfFailThrow(hr);
    }
    else
    {
        // @dbgtodo attach-bit: push this up, once detach IPC event is hoisted.
        RSLockHolder lockHolder(GetProcessLock());

        // Shouldn't have any appdomains.
        (void)hashFind; //prevent "unused variable" error from GCC
        _ASSERTE(m_appDomains.FindFirst(&hashFind) == NULL);
    }

    LOG((LF_CORDB, LL_INFO10000, "CP::Detach - got reply from LS\n"));

    // It's possible that the LS may exit after they reply to our detach_from_process, but
    // before we update our internal state that they're detached. So still have to check
    // failure codes here.
    hr = this->m_pShim->GetWin32EventThread()->SendDetachProcessEvent(this);


    // Since we're auto-continuing when we detach, we should set the stop count back to zero.
    // This (along w/ m_detached) prevents anyone from calling Continue on this process
    // after this call returns.
    m_stopCount = 0;

    if (hr != CORDBG_E_PROCESS_TERMINATED)
    {
        // Remember that we've detached from this process object. This will prevent any further operations on
        // this process, just in case... :)
        // If LS exited, then don't set this flag because it overrides m_terminated when reporting errors;
        // and we want to provide a consistent story about whether we detached or whether the LS exited.
        m_detached = true;
    }
    IfFailThrow(hr);


    // Now that all complicated cleanup is done, caller can do a final neuter.
    // This will implicitly stop our Win32 event thread as well.
}

// Delete all events from the queue without dispatching. This is useful in shutdown.
// An event that is currently dispatching is not on the queue.
void CordbProcess::DeleteQueuedEvents()
{
    INTERNAL_API_ENTRY(this);
    // We must have the process lock to ensure that no one is trying to add an event
    _ASSERTE(!ThreadHoldsProcessLock());

    if (m_pShim != NULL)
    {
        PUBLIC_CALLBACK_IN_THIS_SCOPE0_NO_LOCK(this);

        // DeleteAll() is part of the shim, and it will change external ref counts, so must really
        // be marked as outside the RS.
        m_pShim->GetManagedEventQueue()->DeleteAll();
    }
}

//---------------------------------------------------------------------------------------
//
// Track that we're about to dispatch a managed event.
//
// Arguments:
//      event - event being dispatched
//
// Assumptions:
//    This is used to support code:CordbProcess::AreDispatchingEvent
//    This is always called on the same thread as code:CordbProcess::FinishEventDispatch
void CordbProcess::StartEventDispatch(DebuggerIPCEventType event)
{
    LIMITED_METHOD_CONTRACT;

    _ASSERTE(m_dispatchedEvent == DB_IPCE_DEBUGGER_INVALID);
    _ASSERTE(event != DB_IPCE_DEBUGGER_INVALID);
    m_dispatchedEvent = event;
}

//---------------------------------------------------------------------------------------
//
// Track that we're done dispatching a managed event.
//
//
// Assumptions:
//    This is always called on the same thread as code:CordbProcess::StartEventDispatch
//
// Notes:
//   @dbgtodo shim: eventually this goes into the shim when we hoist Continue
void CordbProcess::FinishEventDispatch()
{
    LIMITED_METHOD_CONTRACT;

    _ASSERTE(m_dispatchedEvent != DB_IPCE_DEBUGGER_INVALID);
    m_dispatchedEvent = DB_IPCE_DEBUGGER_INVALID;
}

//---------------------------------------------------------------------------------------
//
// Are we in the middle of dispatching an event?
//
// Notes:
//   This is used by code::CordbProcess::ContinueInternal. Continue logic takes
//   a shortcut if the continue is called on the dispatch thread.
//   It doesn't matter which event is being dispatch; only that we're on the dispatch thread.
//   @dbgtodo shim: eventually this goes into the shim when we hoist Continue
bool CordbProcess::AreDispatchingEvent()
{
    LIMITED_METHOD_CONTRACT;

    return m_dispatchedEvent != DB_IPCE_DEBUGGER_INVALID;
}





// Terminate the app. We'll still dispatch an ExitProcess callback, so the app
// must wait for that before calling Cordb::Terminate.
// If this fails, the client can always call the OS's TerminateProcess command
// to rudely kill the debuggee.
HRESULT CordbProcess::Terminate(unsigned int exitCode)
{
    PUBLIC_API_ENTRY(this);

    LOG((LF_CORDB, LL_INFO1000, "CP::Terminate: with exitcode %u\n", exitCode));
    FAIL_IF_NEUTERED(this);


    // @dbgtodo shutdown: eventually, all of Terminate() will be in the Shim.
    // Free all the remaining events. Since this will call into the shim, do this outside of any locks.
    // (ATT_ takes locks).
    DeleteQueuedEvents();

    ATT_REQUIRE_SYNCED_OR_NONINIT_MAY_FAIL(this);

    // When we terminate the process, it's handle will become signaled and
    // Win32 Event Thread will leap into action and call CordbWin32EventThread::ExitProcess
    // Unfortunately, that may destroy this object if the ExitProcess callback
    // decides to call Release() on the process.


    // Indicate that the process is exiting so that (among other things) we don't try and
    // send messages to the left side while it's being deleted.
    Lock();

    // In case we're continuing from the loader bp, we don't want to try and kick off an attach. :)
    m_fDoDelayedManagedAttached = false;
    m_exiting = true;



    // We'd like to just take a lock around everything here, but that may deadlock us
    // since W32ET will wait on the lock, and Continue may wait on W32ET.
    // So we just do an extra AddRef/Release to make sure we're still around.
    // @todo - could we move this smartptr up so that it's well-nested w/ the lock?
    RSSmartPtr<CordbProcess> pRef(this);

    Unlock();


    // At any point after this call, the w32 ET may run the ExitProcess code which will race w/ the continue call.
    // This call only posts a request that the process terminate and does not guarantee the process actually
    // terminates. In particular, the process can not exit until any outstanding IO requests are done (on cancelled).
    // It also can not exit if we have an outstanding not-continued native-debug event.
    // Fortunately, the interesting work in terminate is done in ExitProcessWorkItem::Do, which can take the Stop-Go lock.
    // Since we're currently holding the stop-go lock, that means we at least get some serialization.
    //
    // Note that on Windows, the process isn't really terminated until we receive the EXIT_PROCESS_DEBUG_EVENT.
    // Before then, we can still still access the debuggee's address space.  On the other, for Mac debugging,
    // the process can die any time after this call, and so we can no longer call into the DAC.
    GetShim()->GetNativePipeline()->TerminateProcess(exitCode);

    // We just call Continue() so that the debugger doesn't have to. (It's arguably odd
    // to call Continue() after Terminate).
    // We're stopped & Synced.
    // For interop-debugging this is very important because the Terminate may not really kill the process
    // until after we continue from the current native debug event.
    ContinueInternal(FALSE);

    // Implicit release on pRef here (since it's going out of scope)...
    // After this release, this object may be destroyed. So don't use any member functions
    // (including Locks) after here.


    return S_OK;
}

// This can be called at any time, even if we're in an unrecoverable error state.
HRESULT CordbProcess::GetID(DWORD *pdwProcessId)
{
    PUBLIC_REENTRANT_API_ENTRY(this);
    OK_IF_NEUTERED(this);
    VALIDATE_POINTER_TO_OBJECT(pdwProcessId, DWORD *);

    HRESULT hr = S_OK;
    EX_TRY
    {
        // This shouldn't be used in V3 paths. Normally, we can enforce that by checking against
        // m_pShim. However, this API can be called after being neutered, in which case m_pShim is cleared.
        // So check against 0 instead.
        if (m_id == 0)
        {
            *pdwProcessId = 0;
            ThrowHR(E_NOTIMPL);
        }
        *pdwProcessId = GetProcessDescriptor()->m_Pid;
    }
    EX_CATCH_HRESULT(hr);
    return hr;
}

// Helper to get process descriptor internally. We know we'll always succeed.
// This is more convient for internal callers since they can just use it as an expression
// without having to check HRESULTS.
const ProcessDescriptor* CordbProcess::GetProcessDescriptor()
{
    // This shouldn't be used in V3 paths, in which case it's set to 0. Only the shim should be
    // calling this. Assert to catch anybody else.
    _ASSERTE(m_processDescriptor.IsInitialized());

    return &m_processDescriptor;
}


HRESULT CordbProcess::GetHandle(HANDLE *phProcessHandle)
{
    PUBLIC_REENTRANT_API_ENTRY(this);
    FAIL_IF_NEUTERED(this); // Once we neuter the process, we close our OS handle to it.
    VALIDATE_POINTER_TO_OBJECT(phProcessHandle, HANDLE *);

    if (m_pShim == NULL)
    {
        _ASSERTE(!"CordbProcess::GetHandle() should be not be called on the new architecture");
        *phProcessHandle = NULL;
        return E_NOTIMPL;
    }
    else
    {
        *phProcessHandle = m_handle;
        return S_OK;
    }
}

HRESULT CordbProcess::IsRunning(BOOL *pbRunning)
{
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    VALIDATE_POINTER_TO_OBJECT(pbRunning, BOOL*);

    *pbRunning = !GetSynchronized();

    return S_OK;
}

HRESULT CordbProcess::EnableSynchronization(BOOL bEnableSynchronization)
{
    /* !!! */
    PUBLIC_API_ENTRY(this);
    return E_NOTIMPL;
}

HRESULT CordbProcess::Stop(DWORD dwTimeout)
{
    PUBLIC_API_ENTRY(this);
    CORDBRequireProcessStateOK(this);

    HRESULT hr = StopInternal(dwTimeout, VMPTR_AppDomain::NullPtr());

    return ErrWrapper(hr);
}

HRESULT CordbProcess::StopInternal(DWORD dwTimeout, VMPTR_AppDomain pAppDomainToken)
{
    LOG((LF_CORDB, LL_INFO1000, "CP::S: stopping process 0x%x(%d) with timeout %d\n", m_id, m_id,  dwTimeout));

    INTERNAL_API_ENTRY(this);

    // Stop + Continue are executed under the Stop-Go lock. This makes them atomic.
    // We'll toggle the process-lock (b/c we communicate w/ the W32et, so just the process-lock is
    // not sufficient to make this atomic).
    // It's ok to take this lock before checking if the CordbProcess has been neutered because
    // the lock is destroyed in the dtor after neutering.
    RSLockHolder ch(&m_StopGoLock);

    // Check if this CordbProcess has been neutered under the SG lock.
    // Otherwise it's possible to race with Detach() and Terminate().
    FAIL_IF_NEUTERED(this);
    CORDBFailIfOnWin32EventThread(this);

    if (m_pShim == NULL) // Stop/Go is moved off to the shim
    {
        return E_NOTIMPL;
    }


    DebuggerIPCEvent* event;
    HRESULT hr = S_OK;

    STRESS_LOG2(LF_CORDB, LL_INFO1000, "CP::SI, timeout=%d, this=%p\n", dwTimeout, this);

    // Stop() is a syncronous (blocking) operation. Furthermore, we have no way to cancel the async-break request.
    // Thus if we returned early on a timeout, then we'll be in a random state b/c the LS may get stopped at any
    // later spot.
    // One solution just require the param is INFINITE until we fix this and E_INVALIDARG if it's not.
    // But that could be a breaking change (what if a debugger passes in a really large value that's effectively
    // INFINITE).
    // So we'll just ignore it and always treat it as infinite.
    dwTimeout = INFINITE;

    // Do the checks on the process state under the SG lock.  This ensures that another thread cannot come in
    // after we do the checks and take the lock before we do.  For example, Detach() can race with Stop() such
    // that:
    //      1. Thread A calls CordbProcess::Detach() and takes the stop-go lock
    //      2. Thread B calls CordbProcess::Stop(), passes all the checks, and then blocks on the stop-go lock
    //      3. Thread A finishes the detach, invalides the process state, cleans all the resources, and then
    //         releases the stop-go lock
    //      4. Thread B gets the lock, but everything has changed
    CORDBRequireProcessStateOK(this);

    Lock();

    ASSERT_SINGLE_THREAD_ONLY(HoldsLock(&m_StopGoLock));

    // Don't need to stop if the process hasn't even executed any managed code yet.
    if (!m_initialized)
    {
        LOG((LF_CORDB, LL_INFO1000, "CP::S: process isn't initialized yet.\n"));

        // Mark the process as synchronized so no events will be dispatched until the thing is continued.
        SetSynchronized(true);

        // Remember uninitialized stop...
        m_uninitializedStop = true;

#ifdef FEATURE_INTEROP_DEBUGGING
        // If we're Win32 attached, then suspend all the unmanaged threads in the process.
        // We may or may not be stopped at a native debug event.
        if (IsInteropDebugging())
        {
            SuspendUnmanagedThreads();
        }
#endif // FEATURE_INTEROP_DEBUGGING

        // Get the RC Event Thread to stop listening to the process.
        m_cordb->ProcessStateChanged();

        hr = S_OK;
        goto Exit;
    }

    // Don't need to stop if the process is already synchronized.
    // @todo - Issue 129917. It's possible that we'll get a call to Stop when the LS is already stopped.
    // Sending an AsyncBreak would deadlock here (b/c the LS will ignore the frivilous request,
    // and thus never send a SyncComplete, and thus our Waiting on the SyncComplete will deadlock).
    // We avoid this case by checking m_syncCompleteReceived (which should roughly correspond to
    // the LS's m_stopped variable).
    // One window this can happen is after a Continue() pings the RCET but before the RCET actually sweeps + flushes.

    if (GetSynchronized() || GetSyncCompleteRecv())
    {
        LOG((LF_CORDB, LL_INFO1000, "CP::S: process was already synchronized. m_syncCompleteReceived=%d\n", GetSyncCompleteRecv()));

        if (GetSyncCompleteRecv())
        {
            // We must be in that window alluded to above (while the RCET is sweeping). Re-ping the RCET.
            SetSynchronized(true);
            m_cordb->ProcessStateChanged();
        }
        hr = S_OK;
        goto Exit;
    }

    STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::S: process not sync'd, requesting stop.\n");

    m_stopRequested = true;

    // We don't want to dispatch any Win32 debug events while we're trying to stop.
    // Setting m_specialDeferment=true means that any debug event we get will be queued and not dispatched.
    // We do this to avoid a nested call to Continue.
    // These defered events will get dispatched when somebody calls continue (and since they're calling
    // stop now, they must call continue eventually).
    // Note that if we got a Win32 debug event between when we took the Stop-Go lock above and now,
    // that even may have been dispatched. We're ok because SSFW32Stop will hijack that event and continue it,
    // and then all future events will be queued.
    m_specialDeferment = true;
    Unlock();

    BOOL asyncBreakSent;

    // We need to ensure that the helper thread is alive.
    hr = this->StartSyncFromWin32Stop(&asyncBreakSent);
    if (FAILED(hr))
    {
        return hr;
    }


    if (asyncBreakSent)
    {
        hr = S_OK;
        Lock();

        m_stopRequested = false;

        goto Exit;
    }

    // Send the async break event to the RC.
    event = (DebuggerIPCEvent*) _alloca(CorDBIPC_BUFFER_SIZE);
    InitIPCEvent(event, DB_IPCE_ASYNC_BREAK, false, pAppDomainToken);

    STRESS_LOG1(LF_CORDB, LL_INFO1000, "CP::S: sending async stop to appd 0x%x.\n", VmPtrToCookie(pAppDomainToken));

    hr = m_cordb->SendIPCEvent(this, event, CorDBIPC_BUFFER_SIZE);
    hr = WORST_HR(hr, event->hr);
    if (FAILED(hr))
    {
        // We don't hold the lock so just return immediately. Don't adjust stop-count.
        _ASSERTE(!ThreadHoldsProcessLock());
        return hr;
    }

    LOG((LF_CORDB, LL_INFO1000, "CP::S: sent async stop to appd 0x%x.\n", VmPtrToCookie(pAppDomainToken)));

    // Wait for the sync complete message to come in. Note: when the sync complete message arrives to the RCEventThread,
    // it will mark the process as synchronized and _not_ dispatch any events. Instead, it will set m_stopWaitEvent
    // which will let this function return. If the user wants to process any queued events, they will need to call
    // Continue.
    STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::S: waiting for event.\n");

    DWORD ret;
    ret = SafeWaitForSingleObject(this, m_stopWaitEvent, dwTimeout);

    STRESS_LOG1(LF_CORDB, LL_INFO1000, "CP::S: got event, %d.\n", ret);

    if (m_terminated)
    {
        return CORDBG_E_PROCESS_TERMINATED;
    }

    if (ret == WAIT_OBJECT_0)
    {
        LOG((LF_CORDB, LL_INFO1000, "CP::S: process stopped.\n"));

        m_stopRequested = false;
        m_cordb->ProcessStateChanged();

        hr = S_OK;
        Lock();
        goto Exit;
    }
    else if (ret == WAIT_TIMEOUT)
    {
        hr = ErrWrapper(CORDBG_E_TIMEOUT);
    }
    else
        hr = HRESULT_FROM_GetLastError();

    // We came out of the wait, but we weren't signaled because a sync complete event came in. Re-check the process and
    // remove the stop requested flag.
    Lock();
    m_stopRequested = false;

    if (GetSynchronized())
    {
        LOG((LF_CORDB, LL_INFO1000, "CP::S: process stopped.\n"));

        m_cordb->ProcessStateChanged();

        hr = S_OK;
    }

Exit:
    _ASSERTE(ThreadHoldsProcessLock());

    // Stop queuing any Win32 Debug events. We should be synchronized now.
    m_specialDeferment = false;

    if (SUCCEEDED(hr))
    {
        IncStopCount();
    }

    STRESS_LOG2(LF_CORDB, LL_INFO1000, "CP::S: returning from Stop, hr=0x%08x, m_stopCount=%d.\n", hr, GetStopCount());

    Unlock();

    return hr;
}

//---------------------------------------------------------------------------------------
// Clear all RS state on all CordbThread objects.
//
// Notes:
//   This clears all the thread-related state that the RS may have cached,
//   such as locals, frames, etc.
//   This would be called if the debugger is resuming execution.
void CordbProcess::MarkAllThreadsDirty()
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(ThreadHoldsProcessLock());

    CordbThread * pThread;
    HASHFIND find;

    // We don't need to prepopulate here (to collect LS state) because we're just updating RS state.
    for (pThread =  m_userThreads.FindFirst(&find);
         pThread != NULL;
         pThread =  m_userThreads.FindNext(&find))
    {
        _ASSERTE(pThread != NULL);
        pThread->MarkStackFramesDirty();
    }

    ClearPatchTable();
}

HRESULT CordbProcess::Continue(BOOL fIsOutOfBand)
{
    PUBLIC_API_ENTRY(this);

    if (m_pShim == NULL) // This API is moved off to the shim
    {
        // bias towards failing with CORDBG_E_NUETERED.
        FAIL_IF_NEUTERED(this);
        return E_NOTIMPL;
    }

    HRESULT hr;

    if (fIsOutOfBand)
    {
#ifdef FEATURE_INTEROP_DEBUGGING
        hr = ContinueOOB();
#else
        hr = E_INVALIDARG;
#endif // FEATURE_INTEROP_DEBUGGING
    }
    else
    {
        hr = ContinueInternal(fIsOutOfBand);
    }

    return hr;
}

#ifdef FEATURE_INTEROP_DEBUGGING
//---------------------------------------------------------------------------------------
//
// ContinueOOB
//
// Continue the Win32 event as an out-of-band event.
//
// Return Value:
//    S_OK on successful continue. Else error.
//
//---------------------------------------------------------------------------------------
HRESULT CordbProcess::ContinueOOB()
{
    INTERNAL_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);

    HRESULT hr = S_OK;

    // If we're continuing from an out-of-band unmanaged event, then just go
    // ahead and get the Win32 event thread to continue the process. No other
    // work needs to be done (i.e., don't need to send a managed continue message
    // or dispatch any events) because any processing done due to the out-of-band
    // message can't alter the synchronized state of the process.

    Lock();
    _ASSERTE(m_outOfBandEventQueue != NULL);

    // Are we calling this from the unmanaged callback?
    if (m_dispatchingOOBEvent)
    {
        STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::CI: continue while dispatching unmanaged out-of-band event.\n");
        // We don't know what thread we're on here.

        // Tell the Win32 event thread to continue when it returns from handling its unmanaged callback.
        m_dispatchingOOBEvent = false;

        Unlock();
    }
    else
    {
        STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::CI: continue outside of dispatching.\n");

        // If we're not dispatching this, then they shouldn't be on the win32 event thread.
        _ASSERTE(!this->IsWin32EventThread());

        Unlock();

        // Send an event to the Win32 event thread to do the continue. This is an out-of-band continue.
        hr = this->m_pShim->GetWin32EventThread()->SendUnmanagedContinue(this, cOobUMContinue);
    }

    return hr;


}
#endif // FEATURE_INTEROP_DEBUGGING

//---------------------------------------------------------------------------------------
//
// ContinueInternal
//
// Continue the Win32 event.
//
// Return Value:
//    S_OK on success. Else error.
//
//---------------------------------------------------------------------------------------
HRESULT CordbProcess::ContinueInternal(BOOL fIsOutOfBand)
{
    INTERNAL_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);

    // Continue has an ATT similar to ATT_REQUIRE_STOPPED_MAY_FAIL, but w/ some subtle differences.
    // - if we're stopped at a native DE, but not synchronized, we don't want to sync.
    // - We may get Debug events (especially native ones) at weird times, and thus we have to continue
    // at weird times.

    // External APIs should not have the process lock.
    _ASSERTE(!ThreadHoldsProcessLock());
    _ASSERTE(m_pShim != NULL);

    // OutOfBand should use ContinueOOB
    _ASSERTE(!fIsOutOfBand);

    // Since Continue is process-wide, just use a null appdomain pointer.
    VMPTR_AppDomain pAppDomainToken = VMPTR_AppDomain::NullPtr();

    HRESULT hr = S_OK;

    if (m_unrecoverableError)
    {
        return CORDBHRFromProcessState(this, NULL);
    }


    // We can't call ContinueInternal for an inband event on the win32 event thread.
    // This is an issue in the CLR (or an API design decision, depending on your perspective).
    // Continue() may send an IPC event and we can't do that on the win32 event thread.

    CORDBFailIfOnWin32EventThread(this);

    STRESS_LOG1(LF_CORDB, LL_INFO1000, "CP::CI: continuing IB,  this=0x%X\n", this);

    // Stop + Continue are executed under the Stop-Go lock. This makes them atomic.
    // We'll toggle the process-lock (b/c we communicate w/ the W32et, so that's not sufficient).
    RSLockHolder rsLockHolder(&m_StopGoLock);

    // Check for other failures (do these after we have the SG lock).
    if (m_terminated)
    {
        return CORDBG_E_PROCESS_TERMINATED;
    }
    if (m_detached)
    {
        return CORDBG_E_PROCESS_DETACHED;
    }

    Lock();

    ASSERT_SINGLE_THREAD_ONLY(HoldsLock(&m_StopGoLock));
    _ASSERTE(fIsOutOfBand == FALSE);

    // If we've got multiple Stop calls, we need a Continue for each one. So, if the stop count > 1, just go ahead and
    // return without doing anything. Note: this is only for in-band or managed events. OOB events are still handled as
    // normal above.
    _ASSERTE(GetStopCount() > 0);

    if (GetStopCount() == 0)
    {
        Unlock();
        _ASSERTE(!"Superflous Continue. ICorDebugProcess.Continue() called too many times");
        return CORDBG_E_SUPERFLOUS_CONTINUE;
    }

    DecStopCount();

    // We give managed events priority over unmanaged events. That way, the entire queued managed state can drain before
    // we let any other unmanaged events through.

    // Every stop or event must be matched by a corresponding Continue. m_stopCount counts outstanding stopping events
    // along with calls to Stop. If the count is high at this point, we simply return. This ensures that even if someone
    // calls Stop just as they're receiving an event that they can call Continue for that Stop and for that event
    // without problems.
    if (GetStopCount() > 0)
    {
        STRESS_LOG1(LF_CORDB, LL_INFO1000, "CP::CI: m_stopCount=%d, Continue just returning S_OK...\n", GetStopCount());

        Unlock();
        return S_OK;
    }

    // We're no longer stopped, so reset the m_stopWaitEvent.
    ResetEvent(m_stopWaitEvent);

    // If we're continuing from an uninitialized stop, then we don't need to do much at all. No event need be sent to
    // the Left Side (duh, it isn't even there yet.) We just need to get the RC Event Thread to start listening to the
    // process again, and resume any unmanaged threads if necessary.
    if (m_uninitializedStop)
    {
        STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::CI: continuing from uninitialized stop.\n");

        // No longer synchronized (it was a partial sync in the first place.)
        SetSynchronized(false);
        MarkAllThreadsDirty();

        // No longer in an uninitialized stop.
        m_uninitializedStop = false;

        // Notify the RC Event Thread.
        m_cordb->ProcessStateChanged();

        Unlock();

#ifdef FEATURE_INTEROP_DEBUGGING
        // We may or may not have a native debug event queued here.
        // If Cordbg called Stop() from a native debug event (to get the process Synchronized), then
        // we'll have a native debug event, and we need to continue it.
        // If Cordbg called Stop() to do an AsyncBreak, then there's no native-debug event.

        // If we're Win32 attached, resume all the unmanaged threads.
        if (IsInteropDebugging())
        {
            if(m_lastDispatchedIBEvent != NULL)
            {
                m_lastDispatchedIBEvent->SetState(CUES_UserContinued);
            }

            // Send to the Win32 event thread to do the unmanaged continue for us.
            // If we're at a debug event, this will continue it.
            // Else it will degenerate into ResumeUnmanagedThreads();
            this->m_pShim->GetWin32EventThread()->SendUnmanagedContinue(this, cRealUMContinue);
        }
#endif // FEATURE_INTEROP_DEBUGGING


        return S_OK;
    }

    // If there are more managed events, get them dispatched now.
    if (!m_pShim->GetManagedEventQueue()->IsEmpty() && GetSynchronized())
    {
        STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::CI: managed event queued.\n");

        // Mark that we're not synchronized anymore.
        SetSynchronized(false);

        // If the callback queue is not empty, then the LS is not actually continuing, and so our cached
        // state is still valid.

        // If we're in the middle of dispatching a managed event, then simply return. This indicates to HandleRCEvent
        // that the user called Continue and HandleRCEvent will dispatch the next queued event. But if Continue was
        // called outside the managed callback, all we have to do is tell the RC event thread that something about the
        // process has changed and it will dispatch the next managed event.
        if (!AreDispatchingEvent())
        {
            STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::CI: continuing while not dispatching managed event.\n");

            m_cordb->ProcessStateChanged();
        }

        Unlock();
        return S_OK;
    }

    // Neuter if we have an outstanding object.
    // Only do this if we're really continuining the debuggee. So don't do this if our stop-count is high b/c we
    // shouldn't neuter until we're done w/ the current event. And don't do this until we drain the current callback queue.
    // Note that we can't hold the process lock while we do this b/c Neutering may send IPC events.
    // However, we're still under the StopGo lock b/c that may help us serialize things.

    // Sweep neuter list. This will catch anything that's marked as 'safe to neuter'. This includes
    // all objects added to the 'neuter-on-Continue'.
    // Only do this if we're synced- we don't want to do this if we're continuing from a Native Debug event.
    if (GetSynchronized())
    {
        // Need process-lock to operate on hashtable, but can't yet Neuter under process-lock,
        // so we have to copy the contents to an auxilary list which we can then traverse outside the lock.
        RSPtrArray<CordbAppDomain> listAppDomains;
        HRESULT hrCopy = S_OK;
        EX_TRY // @dbgtodo cleanup: push this up
        {
            m_appDomains.CopyToArray(&listAppDomains);
        }
        EX_CATCH_HRESULT(hrCopy);
        SetUnrecoverableIfFailed(GetProcess(), hrCopy);

        m_ContinueNeuterList.NeuterAndClear(this);

        // @dbgtodo left-side resources: eventually (once
        // NeuterLeftSideResources is process-lock safe), do this all under the
        // lock. Can't hold process lock b/c neutering left-side resources
        // may send events.
        Unlock();

        // This may send IPC events.
        // This will make normal neutering a nop.
        // This will toggle the process lock.
        m_LeftSideResourceCleanupList.SweepNeuterLeftSideResources(this);


        // Many objects (especially CordbValue, FuncEval) don't have clear lifetime semantics and
        // so they must be put into an exit-neuter list (Process/AppDomain) for worst-case scenarios.
        // These objects are likely released early, and so we sweep them aggressively on each Continue (kind of like a mini-GC).
        //
        // One drawback is that there may be a lot of useless sweeping if the debugger creates a lot of
        // objects that it holds onto. Consider instead of sweeping, have the object explicitly post itself
        // to a list that's guaranteed to be cleared. This would let us avoid sweeping not-yet-ready objects.
        // This will toggle the process lock
        m_ExitNeuterList.SweepAllNeuterAtWillObjects(this);


        for(unsigned int idx = 0; idx < listAppDomains.Length(); idx++)
        {
            CordbAppDomain * pAppDomain = listAppDomains[idx];

            // CordbHandleValue is in the appdomain exit list, and that needs
            // to send an IPC event to cleanup and release the handle from
            // the GCs handle table.
            // This will toggle the process lock.
            pAppDomain->GetSweepableExitNeuterList()->SweepNeuterLeftSideResources(this);
        }
        listAppDomains.Clear();

        Lock();
    }


    // At this point, if the managed event queue is empty, m_synchronized may still be true if we had previously
    // synchronized.

#ifdef FEATURE_INTEROP_DEBUGGING
    // Next, check for unmanaged events that may be queued. If there are some queued, then we need to get the Win32
    // event thread to go ahead and dispatch the next one. If there aren't any queued, then we can just fall through and
    // send the continue message to the left side. This works even if we have an outstanding ownership request, because
    // until that answer is received, its just like the event hasn't happened yet.
    //
    // If we're terminated, then we've already continued from the last win32 event and so don't continue.
    // @todo - or we could ensure the PS_SOME_THREADS_SUSPENDED | PS_HIJACKS_IN_PLACE are removed.
    // Either way, we're just protecting against exit-process at strange times.
    bool fDoWin32Continue = !m_terminated && ((m_state & (PS_WIN32_STOPPED | PS_SOME_THREADS_SUSPENDED | PS_HIJACKS_IN_PLACE)) != 0);

    // We need to store this before marking the event user continued below
    BOOL fHasUserUncontinuedEvents = HasUserUncontinuedNativeEvents();

    if(m_lastDispatchedIBEvent != NULL)
    {
        m_lastDispatchedIBEvent->SetState(CUES_UserContinued);
    }

    if (fHasUserUncontinuedEvents)
    {
        // ExitProcess is the last debug event we'll get. The Process Handle is not signaled until
        // after we continue from ExitProcess. m_terminated is only set once we know the process is signaled.
        // (This isn't 100% true for the detach case, but since you can't do interop detach, we don't care)
        //_ASSERTE(!m_terminated);

        STRESS_LOG1(LF_CORDB, LL_INFO1000, "CP::CI: there are queued uncontinued events. m_dispatchingUnmanagedEvent = %d\n", m_dispatchingUnmanagedEvent);

        // Are we being called while in the unmanaged event callback?
        if (m_dispatchingUnmanagedEvent)
        {
            LOG((LF_CORDB, LL_INFO1000, "CP::CI: continue while dispatching.\n"));
            // The Win32ET could have made a cross-thread call to Continue while dispatching,
            // so we don't know if this is the win32 ET.

            // Tell the Win32 thread to continue when it returns from handling its unmanaged callback.
            m_dispatchingUnmanagedEvent = false;

            // If there are no more unmanaged events, then we fall through and continue the process for real. Otherwise,
            // we can simply return.
            if (HasUndispatchedNativeEvents())
            {
                STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::CI: more unmanaged events need dispatching.\n");

                // Note: if we tried to access the Left Side while stopped but couldn't, then m_oddSync will be true. We
                // need to reset it to false since we're continuing now.
                m_oddSync = false;

                Unlock();
                return S_OK;
            }
            else
            {
                // Also, if there are no more unmanaged events, then when DispatchUnmanagedInBandEvent sees that
                // m_dispatchingUnmanagedEvent is false, it will continue the process. So we set doWin32Continue to
                // false here so that we don't try to double continue the process below.
                STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::CI: no more unmanaged events to dispatch.\n");

                fDoWin32Continue = false;
            }
        }
        else
        {
            // after the DebugEvent callback returned the continue still had no been issued. Then later
            // on another thread the user called back to continue the event, which gets us to right here
            LOG((LF_CORDB, LL_INFO1000, "CP::CI: continue outside of dispatching.\n"));

            // This should be the common place to Dispatch an IB event that was hijacked for sync.

            // If we're not dispatching, this better not be the win32 event thread.
            _ASSERTE(!IsWin32EventThread());

            // If the event at the head of the queue is really the last event, or if the event at the head of the queue
            // hasn't been dispatched yet, then we simply fall through and continue the process for real. However, if
            // its not the last event, we send to the Win32 event thread and get it to continue, then we return.
            if (HasUndispatchedNativeEvents())
            {
                STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::CI: more unmanaged events need dispatching.\n");

                // Note: if we tried to access the Left Side while stopped but couldn't, then m_oddSync will be true. We
                // need to reset it to false since we're continuing now.
                m_oddSync = false;

                Unlock();

                hr = this->m_pShim->GetWin32EventThread()->SendUnmanagedContinue(this, cRealUMContinue);

                return hr;
            }
        }
    }
#endif // FEATURE_INTEROP_DEBUGGING

    // Both the managed and unmanaged event queues are now empty. Go
    // ahead and continue the process for real.
    LOG((LF_CORDB, LL_INFO1000, "CP::CI: headed for true continue.\n"));

    // We need to check these while under the lock, but action must be
    // taked outside of the lock.
    bool fIsExiting = m_exiting;
    bool fWasSynchronized = GetSynchronized();

    // Mark that we're no longer synchronized.
    if (fWasSynchronized)
    {
        LOG((LF_CORDB, LL_INFO1000, "CP::CI: process was synchronized.\n"));

        SetSynchronized(false);
        SetSyncCompleteRecv(false);

        // we're no longer in a callback, so set flags to indicate that we've finished.
        GetShim()->NotifyOnContinue();

        // Flush will update state, including continue counter and marking
        // frames dirty.
        this->FlushProcessRunning();


        // Tell the RC event thread that something about this process has changed.
        m_cordb->ProcessStateChanged();
    }

    m_continueCounter++;

    // If m_oddSync is set, then out last synchronization was due to us syncing the process because we were Win32
    // stopped. Therefore, while we do need to do most of the work to continue the process below, we don't actually have
    // to send the managed continue event. Setting wasSynchronized to false here helps us do that.
    if (m_oddSync)
    {
        fWasSynchronized = false;
        m_oddSync = false;
    }

#ifdef FEATURE_INTEROP_DEBUGGING
    // We must ensure that all managed threads are suspended here. We're about to let all managed threads run free via
    // the managed continue message to the Left Side. If we don't suspend the managed threads, then they may start
    // slipping forward even if we receive an in-band unmanaged event. We have to hijack in-band unmanaged events while
    // getting the managed continue message over to the Left Side to keep the process running free. Otherwise, the
    // SendIPCEvent will hang below. But in doing so, we could let managed threads slip to far. So we ensure they're all
    // suspended here.
    //
    // Note: we only do this suspension if the helper thread hasn't died yet. If the helper thread has died, then we
    // know that we're loosing the Runtime. No more managed code is going to run, so we don't bother trying to prevent
    // managed threads from slipping via the call below.
    //
    // Note: we just remember here, under the lock, so we can unlock then wait for the syncing thread to free the
    // debugger lock. Otherwise, we may block here and prevent someone from continuing from an OOB event, which also
    // prevents the syncing thread from releasing the debugger lock like we want it to.
    bool fNeedSuspend = fWasSynchronized && fDoWin32Continue && !m_helperThreadDead;

    // If we receive a new in-band event once we unlock, we need to know to hijack it and keep going while we're still
    // trying to send the managed continue event to the process.
    if (fWasSynchronized && fDoWin32Continue && !fIsExiting)
    {
        m_specialDeferment = true;
    }

    if (fNeedSuspend)
    {
        // @todo - what does this actually accomplish? We already suspended everything when we first synced.

        // Any thread that may hold a lock blocking the helper is
        // inside of a can't stop region, and thus we won't suspend it.
        SuspendUnmanagedThreads();
    }
#endif // FEATURE_INTEROP_DEBUGGING

    Unlock();

    // Although we've released the Process-lock, we still have the Stop-Go lock.
    _ASSERTE(m_StopGoLock.HasLock());

    // If we're processing an ExitProcess managed event, then we don't want to really continue the process, so just fall
    // thru.  Note: we did let the unmanaged continue go through above for this case.
    if (fIsExiting)
    {
        LOG((LF_CORDB, LL_INFO1000, "CP::CI: continuing from exit case.\n"));
    }
    else if (fWasSynchronized)
    {
        LOG((LF_CORDB, LL_INFO1000, "CP::CI: Sending continue to AppD:0x%x.\n", VmPtrToCookie(pAppDomainToken)));
#ifdef FEATURE_INTEROP_DEBUGGING
        STRESS_LOG2(LF_CORDB, LL_INFO1000, "Continue flags:special=%d, dowin32=%d\n", m_specialDeferment, fDoWin32Continue);
#endif
        // Send to the RC to continue the process.
        DebuggerIPCEvent * pEvent = (DebuggerIPCEvent *) _alloca(CorDBIPC_BUFFER_SIZE);

        InitIPCEvent(pEvent, DB_IPCE_CONTINUE, false, pAppDomainToken);

        hr = m_cordb->SendIPCEvent(this, pEvent, CorDBIPC_BUFFER_SIZE);

        // It is possible that we continue and then the process immediately exits before the helper
        // thread is finished continuing and can report success back to us. That's arguably a success
        // case sinceu the process did indeed continue, but since we didn't get the acknowledgement,
        // we can't be sure it's success. So we call it S_FALSE instead of S_OK.
        // @todo - how do we handle other failure here?
        if (hr == CORDBG_E_PROCESS_TERMINATED)
        {
            hr = S_FALSE;
        }
        _ASSERTE(SUCCEEDED(pEvent->hr));

        LOG((LF_CORDB, LL_INFO1000, "CP::CI: Continue sent to AppD:0x%x.\n", VmPtrToCookie(pAppDomainToken)));
    }

#ifdef FEATURE_INTEROP_DEBUGGING
    // If we're win32 attached to the Left side, then we need to win32 continue the process too (unless, of course, it's
    // already been done above.)
    //
    // Note: we do this here because we want to get the Left Side to receive and ack our continue message above if we
    // were sync'd. If we were sync'd, then by definition the process (and the helper thread) is running anyway, so all
    // this continue is going to do is to let the threads that have been suspended go.
    if (fDoWin32Continue)
    {
#ifdef _DEBUG
        {
            // A little pause here extends the special deferment region and thus causes native-debug
            // events to get hijacked. This test some wildly different corner case paths.
            // See VSWhidbey bugs 131905, 168971
            static DWORD dwRace = -1;
            if (dwRace == -1)
                dwRace = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgRace);

            if ((dwRace & 1) == 1)
            {
                Sleep(30);
            }
        }
#endif

        STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::CI: sending unmanaged continue.\n");

        // Send to the Win32 event thread to do the unmanaged continue for us.
        hr = this->m_pShim->GetWin32EventThread()->SendUnmanagedContinue(this, cRealUMContinue);
    }
#endif // FEATURE_INTEROP_DEBUGGING

    STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::CI: continue done, returning.\n");

    return hr;
}

HRESULT CordbProcess::HasQueuedCallbacks(ICorDebugThread *pThread,
                                         BOOL *pbQueued)
{
    PUBLIC_REENTRANT_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    VALIDATE_POINTER_TO_OBJECT_OR_NULL(pThread,ICorDebugThread *);
    VALIDATE_POINTER_TO_OBJECT(pbQueued,BOOL *);

    // Shim owns the event queue
    if (m_pShim != NULL)
    {
        PUBLIC_CALLBACK_IN_THIS_SCOPE0_NO_LOCK(this); // Calling to shim, leaving RS.
        *pbQueued = m_pShim->GetManagedEventQueue()->HasQueuedCallbacks(pThread);
        return S_OK;
    }
    return E_NOTIMPL; // Not implemented in V3.
}

//
// A small helper function to convert a CordbBreakpoint to an ICorDebugBreakpoint based on its type.
//
static ICorDebugBreakpoint *CordbBreakpointToInterface(CordbBreakpoint * pBreakpoint)
{
    _ASSERTE(pBreakpoint != NULL);

    //
    // I really dislike this. We've got three subclasses of CordbBreakpoint, but we store them all into the same hash
    // (m_breakpoints), so when we get one out of the hash, we don't really know what type it is. But we need to know
    // what type it is because we need to cast it to the proper interface before passing it out. I.e., when we create a
    // function breakpoint, we return the breakpoint casted to an ICorDebugFunctionBreakpoint. But if we grab that same
    // breakpoint out of the hash as a CordbBreakpoint and pass it out as an ICorDebugBreakpoint, then that's a
    // different pointer, and its wrong. So I've added the type to the breakpoint so we can cast properly here. I'd love
    // to do this a different way, though...
    //
    // -- Mon Dec 14 21:06:46 1998
    //
    switch(pBreakpoint->GetBPType())
    {
    case CBT_FUNCTION:
        return static_cast<ICorDebugFunctionBreakpoint *>(static_cast<CordbFunctionBreakpoint *> (pBreakpoint));
        break;

    case CBT_MODULE:
        return static_cast<ICorDebugModuleBreakpoint*>(static_cast<CordbModuleBreakpoint *> (pBreakpoint));
        break;

    case CBT_VALUE:
        return static_cast<ICorDebugValueBreakpoint *>(static_cast<CordbValueBreakpoint *> (pBreakpoint));
        break;

    default:
        _ASSERTE(!"Invalid breakpoint type!");
    }

    return NULL;
}


// Callback data for code:CordbProcess::GetAssembliesInLoadOrder
class ShimAssemblyCallbackData
{
public:
    // Ctor to intialize callback data
    //
    // Arguments:
    //   pAppDomain - appdomain that the assemblies are in.
    //   pAssemblies - preallocated array of smart pointers to hold assemblies
    //   countAssemblies - size of pAssemblies in elements.
    ShimAssemblyCallbackData(
        CordbAppDomain * pAppDomain,
        RSExtSmartPtr<ICorDebugAssembly>* pAssemblies,
        ULONG countAssemblies)
    {
        _ASSERTE(pAppDomain != NULL);
        _ASSERTE(pAssemblies != NULL);

        m_pProcess = pAppDomain->GetProcess();
        m_pAppDomain = pAppDomain;
        m_pAssemblies = pAssemblies;
        m_countElements = countAssemblies;
        m_index = 0;

        // Just to be safe, clear them all out
        for(ULONG i = 0; i < countAssemblies; i++)
        {
            pAssemblies[i].Clear();
        }
    }

    // Dtor
    //
    // Notes:
    //   This can assert end-of-enumeration invariants.
    ~ShimAssemblyCallbackData()
    {
        // Ensure that we went through all assemblies.
        _ASSERTE(m_index == m_countElements);
    }

    // Callback invoked from DAC enumeration.
    //
    // arguments:
    //    vmDomainAssembly - VMPTR for assembly
    //    pData - a 'this' pointer
    //
    static void Callback(VMPTR_DomainAssembly vmDomainAssembly, void * pData)
    {
        ShimAssemblyCallbackData * pThis = static_cast<ShimAssemblyCallbackData *> (pData);
        INTERNAL_DAC_CALLBACK(pThis->m_pProcess);

        CordbAssembly * pAssembly = pThis->m_pAppDomain->LookupOrCreateAssembly(vmDomainAssembly);

        pThis->SetAndMoveNext(pAssembly);
    }

    // Set the current index in the table and increment the cursor.
    //
    // Arguments:
    //    pAssembly - assembly from DAC enumerator
    void SetAndMoveNext(CordbAssembly * pAssembly)
    {
        _ASSERTE(pAssembly != NULL);

        if (m_index >= m_countElements)
        {
            // Enumerating the assemblies in the target should be fixed since
            // the target is not running.
            // We should never get here unless the target is unstable.
            // The caller (the shim) pre-allocated the table of assemblies.
            m_pProcess->TargetConsistencyCheck(!"Target changed assembly count");
            return;
        }

        m_pAssemblies[m_index].Assign(pAssembly);
        m_index++;
    }

protected:
    CordbProcess * m_pProcess;
    CordbAppDomain * m_pAppDomain;
    RSExtSmartPtr<ICorDebugAssembly>* m_pAssemblies;
    ULONG m_countElements;
    ULONG m_index;
};

//---------------------------------------------------------------------------------------
// Shim Helper to enumerate the assemblies in the load-order
//
// Arguments:
//    pAppdomain - non-null appdomain to enumerate assemblies.
//    pAssemblies - caller pre-allocated array to hold assemblies
//    countAssemblies - size of the array.
//
// Notes:
//    Caller preallocated array (likely from ICorDebugAssemblyEnum::GetCount),
//    and now this function fills in the assemblies in the order they were
//    loaded.
//
//    The target should be stable, such that the number of assemblies in the
//    target is stable, and therefore countAssemblies as determined by the
//    shim via ICorDebugAssemblyEnum::GetCount should match the number of
//    assemblies enumerated here.
//
//    Called by code:ShimProcess::QueueFakeAttachEvents.
//    This provides the assemblies in load-order. In contrast,
//    ICorDebugAppDomain::EnumerateAssemblies is a random order. The shim needs
//    load-order to match Whidbey semantics for dispatching fake load-assembly
//    callbacks on attach. The debugger then uses the order
//    in its module display window.
//
void CordbProcess::GetAssembliesInLoadOrder(
    ICorDebugAppDomain * pAppDomain,
    RSExtSmartPtr<ICorDebugAssembly>* pAssemblies,
    ULONG countAssemblies)
{
    PUBLIC_API_ENTRY_FOR_SHIM(this);
    RSLockHolder lockHolder(GetProcessLock());

    _ASSERTE(GetShim() != NULL);

    CordbAppDomain * pAppDomainInternal = static_cast<CordbAppDomain *> (pAppDomain);

    ShimAssemblyCallbackData data(pAppDomainInternal, pAssemblies, countAssemblies);

    // Enumerate through and fill out pAssemblies table.
    GetDAC()->EnumerateAssembliesInAppDomain(
        pAppDomainInternal->GetADToken(),
        ShimAssemblyCallbackData::Callback,
        &data); // user data

    // pAssemblies array has now been updated.
}

// Callback data for code:CordbProcess::GetModulesInLoadOrder
class ShimModuleCallbackData
{
public:
    // Ctor to intialize callback data
    //
    // Arguments:
    //   pAssembly - assembly that the Modules are in.
    //   pModules - preallocated array of smart pointers to hold Modules
    //   countModules - size of pModules in elements.
    ShimModuleCallbackData(
        CordbAssembly * pAssembly,
        RSExtSmartPtr<ICorDebugModule>* pModules,
        ULONG countModules)
    {
        _ASSERTE(pAssembly != NULL);
        _ASSERTE(pModules != NULL);

        m_pProcess = pAssembly->GetAppDomain()->GetProcess();
        m_pAssembly = pAssembly;
        m_pModules = pModules;
        m_countElements = countModules;
        m_index = 0;

        // Just to be safe, clear them all out
        for(ULONG i = 0; i < countModules; i++)
        {
            pModules[i].Clear();
        }
    }

    // Dtor
    //
    // Notes:
    //   This can assert end-of-enumeration invariants.
    ~ShimModuleCallbackData()
    {
        // Ensure that we went through all Modules.
        _ASSERTE(m_index == m_countElements);
    }

    // Callback invoked from DAC enumeration.
    //
    // arguments:
    //    vmDomainFile - VMPTR for Module
    //    pData - a 'this' pointer
    //
    static void Callback(VMPTR_DomainFile vmDomainFile, void * pData)
    {
        ShimModuleCallbackData * pThis = static_cast<ShimModuleCallbackData *> (pData);
        INTERNAL_DAC_CALLBACK(pThis->m_pProcess);

        CordbModule * pModule = pThis->m_pAssembly->GetAppDomain()->LookupOrCreateModule(vmDomainFile);

        pThis->SetAndMoveNext(pModule);
    }

    // Set the current index in the table and increment the cursor.
    //
    // Arguments:
    //    pModule - Module from DAC enumerator
    void SetAndMoveNext(CordbModule * pModule)
    {
        _ASSERTE(pModule != NULL);

        if (m_index >= m_countElements)
        {
            // Enumerating the Modules in the target should be fixed since
            // the target is not running.
            // We should never get here unless the target is unstable.
            // The caller (the shim) pre-allocated the table of Modules.
            m_pProcess->TargetConsistencyCheck(!"Target changed Module count");
            return;
        }

        m_pModules[m_index].Assign(pModule);
        m_index++;
    }

protected:
    CordbProcess * m_pProcess;
    CordbAssembly * m_pAssembly;
    RSExtSmartPtr<ICorDebugModule>* m_pModules;
    ULONG m_countElements;
    ULONG m_index;
};

//---------------------------------------------------------------------------------------
// Shim Helper to enumerate the Modules in the load-order
//
// Arguments:
//    pAppdomain - non-null appdomain to enumerate Modules.
//    pModules - caller pre-allocated array to hold Modules
//    countModules - size of the array.
//
// Notes:
//    Caller preallocated array (likely from ICorDebugModuleEnum::GetCount),
//    and now this function fills in the Modules in the order they were
//    loaded.
//
//    The target should be stable, such that the number of Modules in the
//    target is stable, and therefore countModules as determined by the
//    shim via ICorDebugModuleEnum::GetCount should match the number of
//    Modules enumerated here.
//
//    Called by code:ShimProcess::QueueFakeAssemblyAndModuleEvent.
//    This provides the Modules in load-order. In contrast,
//    ICorDebugAssembly::EnumerateModules is a random order. The shim needs
//    load-order to match Whidbey semantics for dispatching fake load-Module
//    callbacks on attach. The most important thing is that the manifest module
//    gets a LodModule callback before any secondary modules.  For dynamic
//    modules, this is necessary for operations on the secondary module
//    that rely on manifest metadata (eg. GetSimpleName).
//
//    @dbgtodo : This is almost identical to GetAssembliesInLoadOrder, and
//    (together wih the CallbackData classes) seems a HUGE amount of code and
//    complexity for such a simple thing.  We also have extra code to order
//    AppDomains and Threads.  We should try and rip all of this extra complexity
//    out, and replace it with better data structures for storing these items.
//    Eg., if we used std::map, we could have efficient lookups and ordered
//    enumerations.  However, we do need to be careful about exposing new invariants
//    through ICorDebug that customers may depend on, which could place a long-term
//    compatibility burden on us.  We could have a simple generic data structure
//    (eg. built on std::hash_map and std::list) which provided efficient look-up
//    and both in-order and random enumeration.
//
void CordbProcess::GetModulesInLoadOrder(
    ICorDebugAssembly * pAssembly,
    RSExtSmartPtr<ICorDebugModule>* pModules,
    ULONG countModules)
{
    PUBLIC_API_ENTRY_FOR_SHIM(this);
    RSLockHolder lockHolder(GetProcessLock());

    _ASSERTE(GetShim() != NULL);

    CordbAssembly * pAssemblyInternal = static_cast<CordbAssembly *> (pAssembly);

    ShimModuleCallbackData data(pAssemblyInternal, pModules, countModules);

    // Enumerate through and fill out pModules table.
    GetDAC()->EnumerateModulesInAssembly(
        pAssemblyInternal->GetDomainAssemblyPtr(),
        ShimModuleCallbackData::Callback,
        &data); // user data

    // pModules array has now been updated.
}


//---------------------------------------------------------------------------------------
// Callback to count the number of enumerations in a process.
//
// Arguments:
//     id - the connection id.
//     pName - name of the connection
//     pUserData - an EnumerateConnectionsData
//
// Notes:
//    Helper function for code:CordbProcess::QueueFakeConnectionEvents
//
// static
void CordbProcess::CountConnectionsCallback(DWORD id, LPCWSTR pName, void * pUserData)
{
}

//---------------------------------------------------------------------------------------
// Callback to enumerate all the connections in a process.
//
// Arguments:
//     id - the connection id.
//     pName - name of the connection
//     pUserData - an EnumerateConnectionsData
//
// Notes:
//    Helper function for code:CordbProcess::QueueFakeConnectionEvents
//
// static
void CordbProcess::EnumerateConnectionsCallback(DWORD id, LPCWSTR pName, void * pUserData)
{
}

//---------------------------------------------------------------------------------------
// Callback from Shim to queue fake Connection events on attach.
//
// Notes:
//    See code:ShimProcess::QueueFakeAttachEvents
void CordbProcess::QueueFakeConnectionEvents()
{
    PUBLIC_API_ENTRY_FOR_SHIM(this);

}

//
// DispatchRCEvent -- dispatches a previously queued IPC event received
// from the runtime controller. This represents the last amount of processing
// the DI gets to do on an event before giving it to the user.
//
void CordbProcess::DispatchRCEvent()
{
    INTERNAL_API_ENTRY(this);

    CONTRACTL
    {
        // This is happening on the RCET thread, so there's no place to propogate an error back up.
        NOTHROW;
    }
    CONTRACTL_END;

    _ASSERTE(m_pShim != NULL); // V2 case

    //
    // Note: the current thread should have the process locked when it
    // enters this method.
    //
    _ASSERTE(ThreadHoldsProcessLock());

    // Create/Launch paths already ensured that we had a callback.
    _ASSERTE(m_cordb != NULL);
    _ASSERTE(m_cordb->m_managedCallback != NULL);
    _ASSERTE(m_cordb->m_managedCallback2 != NULL);
    _ASSERTE(m_cordb->m_managedCallback3 != NULL);
    _ASSERTE(m_cordb->m_managedCallback4 != NULL);


    // Bump up the stop count. Either we'll dispatch a managed event,
    // or the logic below will decide not to dispatch one and call
    // Continue itself. Either way, the stop count needs to go up by
    // one...
    _ASSERTE(this->GetSyncCompleteRecv());
    SetSynchronized(true);
    IncStopCount();

    // As soon as we call Unlock(), we might get neutered and lose our reference to
    // the shim.  Grab it now for use later.
    RSExtSmartPtr<ShimProcess> pShim(m_pShim);

    Unlock();

    _ASSERTE(!ThreadHoldsProcessLock());


    // We want to stay synced until after the callbacks return. This is b/c we're on the RCET,
    // and we may deadlock if we send IPC events on the RCET if we're not synced (see SendIPCEvent for details).
    // So here, stopcount=1. The StopContinueHolder bumps it up to 2.
    // - If Cordbg calls continue in the callback, that bumps it back down to 1, but doesn't actually continue.
    //   The holder dtor then bumps it down to 0, doing the real continue.
    // - If Cordbg doesn't call continue in the callback, then stopcount stays at 2, holder dtor drops it down to 1,
    //   and then the holder was just a nop.
    // This gives us delayed continues w/ no extra state flags.


    // The debugger may call Detach() immediately after it returns from the callback, but before this thread returns
    // from this function.  Thus after we execute the callbacks, it's possible the CordbProcess object has been neutered.

    // Since we're already sycned, the Stop from the holder here is practically a nop that just bumps up a count.
    // Create an extra scope for the StopContinueHolder.
    {
        StopContinueHolder h;
        HRESULT hr = h.Init(this);
        if (FAILED(hr))
        {
            CORDBSetUnrecoverableError(this, hr, 0);
        }

        HRESULT hrCallback = S_OK;
        // It's possible a ICorDebugProcess::Detach() may have occurred by now.
        {
            // @dbgtodo shim: eventually the entire RCET should be considered outside the RS.
            PUBLIC_CALLBACK_IN_THIS_SCOPE0_NO_LOCK(this);


            // Snag the first event off the queue.
            // Holder will call Delete, which will invoke virtual Dtor that will release ICD objects.
            // Since these are external refs, we want to do it while "outside" the RS.
            NewHolder<ManagedEvent> pEvent(pShim->DequeueManagedEvent());

            // Normally pEvent shouldn't be NULL, since this method is called when the queue is not empty.
            // But due to a race between CordbProcess::Terminate(), CordbWin32EventThread::ExitProcess() and this method
            // it is totally possible that the queue has already been cleaned up and we can't expect that event is always available.
            if (pEvent != NULL)
            {
                // Since we need to access a member (m_cordb), protect this block with a
                // lock and a check for Neutering (in case process detach has just
                // occurred).  We'll release the lock around the dispatch later on.
                RSLockHolder lockHolder(GetProcessLock());
                if (!IsNeutered())
                {
#ifdef _DEBUG
                    // On a debug build, keep track of the last IPC event we dispatched.
                    m_pDBGLastIPCEventType = pEvent->GetDebugCookie();
#endif

                    ManagedEvent::DispatchArgs args(m_cordb->m_managedCallback, m_cordb->m_managedCallback2, m_cordb->m_managedCallback3, m_cordb->m_managedCallback4);

                    {
                        // Release lock around the dispatch of the event
                        RSInverseLockHolder inverseLockHolder(GetProcessLock());

                        EX_TRY
                        {
                            // This dispatches almost directly into the user's callbacks.
                            // It does not update any RS state.
                            hrCallback = pEvent->Dispatch(args);
                        }
                        EX_CATCH_HRESULT(hrCallback);
                    }
                }
            }

        } // we're now back inside the RS

        if (hrCallback == E_NOTIMPL)
        {
            ContinueInternal(FALSE);
        }


    } // forces Continue to be called

    Lock();

};

#ifdef _DEBUG
//---------------------------------------------------------------------------------------
// Debug-only callback to ensure that an appdomain is not available after the ExitAppDomain event.
//
// Arguments:
//    vmAppDomain - appdomain from enumeration
//    pUserData - pointer to a DbgAssertAppDomainDeletedData which contains the VMAppDomain that was just deleted.
// notes:
//    see code:CordbProcess::DbgAssertAppDomainDeleted for details.
void CordbProcess::DbgAssertAppDomainDeletedCallback(VMPTR_AppDomain vmAppDomain, void * pUserData)
{
    DbgAssertAppDomainDeletedData * pCallbackData = reinterpret_cast<DbgAssertAppDomainDeletedData *>(pUserData);
    INTERNAL_DAC_CALLBACK(pCallbackData->m_pThis);

    VMPTR_AppDomain vmAppDomainDeleted = pCallbackData->m_vmAppDomainDeleted;
    CONSISTENCY_CHECK_MSGF((vmAppDomain != vmAppDomainDeleted),
        ("An ExitAppDomain event was sent for appdomain, but it still shows up in the enumeration.\n vmAppDomain=%p\n",
        VmPtrToCookie(vmAppDomainDeleted)));
}

//---------------------------------------------------------------------------------------
// Debug-only helper to Assert that VMPTR is actually removed.
//
// Arguments:
//    vmAppDomainDeleted - vmptr of appdomain that we just got exit event for.
//       This should not be discoverable from the RS.
//
// Notes:
//   See code:IDacDbiInterface#Enumeration for rules that we're asserting.
//   Once the exit appdomain event is dispatched, the appdomain should not be discoverable by the RS.
//   Else the RS may use the AppDomain* after it's deleted.
//   This asserts that the AppDomain* is not discoverable.
//
//   Since this is a debug-only function, it should have no side-effects.
void CordbProcess::DbgAssertAppDomainDeleted(VMPTR_AppDomain vmAppDomainDeleted)
{
    DbgAssertAppDomainDeletedData callbackData;
    callbackData.m_pThis = this;
    callbackData.m_vmAppDomainDeleted = vmAppDomainDeleted;

    GetDAC()->EnumerateAppDomains(
        CordbProcess::DbgAssertAppDomainDeletedCallback,
        &callbackData);
}

#endif  // _DEBUG

//---------------------------------------------------------------------------------------
// Update state and potentially Dispatch a single event.
//
// Arguments:
//    pEvent - non-null pointer to debug event.
//    pCallback1 - callback object to dispatch on (for V1 callbacks)
//    pCallback2 - 2nd callback object to dispatch on (for new V2 callbacks)
//    pCallback3 - 3rd callback object to dispatch on (for new V4 callbacks)
//
//
// Returns:
//    Nothing. Throws on error.
//
// Notes:
//    Generally, this will dispatch exactly 1 callback. It may dispatch 0 callbacks if there is an error
//    or in other corner cases (documented within the dispatch code below).
//    Errors could occur because:
//    - the event is corrupted (exceptional case)
//    - the RS is corrupted / OOM (exceptional case)
//    Exception errors here will propogate back to the Filter() call, and there's not really anything
//    a debugger can do about an error here (perhaps report it to the user).
//    Errors must leave IcorDebug in a consistent state.
//
//    This is dispatched directly on the Win32Event Thread in response to calling Filter.
//    Therefore, this can't send any IPC events (Not an issue once everything is DAC-ized).
//    A V2 shim can provide a proxy calllack that takes these events and queues them and
//    does the real dispatch to the user to emulate V2 semantics.
//
#ifdef _PREFAST_
#pragma warning(push)
#pragma warning(disable:21000) // Suppress PREFast warning about overly large function
#endif
void CordbProcess::RawDispatchEvent(
    DebuggerIPCEvent *          pEvent,
    RSLockHolder *              pLockHolder,
    ICorDebugManagedCallback *  pCallback1,
    ICorDebugManagedCallback2 * pCallback2,
    ICorDebugManagedCallback3 * pCallback3,
    ICorDebugManagedCallback4 * pCallback4)
{
    CONTRACTL
    {
        THROWS;
    }
    CONTRACTL_END;

    HRESULT hr = S_OK;
    // We start off with the lock, and we'll toggle it.
    _ASSERTE(ThreadHoldsProcessLock());


    //
    // Call StartEventDispatch to true to guard against calls to Continue()
    // from within the user's callback. We need Continue() to behave a little
    // bit differently in such a case.
    //
    // Also note that Win32EventThread::ExitProcess will take the lock and free all
    // events in the queue. (the current event is already off the queue, so
    // it will be ok). But we can't do the EP callback in the middle of this dispatch
    // so if this flag is set, EP will wait on the miscWaitEvent (which will
    // get set in FlushQueuedEvents when we return from here) and let us finish here.
    //
    StartEventDispatch(pEvent->type);

    // Keep strong references to these objects in case a callback deletes them from underneath us.
    RSSmartPtr<CordbAppDomain> pAppDomain;
    CordbThread * pThread = NULL;


    // Get thread that this event is on. In attach scenarios, this may be the first time ICorDebug has seen this thread.
    if (!pEvent->vmThread.IsNull())
    {
        pThread = LookupOrCreateThread(pEvent->vmThread);
    }

    if (!pEvent->vmAppDomain.IsNull())
    {
        pAppDomain.Assign(LookupOrCreateAppDomain(pEvent->vmAppDomain));
    }

    DWORD dwVolatileThreadId = 0;
    if (pThread != NULL)
    {
        dwVolatileThreadId = pThread->GetUniqueId();
    }


    //
    // Update the app domain that this thread lives in.
    //
    if ((pThread != NULL) && (pAppDomain != NULL))
    {
        // It shouldn't be possible for us to see an exited AppDomain here
        _ASSERTE( !pAppDomain->IsNeutered() );

         pThread->m_pAppDomain = pAppDomain;
    }

    _ASSERTE(pEvent != NULL);
    _ASSERTE(pCallback1 != NULL);
    _ASSERTE(pCallback2 != NULL);
    _ASSERTE(pCallback3 != NULL);
    _ASSERTE(pCallback4 != NULL);

    STRESS_LOG1(LF_CORDB, LL_EVERYTHING, "Pre-Dispatch IPC event: %s\n", IPCENames::GetName(pEvent->type));

    switch (pEvent->type & DB_IPCE_TYPE_MASK)
    {
    case DB_IPCE_CREATE_PROCESS:
        {
            PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
            pCallback1->CreateProcess(static_cast<ICorDebugProcess*> (this));
        }
        break;

    case DB_IPCE_BREAKPOINT:
        {
            _ASSERTE(pThread != NULL);
            _ASSERTE(pAppDomain != NULL);

            // Find the breakpoint object on this side.
            CordbBreakpoint *pBreakpoint = NULL;

            // We've found cases out in the wild where we get this event on a thread we don't recognize.
            // We're not sure how this happens. Add a runtime check to protect ourselves to avoid the
            // an AV. We still assert because this should not be happening.
            // It likely means theres some issue where we failed to send a CreateThread notification.
            TargetConsistencyCheck(pThread != NULL);
            pBreakpoint = pAppDomain->m_breakpoints.GetBase(LsPtrToCookie(pEvent->BreakpointData.breakpointToken));

            if (pBreakpoint != NULL)
            {
                ICorDebugBreakpoint * pIBreakpoint = CordbBreakpointToInterface(pBreakpoint);
                _ASSERTE(pIBreakpoint != NULL);

                {
                    PUBLIC_CALLBACK_IN_THIS_SCOPE2(this, pLockHolder, pEvent, "thread=0x%p, bp=0x%p", pThread, pBreakpoint);
                    pCallback1->Breakpoint(pAppDomain, pThread, pIBreakpoint);
                }
            }
        }
        break;

    case DB_IPCE_BEFORE_GARBAGE_COLLECTION:
        {
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback4->BeforeGarbageCollection(static_cast<ICorDebugProcess*>(this));
            }
            break;
        }

    case DB_IPCE_AFTER_GARBAGE_COLLECTION:
        {
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback4->AfterGarbageCollection(static_cast<ICorDebugProcess*>(this));
            }
            break;
        }
#ifdef FEATURE_DATABREAKPOINT
    case DB_IPCE_DATA_BREAKPOINT:
        {
            _ASSERTE(pThread != NULL);

            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback4->DataBreakpoint(static_cast<ICorDebugProcess*>(this), pThread, reinterpret_cast<BYTE*>(&(pEvent->DataBreakpointData.context)), sizeof(CONTEXT));
            }
            break;
        }
        break;
#endif
    case DB_IPCE_USER_BREAKPOINT:
        {
            STRESS_LOG1(LF_CORDB, LL_INFO1000, "[%x] RCET::DRCE: user breakpoint.\n",
                 GetCurrentThreadId());

            _ASSERTE(pThread != NULL);
            _ASSERTE(pAppDomain != NULL);
            _ASSERTE(pThread->m_pAppDomain != NULL);

            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback1->Break(pThread->m_pAppDomain, pThread);
            }

        }
        break;

    case DB_IPCE_STEP_COMPLETE:
        {
            STRESS_LOG1(LF_CORDB, LL_INFO1000, "[%x] RCET::DRCE: step complete.\n",
                 GetCurrentThreadId());

            PREFIX_ASSUME(pThread != NULL);

            CordbStepper * pStepper = m_steppers.GetBase(LsPtrToCookie(pEvent->StepData.stepperToken));

            // It's possible the stepper is NULL if:
            // - event X & step-complete are both in the queue
            // - during dispatch for event X, Cordbg cancels the stepper (thus removing it from m_steppers)
            // - the Step-Complete still stays in the queue, and so we're here, but out stepper's been removed.
            // (This could happen for breakpoints too)
            // Don't dispatch a callback if the stepper is NULL.
            if (pStepper != NULL)
            {
                RSSmartPtr<CordbStepper> pRef(pStepper);
                pStepper->m_active = false;
                m_steppers.RemoveBase((ULONG_PTR)pStepper->m_id);

                {
                    _ASSERTE(pThread->m_pAppDomain != NULL);
                    PUBLIC_CALLBACK_IN_THIS_SCOPE2(this, pLockHolder, pEvent, "thrad=0x%p, stepper=0x%p", pThread, pStepper);
                    pCallback1->StepComplete(pThread->m_pAppDomain, pThread, pStepper, pEvent->StepData.reason);
                }

                // implicit Release on pRef
            }
        }
        break;

    case DB_IPCE_EXCEPTION:
        {
            STRESS_LOG1(LF_CORDB, LL_INFO1000, "[%x] RCET::DRCE: exception.\n",
                 GetCurrentThreadId());

            _ASSERTE(pAppDomain != NULL);

            // For some exceptions very early in startup (eg, TypeLoad), this may have occurred before we
            // even executed jitted code on the thread. We may have not received a CreateThread yet.
            // In V2, we detected this and sent a LogMessage on a random thread.
            // In V3, we lazily create the CordbThread objects (possibly before the CreateThread event),
            // and so we know we should have one.
            _ASSERTE(pThread != NULL);

            pThread->SetExInfo(pEvent->Exception.vmExceptionHandle);

            _ASSERTE(pThread->m_pAppDomain != NULL);

            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback1->Exception(pThread->m_pAppDomain, pThread, !pEvent->Exception.firstChance);
            }

        }
        break;

    case DB_IPCE_SYNC_COMPLETE:
        _ASSERTE(!"Should have never queued a sync complete pEvent.");
        break;

    case DB_IPCE_THREAD_ATTACH:
        {
            STRESS_LOG1(LF_CORDB, LL_INFO100, "RCET::DRCE: thread attach : ID=%x.\n", dwVolatileThreadId);

            TargetConsistencyCheck(pThread != NULL);
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE1(this, pLockHolder, pEvent, "thread=0x%p", pThread);
                pCallback1->CreateThread(pAppDomain, pThread);
            }
        }
        break;

    case DB_IPCE_THREAD_DETACH:
        {
            STRESS_LOG2(LF_CORDB, LL_INFO100, "[%x] RCET::HRCE: thread detach : ID=%x \n",
                 GetCurrentThreadId(), dwVolatileThreadId);

            // If the runtime thread never entered managed code, there
            // won't be a CordbThread, and CreateThread was never
            // called, so don't bother calling ExitThread.
            if (pThread != NULL)
            {
                AddToNeuterOnContinueList(pThread);

                RSSmartPtr<CordbThread>    pRefThread(pThread);

                _ASSERTE(pAppDomain != NULL);

                // A thread is reported as dead before we get the exit event.
                // See code:IDacDbiInterface#IsThreadMarkedDead for the invariant being asserted here.
                TargetConsistencyCheck(pThread->IsThreadDead());

                // Enforce the enumeration invariants (see code:IDacDbiInterface#Enumeration)that the thread is not discoverable.
                INDEBUG(pThread->DbgAssertThreadDeleted());

                // Remove the thread from the hash. If we've removed it from the hash, we really should
                // neuter it ... but that causes test failures.
                // We'll neuter it in continue.
                m_userThreads.RemoveBase(VmPtrToCookie(pThread->m_vmThreadToken));


                LOG((LF_CORDB, LL_INFO1000, "[%x] RCET::HRCE: sending thread detach.\n", GetCurrentThreadId()));

                {
                    PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                    pCallback1->ExitThread(pAppDomain, pThread);
                }

                // Implicit release on thread & pAppDomain
            }
        }
        break;

    case DB_IPCE_METADATA_UPDATE:
        {
            CordbModule * pModule = pAppDomain->LookupOrCreateModule(pEvent->MetadataUpdateData.vmDomainFile);
            pModule->RefreshMetaData();
        }
        break;

    case DB_IPCE_LOAD_MODULE:
        {
            _ASSERTE (pAppDomain != NULL);
            CordbModule * pModule = pAppDomain->LookupOrCreateModule(pEvent->LoadModuleData.vmDomainFile);

            {
                pModule->SetLoadEventContinueMarker();

                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback1->LoadModule(pAppDomain, pModule);
            }

        }
        break;

    case DB_IPCE_CREATE_CONNECTION:
        {
            STRESS_LOG1(LF_CORDB, LL_INFO100,
                "RCET::HRCE: Connection change %d \n",
                pEvent->CreateConnection.connectionId);

            // pass back the connection id and the connection name.
            PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
            pCallback2->CreateConnection(
                this,
                pEvent->CreateConnection.connectionId,
                const_cast<WCHAR*> (pEvent->CreateConnection.wzConnectionName.GetString()));
        }
        break;

    case DB_IPCE_DESTROY_CONNECTION:
        {
            STRESS_LOG1(LF_CORDB, LL_INFO100,
                 "RCET::HRCE: Connection destroyed %d \n",
                 pEvent->ConnectionChange.connectionId);
            PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
            pCallback2->DestroyConnection(this, pEvent->ConnectionChange.connectionId);
        }
        break;

    case DB_IPCE_CHANGE_CONNECTION:
        {
            STRESS_LOG1(LF_CORDB, LL_INFO100,
                 "RCET::HRCE: Connection changed %d \n",
                 pEvent->ConnectionChange.connectionId);

            PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
            pCallback2->ChangeConnection(this, pEvent->ConnectionChange.connectionId);
        }
        break;

    case DB_IPCE_UNLOAD_MODULE:
        {
            STRESS_LOG3(LF_CORDB, LL_INFO100, "RCET::HRCE: unload module on thread %#x Mod:0x%x AD:0x%08x\n",
                 dwVolatileThreadId,
                 VmPtrToCookie(pEvent->UnloadModuleData.vmDomainFile),
                 VmPtrToCookie(pEvent->vmAppDomain));

            PREFIX_ASSUME (pAppDomain != NULL);

            CordbModule *module = pAppDomain->LookupOrCreateModule(pEvent->UnloadModuleData.vmDomainFile);

            if (module == NULL)
            {
                LOG((LF_CORDB, LL_INFO100, "Already unloaded Module - continue()ing!" ));
                break;
            }
            _ASSERTE(module != NULL);
            INDEBUG(module->DbgAssertModuleDeleted());

            // The appdomain we're unloading in must be the appdomain we were loaded in. Otherwise, we've got mismatched
            // module and appdomain pointers. Bugs 65943 & 81728.
            _ASSERTE(pAppDomain == module->GetAppDomain());

            // Ensure the module gets neutered once we call continue.
            AddToNeuterOnContinueList(module); // throws
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback1->UnloadModule(pAppDomain, module);
            }

            pAppDomain->m_modules.RemoveBase(VmPtrToCookie(pEvent->UnloadModuleData.vmDomainFile));
        }
        break;

    case DB_IPCE_LOAD_CLASS:
        {
            CordbClass *pClass = NULL;

            LOG((LF_CORDB, LL_INFO10000,
                 "RCET::HRCE: load class on thread %#x Tok:0x%08x Mod:0x%08x Asm:0x%08x AD:0x%08x\n",
                 dwVolatileThreadId,
                 pEvent->LoadClass.classMetadataToken,
                 VmPtrToCookie(pEvent->LoadClass.vmDomainFile),
                 LsPtrToCookie(pEvent->LoadClass.classDebuggerAssemblyToken),
                 VmPtrToCookie(pEvent->vmAppDomain)));

            _ASSERTE (pAppDomain != NULL);

            CordbModule* pModule = pAppDomain->LookupOrCreateModule(pEvent->LoadClass.vmDomainFile);
            if (pModule == NULL)
            {
                LOG((LF_CORDB, LL_INFO100, "Load Class on not-loaded Module - continue()ing!" ));
                break;
            }
            _ASSERTE(pModule != NULL);

            BOOL fDynamic = pModule->IsDynamic();

            // If this is a class load in a dynamic module, the metadata has become invalid.
            if (fDynamic)
            {
                pModule->RefreshMetaData();
            }

            hr = pModule->LookupOrCreateClass(pEvent->LoadClass.classMetadataToken, &pClass);
            _ASSERTE(SUCCEEDED(hr) == (pClass != NULL));
            IfFailThrow(hr);

            // Prevent class load from being sent twice.
            // @dbgtodo - Microsoft, cordbclass: this is legacy. Can this really happen? Investigate as we dac-ize CordbClass.
            if (pClass->LoadEventSent())
            {
                // Dynamic modules are dynamic at the module level -
                // you can't add a new version of a class once the module
                // is baked.
                // EnC adds completely new classes.
                // There shouldn't be any other way to send multiple
                // ClassLoad events.
                // Except that there are race conditions between loading
                // an appdomain, and loading a class, so if we get the extra
                // class load, we should ignore it.
                break; //out of the switch statement
            }
            pClass->SetLoadEventSent(TRUE);


            if (pClass != NULL)
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback1->LoadClass(pAppDomain, pClass);
            }
        }
        break;

    case DB_IPCE_UNLOAD_CLASS:
        {
            LOG((LF_CORDB, LL_INFO10000,
                 "RCET::HRCE: unload class on thread %#x Tok:0x%08x Mod:0x%08x AD:0x%08x\n",
                 dwVolatileThreadId,
                 pEvent->UnloadClass.classMetadataToken,
                 VmPtrToCookie(pEvent->UnloadClass.vmDomainFile),
                 VmPtrToCookie(pEvent->vmAppDomain)));

            // get the appdomain object
            _ASSERTE (pAppDomain != NULL);

            CordbModule *pModule = pAppDomain->LookupOrCreateModule(pEvent->UnloadClass.vmDomainFile);
            if (pModule == NULL)
            {
                LOG((LF_CORDB, LL_INFO100, "Unload Class on not-loaded Module - continue()ing!" ));
                break;
            }
            _ASSERTE(pModule != NULL);

            CordbClass *pClass = pModule->LookupClass(pEvent->UnloadClass.classMetadataToken);

            if (pClass != NULL && !pClass->HasBeenUnloaded())
            {
                pClass->SetHasBeenUnloaded(true);

                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback1->UnloadClass(pAppDomain, pClass);
            }
        }
        break;

    case DB_IPCE_FIRST_LOG_MESSAGE:
        {
            _ASSERTE(pThread != NULL);
            _ASSERTE(pAppDomain != NULL);

            const WCHAR * pszContent = pEvent->FirstLogMessage.szContent.GetString();
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback1->LogMessage(
                   pAppDomain,
                   pThread,
                   pEvent->FirstLogMessage.iLevel,
                   const_cast<WCHAR*> (pEvent->FirstLogMessage.szCategory.GetString()),
                   const_cast<WCHAR*> (pszContent));
            }
        }
        break;

    case DB_IPCE_LOGSWITCH_SET_MESSAGE:
        {

            LOG((LF_CORDB, LL_INFO10000,
                "[%x] RCET::DRCE: Log Switch Setting Message.\n",
                 GetCurrentThreadId()));

            _ASSERTE(pThread != NULL);

            const WCHAR *pstrLogSwitchName = pEvent->LogSwitchSettingMessage.szSwitchName.GetString();
            const WCHAR *pstrParentName = pEvent->LogSwitchSettingMessage.szParentSwitchName.GetString();

            // from the thread object get the appdomain object
            _ASSERTE(pAppDomain == pThread->m_pAppDomain);
            _ASSERTE (pAppDomain != NULL);

            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback1->LogSwitch(
                    pAppDomain,
                    pThread,
                    pEvent->LogSwitchSettingMessage.iLevel,
                    pEvent->LogSwitchSettingMessage.iReason,
                    const_cast<WCHAR*> (pstrLogSwitchName),
                    const_cast<WCHAR*> (pstrParentName));

            }
        }

        break;
    case DB_IPCE_CUSTOM_NOTIFICATION:
        {
            _ASSERTE(pThread != NULL);
            _ASSERTE(pAppDomain != NULL);


            // determine first whether custom notifications for this type are enabled -- if not
            // we just return without doing anything.
            CordbClass * pNotificationClass = LookupClass(pAppDomain,
                                                          pEvent->CustomNotification.vmDomainFile,
                                                          pEvent->CustomNotification.classToken);

            // if the class is NULL, that means the debugger never enabled notifications for it. Otherwise,
            // the CordbClass instance would already have been created when the notifications were
            // enabled.
            if ((pNotificationClass != NULL) && pNotificationClass->CustomNotificationsEnabled())

            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback3->CustomNotification(pThread, pAppDomain);
            }
        }

        break;

    case DB_IPCE_CREATE_APP_DOMAIN:
        {
            STRESS_LOG2(LF_CORDB, LL_INFO100,
                 "RCET::HRCE: create appdomain on thread %#x AD:0x%08x \n",
                 dwVolatileThreadId,
                 VmPtrToCookie(pEvent->vmAppDomain));


            // Enumerate may have prepopulated the appdomain, so check if it already exists.
            // Either way, still send the CreateEvent. (We don't want to skip the Create event
            // just because the debugger did an enumerate)
            // We remove AppDomains from the hash as soon as they are exited.
            pAppDomain.Assign(LookupOrCreateAppDomain(pEvent->AppDomainData.vmAppDomain));
            _ASSERTE(pAppDomain != NULL); // throws on failure

            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                hr = pCallback1->CreateAppDomain(this, pAppDomain);
            }
        }


        break;

    case DB_IPCE_EXIT_APP_DOMAIN:
        {
            STRESS_LOG2(LF_CORDB, LL_INFO100, "RCET::HRCE: exit appdomain on thread %#x AD:0x%08x \n",
                 dwVolatileThreadId,
                 VmPtrToCookie(pEvent->vmAppDomain));

            // In debug-only builds, assert that the appdomain is indeed deleted and not discoverable.
            INDEBUG(DbgAssertAppDomainDeleted(pEvent->vmAppDomain));

            // If we get an ExitAD message for which we have no AppDomain, then ignore it.
            // This can happen if an AD gets torn down very early (before the LS AD is to the
            // point that it can be published).
            // This could also happen if we attach a debugger right before the Exit event is sent.
            // In this case, the debuggee is no longer publishing the appdomain.
            if (pAppDomain == NULL)
            {
                break;
            }
            _ASSERTE (pAppDomain != NULL);

            // See if this is the default AppDomain exiting.  This should only happen very late in
            // the shutdown cycle, and so we shouldn't do anything significant with m_pDefaultDomain==NULL.
            // We should try and remove m_pDefaultDomain entirely since we can't count on it always existing.
            if (pAppDomain == m_pDefaultAppDomain)
            {
                m_pDefaultAppDomain = NULL;
            }

            // Update any threads which were last seen in this AppDomain.  We don't
            // get any notification when a thread leaves an AppDomain, so our idea
            // of what AppDomain the thread is in may be out of date.
            UpdateThreadsForAdUnload( pAppDomain );

            // This will still maintain weak references so we could call Continue.
            AddToNeuterOnContinueList(pAppDomain);

            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                hr = pCallback1->ExitAppDomain(this, pAppDomain);
            }

            // @dbgtodo appdomain: This should occur before the callback.
            // Even after ExitAppDomain, the outside world will want to continue calling
            // Continue (and thus they may need to call CordbAppDomain::GetProcess(), which Neutering
            // would clear). Thus we can't neuter yet.

            // Remove this app domain. This means any attempt to lookup the AppDomain
            // will fail (which we do at the top of this method).  Since any threads (incorrectly) referring
            // to this AppDomain have been moved to the default AppDomain, no one should be
            // interested in looking this AppDomain up anymore.
            m_appDomains.RemoveBase(VmPtrToCookie(pEvent->vmAppDomain));
        }

        break;

    case DB_IPCE_LOAD_ASSEMBLY:
        {
            LOG((LF_CORDB, LL_INFO100,
                "RCET::HRCE: load assembly on thread %#x Asm:0x%08x AD:0x%08x \n",
                dwVolatileThreadId,
                VmPtrToCookie(pEvent->AssemblyData.vmDomainAssembly),
                VmPtrToCookie(pEvent->vmAppDomain)));

            _ASSERTE (pAppDomain != NULL);

            // Determine if this Assembly is cached.
            CordbAssembly * pAssembly = pAppDomain->LookupOrCreateAssembly(pEvent->AssemblyData.vmDomainAssembly);
            _ASSERTE(pAssembly != NULL); // throws on error

            // If created, or have, an Assembly, notify callback.
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                hr = pCallback1->LoadAssembly(pAppDomain, pAssembly);
            }
        }

        break;

    case DB_IPCE_UNLOAD_ASSEMBLY:
        {
            LOG((LF_CORDB, LL_INFO100, "RCET::DRCE: unload assembly on thread %#x Asm:0x%x AD:0x%x\n",
                 dwVolatileThreadId,
                 VmPtrToCookie(pEvent->AssemblyData.vmDomainAssembly),
                 VmPtrToCookie(pEvent->vmAppDomain)));

            _ASSERTE (pAppDomain != NULL);

            CordbAssembly * pAssembly = pAppDomain->LookupOrCreateAssembly(pEvent->AssemblyData.vmDomainAssembly);

            if (pAssembly == NULL)
            {
                // No assembly. This could happen if we attach right before an unload event is sent.
                return;
            }
           _ASSERTE(pAssembly != NULL);
           INDEBUG(pAssembly->DbgAssertAssemblyDeleted());

            // Ensure the assembly gets neutered when we call continue.
            AddToNeuterOnContinueList(pAssembly); // throws

            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                hr = pCallback1->UnloadAssembly(pAppDomain, pAssembly);
            }

            pAppDomain->RemoveAssemblyFromCache(pEvent->AssemblyData.vmDomainAssembly);
        }

        break;

    case DB_IPCE_FUNC_EVAL_COMPLETE:
        {
            LOG((LF_CORDB, LL_INFO1000, "RCET::DRCE: func eval complete.\n"));

            CordbEval *pEval = NULL;
            {
                pEval = pEvent->FuncEvalComplete.funcEvalKey.UnWrapAndRemove(this);
                if (pEval  == NULL)
                {
                    _ASSERTE(!"Bogus FuncEval handle in IPC block.");
                    // Bogus handle in IPC block.
                    break;
                }
            }
            _ASSERTE(pEval != NULL);

            _ASSERTE(pThread != NULL);
            _ASSERTE(pAppDomain != NULL);

            CONSISTENCY_CHECK_MSGF(pEval->m_DbgAppDomainStarted == pAppDomain,
                ("AppDomain changed from Func-Eval. Eval=%p, Started=%p, Now=%p\n",
                pEval, pEval->m_DbgAppDomainStarted, (void*) pAppDomain));

            // Hold the data about the result in the CordbEval for later.
            pEval->m_complete       = true;
            pEval->m_successful     = !!pEvent->FuncEvalComplete.successful;
            pEval->m_aborted        = !!pEvent->FuncEvalComplete.aborted;
            pEval->m_resultAddr     = pEvent->FuncEvalComplete.resultAddr;
            pEval->m_vmObjectHandle = pEvent->FuncEvalComplete.vmObjectHandle;
            pEval->m_resultType     = pEvent->FuncEvalComplete.resultType;
            pEval->m_resultAppDomainToken = pEvent->FuncEvalComplete.vmAppDomain;

            CordbAppDomain *pResultAppDomain = LookupOrCreateAppDomain(pEvent->FuncEvalComplete.vmAppDomain);

            _ASSERTE(OutstandingEvalCount() > 0);
            DecrementOutstandingEvalCount();

            CONSISTENCY_CHECK_MSGF(pEval->m_DbgAppDomainStarted == pAppDomain,
                ("AppDomain changed from Func-Eval. Eval=%p, Started=%p, Now=%p\n",
                pEval, pEval->m_DbgAppDomainStarted, (void*) pAppDomain));

            // If we did this func eval with this thread stopped at an excpetion, then we need to pretend as if we
            // really didn't continue from the exception, since, of course, we really didn't on the Left Side.
            if (pEval->IsEvalDuringException())
            {
                pThread->SetExInfo(pEval->m_vmThreadOldExceptionHandle);
            }

            bool fEvalCompleted = pEval->m_successful || pEval->m_aborted;

            // If a CallFunction() is aborted, the LHS may not complete the abort
            // immediately and hence we cant do a SendCleanup() at that point. Also,
            // the debugger may (incorrectly) release the CordbEval before this
            // DB_IPCE_FUNC_EVAL_COMPLETE event is received. Hence, we maintain an
            // extra ref-count to determine when this can be done.
            // Note that this can cause a two-way DB_IPCE_FUNC_EVAL_CLEANUP event
            // to be sent. Hence, it has to be done before the Continue (see issue 102745).


            // Note that if the debugger has already (incorrectly) released the CordbEval,
            // pEval will be pointing to garbage and should not be used by the debugger.
            if (fEvalCompleted)
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE2(this, pLockHolder, pEvent, "thread=0x%p, eval=0x%p. (Complete)", pThread, pEval);
                pCallback1->EvalComplete(pResultAppDomain, pThread, pEval);
            }
            else
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE2(this, pLockHolder, pEvent, "pThread=0x%p, eval=0x%p. (Exception)", pThread, pEval);
                pCallback1->EvalException(pResultAppDomain, pThread, pEval);
            }

            // This release may send an DB_IPCE_FUNC_EVAL_CLEANUP IPC event. That's ok b/c
            // we're still synced even if if Continue was called inside the callback.
            // That's because the StopContinueHolder bumped up the stopcount.
            // Corresponding AddRef() in CallFunction().
            // @todo - this is leaked if we don't get an EvalComplete event (eg, process exits with
            // in middle of func-eval).
            pEval->Release();
        }
        break;


    case DB_IPCE_NAME_CHANGE:
        {
            LOG((LF_CORDB, LL_INFO1000, "RCET::HRCE: Name Change %d  0x%p\n",
                 dwVolatileThreadId,
                 VmPtrToCookie(pEvent->NameChange.vmAppDomain)));

            pThread = NULL;
            pAppDomain.Clear();
            if (pEvent->NameChange.eventType == THREAD_NAME_CHANGE)
            {
                // Lookup the CordbThread that matches this runtime thread.
                if (!pEvent->NameChange.vmThread.IsNull())
                {
                    pThread = LookupOrCreateThread(pEvent->NameChange.vmThread);
                }
            }
            else
            {
                _ASSERTE (pEvent->NameChange.eventType == APP_DOMAIN_NAME_CHANGE);
                pAppDomain.Assign(LookupOrCreateAppDomain(pEvent->NameChange.vmAppDomain));
                if (pAppDomain)
                {
                    pAppDomain->InvalidateName();
                }
            }

            if (pThread || pAppDomain)
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback1->NameChange(pAppDomain, pThread);
            }
        }

        break;

    case DB_IPCE_UPDATE_MODULE_SYMS:
        {
            RSExtSmartPtr<IStream> pStream;

            // Find the app domain the module lives in.
            _ASSERTE (pAppDomain != NULL);

            // Find the Right Side module for this module.
            CordbModule * pModule = pAppDomain->LookupOrCreateModule(pEvent->UpdateModuleSymsData.vmDomainFile);
            _ASSERTE(pModule != NULL);

            // This is a legacy event notification for updated PDBs.
            // Creates a new IStream object. Ownership is handed off via callback.
            IDacDbiInterface::SymbolFormat symFormat = pModule->GetInMemorySymbolStream(&pStream);

            // We shouldn't get this event if there aren't PDB symbols waiting.  Specifically we don't want
            // to incur the cost of copying over ILDB symbols here without the debugger asking for them.
            // Eventually we may remove this callback as well and always rely on explicit requests.
            _ASSERTE(symFormat == IDacDbiInterface::kSymbolFormatPDB);

            if (symFormat == IDacDbiInterface::kSymbolFormatPDB)
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);

                _ASSERTE(pStream != NULL); // Shouldn't send the event if we don't have a stream.

                pCallback1->UpdateModuleSymbols(pAppDomain, pModule, pStream);
            }

        }
        break;

    case DB_IPCE_MDA_NOTIFICATION:
        {
            RSInitHolder<CordbMDA> pMDA(new CordbMDA(this, &pEvent->MDANotification)); // throws

            // Ctor leaves both internal + ext Ref at 0, adding to neuter list bumps int-ref up to 1.
            // Neutering will dump it back down to zero.
            this->AddToNeuterOnExitList(pMDA);

            // We bump up and down the external ref so that even if the callback doensn't touch the refs,
            // our Ext-Release here will still cause a 1->0 ext-ref transition, which will get it
            // swept on the neuter list.
            RSExtSmartPtr<ICorDebugMDA> pExternalMDARef;
            pMDA.TransferOwnershipExternal(&pExternalMDARef);
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);

                pCallback2->MDANotification(
                    this,
                    pThread, // may be null
                    pExternalMDARef);

                // pExternalMDARef's dtor will do an external release,
                // which is very significant because it may be the one that does the 1->0 ext ref transition,
                // which may mean cause the "NeuterAtWill" bit to get flipped on this CordbMDA object.
                // Since this is an external release, do it in the PUBLIC_CALLBACK scope.
                pExternalMDARef.Clear();
            }

            break;
        }

    case DB_IPCE_CONTROL_C_EVENT:
        {
            hr = S_FALSE;

            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                hr = pCallback1->ControlCTrap((ICorDebugProcess*) this);
            }
        }
        break;

        // EnC Remap opportunity
        case DB_IPCE_ENC_REMAP:
        {
            LOG((LF_CORDB, LL_INFO1000, "[%x] RCET::DRCE: EnC Remap!.\n",
                 GetCurrentThreadId()));

            _ASSERTE(NULL != pAppDomain);

            CordbModule * pModule = pAppDomain->LookupOrCreateModule(pEvent->EnCRemap.vmDomainFile);
            PREFIX_ASSUME(pModule != NULL);

            CordbFunction * pCurFunction    = NULL;
            CordbFunction * pResumeFunction = NULL;

            // lookup the version of the function that we are mapping from
            // this is the one that is currently running
            pCurFunction = pModule->LookupOrCreateFunction(
                pEvent->EnCRemap.funcMetadataToken, pEvent->EnCRemap.currentVersionNumber);

            // lookup the version of the function that we are mapping to
            // it will always be the most recent
            pResumeFunction = pModule->LookupOrCreateFunction(
                    pEvent->EnCRemap.funcMetadataToken, pEvent->EnCRemap.resumeVersionNumber);

            _ASSERTE(pCurFunction->GetEnCVersionNumber() < pResumeFunction->GetEnCVersionNumber());

            RSSmartPtr<CordbFunction> pRefCurFunction(pCurFunction);
            RSSmartPtr<CordbFunction> pRefResumeFunction(pResumeFunction);

            // Verify we're not about to overwrite an outstanding remap IP
            // This should only be set while a remap opportunity is being handled,
            // and cleared (by CordbThread::MarkStackFramesDirty) on Continue.
            // We want to be absolutely sure we don't accidentally keep a stale pointer
            // around because it would point to arbitrary stack space in the CLR potentially
            // leading to stack corruption.
            _ASSERTE( pThread->m_EnCRemapFunctionIP == NULL );

            // Stash the address of the remap IP buffer.  This indicates that calling
            // RemapFunction is valid and provides a communications channel between the RS
            // and LS for the remap IL offset.
            pThread->m_EnCRemapFunctionIP = pEvent->EnCRemap.resumeILOffset;

            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback2->FunctionRemapOpportunity(
                    pAppDomain,
                    pThread,
                    pCurFunction,
                    pResumeFunction,
                    (ULONG32)pEvent->EnCRemap.currentILOffset);
            }

            // Implicit release on pCurFunction and pResumeFunction.
        }
        break;

        // EnC Remap complete
        case DB_IPCE_ENC_REMAP_COMPLETE:
        {
            LOG((LF_CORDB, LL_INFO1000, "[%x] RCET::DRCE: EnC Remap Complete!.\n",
                 GetCurrentThreadId()));

            _ASSERTE(NULL != pAppDomain);

            CordbModule* pModule = pAppDomain->LookupOrCreateModule(pEvent->EnCRemap.vmDomainFile);
            PREFIX_ASSUME(pModule != NULL);

            // Find the function we're remapping to, which must be the latest version
            CordbFunction *pRemapFunction=
                pModule->LookupFunctionLatestVersion(pEvent->EnCRemapComplete.funcMetadataToken);
            PREFIX_ASSUME(pRemapFunction != NULL);

            // Dispatch the FunctionRemapComplete callback
            RSSmartPtr<CordbFunction> pRef(pRemapFunction);
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE(this, pLockHolder, pEvent);
                pCallback2->FunctionRemapComplete(pAppDomain, pThread, pRemapFunction);
            }
            // Implicit release on pRemapFunction via holder
        }
        break;

        case DB_IPCE_BREAKPOINT_SET_ERROR:
        {
            LOG((LF_CORDB, LL_INFO1000, "RCET::DRCE: breakpoint set error.\n"));

            RSSmartPtr<CordbBreakpoint> pRef;

            _ASSERTE(pThread != NULL);
            _ASSERTE(pAppDomain != NULL);

            // Find the breakpoint object on this side.
            CordbBreakpoint * pBreakpoint = NULL;


            if (pThread == NULL)
            {
                // We've found cases out in the wild where we get this event on a thread we don't recognize.
                // We're not sure how this happens. Add a runtime check to protect ourselves to avoid the
                // an AV. We still assert because this should not be happening.
                // It likely means theres some issue where we failed to send a CreateThread notification.
                STRESS_LOG1(LF_CORDB, LL_INFO1000, "BreakpointSetError on unrecognized thread. %p\n", pBreakpoint);

                _ASSERTE(!"Missing thread on bp set error");
                break;
            }

            pBreakpoint = pAppDomain->m_breakpoints.GetBase(LsPtrToCookie(pEvent->BreakpointSetErrorData.breakpointToken));

            if (pBreakpoint != NULL)
            {
                ICorDebugBreakpoint * pIBreakpoint = CordbBreakpointToInterface(pBreakpoint);
                _ASSERTE(pIBreakpoint != NULL);
            {
                    PUBLIC_CALLBACK_IN_THIS_SCOPE2(this, pLockHolder, pEvent, "thread=0x%p, bp=0x%p", pThread, pBreakpoint);
                    pCallback1->BreakpointSetError(pAppDomain, pThread, pIBreakpoint, 0);
            }
            }
            // Implicit release on pRef.
        }
        break;


    case DB_IPCE_EXCEPTION_CALLBACK2:
        {
            STRESS_LOG4(LF_CORDB, LL_INFO100,
                "RCET::DRCE: Exception2 0x%p 0x%X 0x%X 0x%X\n",
                 pEvent->ExceptionCallback2.framePointer.GetSPValue(),
                 pEvent->ExceptionCallback2.nOffset,
                 pEvent->ExceptionCallback2.eventType,
                 pEvent->ExceptionCallback2.dwFlags
                 );

            if (pThread == NULL)
            {
                // We've got an exception on a thread we don't know about.  This could be a thread that
                // has never run any managed code, so let's just ignore the exception.  We should have
                // already sent a log message about this situation for the EXCEPTION callback above.
                _ASSERTE( pEvent->ExceptionCallback2.eventType == DEBUG_EXCEPTION_UNHANDLED );
                break;
            }

            pThread->SetExInfo(pEvent->ExceptionCallback2.vmExceptionHandle);

            //
            // Send all the information back to the debugger.
            //
            RSSmartPtr<CordbFrame> pFrame;

            FramePointer fp = pEvent->ExceptionCallback2.framePointer;
            if (fp != LEAF_MOST_FRAME)
            {
                // The interface forces us to to pass a FramePointer via an ICorDebugFrame.
                // However, we can't get a real ICDFrame without a stackwalk, and we don't
                // want to do a stackwalk now. so pass a netuered proxy frame. The shim
                // can map this to a real frame.
                // See comments at CordbPlaceHolderFrame class for details.
                pFrame.Assign(new CordbPlaceholderFrame(this, fp));
            }

            CorDebugExceptionCallbackType type = pEvent->ExceptionCallback2.eventType;
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE3(this, pLockHolder, pEvent, "pThread=0x%p, frame=%p, type=%d", pThread, (ICorDebugFrame*) pFrame, type);
                hr = pCallback2->Exception(
                    pThread->m_pAppDomain,
                    pThread,
                    pFrame,
                    (ULONG32)(pEvent->ExceptionCallback2.nOffset),
                    type,
                    pEvent->ExceptionCallback2.dwFlags);
            }
        }
        break;

    case DB_IPCE_EXCEPTION_UNWIND:
        {
            STRESS_LOG2(LF_CORDB, LL_INFO100,
                "RCET::DRCE: Exception Unwind 0x%X 0x%X\n",
                 pEvent->ExceptionCallback2.eventType,
                 pEvent->ExceptionCallback2.dwFlags
                 );

            if (pThread == NULL)
            {
                // We've got an exception on a thread we don't know about.  This probably should never
                // happen (if it's unwinding, then we expect a managed frame on the stack, and so we should
                // know about the thread), but if it does fall back to ignoring the exception.
                _ASSERTE( !"Got unwind event for unknown exception" );
                break;
            }

            //
            // Send all the information back to the debugger.
            //
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE1(this, pLockHolder, pEvent, "pThread=0x%p", pThread);
                hr = pCallback2->ExceptionUnwind(
                    pThread->m_pAppDomain,
                    pThread,
                    pEvent->ExceptionUnwind.eventType,
                    pEvent->ExceptionUnwind.dwFlags);
            }
        }
        break;


    case DB_IPCE_INTERCEPT_EXCEPTION_COMPLETE:
        {
            STRESS_LOG0(LF_CORDB, LL_INFO100, "RCET::DRCE: Exception Interception Complete.\n");

            if (pThread == NULL)
            {
                // We've got an exception on a thread we don't know about.  This probably should never
                // happen (if it's unwinding, then we expect a managed frame on the stack, and so we should
                // know about the thread), but if it does fall back to ignoring the exception.
                _ASSERTE( !"Got complete event for unknown exception" );
                break;
            }

            //
            // Tell the debugger that the exception has been intercepted.  This is similar to the
            // notification we give when we start unwinding for a non-intercepted exception, except that the
            // interception has been completed at this point, which means that we are conceptually at the end
            // of the second pass.
            //
            {
                PUBLIC_CALLBACK_IN_THIS_SCOPE1(this, pLockHolder, pEvent, "pThread=0x%p", pThread);
                hr = pCallback2->ExceptionUnwind(
                    pThread->m_pAppDomain,
                    pThread,
                    DEBUG_EXCEPTION_INTERCEPTED,
                    0);
            }
        }
        break;
#ifdef TEST_DATA_CONSISTENCY
    case DB_IPCE_TEST_CRST:
        {
            EX_TRY
            {
                // the left side has signaled that we should test whether pEvent->TestCrstData.vmCrst is held
                GetDAC()->TestCrst(pEvent->TestCrstData.vmCrst);
            }
            EX_CATCH_HRESULT(hr);

            if (pEvent->TestCrstData.fOkToTake)
            {
                _ASSERTE(hr == S_OK);
                if (hr != S_OK)
                {
                    // we want to catch this in retail builds too
                    ThrowHR(E_FAIL);
                }
            }
            else // the lock was already held
            {
                // see if we threw because the lock was held
                _ASSERTE(hr == CORDBG_E_PROCESS_NOT_SYNCHRONIZED);
                if (hr != CORDBG_E_PROCESS_NOT_SYNCHRONIZED)
                {
                    // we want to catch this in retail builds too
                    ThrowHR(E_FAIL);
                }
            }

        }
        break;

    case DB_IPCE_TEST_RWLOCK:
        {
            EX_TRY
            {
                // the left side has signaled that we should test whether pEvent->TestRWLockData.vmRWLock is held
                GetDAC()->TestRWLock(pEvent->TestRWLockData.vmRWLock);
            }
            EX_CATCH_HRESULT(hr);

            if (pEvent->TestRWLockData.fOkToTake)
            {
                _ASSERTE(hr == S_OK);
                if (hr != S_OK)
                {
                    // we want to catch this in retail builds too
                    ThrowHR(E_FAIL);
                }
            }
            else // the lock was already held
            {
                // see if we threw because the lock was held
                _ASSERTE(hr == CORDBG_E_PROCESS_NOT_SYNCHRONIZED);
                if (hr != CORDBG_E_PROCESS_NOT_SYNCHRONIZED)
                {
                    // we want to catch this in retail builds too
                    ThrowHR(E_FAIL);
                }
            }
        }
        break;
#endif

    default:
        _ASSERTE(!"Unknown event");
        LOG((LF_CORDB, LL_INFO1000,
             "[%x] RCET::HRCE: Unknown event: 0x%08x\n",
             GetCurrentThreadId(), pEvent->type));
    }


    FinishEventDispatch();
}
#ifdef _PREFAST_
#pragma warning(pop)
#endif

//---------------------------------------------------------------------------------------
// Callback for prepopulating threads.
//
// Arugments:
//    vmThread - thread as part of the eunmeration.
//    pUserData - data supplied with callback. It's a CordbProcess* object.
//

// static
void CordbProcess::ThreadEnumerationCallback(VMPTR_Thread vmThread, void * pUserData)
{
    CordbProcess * pThis = reinterpret_cast<CordbProcess *> (pUserData);
    INTERNAL_DAC_CALLBACK(pThis);

    STRESS_LOG0(LF_CORDB, LL_INFO1000, "ThreadEnumerationCallback()\n");

    // Do lookup / lazy-create.
    pThis->LookupOrCreateThread(vmThread);
}

//---------------------------------------------------------------------------------------
// Fully build up the CordbThread cache to match VM state.
void CordbProcess::PrepopulateThreadsOrThrow()
{
    RSLockHolder lockHolder(GetProcessLock());
    if (IsDacInitialized())
    {
        STRESS_LOG0(LF_CORDB, LL_INFO1000, "PrepopulateThreadsOrThrow()\n");
        GetDAC()->EnumerateThreads(ThreadEnumerationCallback, this);
    }
}

//---------------------------------------------------------------------------------------
// Create a Thread enumerator
//
// Arguments:
//     pOwnerObj - object (a CordbProcess or CordbThread) that will own the enumerator.
//     pOwnerList - the neuter list that the enumerator will live on
//     pHolder - an outparameter for the enumerator to be initialized.
//
void CordbProcess::BuildThreadEnum(CordbBase * pOwnerObj, NeuterList * pOwnerList, RSInitHolder<CordbHashTableEnum> * pHolder)
{
    CordbHashTableEnum::BuildOrThrow(
        pOwnerObj,
        pOwnerList,
        &m_userThreads,
        IID_ICorDebugThreadEnum,
        pHolder);
}

// Public implementation of ICorDebugProcess::EnumerateThreads
HRESULT CordbProcess::EnumerateThreads(ICorDebugThreadEnum **ppThreads)
{
    HRESULT hr = S_OK;
    PUBLIC_API_BEGIN(this);
    {
        if (m_detached)
        {
            // #Detach_Check:
            //
            // FUTURE: Consider adding this IF block to the PUBLIC_API macros so that
            // typical public APIs fail quickly if we're trying to do a detach.  For
            // now, I'm hand-adding this check only to the few problematic APIs that get
            // called while queuing the fake attach events.  In these cases, it is not
            // enough to check if CordbProcess::IsNeutered(), as the detaching thread
            // may have begun the detaching and neutering process, but not be
            // finished--in which case m_detached is true, but
            // CordbProcess::IsNeutered() is still false.
            ThrowHR(CORDBG_E_PROCESS_DETACHED);
        }

        ValidateOrThrow(ppThreads);

        RSInitHolder<CordbHashTableEnum> pEnum;
        InternalEnumerateThreads(pEnum.GetAddr());

        pEnum.TransferOwnershipExternal(ppThreads);
    }
    PUBLIC_API_END(hr);
    return hr;
}

// Internal implementation of EnumerateThreads
VOID CordbProcess::InternalEnumerateThreads(RSInitHolder<CordbHashTableEnum> *ppThreads)
{
    INTERNAL_API_ENTRY(this);
    // Needs to prepopulate
    PrepopulateThreadsOrThrow();
    BuildThreadEnum(this, this->GetContinueNeuterList(), ppThreads);
}

// Implementation of ICorDebugProcess::GetThread
HRESULT CordbProcess::GetThread(DWORD dwThreadId, ICorDebugThread **ppThread)
{
    PUBLIC_API_ENTRY(this);
    VALIDATE_POINTER_TO_OBJECT(ppThread, ICorDebugThread **);

    // No good pre-existing ATT_* contract for this.
    // Because for legacy, we have to allow this on the win32 event thread.
    *ppThread = NULL;

    HRESULT hr = S_OK;
    EX_TRY
    {
        RSLockHolder lockHolder(GetProcessLock());
        if (m_detached)
        {
            // See code:CordbProcess::EnumerateThreads#Detach_Check
            ThrowHR(CORDBG_E_PROCESS_DETACHED);
        }
        CordbThread * pThread = TryLookupOrCreateThreadByVolatileOSId(dwThreadId);
        if (pThread == NULL)
        {
            // This is a common case because we may be looking up an unmanaged thread.
            hr = E_INVALIDARG;
        }
        else
        {
            *ppThread = static_cast<ICorDebugThread*> (pThread);
            pThread->ExternalAddRef();
        }
    }
    EX_CATCH_HRESULT(hr);

    LOG((LF_CORDB, LL_INFO10000, "CP::GT returns id=0x%x hr=0x%x ppThread=0x%p",
             dwThreadId, hr, *ppThread));
    return hr;
}

HRESULT CordbProcess::ThreadForFiberCookie(DWORD fiberCookie,
                                           ICorDebugThread **ppThread)
{
    return E_NOTIMPL;
}

HRESULT CordbProcess::GetHelperThreadID(DWORD *pThreadID)
{
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);

    _ASSERTE(m_pShim != NULL);
    if (pThreadID == NULL)
    {
        return (E_INVALIDARG);
    }

    HRESULT hr = S_OK;
    // Return the ID of the current helper thread. There may be no thread in the process, or there may be a true helper
    // thread.
    if ((m_helperThreadId != 0) && !m_helperThreadDead)
    {
        *pThreadID = m_helperThreadId;
    }
    else if ((GetDCB() != NULL) && (GetDCB()->m_helperThreadId != 0))
    {
        EX_TRY
        {
            // be sure we have the latest information
            UpdateRightSideDCB();
            *pThreadID = GetDCB()->m_helperThreadId;
        }
        EX_CATCH_HRESULT(hr);

    }
    else
    {
        *pThreadID = 0;
    }

    return hr;
}

//---------------------------------------------------------------------------------------
//
// Sends IPC event to set all the managed threads, except for the one given, to the given state
//
// Arguments:
//     state - The state to set the threads to.
//     pExceptThread - The thread to not set.  This is usually the thread that is currently
//         sending an IPC event to the RS, and should be excluded.
//
// Return Value:
//     Typical HRESULT symantics, nothing abnormal.
//
HRESULT CordbProcess::SetAllThreadsDebugState(CorDebugThreadState state,
                                              ICorDebugThread * pExceptThread)
{
    PUBLIC_REENTRANT_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    VALIDATE_POINTER_TO_OBJECT_OR_NULL(pExceptThread, ICorDebugThread *);
    ATT_REQUIRE_STOPPED_MAY_FAIL(this);

    if (GetShim() == NULL)
    {
        return E_NOTIMPL;
    }
    CordbThread * pCordbExceptThread = static_cast<CordbThread *> (pExceptThread);

    LOG((LF_CORDB, LL_INFO1000, "CP::SATDS: except thread=0x%08x 0x%x\n",
         pExceptThread,
         (pCordbExceptThread != NULL) ? pCordbExceptThread->m_id : 0));

    // Send one event to the Left Side to twiddle each thread's state.
    DebuggerIPCEvent event;

    InitIPCEvent(&event, DB_IPCE_SET_ALL_DEBUG_STATE, true, VMPTR_AppDomain::NullPtr());

    event.SetAllDebugState.vmThreadToken = ((pCordbExceptThread != NULL) ?
                                            pCordbExceptThread->m_vmThreadToken : VMPTR_Thread::NullPtr());

    event.SetAllDebugState.debugState = state;

    HRESULT hr = SendIPCEvent(&event, sizeof(DebuggerIPCEvent));

    hr = WORST_HR(hr, event.hr);

    // If that worked, then loop over all the threads on this side and set their states.
    if (SUCCEEDED(hr))
    {
        RSLockHolder lockHolder(GetProcessLock());
        HASHFIND hashFind;
        CordbThread * pThread;

        // We don't need to prepopulate here (to collect LS state) because we're just updating RS state.
        for (pThread = m_userThreads.FindFirst(&hashFind);
              pThread != NULL;
              pThread = m_userThreads.FindNext(&hashFind))
        {
            if (pThread != pCordbExceptThread)
            {
                pThread->m_debugState = state;
            }
        }
    }

    return hr;
}


HRESULT CordbProcess::EnumerateObjects(ICorDebugObjectEnum **ppObjects)
{
    /* !!! */
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    VALIDATE_POINTER_TO_OBJECT(ppObjects, ICorDebugObjectEnum **);

    return E_NOTIMPL;
}

//---------------------------------------------------------------------------------------
//
// Determines if the target address is a "CLR transition stub".
//
// Arguments:
//     address - The address of an instruction to check in the target address space.
//     pfTransitionStub - Space to store the result, TRUE if the address belongs to a
//         transition stub, FALSE if not.  Only valid if this method returns a success code.
//
// Return Value:
//     Typical HRESULT symantics, nothing abnormal.
//
//---------------------------------------------------------------------------------------
HRESULT CordbProcess::IsTransitionStub(CORDB_ADDRESS address, BOOL *pfTransitionStub)
{
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    VALIDATE_POINTER_TO_OBJECT(pfTransitionStub, BOOL *);

    // Default to FALSE
    *pfTransitionStub = FALSE;

    if (this->m_helperThreadDead)
    {
        return S_OK;
    }

    // If we're not initialized, then it can't be a stub...
    if (!m_initialized)
    {
        return S_OK;
    }

    ATT_REQUIRE_STOPPED_MAY_FAIL(this);

    HRESULT hr = S_OK;
    EX_TRY
    {
        DebuggerIPCEvent eventData;

        InitIPCEvent(&eventData, DB_IPCE_IS_TRANSITION_STUB, true, VMPTR_AppDomain::NullPtr());

        eventData.IsTransitionStub.address = CORDB_ADDRESS_TO_PTR(address);

        hr = SendIPCEvent(&eventData, sizeof(eventData));
        hr = WORST_HR(hr, eventData.hr);
        IfFailThrow(hr);

        _ASSERTE(eventData.type == DB_IPCE_IS_TRANSITION_STUB_RESULT);

        *pfTransitionStub = eventData.IsTransitionStubResult.isStub;
        LOG((LF_CORDB, LL_INFO1000, "CP::ITS: addr=0x%p result=%d\n", address, *pfTransitionStub));
        // @todo - beware that IsTransitionStub has a very important sideeffect - it synchronizes the runtime!
        // This for example covers an OS bug where SetThreadContext may silently fail if we're not synchronized.
        // (See IMDArocess::SetThreadContext for details on that bug).
        // If we ever stop using IPC events here and only use DAC; we need to be aware of that.

        // Check against DAC primitives
        {
            BOOL fIsStub2 = GetDAC()->IsTransitionStub(address);
            (void)fIsStub2; //prevent "unused variable" error from GCC
            CONSISTENCY_CHECK_MSGF(*pfTransitionStub == fIsStub2, ("IsStub2 failed, DAC2:%d, IPC:%d, addr:0x%p", (int) fIsStub2, (int) *pfTransitionStub, CORDB_ADDRESS_TO_PTR(address)));

        }
    }
    EX_CATCH_HRESULT(hr);
    if(FAILED(hr))
    {
        LOG((LF_CORDB, LL_INFO1000, "CP::ITS: FAILED hr=0x%x\n", hr));
    }
    return hr;
}


HRESULT CordbProcess::SetStopState(DWORD threadID, CorDebugThreadState state)
{
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    return E_NOTIMPL;
}

HRESULT CordbProcess::IsOSSuspended(DWORD threadID, BOOL *pbSuspended)
{
    PUBLIC_API_ENTRY(this);
    // Gotta have a place for the result!
    if (!pbSuspended)
        return E_INVALIDARG;

    FAIL_IF_NEUTERED(this);

#ifdef FEATURE_INTEROP_DEBUGGING
    RSLockHolder lockHolder(GetProcessLock());

    // Have we seen this thread?
    CordbUnmanagedThread *ut = GetUnmanagedThread(threadID);

    // If we have, and if we've suspended it, then say so.
    if (ut && ut->IsSuspended())
    {
        *pbSuspended = TRUE;
    }
    else
    {
        *pbSuspended = FALSE;
    }
#else
    // Not interop-debugging, we never OS suspend.
    *pbSuspended = FALSE;
#endif
    return S_OK;
}

//
// This routine reads a thread context from the process being debugged, taking into account the fact that the context
// record may be a different size than the one we compiled with. On systems < NT5, then OS doesn't usually allocate
// space for the extended registers. However, the CONTEXT struct that we compile with does have this space.
//
HRESULT CordbProcess::SafeReadThreadContext(LSPTR_CONTEXT pContext, DT_CONTEXT * pCtx)
{
    HRESULT hr = S_OK;

    INTERNAL_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);

    EX_TRY
    {

        void *pRemoteContext = pContext.UnsafeGet();
        TargetBuffer tbFull(pRemoteContext, sizeof(DT_CONTEXT));

        // The context may have 2 parts:
        // 1. Base register, which are always present.
        // 2. Optional extended registers, which are only present if CONTEXT_EXTENDED_REGISTERS is set
        //    in the flags.

        // At a minimum we have room for a whole context up to the extended registers.
    #if defined(DT_CONTEXT_EXTENDED_REGISTERS)
        ULONG32 minContextSize = offsetof(DT_CONTEXT, ExtendedRegisters);
    #else
        ULONG32 minContextSize = sizeof(DT_CONTEXT);
    #endif

        // Read the minimum part.
        TargetBuffer tbMin = tbFull.SubBuffer(0, minContextSize);
        SafeReadBuffer(tbMin, (BYTE*) pCtx);

    #if defined(DT_CONTEXT_EXTENDED_REGISTERS)
        void *pCurExtReg = (void*)((UINT_PTR)pCtx + minContextSize);
        TargetBuffer tbExtended = tbFull.SubBuffer(minContextSize);

        // Now, read the extended registers if the context contains them. If the context does not have extended registers,
        // just set them to zero.
        if (SUCCEEDED(hr) && (pCtx->ContextFlags & CONTEXT_EXTENDED_REGISTERS) == CONTEXT_EXTENDED_REGISTERS)
        {
            SafeReadBuffer(tbExtended, (BYTE*) pCurExtReg);
        }
        else
        {
            memset(pCurExtReg, 0, tbExtended.cbSize);
        }
    #endif

    }
    EX_CATCH_HRESULT(hr);
    return hr;
}

//
// This routine writes a thread context to the process being debugged, taking into account the fact that the context
// record may be a different size than the one we compiled with. On systems < NT5, then OS doesn't usually allocate
// space for the extended registers. However, the CONTEXT struct that we compile with does have this space.
//
HRESULT CordbProcess::SafeWriteThreadContext(LSPTR_CONTEXT pContext, const DT_CONTEXT * pCtx)
{
    INTERNAL_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);

    HRESULT hr = S_OK;
    DWORD sizeToWrite = sizeof(DT_CONTEXT);

    BYTE * pRemoteContext = (BYTE*) pContext.UnsafeGet();
    BYTE * pCtxSource = (BYTE*) pCtx;


#if defined(DT_CONTEXT_EXTENDED_REGISTERS)
    // If our context has extended registers, then write the whole thing. Otherwise, just write the minimum part.
    if ((pCtx->ContextFlags & DT_CONTEXT_EXTENDED_REGISTERS) != DT_CONTEXT_EXTENDED_REGISTERS)
    {
        sizeToWrite = offsetof(DT_CONTEXT, ExtendedRegisters);
    }
#endif

// 64 bit windows puts space for the first 6 stack parameters in the CONTEXT structure so that
// kernel to usermode transitions don't have to allocate a CONTEXT and do a seperate sub rsp
// to allocate stack spill space for the arguments. This means that writing to P1Home - P6Home
// will overwrite the arguments of some function higher on the stack, very bad. Conceptually you
// can think of these members as not being part of the context, ie they don't represent something
// which gets saved or restored on context switches. They are just space we shouldn't overwrite.
// See issue 630276 for more details.
#if defined DBG_TARGET_AMD64
    pRemoteContext += offsetof(CONTEXT, ContextFlags); // immediately follows the 6 parameters P1-P6
    pCtxSource += offsetof(CONTEXT, ContextFlags);
    sizeToWrite -= offsetof(CONTEXT, ContextFlags);
#endif

    EX_TRY
    {
        // Write the context.
        TargetBuffer tb(pRemoteContext, sizeToWrite);
        SafeWriteBuffer(tb, (const BYTE*) pCtxSource);
    }
    EX_CATCH_HRESULT(hr);

    return hr;
}


HRESULT CordbProcess::GetThreadContext(DWORD threadID, ULONG32 contextSize, BYTE context[])
{
    PUBLIC_REENTRANT_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    LOG((LF_CORDB, LL_INFO10000, "CP::GTC: thread=0x%x\n", threadID));

    DT_CONTEXT * pContext;

    if (contextSize != sizeof(DT_CONTEXT))
    {
        LOG((LF_CORDB, LL_INFO10000, "CP::GTC: thread=0x%x, context size is invalid.\n", threadID));
        return E_INVALIDARG;
    }

    pContext = reinterpret_cast<DT_CONTEXT *>(context);

    VALIDATE_POINTER_TO_OBJECT_ARRAY(context, BYTE, contextSize, true, true);

    if (this->IsInteropDebugging())
    {
#ifdef FEATURE_INTEROP_DEBUGGING
        RSLockHolder lockHolder(GetProcessLock());

        // Find the unmanaged thread
        CordbUnmanagedThread *ut = GetUnmanagedThread(threadID);

        if (ut == NULL)
        {
            LOG((LF_CORDB, LL_INFO10000, "CP::GTC: thread=0x%x, thread id is invalid.\n", threadID));

            return E_INVALIDARG;
        }

        return ut->GetThreadContext((DT_CONTEXT*)context);
#else
        return E_NOTIMPL;
#endif
    }
    else
    {
        RSLockHolder ch(GetProcess()->GetStopGoLock());
        RSLockHolder lockHolder(GetProcessLock());

        HRESULT hr = S_OK;
        EX_TRY
        {
            CordbThread* thread = this->TryLookupThreadByVolatileOSId(threadID);
            if (thread == NULL)
            {
                LOG((LF_CORDB, LL_INFO10000, "CP::GTC: thread=0x%x, thread id is invalid.\n", threadID));

                hr = E_INVALIDARG;
            }
            else
            {
                DT_CONTEXT* managedContext;
                hr = thread->GetManagedContext(&managedContext);
                *pContext = *managedContext;
            }
        }
        EX_CATCH_HRESULT(hr)
        return hr;
    }
}

// Public implementation of ICorDebugProcess::SetThreadContext.
// @dbgtodo interop-debugging: this should go away in V3. Use the data-target instead. This is
// interop-debugging aware (and cooperates with hijacks)
HRESULT CordbProcess::SetThreadContext(DWORD threadID, ULONG32 contextSize, BYTE context[])
{
    PUBLIC_REENTRANT_API_ENTRY(this);

    HRESULT hr = S_OK;

    // @todo -  could we look at the context flags and return E_INVALIDARG if they're bad?
    FAIL_IF_NEUTERED(this);
    VALIDATE_POINTER_TO_OBJECT_ARRAY(context, BYTE, contextSize, true, true);

    if (contextSize != sizeof(DT_CONTEXT))
    {
        LOG((LF_CORDB, LL_INFO10000, "CP::STC: thread=0x%x, context size is invalid.\n", threadID));
        return E_INVALIDARG;
    }

    DT_CONTEXT* pContext = (DT_CONTEXT*)context;

    if (this->IsInteropDebugging())
    {
#ifdef FEATURE_INTEROP_DEBUGGING
        RSLockHolder lockHolder(GetProcessLock());

        CordbUnmanagedThread *ut = NULL;

        // Find the unmanaged thread
        ut = GetUnmanagedThread(threadID);

        if (ut == NULL)
        {
            LOG((LF_CORDB, LL_INFO10000, "CP::STC: thread=0x%x, thread is invalid.\n", threadID));
            return E_INVALIDARG;
        }

        hr = ut->SetThreadContext(pContext);

        // Update the register set for the leaf-unmanaged chain so that it's consistent w/ the context.
        // We may not necessarily be synchronized, and so these frames may be stale. Even so, no harm done.
        if (SUCCEEDED(hr))
        {
            // @dbgtodo stackwalk: this should all disappear with V3 stackwalker and getting rid of SetThreadContext.
            EX_TRY
            {
                // Find the managed thread.  Returns NULL if thread is not managed.
                // If we don't have a thread prveiously cached, then there's no state to update.
                CordbThread * pThread = TryLookupThreadByVolatileOSId(threadID);

                if (pThread != NULL)
                {
                    // In V2, we used to update the CONTEXT of the leaf chain if the chain is an unmanaged chain.
                    // In Arrowhead, we just force a cleanup of the stackwalk cache.  This is a more correct
                    // thing to do anyway, since the CONTEXT being set could be anything.
                    pThread->CleanupStack();
                }
            }
            EX_CATCH_HRESULT(hr);
        }
#else
        return E_NOTIMPL;
#endif
    }
    else
    {
        RSLockHolder ch(GetProcess()->GetStopGoLock());
        RSLockHolder lockHolder(GetProcessLock());

        EX_TRY
        {
            CordbThread* thread = this->TryLookupThreadByVolatileOSId(threadID);
            if (thread == NULL)
            {
                LOG((LF_CORDB, LL_INFO10000, "CP::GTC: thread=0x%x, thread id is invalid.\n", threadID));

                hr = E_INVALIDARG;
            }

            hr = thread->SetManagedContext(pContext);
        }
        EX_CATCH
        {
            hr = E_FAIL;
        }
        EX_END_CATCH(SwallowAllExceptions)


    }
    return hr;
}


// @dbgtodo  ICDProcess - When we DACize this function, we should use code:DacReplacePatches
HRESULT CordbProcess::ReadMemory(CORDB_ADDRESS address,
                                 DWORD size,
                                 BYTE buffer[],
                                 SIZE_T *read)
{
    PUBLIC_REENTRANT_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);

    // A read of 0 bytes is okay.
    if (size == 0)
        return S_OK;

    VALIDATE_POINTER_TO_OBJECT_ARRAY(buffer, BYTE, size, true, true);
    VALIDATE_POINTER_TO_OBJECT(buffer, SIZE_T *);

    if (address == NULL)
        return E_INVALIDARG;

    // If no read parameter is supplied, we ignore it. This matches the semantics of kernel32!ReadProcessMemory.
    SIZE_T dummyRead;
    if (read == NULL)
    {
        read = &dummyRead;
    }
    *read = 0;

    HRESULT hr = S_OK;

    CORDBRequireProcessStateOK(this);

    // Grab the memory we want to read
    // Note that this will return success on a partial read
    ULONG32 cbRead;
    hr = GetDataTarget()->ReadVirtual(address, buffer, size, &cbRead);
    if (FAILED(hr))
    {
        hr = CORDBG_E_READVIRTUAL_FAILURE;
        goto LExit;
    }

    // Read at least one byte
    *read = (SIZE_T) cbRead;

    // There seem to be strange cases where ReadProcessMemory will return a seemingly negative number into *read, which
    // is an unsigned value. So we check the sanity of *read by ensuring that its no bigger than the size we tried to
    // read.
    if ((*read > 0) && (*read <= size))
    {
        LOG((LF_CORDB, LL_INFO100000, "CP::RM: read %d bytes from 0x%08x, first byte is 0x%x\n",
             *read, (DWORD)address, buffer[0]));

        if (m_initialized)
        {
            RSLockHolder ch(&this->m_processMutex);

            // If m_pPatchTable is NULL, then it's been cleaned out b/c of a Continue for the left side.  Get the table
            // again. Only do this, of course, if the managed state of the process is initialized.
            if (m_pPatchTable == NULL)
            {
                hr = RefreshPatchTable(address, *read, buffer);
            }
            else
            {
                // The previously fetched table is still good, so run through it & see if any patches are applicable
                hr = AdjustBuffer(address, *read, buffer, NULL, AB_READ);
            }
        }
    }

LExit:
    if (FAILED(hr))
    {
        RSLockHolder ch(&this->m_processMutex);
        ClearPatchTable();
    }
    else if (*read < size)
    {
        // Unlike the DT api, our API is supposed to return an error on partial read
        hr = HRESULT_FROM_WIN32(ERROR_PARTIAL_COPY);
    }
    return hr;
}

// Update patches & buffer to make the left-side's usage of patches transparent
// to our client.  Behavior depends on AB_MODE:
// AB_READ:
// - use the RS patch table structure to replace patch opcodes in buffer.
// AB_WRITE:
// - update the RS patch table structure w/ new replace-opcode values
// if we've written over them. And put the int3 back in for write-memory.
//
// Note: If we're writing memory over top of a patch, then it must be JITted or stub code.
// Writing over JITed or Stub code can be dangerous since the CLR may not expect it
// (eg. JIT data structures about the code layout may be incorrect), but in certain
// narrow cases it may be safe (eg. replacing a constant).  VS says they wouldn't expect
// this to work, but we'll keep the support in for legacy reasons.
//
// address, size - describe buffer in LS memory
// buffer - local copy of buffer that will be read/written from/to LS.
// bufferCopy - for writeprocessmemory, copy of original buffer (w/o injected patches)
// pbUpdatePatchTable - flag if patchtable got dirty and needs to be updated.
HRESULT CordbProcess::AdjustBuffer( CORDB_ADDRESS address,
                                    SIZE_T size,
                                    BYTE buffer[],
                                    BYTE **bufferCopy,
                                    AB_MODE mode,
                                    BOOL *pbUpdatePatchTable)
{
    INTERNAL_API_ENTRY(this);

    _ASSERTE(m_initialized);
    _ASSERTE(this->ThreadHoldsProcessLock());

    if (    address == NULL
         || size == NULL
         || buffer == NULL
         || (mode != AB_READ && mode != AB_WRITE) )
        return E_INVALIDARG;

    if (pbUpdatePatchTable != NULL )
        *pbUpdatePatchTable = FALSE;

    // If we don't have a patch table loaded, then return S_OK since there are no patches to adjust
    if (m_pPatchTable == NULL)
        return S_OK;

    //is the requested memory completely out-of-range?
    if ((m_minPatchAddr > (address + (size - 1))) ||
        (m_maxPatchAddr < address))
    {
        return S_OK;
    }

    // Without runtime offsets, we can't adjust - this should only ever happen on dumps, where there's
    // no W32ET to get the offsets, and so they stay zeroed
    if (!m_runtimeOffsetsInitialized)
        return S_OK;

    LOG((LF_CORDB,LL_INFO10000, "CordbProcess::AdjustBuffer at addr 0x%p\n", address));

    if (mode == AB_WRITE)
    {
        // We don't want to mess up the original copy of the buffer, so
        // for right now, just copy it wholesale.
        (*bufferCopy) = new (nothrow) BYTE[size];
        if (NULL == (*bufferCopy))
            return E_OUTOFMEMORY;

        memmove((*bufferCopy), buffer, size);
    }

    ULONG iNextFree = m_iFirstPatch;
    while( iNextFree != DPT_TERMINATING_INDEX )
    {
        BYTE *DebuggerControllerPatch = m_pPatchTable + m_runtimeOffsets.m_cbPatch*iNextFree;
        PRD_TYPE opcode = *(PRD_TYPE *)(DebuggerControllerPatch + m_runtimeOffsets.m_offOpcode);
        CORDB_ADDRESS patchAddress = PTR_TO_CORDB_ADDRESS(*(BYTE**)(DebuggerControllerPatch + m_runtimeOffsets.m_offAddr));

        if (IsPatchInRequestedRange(address, size, patchAddress))
        {
            if (mode == AB_READ)
            {
                CORDbgSetInstructionEx(buffer, address, patchAddress, opcode, size);
            }
            else if (mode == AB_WRITE)
            {
                _ASSERTE( pbUpdatePatchTable != NULL );
                _ASSERTE( bufferCopy != NULL );

                //There can be multiple patches at the same address: we don't want 2nd+ patches to get the
                // break opcode, so we read from the unmodified copy.
                m_rgUncommitedOpcode[iNextFree] =
                    CORDbgGetInstructionEx(*bufferCopy, address, patchAddress, opcode, size);

                //put the breakpoint into the memory itself
                CORDbgInsertBreakpointEx(buffer, address, patchAddress, opcode, size);

                *pbUpdatePatchTable = TRUE;
            }
            else
                _ASSERTE( !"CordbProcess::AdjustBuffergiven non(Read|Write) mode!" );
        }

        iNextFree = m_rgNextPatch[iNextFree];
    }

    // If we created a copy of the buffer but didn't modify it, then free it now.
    if( ( mode == AB_WRITE ) && ( !*pbUpdatePatchTable ) )
    {
        delete [] *bufferCopy;
        *bufferCopy = NULL;
    }

    return S_OK;
}


void CordbProcess::CommitBufferAdjustments( CORDB_ADDRESS start,
                                            CORDB_ADDRESS end )
{
    INTERNAL_API_ENTRY(this);

    _ASSERTE(m_initialized);
    _ASSERTE(this->ThreadHoldsProcessLock());
    _ASSERTE(m_runtimeOffsetsInitialized);

    ULONG iPatch = m_iFirstPatch;
    while( iPatch != DPT_TERMINATING_INDEX )
    {
        BYTE *DebuggerControllerPatch = m_pPatchTable +
            m_runtimeOffsets.m_cbPatch*iPatch;

        BYTE *patchAddress = *(BYTE**)(DebuggerControllerPatch + m_runtimeOffsets.m_offAddr);

        if (IsPatchInRequestedRange(start, (SIZE_T)(end - start), PTR_TO_CORDB_ADDRESS(patchAddress)) &&
            !PRDIsBreakInst(&(m_rgUncommitedOpcode[iPatch])))
        {
            //copy this back to the copy of the patch table
            *(PRD_TYPE *)(DebuggerControllerPatch + m_runtimeOffsets.m_offOpcode) =
                m_rgUncommitedOpcode[iPatch];
        }

        iPatch = m_rgNextPatch[iPatch];
    }
}

void CordbProcess::ClearBufferAdjustments( )
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(this->ThreadHoldsProcessLock());

    ULONG iPatch = m_iFirstPatch;
    while( iPatch != DPT_TERMINATING_INDEX )
    {
        InitializePRDToBreakInst(&(m_rgUncommitedOpcode[iPatch]));
        iPatch = m_rgNextPatch[iPatch];
    }
}

void CordbProcess::ClearPatchTable(void )
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(this->ThreadHoldsProcessLock());

    if (m_pPatchTable != NULL )
    {
        delete [] m_pPatchTable;
        m_pPatchTable = NULL;

        delete [] m_rgNextPatch;
        m_rgNextPatch = NULL;

        delete [] m_rgUncommitedOpcode;
        m_rgUncommitedOpcode = NULL;

        m_iFirstPatch = DPT_TERMINATING_INDEX;
        m_minPatchAddr = MAX_ADDRESS;
        m_maxPatchAddr = MIN_ADDRESS;
        m_rgData = NULL;
        m_cPatch = 0;
    }
}

HRESULT CordbProcess::RefreshPatchTable(CORDB_ADDRESS address, SIZE_T size, BYTE buffer[])
{
    CONTRACTL
    {
        NOTHROW;
    }
    CONTRACTL_END;

    INTERNAL_API_ENTRY(this);
    _ASSERTE(m_initialized);
    _ASSERTE(this->ThreadHoldsProcessLock());

    HRESULT hr = S_OK;
    BYTE *rgb = NULL;

    // All of m_runtimeOffsets will be zeroed out if there's been no call to code:CordbProcess::GetRuntimeOffsets.
    // Thus for things to work, we'd have to have a live target that went and got the real values.
    // For dumps, things are still all zeroed out because we don't have any events sent to the W32ET, don't
    // have a live process to investigate, etc.
    if (!m_runtimeOffsetsInitialized)
        return S_OK;

    _ASSERTE( m_runtimeOffsets.m_cbOpcode == sizeof(PRD_TYPE) );

    CORDBRequireProcessStateOK(this);

    if (m_pPatchTable == NULL )
    {
        // First, check to be sure the patch table is valid on the Left Side. If its not, then we won't read it.
        BOOL fPatchTableValid = FALSE;

        hr = SafeReadStruct(PTR_TO_CORDB_ADDRESS(m_runtimeOffsets.m_pPatchTableValid), &fPatchTableValid);
        if (FAILED(hr) || !fPatchTableValid)
        {
            LOG((LF_CORDB, LL_INFO10000, "Wont refresh patch table because its not valid now.\n"));
            return S_OK;
        }

        SIZE_T offStart = 0;
        SIZE_T offEnd = 0;
        UINT cbTableSlice = 0;

        // Grab the patch table info
        offStart = min(m_runtimeOffsets.m_offRgData, m_runtimeOffsets.m_offCData);
        offEnd   = max(m_runtimeOffsets.m_offRgData, m_runtimeOffsets.m_offCData) + sizeof(SIZE_T);
        cbTableSlice = (UINT)(offEnd - offStart);

        if (cbTableSlice == 0)
        {
            LOG((LF_CORDB, LL_INFO10000, "Wont refresh patch table because its not valid now.\n"));
            return S_OK;
        }

        EX_TRY
        {
            rgb = new BYTE[cbTableSlice]; // throws

            TargetBuffer tbSlice((BYTE*)m_runtimeOffsets.m_pPatches + offStart, cbTableSlice);
            this->SafeReadBuffer(tbSlice, rgb); // Throws;

            // Note that rgData is a pointer in the left side address space
            m_rgData = *(BYTE**)(rgb + m_runtimeOffsets.m_offRgData - offStart);
            m_cPatch = *(ULONG*)(rgb + m_runtimeOffsets.m_offCData - offStart);

            // Grab the patch table
            UINT cbPatchTable = (UINT)(m_cPatch * m_runtimeOffsets.m_cbPatch);

            if (cbPatchTable == 0)
            {
                LOG((LF_CORDB, LL_INFO10000, "Wont refresh patch table because its not valid now.\n"));
                _ASSERTE(hr == S_OK);
                goto LExit; // can't return since we're in a Try/Catch
            }

            // Throwing news
            m_pPatchTable = new BYTE[ cbPatchTable ];
            m_rgNextPatch = new ULONG[m_cPatch];
            m_rgUncommitedOpcode = new PRD_TYPE[m_cPatch];

            TargetBuffer tb(m_rgData, cbPatchTable);
            this->SafeReadBuffer(tb, m_pPatchTable); // Throws

            //As we go through the patch table we do a number of things:
            //
            // 1. collect min,max address seen for quick fail check
            //
            // 2. Link all valid entries into a linked list, the first entry of which is m_iFirstPatch
            //
            // 3. Initialize m_rgUncommitedOpcode, so that we can undo local patch table changes if WriteMemory can't write
            // atomically.
            //
            // 4. If the patch is in the memory we grabbed, unapply it.

            ULONG iDebuggerControllerPatchPrev = DPT_TERMINATING_INDEX;

            m_minPatchAddr = MAX_ADDRESS;
            m_maxPatchAddr = MIN_ADDRESS;
            m_iFirstPatch = DPT_TERMINATING_INDEX;

            for (ULONG iPatch = 0; iPatch < m_cPatch;iPatch++)
            {
                // <REVISIT_TODO>@todo port: we're making assumptions about the size of opcodes,address pointers, etc</REVISIT_TODO>
                BYTE *DebuggerControllerPatch = m_pPatchTable + m_runtimeOffsets.m_cbPatch * iPatch;
                PRD_TYPE opcode = *(PRD_TYPE*)(DebuggerControllerPatch + m_runtimeOffsets.m_offOpcode);
                CORDB_ADDRESS patchAddress = PTR_TO_CORDB_ADDRESS(*(BYTE**)(DebuggerControllerPatch + m_runtimeOffsets.m_offAddr));

                // A non-zero opcode indicates to us that this patch is valid.
                if (!PRDIsEmpty(opcode))
                {
                    _ASSERTE( patchAddress != 0 );

                    // (1), above
                    // Note that GetPatchEndAddr() returns the address immediately AFTER the patch,
                    // so we have to subtract 1 from it below.
                    if (m_minPatchAddr > patchAddress )
                        m_minPatchAddr = patchAddress;
                    if (m_maxPatchAddr < patchAddress )
                        m_maxPatchAddr = GetPatchEndAddr(patchAddress) - 1;

                    // (2), above
                    if ( m_iFirstPatch == DPT_TERMINATING_INDEX)
                    {
                        m_iFirstPatch = iPatch;
                        _ASSERTE( iPatch != DPT_TERMINATING_INDEX);
                    }

                    if (iDebuggerControllerPatchPrev != DPT_TERMINATING_INDEX)
                    {
                        m_rgNextPatch[iDebuggerControllerPatchPrev] = iPatch;
                    }

                    iDebuggerControllerPatchPrev = iPatch;

                    // (3), above
                    InitializePRDToBreakInst(&(m_rgUncommitedOpcode[iPatch]));

                    // (4), above
                    if (IsPatchInRequestedRange(address, size, patchAddress))
                    {
                        _ASSERTE( buffer != NULL );
                        _ASSERTE( size != NULL );


                        //unapply the patch here.
                        CORDbgSetInstructionEx(buffer, address, patchAddress, opcode, size);
                    }

                }
            }

            if (iDebuggerControllerPatchPrev != DPT_TERMINATING_INDEX)
            {
                m_rgNextPatch[iDebuggerControllerPatchPrev] = DPT_TERMINATING_INDEX;
            }
        }
LExit:
    ;
        EX_CATCH_HRESULT(hr);
    }


    if (rgb != NULL )
    {
        delete [] rgb;
    }

    if (FAILED( hr ) )
    {
        ClearPatchTable();
    }

    return hr;
}

//---------------------------------------------------------------------------------------
//
// Given an address, see if there is a patch in the patch table that matches it and return
// if its an unmanaged patch or not.
//
// Arguments:
//     address - The address of an instruction to check in the target address space.
//     pfPatchFound - Space to store the result, TRUE if the address belongs to a
//         patch, FALSE if not.  Only valid if this method returns a success code.
//     pfPatchIsUnmanaged - Space to store the result, TRUE if the address is a patch
//         and the patch is unmanaged, FALSE if not.  Only valid if this method returns a
//         success code.
//
// Return Value:
//     Typical HRESULT symantics, nothing abnormal.
//
// Note: this method is pretty in-efficient. It refreshes the patch table, then scans it.
//     Refreshing the patch table involves a scan, too, so this method could be folded
//     with that.
//
//---------------------------------------------------------------------------------------
HRESULT CordbProcess::FindPatchByAddress(CORDB_ADDRESS address, bool *pfPatchFound, bool *pfPatchIsUnmanaged)
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(ThreadHoldsProcessLock());
    _ASSERTE((pfPatchFound != NULL) && (pfPatchIsUnmanaged != NULL));
    _ASSERTE(m_runtimeOffsetsInitialized);
    FAIL_IF_NEUTERED(this);

    *pfPatchFound = false;
    *pfPatchIsUnmanaged = false;

    // First things first. If the process isn't initialized, then there can be no patch table, so we know the breakpoint
    // doesn't belong to the Runtime.
    if (!m_initialized)
    {
        return S_OK;
    }

    // This method is called from the main loop of the win32 event thread in response to a first chance breakpoint event
    // that we know is not a flare. The process has been runnning, and it may have invalidated the patch table, so we'll
    // flush it here before refreshing it to make sure we've got the right thing.
    //
    // Note: we really should have the Left Side mark the patch table dirty to help optimize this.
    ClearPatchTable();

    // Refresh the patch table.
    HRESULT hr = RefreshPatchTable();

    if (FAILED(hr))
    {
        LOG((LF_CORDB, LL_INFO1000, "CP::FPBA: failed to refresh the patch table\n"));
        return hr;
    }

    // If there is no patch table yet, then we know there is no patch at the given address, so return S_OK with
    // *patchFound = false.
    if (m_pPatchTable == NULL)
    {
        LOG((LF_CORDB, LL_INFO1000, "CP::FPBA: no patch table\n"));
        return S_OK;
    }

    // Scan the patch table for a matching patch.
    for (ULONG iNextPatch = m_iFirstPatch; iNextPatch != DPT_TERMINATING_INDEX; iNextPatch = m_rgNextPatch[iNextPatch])
    {
        BYTE *patch = m_pPatchTable + (m_runtimeOffsets.m_cbPatch * iNextPatch);
        BYTE *patchAddress = *(BYTE**)(patch + m_runtimeOffsets.m_offAddr);
        DWORD traceType = *(DWORD*)(patch + m_runtimeOffsets.m_offTraceType);

        if (address == PTR_TO_CORDB_ADDRESS(patchAddress))
        {
            *pfPatchFound = true;

            if (traceType == m_runtimeOffsets.m_traceTypeUnmanaged)
            {
                *pfPatchIsUnmanaged = true;

#if defined(_DEBUG)
                HRESULT hrDac = S_OK;
                EX_TRY
                {
                    // We should be able to double check w/ DAC that this really is outside of the runtime.
                    IDacDbiInterface::AddressType addrType = GetDAC()->GetAddressType(address);
                    CONSISTENCY_CHECK_MSGF(addrType == IDacDbiInterface::kAddressUnrecognized, ("Bad address type = %d", addrType));
                }
                EX_CATCH_HRESULT(hrDac);
                CONSISTENCY_CHECK_MSGF(SUCCEEDED(hrDac), ("DAC::GetAddressType failed, hr=0x%08x", hrDac));
#endif
            }

            break;
        }
    }

    // If we didn't find a patch, its actually still possible that this breakpoint exception belongs to us. There are
    // races with very large numbers of threads entering the Runtime through the same managed function. We will have
    // multiple threads adding and removing ref counts to an int 3 in the code stream. Sometimes, this count will go to
    // zero and the int 3 will be removed, then it will come back up and the int 3 will be replaced. The in-process
    // logic takes pains to ensure that such cases are handled properly, therefore we need to perform the same check
    // here to make the correct decision. Basically, the check is to see if there is indeed an int 3 at the exception
    // address. If there is _not_ an int 3 there, then we've hit this race. We will lie and say a managed patch was
    // found to cover this case. This is tracking the logic in DebuggerController::ScanForTriggers, where we call
    // IsPatched.
    if (*pfPatchFound == false)
    {
        // Read one instruction from the faulting address...
#if defined(DBG_TARGET_ARM) || defined(DBG_TARGET_ARM64)
        PRD_TYPE TrapCheck = 0;
#else
        BYTE TrapCheck = 0;
#endif

        HRESULT hr2 = SafeReadStruct(address, &TrapCheck);

        if (SUCCEEDED(hr2) && (TrapCheck != CORDbg_BREAK_INSTRUCTION))
        {
            LOG((LF_CORDB, LL_INFO1000, "CP::FPBA: patchFound=true based on odd missing int 3 case.\n"));

            *pfPatchFound = true;
        }
    }

    LOG((LF_CORDB, LL_INFO1000, "CP::FPBA: patchFound=%d, patchIsUnmanaged=%d\n", *pfPatchFound, *pfPatchIsUnmanaged));

    return S_OK;
}

HRESULT CordbProcess::WriteMemory(CORDB_ADDRESS address, DWORD size,
                                  BYTE buffer[], SIZE_T *written)
{
    PUBLIC_REENTRANT_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    CORDBRequireProcessStateOK(this);
    _ASSERTE(m_runtimeOffsetsInitialized);


    if (size == 0 || address == NULL)
        return E_INVALIDARG;

    VALIDATE_POINTER_TO_OBJECT_ARRAY(buffer, BYTE, size, true, true);
    VALIDATE_POINTER_TO_OBJECT(written, SIZE_T *);


#if defined(_DEBUG) && defined(FEATURE_INTEROP_DEBUGGING)
    // Shouldn't be using this to write int3. Use UM BP API instead.
    // This is technically legal (what if the '0xcc' is data or something), so we can't fail in retail.
    // But we can add this debug-only check to help VS migrate to the new API.
    static ConfigDWORD configCheckInt3;
    DWORD fCheckInt3 = configCheckInt3.val(CLRConfig::INTERNAL_DbgCheckInt3);
    if (fCheckInt3)
    {
#if defined(DBG_TARGET_X86) || defined(DBG_TARGET_AMD64)
        if (size == 1 && buffer[0] == 0xCC)
        {
            CONSISTENCY_CHECK_MSGF(false,
                ("You're using ICorDebugProcess::WriteMemory() to write an 'int3' (1 byte 0xCC) at address 0x%p.\n"
                "If you're trying to set a breakpoint, you should be using ICorDebugProcess::SetUnmanagedBreakpoint() instead.\n"
                "(This assert is only enabled under the COM+ knob DbgCheckInt3.)\n",
                CORDB_ADDRESS_TO_PTR(address)));
        }
#endif // DBG_TARGET_X86 || DBG_TARGET_AMD64

        // check if we're replaced an opcode.
        if (size == 1)
        {
            RSLockHolder ch(&this->m_processMutex);

            NativePatch * p = GetNativePatch(CORDB_ADDRESS_TO_PTR(address));
            if (p != NULL)
            {
            CONSISTENCY_CHECK_MSGF(false,
                ("You're using ICorDebugProcess::WriteMemory() to write an 'opcode (0x%x)' at address 0x%p.\n"
                "There's already a native patch at that address from ICorDebugProcess::SetUnmanagedBreakpoint().\n"
                "If you're trying to remove the breakpoint, use ICDProcess::ClearUnmanagedBreakpoint() instead.\n"
                "(This assert is only enabled under the COM+ knob DbgCheckInt3.)\n",
                (DWORD) (buffer[0]), CORDB_ADDRESS_TO_PTR(address)));
            }
        }
    }
#endif // _DEBUG && FEATURE_INTEROP_DEBUGGING


    *written = 0;

    HRESULT hr = S_OK;
    HRESULT hrSaved = hr; // this will hold the 'real' hresult in case of a
                          // partially completed operation
    HRESULT hrPartialCopy = HRESULT_FROM_WIN32(ERROR_PARTIAL_COPY);

    BOOL bUpdateOriginalPatchTable = FALSE;
    BYTE *bufferCopy = NULL;

    // Only update the patch table if the managed state of the process
    // is initialized.
    if (m_initialized)
    {
        RSLockHolder ch(&this->m_processMutex);

        if (m_pPatchTable == NULL )
        {
            if (!SUCCEEDED( hr = RefreshPatchTable() ) )
            {
                goto LExit;
            }
        }

        if ( !SUCCEEDED( hr = AdjustBuffer( address,
                                            size,
                                            buffer,
                                            &bufferCopy,
                                            AB_WRITE,
                                            &bUpdateOriginalPatchTable)))
        {
            goto LExit;
        }
    }

    //conveniently enough, SafeWriteBuffer will throw if it can't complete the entire operation
    EX_TRY
    {
        TargetBuffer tb(address, size);
        SafeWriteBuffer(tb, buffer); // throws
        *written = tb.cbSize; // DT's Write does everything or fails.
    }
    EX_CATCH_HRESULT(hr);

    if (FAILED(hr))
    {
        if(hr != hrPartialCopy)
            goto LExit;
        else
            hrSaved = hr;
    }


    LOG((LF_CORDB, LL_INFO100000, "CP::WM: wrote %d bytes at 0x%08x, first byte is 0x%x\n",
         *written, (DWORD)address, buffer[0]));

    if (bUpdateOriginalPatchTable == TRUE )
    {
        {
            RSLockHolder ch(&this->m_processMutex);

            //don't tweak patch table for stuff that isn't written to LeftSide
            CommitBufferAdjustments(address, address + *written);
        }

        // The only way this should be able to fail is if
        //someone else fiddles with the memory protections on the
        //left side while it's frozen
        EX_TRY
        {
            TargetBuffer tb(m_rgData, (ULONG) (m_cPatch*m_runtimeOffsets.m_cbPatch));
            SafeWriteBuffer(tb, m_pPatchTable);
        }
        EX_CATCH_HRESULT(hr);
        SIMPLIFYING_ASSUMPTION_SUCCEEDED(hr);
    }

    // Since we may have
    // overwritten anything (objects, code, etc), we should mark
    // everything as needing to be re-cached.
    m_continueCounter++;

 LExit:
    if (m_initialized)
    {
        RSLockHolder ch(&this->m_processMutex);
        ClearBufferAdjustments( );
    }

    //we messed up our local copy, so get a clean copy the next time
    //we need it
    if (bUpdateOriginalPatchTable==TRUE)
    {
        if (bufferCopy != NULL)
        {
            memmove(buffer, bufferCopy, size);
            delete [] bufferCopy;
        }
    }

    if (FAILED( hr ))
    {
        //we messed up our local copy, so get a clean copy the next time
        //we need it
        if (bUpdateOriginalPatchTable==TRUE)
        {
            RSLockHolder ch(&this->m_processMutex);
            ClearPatchTable();
        }
    }
    else if( FAILED(hrSaved) )
    {
        hr = hrSaved;
    }

    return hr;
}

HRESULT CordbProcess::ClearCurrentException(DWORD threadID)
{
#ifndef FEATURE_INTEROP_DEBUGGING
    return E_INVALIDARG;
#else
    PUBLIC_API_ENTRY(this);

    RSLockHolder lockHolder(GetProcessLock());

    // There's something wrong if you're calling this an there are no queued unmanaged events.
    if ((m_unmanagedEventQueue == NULL) && (m_outOfBandEventQueue == NULL))
        return E_INVALIDARG;

    // Grab the unmanaged thread object.
    CordbUnmanagedThread *pUThread = GetUnmanagedThread(threadID);

    if (pUThread == NULL)
        return E_INVALIDARG;

    LOG((LF_CORDB, LL_INFO1000, "CP::CCE: tid=0x%x\n", threadID));

    // We clear both the IB and OOB event.
    if (pUThread->HasIBEvent() && !pUThread->IBEvent()->IsEventUserContinued())
    {
        pUThread->IBEvent()->SetState(CUES_ExceptionCleared);
    }

    if (pUThread->HasOOBEvent())
    {
        // must decide exception status _before_ we continue the event.
        _ASSERTE(!pUThread->OOBEvent()->IsEventContinuedUnhijacked());
        pUThread->OOBEvent()->SetState(CUES_ExceptionCleared);
    }

    // If the thread is hijacked, then set the thread's debugger word to 0 to indicate to it that the
    // exception has been cleared.
    if (pUThread->IsGenericHijacked())
    {
        HRESULT hr = pUThread->SetEEDebuggerWord(0);
        _ASSERTE(SUCCEEDED(hr));
    }

    return S_OK;
#endif // FEATURE_INTEROP_DEBUGGING
}

#ifdef FEATURE_INTEROP_DEBUGGING
CordbUnmanagedThread *CordbProcess::HandleUnmanagedCreateThread(DWORD dwThreadId, HANDLE hThread, void *lpThreadLocalBase)
{
    INTERNAL_API_ENTRY(this);
    CordbUnmanagedThread *ut = new (nothrow) CordbUnmanagedThread(this, dwThreadId, hThread, lpThreadLocalBase);

    if (ut != NULL)
    {
        HRESULT hr = m_unmanagedThreads.AddBase(ut); // InternalAddRef, release on EXIT_THREAD events.

        if (!SUCCEEDED(hr))
        {
            delete ut;
            ut = NULL;

            LOG((LF_CORDB, LL_INFO10000, "Failed adding unmanaged thread to process!\n"));
            CORDBSetUnrecoverableError(this, hr, 0);
        }
    }
    else
    {
        LOG((LF_CORDB, LL_INFO10000, "New CordbThread failed!\n"));
        CORDBSetUnrecoverableError(this, E_OUTOFMEMORY, 0);
    }

    return ut;
}
#endif // FEATURE_INTEROP_DEBUGGING


//-----------------------------------------------------------------------------
// Initializes the DAC
// Arguments: none--initializes the DAC for this CordbProcess instance
// Note: Throws on error
//-----------------------------------------------------------------------------
void CordbProcess::InitDac()
{
    // Go-Go DAC power!!
    HRESULT hr = S_OK;
    EX_TRY
    {
        InitializeDac();
    }
    EX_CATCH_HRESULT(hr);

    // We Need DAC to debug for both Managed & Interop.
    if (FAILED(hr))
    {
        // We assert here b/c we're trying to be friendly. Most likely, the cause is either:
        // - a bad installation
        // - a CLR dev built mscorwks but didn't build DAC.
        SIMPLIFYING_ASSUMPTION_MSGF(false, ("Failed to load DAC while for debugging. hr=0x%08x", hr));
        ThrowHR(hr);
    }
} //CordbProcess::InitDac

// Update the entire RS copy of the debugger control block by reading the LS copy. The RS copy is treated as
// a throw-away temporary buffer, rather than a true cache. That is, we make no assumptions about the
// validity of the information over time. Thus, before using any of the values, we need to update it. We
// update everything for simplicity; any perf hit we take by doing this instead of updating the individual
// fields we want at any given point isn't significant, particularly if we are updating multiple fields.

// Arguments:
//     none, but reads process memory from the LS debugger control block
// Return Value: none (copies from LS DCB to RS buffer GetDCB())
// Note: throws if SafeReadBuffer fails
void CordbProcess::UpdateRightSideDCB()
{
    IfFailThrow(m_pEventChannel->UpdateRightSideDCB());
} // CordbProcess::UpdateRightSideDCB

// Update a single field with a value stored in the RS copy of the DCB. We can't update the entire LS DCB
// because in some cases, the LS and RS are simultaneously initializing the DCB. If we initialize a field on
// the RS and write back the whole thing, we may overwrite something the LS has initialized in the interim.

// Arguments:
//     input: rsFieldAddr - the address of the field in the RS copy of the DCB that we want to write back to
//                          the LS DCB. We use this to compute the offset of the field from the beginning of the
//                          DCB and then add this offset to the starting address of the LS DCB to get the LS
//                          address of the field we are updating
//            size        - the size of the field we're updating.
// Return value: none
// Note: throws if SafeWriteBuffer fails
void CordbProcess::UpdateLeftSideDCBField(void * rsFieldAddr, SIZE_T size)
{
    IfFailThrow(m_pEventChannel->UpdateLeftSideDCBField(rsFieldAddr, size));
} // CordbProcess::UpdateRightSideDCB


//-----------------------------------------------------------------------------
// Gets the remote address of the event block for the Target and verifies that it's valid.
// We use this address when we need to read from or write to the debugger control block.
// Also allocates the RS buffer used for temporary storage for information from the DCB and
// copies the LS DCB into the RS buffer.
// Arguments:
//     output: pfBlockExists - true iff the LS DCB has been successfully allocated.  Note that
//             we need this information even if the function throws, so we can't simply send it back
//             as a return value.
// Return value:
//     None, but allocates GetDCB() on success. If the LS DCB has not
//     been successfully initialized or if this throws, GetDCB() will be NULL.
//
// Notes:
//     Throws on error
//
//-----------------------------------------------------------------------------
void CordbProcess::GetEventBlock(BOOL * pfBlockExists)
{
    if (GetDCB() == NULL) // we only need to do this once
    {
        _ASSERTE(m_pShim != NULL);
        _ASSERTE(ThreadHoldsProcessLock());

        // This will Initialize the DAC/DBI interface.
        BOOL fDacReady = TryInitializeDac();

        if (fDacReady)
        {
            // Ensure that we have a DAC interface.
            _ASSERTE(m_pDacPrimitives != NULL);

            // This is not technically necessary for Mac debugging.  The event channel doesn't rely on
            // knowing the target address of the DCB on the LS.
            CORDB_ADDRESS pLeftSideDCB = NULL;
            pLeftSideDCB = (GetDAC()->GetDebuggerControlBlockAddress());
            if (pLeftSideDCB == NULL)
            {
                *pfBlockExists = false;
                ThrowHR(CORDBG_E_DEBUGGING_NOT_POSSIBLE);
            }

            IfFailThrow(NewEventChannelForThisPlatform(pLeftSideDCB,
                                                       m_pMutableDataTarget,
                                                       GetProcessDescriptor(),
                                                       m_pShim->GetMachineInfo(),
                                                       &m_pEventChannel));
            _ASSERTE(m_pEventChannel != NULL);

            // copy information from left side DCB
            UpdateRightSideDCB();

            // Verify that the control block is valid.
            // This  will throw on error.
            VerifyControlBlock();

            *pfBlockExists = true;
        }
        else
        {
            // we can't initialize the DAC, so we can't get the block
            *pfBlockExists = false;
        }
    }
    else // we got the block before
    {
        *pfBlockExists = true;
    }

} // CordbProcess::GetEventBlock()


//
// Verify that the version info in the control block matches what we expect. The minimum supported protocol from the
// Left Side must be greater or equal to the minimum required protocol of the Right Side. Note: its the Left Side's job
// to conform to whatever protocol the Right Side requires, so long as minimum is supported.
//
void CordbProcess::VerifyControlBlock()
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(m_pShim != NULL);

    if (GetDCB()->m_DCBSize == 0)
    {
        // the LS is still initializing the DCB
        ThrowHR(CORDBG_E_DEBUGGING_NOT_POSSIBLE);
    }

    // Fill in the protocol numbers for the Right Side and update the LS DCB.
    GetDCB()->m_rightSideProtocolCurrent = CorDB_RightSideProtocolCurrent;
    UpdateLeftSideDCBField(&(GetDCB()->m_rightSideProtocolCurrent), sizeof(GetDCB()->m_rightSideProtocolCurrent));

    GetDCB()->m_rightSideProtocolMinSupported = CorDB_RightSideProtocolMinSupported;
    UpdateLeftSideDCBField(&(GetDCB()->m_rightSideProtocolMinSupported),
                           sizeof(GetDCB()->m_rightSideProtocolMinSupported));

    // For Telesto, Dbi and Wks have a more flexible versioning allowed, as described by the Debugger
    // Version Protocol String in DEBUGGER_PROTOCOL_STRING in DbgIpcEvents.h. This allows different build
    // numbers, but the other protocol numbers should still match.

    // These assertions verify that the debug manager is behaving correctly.
    // An assertion failure here means that the runtime version of the debuggee is different from the runtime version of
    // the debugger is capable of debugging.

    // The Debug Manager should properly match LS & RS, and thus guarantee that this assert should never fire.
    // But just in case the installation is corrupted, we'll check it.
    if (GetDCB()->m_DCBSize != sizeof(DebuggerIPCControlBlock))
    {
        CONSISTENCY_CHECK_MSGF(false, ("DCB in LS is %d bytes, in RS is %d bytes. Version mismatch!!\n",
                               GetDCB()->m_DCBSize, sizeof(DebuggerIPCControlBlock)));
        ThrowHR(CORDBG_E_INCOMPATIBLE_PROTOCOL);
    }

    // The Left Side has to support at least our minimum required protocol.
    if (GetDCB()->m_leftSideProtocolCurrent < GetDCB()->m_rightSideProtocolMinSupported)
    {
        _ASSERTE(GetDCB()->m_leftSideProtocolCurrent >= GetDCB()->m_rightSideProtocolMinSupported);
        ThrowHR(CORDBG_E_INCOMPATIBLE_PROTOCOL);
    }

    // The Left Side has to be able to emulate at least our minimum required protocol.
    if (GetDCB()->m_leftSideProtocolMinSupported > GetDCB()->m_rightSideProtocolCurrent)
    {
        _ASSERTE(GetDCB()->m_leftSideProtocolMinSupported <= GetDCB()->m_rightSideProtocolCurrent);
        ThrowHR(CORDBG_E_INCOMPATIBLE_PROTOCOL);
    }

#ifdef _DEBUG
    char buf[MAX_LONGPATH];
    DWORD len = GetEnvironmentVariableA("CORDBG_NotCompatibleTest", buf, sizeof(buf));
    _ASSERTE(len < sizeof(buf));

    if (len > 0)
        ThrowHR(CORDBG_E_INCOMPATIBLE_PROTOCOL);
#endif

    if (GetDCB()->m_bHostingInFiber)
    {
        ThrowHR(CORDBG_E_CANNOT_DEBUG_FIBER_PROCESS);
    }

    _ASSERTE(!GetDCB()->m_rightSideShouldCreateHelperThread);
} // CordbProcess::VerifyControlBlock

//-----------------------------------------------------------------------------
// This is the CordbProcess objects chance to inspect the DCB and intialize stuff
//
// Return Value:
//     Typical HRESULT return values, nothing abnormal.
//     If succeeded, then the block exists and is valid.
//
//-----------------------------------------------------------------------------
HRESULT CordbProcess::GetRuntimeOffsets()
{
    INTERNAL_API_ENTRY(this);

    _ASSERTE(m_pShim != NULL);
    UpdateRightSideDCB();

    // Can't get a handle to the helper thread if the target is remote.

    // If we got this far w/o failing, then we should be able to get the helper thread handle.
    // RS will handle not having the helper-thread handle, so we just make a best effort here.
    DWORD dwHelperTid = GetDCB()->m_realHelperThreadId;
    _ASSERTE(dwHelperTid != 0);


    {
#if !defined FEATURE_CORESYSTEM
        // kernel32!OpenThread does not exist on all platforms (missing on Win98).
        // So we need to delay load it.
        typedef HANDLE (WINAPI *FPOPENTHREAD)(DWORD dwDesiredAccess,
                                              BOOL bInheritHandle,
                                              DWORD dwThreadId);



        HMODULE mod = WszGetModuleHandle(W("kernel32.dll"));

        _ASSERTE(mod != NULL); // can't fail since Kernel32.dll is already loaded.

        const FPOPENTHREAD pfnOpenThread = (FPOPENTHREAD)GetProcAddress(mod, "OpenThread");

        if (pfnOpenThread != NULL)
        {
            m_hHelperThread = pfnOpenThread(SYNCHRONIZE, FALSE, dwHelperTid);
            CONSISTENCY_CHECK_MSGF(m_hHelperThread != NULL, ("Failed to get helper-thread handle. tid=0x%x\n", dwHelperTid));
        }
#elif FEATURE_PAL
        m_hHelperThread = NULL; //RS is supposed to be able to live without a helper thread handle.
#else
        m_hHelperThread = OpenThread(SYNCHRONIZE, FALSE, dwHelperTid);
        CONSISTENCY_CHECK_MSGF(m_hHelperThread != NULL, ("Failed to get helper-thread handle. tid=0x%x\n", dwHelperTid));
#endif
    }

    // get the remote address of the runtime offsets structure and read the structure itself
    HRESULT hrRead = SafeReadStruct(PTR_TO_CORDB_ADDRESS(GetDCB()->m_pRuntimeOffsets), &m_runtimeOffsets);

    if (FAILED(hrRead))
    {
        return hrRead;
    }

    LOG((LF_CORDB, LL_INFO10000, "CP::GRO: got runtime offsets: \n"));

#ifdef FEATURE_INTEROP_DEBUGGING
    LOG((LF_CORDB, LL_INFO10000, "    m_genericHijackFuncAddr=          0x%p\n",
         m_runtimeOffsets.m_genericHijackFuncAddr));
    LOG((LF_CORDB, LL_INFO10000, "    m_signalHijackStartedBPAddr=      0x%p\n",
         m_runtimeOffsets.m_signalHijackStartedBPAddr));
    LOG((LF_CORDB, LL_INFO10000, "    m_excepNotForRuntimeBPAddr=       0x%p\n",
         m_runtimeOffsets.m_excepNotForRuntimeBPAddr));
    LOG((LF_CORDB, LL_INFO10000, "    m_notifyRSOfSyncCompleteBPAddr=   0x%p\n",
         m_runtimeOffsets.m_notifyRSOfSyncCompleteBPAddr));
    LOG((LF_CORDB, LL_INFO10000, "    m_raiseException=                 0x%p\n",
         m_runtimeOffsets.m_raiseExceptionAddr));
    LOG((LF_CORDB, LL_INFO10000, "    m_debuggerWordTLSIndex=           0x%08x\n",
         m_runtimeOffsets.m_debuggerWordTLSIndex));
#endif // FEATURE_INTEROP_DEBUGGING

    LOG((LF_CORDB, LL_INFO10000, "    m_TLSIndex=                       0x%08x\n",
         m_runtimeOffsets.m_TLSIndex));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEThreadStateOffset=            0x%08x\n",
         m_runtimeOffsets.m_EEThreadStateOffset));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEThreadStateNCOffset=          0x%08x\n",
         m_runtimeOffsets.m_EEThreadStateNCOffset));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEThreadPGCDisabledOffset=      0x%08x\n",
         m_runtimeOffsets.m_EEThreadPGCDisabledOffset));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEThreadPGCDisabledValue=       0x%08x\n",
         m_runtimeOffsets.m_EEThreadPGCDisabledValue));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEThreadFrameOffset=            0x%08x\n",
         m_runtimeOffsets.m_EEThreadFrameOffset));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEThreadMaxNeededSize=          0x%08x\n",
         m_runtimeOffsets.m_EEThreadMaxNeededSize));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEThreadSteppingStateMask=      0x%08x\n",
         m_runtimeOffsets.m_EEThreadSteppingStateMask));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEMaxFrameValue=                0x%08x\n",
         m_runtimeOffsets.m_EEMaxFrameValue));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEThreadDebuggerFilterContextOffset= 0x%08x\n",
         m_runtimeOffsets.m_EEThreadDebuggerFilterContextOffset));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEThreadCantStopOffset=         0x%08x\n",
         m_runtimeOffsets.m_EEThreadCantStopOffset));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEFrameNextOffset=              0x%08x\n",
         m_runtimeOffsets.m_EEFrameNextOffset));
    LOG((LF_CORDB, LL_INFO10000, "    m_EEIsManagedExceptionStateMask=  0x%08x\n",
         m_runtimeOffsets.m_EEIsManagedExceptionStateMask));
    LOG((LF_CORDB, LL_INFO10000, "    m_pPatches=                       0x%08x\n",
         m_runtimeOffsets.m_pPatches));
    LOG((LF_CORDB, LL_INFO10000, "    m_offRgData=                      0x%08x\n",
         m_runtimeOffsets.m_offRgData));
    LOG((LF_CORDB, LL_INFO10000, "    m_offCData=                       0x%08x\n",
         m_runtimeOffsets.m_offCData));
    LOG((LF_CORDB, LL_INFO10000, "    m_cbPatch=                        0x%08x\n",
         m_runtimeOffsets.m_cbPatch));
    LOG((LF_CORDB, LL_INFO10000, "    m_offAddr=                        0x%08x\n",
         m_runtimeOffsets.m_offAddr));
    LOG((LF_CORDB, LL_INFO10000, "    m_offOpcode=                      0x%08x\n",
         m_runtimeOffsets.m_offOpcode));
    LOG((LF_CORDB, LL_INFO10000, "    m_cbOpcode=                       0x%08x\n",
         m_runtimeOffsets.m_cbOpcode));
    LOG((LF_CORDB, LL_INFO10000, "    m_offTraceType=                   0x%08x\n",
         m_runtimeOffsets.m_offTraceType));
    LOG((LF_CORDB, LL_INFO10000, "    m_traceTypeUnmanaged=             0x%08x\n",
         m_runtimeOffsets.m_traceTypeUnmanaged));

#ifdef FEATURE_INTEROP_DEBUGGING
    // Flares are only used for interop debugging.

    // Do check that the flares are all at unique offsets.
    // Since this is determined at link-time, we need a run-time check (an
    // assert isn't good enough, since this would only happen in a super
    // optimized / bbt run).
    {
        const void * flares[] = {
            m_runtimeOffsets.m_signalHijackStartedBPAddr,
            m_runtimeOffsets.m_excepForRuntimeHandoffStartBPAddr,
            m_runtimeOffsets.m_excepForRuntimeHandoffCompleteBPAddr,
            m_runtimeOffsets.m_signalHijackCompleteBPAddr,
            m_runtimeOffsets.m_excepNotForRuntimeBPAddr,
            m_runtimeOffsets.m_notifyRSOfSyncCompleteBPAddr,
        };

        const int NumFlares = NumItems(flares);

        // Ensure that all of the flares are unique.
        for(int i = 0; i < NumFlares; i++)
        {
            for(int j = i+1; j < NumFlares; j++)
            {
                if (flares[i] == flares[j])
                {
                    // If we ever fail here, that means the LS build is busted.

                    // This assert is useful if we drop a checked RS onto a retail
                    // LS (that's legal).
                    _ASSERTE(!"LS has matching Flares.");
                    LOG((LF_CORDB, LL_ALWAYS, "Failing because of matching flares.\n"));
                    return CORDBG_E_INCOMPATIBLE_PROTOCOL;
                }
            }
        }
    }

#endif  // FEATURE_INTEROP_DEBUGGING
    m_runtimeOffsetsInitialized = true;
    return S_OK;
}

#ifdef FEATURE_INTEROP_DEBUGGING

//-----------------------------------------------------------------------------
// Resume hijacked threads.
//-----------------------------------------------------------------------------
void CordbProcess::ResumeHijackedThreads()
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(m_pShim != NULL);
    _ASSERTE(ThreadHoldsProcessLock());

    LOG((LF_CORDB, LL_INFO10000, "CP::RHT: entered\n"));
    if (this->m_state & (CordbProcess::PS_SOME_THREADS_SUSPENDED | CordbProcess::PS_HIJACKS_IN_PLACE))
    {
        // On XP, This will also resume the threads suspended for Sync.
        this->ResumeUnmanagedThreads();
    }

    // Hijacks send their ownership flares and then wait on this event. By setting this
    // we let the hijacks run free.
    if (this->m_leftSideUnmanagedWaitEvent != NULL)
    {
        SetEvent(this->m_leftSideUnmanagedWaitEvent);
    }
    else
    {
        // Only reason we expect to not have this event is if the CLR hasn't been loaded yet.
        // In that case, we won't hijack, so nobody's listening for this event either.
        _ASSERTE(!m_initialized);
    }
}

//-----------------------------------------------------------------------------
// For debugging support, record the win32 events.
// Note that although this is for debugging, we want it in retail because we'll
// be debugging retail most of the time :(
// pEvent - the win32 debug event we just received
// pUThread - our unmanaged thread object for the event. We could look it up
//           from pEvent->dwThreadId, but passed in for perf reasons.
//-----------------------------------------------------------------------------
void CordbProcess::DebugRecordWin32Event(const DEBUG_EVENT * pEvent, CordbUnmanagedThread * pUThread)
{
    _ASSERTE(ThreadHoldsProcessLock());

    // Although we could look up the Unmanaged thread, it's faster to have it just passed in.
    // So here we do a consistency check.
    _ASSERTE(pUThread != NULL);
    _ASSERTE(pUThread->m_id == pEvent->dwThreadId);

    m_DbgSupport.m_TotalNativeEvents++; // bump up the counter.

    MiniDebugEvent * pMiniEvent = &m_DbgSupport.m_DebugEventQueue[m_DbgSupport.m_DebugEventQueueIdx];
    pMiniEvent->code        = (BYTE) pEvent->dwDebugEventCode;
    pMiniEvent->pUThread    = pUThread;

    DWORD tid = pEvent->dwThreadId;

    // Record debug-event specific data.
    switch(pEvent->dwDebugEventCode)
    {
    case LOAD_DLL_DEBUG_EVENT:
        pMiniEvent->u.ModuleData.pBaseAddress = pEvent->u.LoadDll.lpBaseOfDll;
        STRESS_LOG2(LF_CORDB, LL_INFO1000, "Win32 Debug Event received: tid=0x%8x, Load Dll. Addr=%p\n",
            tid,
            pEvent->u.LoadDll.lpBaseOfDll);
        break;
    case UNLOAD_DLL_DEBUG_EVENT:
        pMiniEvent->u.ModuleData.pBaseAddress = pEvent->u.UnloadDll.lpBaseOfDll;
        STRESS_LOG2(LF_CORDB, LL_INFO1000, "Win32 Debug Event received: tid=0x%8x, Unload Dll. Addr=%p\n",
            tid,
            pEvent->u.UnloadDll.lpBaseOfDll);
        break;
    case EXCEPTION_DEBUG_EVENT:
        pMiniEvent->u.ExceptionData.pAddress = pEvent->u.Exception.ExceptionRecord.ExceptionAddress;
        pMiniEvent->u.ExceptionData.dwCode   = pEvent->u.Exception.ExceptionRecord.ExceptionCode;

        STRESS_LOG3(LF_CORDB, LL_INFO1000, "Win32 Debug Event received: tid=%8x, (1) Exception. Code=0x%08x, Addr=%p\n",
            tid,
            pMiniEvent->u.ExceptionData.dwCode,
            pMiniEvent->u.ExceptionData.pAddress
        );
        break;
    default:
        STRESS_LOG2(LF_CORDB, LL_INFO1000, "Win32 Debug Event received tid=%8x, %d\n", tid, pEvent->dwDebugEventCode);
        break;
    }


    // Go to the next entry in the queue.
    m_DbgSupport.m_DebugEventQueueIdx = (m_DbgSupport.m_DebugEventQueueIdx + 1) % DEBUG_EVENTQUEUE_SIZE;
}

void CordbProcess::QueueUnmanagedEvent(CordbUnmanagedThread *pUThread, const DEBUG_EVENT *pEvent)
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(ThreadHoldsProcessLock());
    _ASSERTE(m_pShim != NULL);

    LOG((LF_CORDB, LL_INFO10000, "CP::QUE: queued unmanaged event %d for thread 0x%x\n",
         pEvent->dwDebugEventCode, pUThread->m_id));


    _ASSERTE(pEvent->dwDebugEventCode == EXCEPTION_DEBUG_EVENT);

    // Copy the event into the given thread
    CordbUnmanagedEvent *ue;

    // Use the primary IB event slot unless this is the special stack overflow event case.
    if (!pUThread->HasSpecialStackOverflowCase())
        ue = pUThread->IBEvent();
    else
        ue = pUThread->IBEvent2();

    if(pUThread->HasIBEvent() && !pUThread->HasSpecialStackOverflowCase())
    {
        // Any event being replaced should at least have been continued outside of the hijack
        // We don't track whether or not we expect the exception to retrigger but if we are replacing
        // the event then it did not.
        _ASSERTE(ue->IsEventContinuedUnhijacked());
        LOG((LF_CORDB, LL_INFO10000, "CP::QUE: A previously seen event is being discarded 0x%x 0x%p\n",
         ue->m_currentDebugEvent.u.Exception.ExceptionRecord.ExceptionCode,
         ue->m_currentDebugEvent.u.Exception.ExceptionRecord.ExceptionAddress));
        DequeueUnmanagedEvent(ue->m_owner);
    }

    memcpy(&(ue->m_currentDebugEvent), pEvent, sizeof(DEBUG_EVENT));
    ue->m_state = CUES_IsIBEvent;
    ue->m_next = NULL;

    // Enqueue the event.
    pUThread->SetState(CUTS_HasIBEvent);

    if (m_unmanagedEventQueue == NULL)
        m_unmanagedEventQueue = ue;
    else
        m_lastQueuedUnmanagedEvent->m_next = ue;

    m_lastQueuedUnmanagedEvent = ue;
}

void CordbProcess::DequeueUnmanagedEvent(CordbUnmanagedThread *ut)
{
    INTERNAL_API_ENTRY(this);

    _ASSERTE(m_unmanagedEventQueue != NULL);
    _ASSERTE(ut->HasIBEvent() || ut->HasSpecialStackOverflowCase());
    _ASSERTE(ThreadHoldsProcessLock());


    CordbUnmanagedEvent *ue;

    if (ut->HasIBEvent())
        ue = ut->IBEvent();
    else
    {
        ue = ut->IBEvent2();

        // Since we're dequeuing the special stack overflow event, we're no longer in the special stack overflow case.
        ut->ClearState(CUTS_HasSpecialStackOverflowCase);
    }

    DWORD ec = ue->m_currentDebugEvent.dwDebugEventCode;
    LOG((LF_CORDB, LL_INFO10000, "CP::DUE: dequeue unmanaged event %d for thread 0x%x\n", ec, ut->m_id));

    _ASSERTE(ec == EXCEPTION_DEBUG_EVENT);

    CordbUnmanagedEvent **tmp = &m_unmanagedEventQueue;
    CordbUnmanagedEvent **prev = NULL;

    // Note: this supports out-of-order dequeing of unmanaged events. This is necessary because we queue events even if
    // we're not clear on the ownership question. When we get the answer, and if the event belongs to the Runtime, we go
    // ahead and yank the event out of the queue, wherever it may be.
    while (*tmp && *tmp != ue)
    {
        prev = tmp;
        tmp = &((*tmp)->m_next);
    }

    _ASSERTE(*tmp == ue);

    *tmp = (*tmp)->m_next;

    if (m_unmanagedEventQueue == NULL)
        m_lastQueuedUnmanagedEvent = NULL;
    else if (m_lastQueuedUnmanagedEvent == ue)
    {
        _ASSERTE(prev != NULL);
        m_lastQueuedUnmanagedEvent = *prev;
    }

    ut->ClearState(CUTS_HasIBEvent);

}

void CordbProcess::QueueOOBUnmanagedEvent(CordbUnmanagedThread *pUThread, const DEBUG_EVENT * pEvent)
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(ThreadHoldsProcessLock());
    _ASSERTE(!pUThread->HasOOBEvent());
    _ASSERTE(IsWin32EventThread());
    _ASSERTE(m_pShim != NULL);

    LOG((LF_CORDB, LL_INFO10000, "CP::QUE: queued OOB unmanaged event %d for thread 0x%x\n",
         pEvent->dwDebugEventCode, pUThread->m_id));

    // Copy the event into the given thread
    CordbUnmanagedEvent *ue = pUThread->OOBEvent();
    memcpy(&(ue->m_currentDebugEvent), pEvent, sizeof(DEBUG_EVENT));
    ue->m_state = CUES_None;
    ue->m_next = NULL;

    // Enqueue the event.
    pUThread->SetState(CUTS_HasOOBEvent);

    if (m_outOfBandEventQueue == NULL)
        m_outOfBandEventQueue = ue;
    else
        m_lastQueuedOOBEvent->m_next = ue;

    m_lastQueuedOOBEvent = ue;
}

void CordbProcess::DequeueOOBUnmanagedEvent(CordbUnmanagedThread *ut)
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(m_outOfBandEventQueue != NULL);
    _ASSERTE(ut->HasOOBEvent());
    _ASSERTE(ThreadHoldsProcessLock());

    CordbUnmanagedEvent *ue = ut->OOBEvent();
    DWORD ec = ue->m_currentDebugEvent.dwDebugEventCode;

    LOG((LF_CORDB, LL_INFO10000, "CP::DUE: dequeue OOB unmanaged event %d for thread 0x%x\n", ec, ut->m_id));

    CordbUnmanagedEvent **tmp = &m_outOfBandEventQueue;
    CordbUnmanagedEvent **prev = NULL;

    // Note: this supports out-of-order dequeing of unmanaged events. This is necessary because we queue events even if
    // we're not clear on the ownership question. When we get the answer, and if the event belongs to the Runtime, we go
    // ahead and yank the event out of the queue, wherever it may be.
    while (*tmp && *tmp != ue)
    {
        prev = tmp;
        tmp = &((*tmp)->m_next);
    }

    _ASSERTE(*tmp == ue);

    *tmp = (*tmp)->m_next;

    if (m_outOfBandEventQueue == NULL)
        m_lastQueuedOOBEvent = NULL;
    else if (m_lastQueuedOOBEvent == ue)
    {
        _ASSERTE(prev != NULL);
        m_lastQueuedOOBEvent = *prev;
    }

    ut->ClearState(CUTS_HasOOBEvent);
}

HRESULT CordbProcess::SuspendUnmanagedThreads()
{
    INTERNAL_API_ENTRY(this);

    _ASSERTE(ThreadHoldsProcessLock());

    // Iterate over all unmanaged threads...
    CordbUnmanagedThread* ut;
    HASHFIND find;

    for (ut =  m_unmanagedThreads.FindFirst(&find); ut != NULL; ut =  m_unmanagedThreads.FindNext(&find))
    {

        // Don't suspend any thread in a can't stop region. This includes cooperative mode threads & preemptive
        // threads that haven't pushed a NativeTransitionFrame. The ultimate problem here is that a thread
        // in this state is effectively inside the runtime, and thus may take a lock  that blocks the helper thread.
        // IsCan'tStop also includes the helper thread & hijacked threads - which we shouldn't suspend anyways.

        // Only suspend those unmanaged threads that aren't already suspended by us and that aren't already hijacked by
        // us.

        if (!ut->IsSuspended() &&
            !ut->IsDeleted() &&
            !ut->IsCantStop() &&
            !ut->IsBlockingForSync()
        )
        {
            LOG((LF_CORDB, LL_INFO1000, "CP::SUT: suspending unmanaged thread 0x%x, handle 0x%x\n", ut->m_id, ut->m_handle));

            DWORD succ = SuspendThread(ut->m_handle);

            if (succ == 0xFFFFFFFF)
            {
                // This is okay... the thread may be dying after an ExitThread event.
                LOG((LF_CORDB, LL_INFO1000, "CP::SUT: failed to suspend thread 0x%x\n", ut->m_id));
            }
            else
            {
                m_state |= PS_SOME_THREADS_SUSPENDED;

                ut->SetState(CUTS_Suspended);
            }
        }
    }

    return S_OK;
}

HRESULT CordbProcess::ResumeUnmanagedThreads()
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(ThreadHoldsProcessLock());
    FAIL_IF_NEUTERED(this);

    // Iterate over all unmanaged threads...
    CordbUnmanagedThread* ut;
    HASHFIND find;

    for (ut =  m_unmanagedThreads.FindFirst(&find); ut != NULL; ut =  m_unmanagedThreads.FindNext(&find))
    {
        // Only resume those unmanaged threads that were suspended by us.
        if (ut->IsSuspended())
        {
            LOG((LF_CORDB, LL_INFO1000, "CP::RUT: resuming unmanaged thread 0x%x\n", ut->m_id));

            DWORD succ = ResumeThread(ut->m_handle);

            if (succ == 0xFFFFFFFF)
            {
                LOG((LF_CORDB, LL_INFO1000, "CP::RUT: failed to resume thread 0x%x\n", ut->m_id));
            }
            else
                ut->ClearState(CUTS_Suspended);
        }
    }

    m_state &= ~PS_SOME_THREADS_SUSPENDED;

    return S_OK;
}

//-----------------------------------------------------------------------------
// DispatchUnmanagedInBandEvent
//
// Handler for Win32 events already known to be Unmanaged and in-band.
//-----------------------------------------------------------------------------
void CordbProcess::DispatchUnmanagedInBandEvent()
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(ThreadHoldsProcessLock());

    // There should be no queued OOB events!!! If there are, then we have a breakdown in our protocol, since all OOB
    // events should be dispatched before attempting to really continue from any in-band event.
    _ASSERTE(m_outOfBandEventQueue == NULL);
    _ASSERTE(m_cordb != NULL);
    _ASSERTE(m_cordb->m_unmanagedCallback != NULL);
    _ASSERTE(!m_dispatchingUnmanagedEvent);

    CordbUnmanagedThread * pUnmanagedThread = NULL;
    CordbUnmanagedEvent * pUnmanagedEvent = m_unmanagedEventQueue;

    while (true)
    {
        // get the next queued event that isn't dispatched yet
        while(pUnmanagedEvent != NULL && pUnmanagedEvent->IsDispatched())
        {
            pUnmanagedEvent = pUnmanagedEvent->m_next;
        }

        if(pUnmanagedEvent == NULL)
            break;

        // Get the thread for this event
        _ASSERTE(pUnmanagedThread == NULL);
        pUnmanagedThread = pUnmanagedEvent->m_owner;
        _ASSERTE(pUnmanagedThread != NULL);

        // We better not have dispatched it yet!
        _ASSERTE(!pUnmanagedEvent->IsDispatched());

        // We shouldn't be dispatching IB events on a thread that has exited.
        // Though it's possible that the thread may exit *after* the IB event has been dispatched
        // if it gets hijacked.
        _ASSERTE(!pUnmanagedThread->IsDeleted());

        // Make sure we keep the thread alive while we're playing with it.
        pUnmanagedThread->InternalAddRef();

        LOG((LF_CORDB, LL_INFO10000, "CP::DUE: dispatching unmanaged event %d for thread 0x%x\n",
             pUnmanagedEvent->m_currentDebugEvent.dwDebugEventCode, pUnmanagedThread->m_id));

        m_dispatchingUnmanagedEvent = true;

        // Add/Remove a reference which is scoped to the time that m_lastDispatchedIBEvent
        // is set to pUnmanagedEvent (it is an interior pointer)
        // see DevDiv issue 818301 for more details
        if(m_lastDispatchedIBEvent != NULL)
        {
            m_lastDispatchedIBEvent->m_owner->InternalRelease();
            m_lastDispatchedIBEvent = NULL;
        }
        pUnmanagedThread->InternalAddRef();
        m_lastDispatchedIBEvent = pUnmanagedEvent;
        pUnmanagedEvent->SetState(CUES_Dispatched);

        IncStopCount();

        Unlock();

        {
            // Interface is semantically const, but does not include const in signature.
            DEBUG_EVENT * pEvent = const_cast<DEBUG_EVENT *> (&(pUnmanagedEvent->m_currentDebugEvent));
            PUBLIC_WIN32_CALLBACK_IN_THIS_SCOPE(this,pEvent, FALSE);
            m_cordb->m_unmanagedCallback->DebugEvent(pEvent, FALSE);
        }

        Lock();

        // Calling IMDA::Continue() will set m_dispatchingUnmanagedEvent = false.
        // So if Continue() was called && we have more events, we'll loop and dispatch more events.
        // Else we'll break out of the while loop.
        if(m_dispatchingUnmanagedEvent)
            break;

        // Continue was called in the dispatch callback, but that continue path just
        // clears the dispatch flag and returns. The continue right here is the logical
        // completion of the user's continue request
        // Note it is sometimes the case that these events have already been continued because
        // they had defered dispatching. At the time of deferal they were immediately continued.
        // If the event is already continued then this continue becomes a no-op.
        m_pShim->GetWin32EventThread()->DoDbgContinue(this, pUnmanagedEvent);

        // Release our reference to the unmanaged thread that we dispatched
        // This event should have been continued long ago...
        _ASSERTE(!pUnmanagedThread->IBEvent()->IsEventWaitingForContinue());
        pUnmanagedThread->InternalRelease();
        pUnmanagedThread = NULL;
    }

    m_dispatchingUnmanagedEvent = false;

    // Release our reference to the last thread that we dispatched now...
    if(pUnmanagedThread)
    {
        pUnmanagedThread->InternalRelease();
        pUnmanagedThread = NULL;
    }
}

//-----------------------------------------------------------------------------
// DispatchUnmanagedOOBEvent
//
// Handler for Win32 events already known to be Unmanaged and out-of-band.
//-----------------------------------------------------------------------------
void CordbProcess::DispatchUnmanagedOOBEvent()
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(ThreadHoldsProcessLock());
    _ASSERTE(IsWin32EventThread());

    // There should be OOB events queued...
    _ASSERTE(m_outOfBandEventQueue != NULL);
    _ASSERTE(m_cordb->m_unmanagedCallback != NULL);

    do
    {
        // Get the first event in the OOB Queue...
        CordbUnmanagedEvent * pUnmanagedEvent = m_outOfBandEventQueue;
        CordbUnmanagedThread * pUnmanagedThread = pUnmanagedEvent->m_owner;

        // Make sure we keep the thread alive while we're playing with it.
        RSSmartPtr<CordbUnmanagedThread> pRef(pUnmanagedThread);

        LOG((LF_CORDB, LL_INFO10000, "[%x] CP::DUE: dispatching OOB unmanaged event %d for thread 0x%x\n",
             GetCurrentThreadId(), pUnmanagedEvent->m_currentDebugEvent.dwDebugEventCode, pUnmanagedThread->m_id));

        m_dispatchingOOBEvent = true;
        pUnmanagedEvent->SetState(CUES_Dispatched);
        Unlock();

        {
            // Interface is semantically const, but does not include const in signature.
            DEBUG_EVENT * pEvent = const_cast<DEBUG_EVENT *> (&(pUnmanagedEvent->m_currentDebugEvent));
            PUBLIC_WIN32_CALLBACK_IN_THIS_SCOPE(this, pEvent, TRUE);
            m_cordb->m_unmanagedCallback->DebugEvent(pEvent, TRUE);
        }

        Lock();

        // If they called Continue from the callback, then continue the OOB event right now before dispatching the next
        // one.
        if (!m_dispatchingOOBEvent)
        {
            DequeueOOBUnmanagedEvent(pUnmanagedThread);

            // Should not have continued from this debug event yet.
            _ASSERTE(pUnmanagedEvent->IsEventWaitingForContinue());

            // Do a little extra work if that was an OOB exception event...
            HRESULT hr = pUnmanagedEvent->m_owner->FixupAfterOOBException(pUnmanagedEvent);
            _ASSERTE(SUCCEEDED(hr));

            // Go ahead and continue now...
            this->m_pShim->GetWin32EventThread()->DoDbgContinue(this, pUnmanagedEvent);
        }

        // Implicit release of pUnmanagedThread via pRef
    }
    while (!m_dispatchingOOBEvent && (m_outOfBandEventQueue != NULL));

    m_dispatchingOOBEvent = false;

    LOG((LF_CORDB, LL_INFO10000, "CP::DUE: done dispatching OOB events. Queue=0x%08x\n", m_outOfBandEventQueue));
}
#endif // FEATURE_INTEROP_DEBUGGING

//-----------------------------------------------------------------------------
// StartSyncFromWin32Stop
//
// Get the process from a Fozen state or a Live state to a Synchronized State.
// Note that Process Exit is considered to be synchronized.
// This is a nop if we're not Interop Debugging.
// If this function succeeds, we're in a synchronized state.
//
// Arguments:
//    pfAsyncBreakSent - returns if this method sent an async-break or not.
//
// Return value:
//    typical HRESULT return values, nothing sinister here.
//-----------------------------------------------------------------------------
HRESULT CordbProcess::StartSyncFromWin32Stop(BOOL * pfAsyncBreakSent)
{
    INTERNAL_API_ENTRY(this);
    if (m_pShim == NULL) // This API is moved off to the shim
    {
        return E_NOTIMPL;
    }

    HRESULT hr = S_OK;

    // Caller should have taken the stop-go lock. This prevents us from racing w/ a continue.
    _ASSERTE(m_StopGoLock.HasLock());

    // Process should be init before we try to sync it.
    _ASSERTE(this->m_initialized);

    // If nobody's listening for an AsyncBreak, and we're not stopped, then our caller
    // doesn't know if we're sending an AsyncBreak or not; and thus we may not continue.
    // Failing this assert means that we're stopping but we don't think we're going to get a continue
    // down the road, and thus we're headed for a deadlock.
    _ASSERTE((pfAsyncBreakSent != NULL) || (m_stopCount > 0));

    if (pfAsyncBreakSent)
    {
        *pfAsyncBreakSent = FALSE;
    }

#ifdef FEATURE_INTEROP_DEBUGGING

    // If we're win32 stopped (but not out-of-band win32 stopped), or if we're running free on the Left Side but we're
    // just not synchronized (and we're win32 attached), then go ahead and do an internal continue and send an async
    // break event to get the Left Side sync'd up.
    //
    // The process can be running free as far as Win32 events are concerned, but still not synchronized as far as the
    // Runtime is concerned. This can happen in a lot of cases where we end up with the Runtime not sync'd but with the
    // process running free due to hijacking, etc...
    if (((m_state & CordbProcess::PS_WIN32_STOPPED) && (m_outOfBandEventQueue == NULL)) ||
        (!GetSynchronized() && IsInteropDebugging()))
    {
        Lock();

        if (((m_state & CordbProcess::PS_WIN32_STOPPED) && (m_outOfBandEventQueue == NULL)) ||
            (!GetSynchronized() && IsInteropDebugging()))
        {
            // This can't be the win32 ET b/c we need that thread to be alive and pumping win32 DE so that
            // our Async Break can get across.
            // So nobody should ever be calling this on the w32 ET. But they could, since we do trickle in from
            // outside APIs. So we need a retail check.
            if (IsWin32EventThread())
            {
                _ASSERTE(!"Don't call this API on the W32 Event Thread");

                Unlock();
                return ErrWrapper(CORDBG_E_CANT_CALL_ON_THIS_THREAD);
            }

            STRESS_LOG1(LF_CORDB, LL_INFO1000, "[%x] CP::SSFW32S: sending internal continue\n", GetCurrentThreadId());

            // Can't do this on the win32 event thread.
            _ASSERTE(!this->IsWin32EventThread());

            // If the helper thread is already dead, then we just return as if we sync'd the process.
            if (m_helperThreadDead)
            {
                if (pfAsyncBreakSent)
                {
                    *pfAsyncBreakSent = TRUE;
                }

                // Mark the process as synchronized so no events will be dispatched until the thing is
                // continued. However, the marking here is not a usual marking for synchronized. It has special
                // semantics when we're interop debugging. We use m_oddSync to remember this so that we can take special
                // action in Continue().
                SetSynchronized(true);
                m_oddSync = true;

                // Get the RC Event Thread to stop listening to the process.
                m_cordb->ProcessStateChanged();

                Unlock();

                return S_OK;
            }

            m_stopRequested = true;

            // See ::Stop for why we defer this. The delayed events will be dispatched when some one calls continue.
            // And we know they'll call continue b/c (stopCount > 0) || (our caller knows we're sending an AsyncBreak).
            m_specialDeferment = true;

            Unlock();

            // If the process gets synchronized between the Unlock() and here, then SendUnmanagedContinue() will end up
            // not doing anything at all since a) it holds the process lock when working and b) it gates everything on
            // if the process is sync'd or not. This is exactly what we want.
            hr = this->m_pShim->GetWin32EventThread()->SendUnmanagedContinue(this, cInternalUMContinue);

            LOG((LF_CORDB, LL_INFO1000, "[%x] CP::SSFW32S: internal continue returned\n", GetCurrentThreadId()));

            // Send an async break to the left side now that its running.
            DebuggerIPCEvent * pEvent = (DebuggerIPCEvent *) _alloca(CorDBIPC_BUFFER_SIZE);
            InitIPCEvent(pEvent, DB_IPCE_ASYNC_BREAK, false, VMPTR_AppDomain::NullPtr());

            LOG((LF_CORDB, LL_INFO1000, "[%x] CP::SSFW32S: sending async stop\n", GetCurrentThreadId()));

            // If the process gets synchronized between the Unlock() and here, then this message will do nothing (Left
            // Side catches it) and we'll never get a response, and it won't hurt anything.
            hr = m_cordb->SendIPCEvent(this, pEvent, CorDBIPC_BUFFER_SIZE);
            // @Todo- how do we handle a failure here?

            // If the send returns with the helper thread being dead, then we know we don't need to wait for the process
            // to sync.
            if (!m_helperThreadDead)
            {
                STRESS_LOG1(LF_CORDB, LL_INFO1000, "[%x] CP::SSFW32S: sent async stop, waiting for event\n", GetCurrentThreadId());

                // If we got synchronized between the Unlock() and here its okay since m_stopWaitEvent is still high
                // from the last sync.
                DWORD dwWaitResult = SafeWaitForSingleObject(this, m_stopWaitEvent, INFINITE);

                STRESS_LOG2(LF_CORDB, LL_INFO1000, "[%x] CP::SSFW32S: got event, %d\n", GetCurrentThreadId(), dwWaitResult);

                _ASSERTE(dwWaitResult == WAIT_OBJECT_0);
            }

            Lock();

            m_specialDeferment = false;

            if (pfAsyncBreakSent)
            {
                *pfAsyncBreakSent = TRUE;
            }

            // If the helper thread died while we were trying to send an event to it, then we just do the same odd sync
            // logic we do above.
            if (m_helperThreadDead)
            {
                SetSynchronized(true);
                m_oddSync = true;
                hr = S_OK;
            }

            m_stopRequested = false;
            m_cordb->ProcessStateChanged();
        }

        Unlock();
    }
#endif // FEATURE_INTEROP_DEBUGGING

    return hr;
}

// Check if the left side has exited. If so, get the right-side
// into shutdown mode. Only use this to avert us from going into
// an unrecoverable error.
bool CordbProcess::CheckIfLSExited()
{
// Check by waiting on the handle with no timeout.
    if (WaitForSingleObject(m_handle, 0) == WAIT_OBJECT_0)
    {
        Lock();
        m_terminated = true;
        m_exiting = true;
        Unlock();
    }

    LOG((LF_CORDB, LL_INFO10, "CP::IsLSExited() returning '%s'\n",
        m_exiting ? "true" : "false"));

    return m_exiting;
}

// Call this if something really bad happened and we can't do
// anything meaningful with the CordbProcess.
void CordbProcess::UnrecoverableError(HRESULT errorHR,
                                      unsigned int errorCode,
                                      const char *errorFile,
                                      unsigned int errorLine)
{
    LOG((LF_CORDB, LL_INFO10, "[%x] CP::UE: unrecoverable error 0x%08x "
         "(%d) %s:%d\n",
         GetCurrentThreadId(),
         errorHR, errorCode, errorFile, errorLine));

    // We definitely want to know about any of these.
    STRESS_LOG3(LF_CORDB, LL_EVERYTHING, "Unrecoverable Error:0x%08x, File=%s, line=%d\n", errorHR, errorFile, errorLine);

    // It's possible for an unrecoverable error to occur if the user detaches the
    // debugger while inside CordbProcess::DispatchRCEvent() (as that function deliberately
    // calls Unlock() while calling into the Shim).  Detect such cases here & bail before we
    // try to access invalid fields on this CordbProcess.
    //
    // Normally, we'd need to take the cordb process lock around the IsNeutered check
    // (and the code that follows).  And perhaps this is a good thing to do in the
    // future.  But for now we're not for two reasons:
    //
    // 1) It's scary.  We're in UnrecoverableError() for gosh sake.  I don't know all
    // the possible bad states we can be in to get here.  Will taking the process lock
    // have ordering issues?  Will the process lock even be valid to take here (or might
    // we AV)?  Since this is error handling, we should probably be as light as we can
    // not to cause more errors.
    //
    // 2) It's unnecessary.  For the Watson dump I investigated that caused this fix in
    // the first place, we already detached before entering UnrecoverableError()
    // (indeed, the only reason we're in UnrecoverableError is that we already detached
    // and that caused a prior API to fail).  Thus, there's no timing issue (in that
    // case, anyway), wrt to entering UnrecoverableError() and detaching / neutering.
    if (IsNeutered())
        return;

#ifdef _DEBUG
    // Ping our error trapping logic
    HRESULT hrDummy;
    hrDummy = ErrWrapper(errorHR);
#endif

    if (m_pShim == NULL)
    {
        // @dbgtodo - , shim: Once everything is hoisted, we can remove
        // this code.
        // In the v3 case, we should never get an unrecoverable error. Instead, the HR should be propogated
        // and returned at the top-level public API.
        _ASSERTE(!"Unrecoverable error dispatched in V3 case.");
    }

    CONSISTENCY_CHECK_MSGF(IsLegalFatalError(errorHR), ("Unrecoverable internal error: hr=0x%08x!", errorHR));

    if (!IsLegalFatalError(errorHR) || (errorHR != CORDBG_E_CANNOT_DEBUG_FIBER_PROCESS))
    {
        // This will throw everything into a Zombie state. The ATT_ macros will check this and fail immediately.
        m_unrecoverableError = true;

        //
        // Mark the process as no longer synchronized.
        //
        Lock();
        SetSynchronized(false);
        IncStopCount();
        Unlock();
    }

    // Set the error flags in the process so that if parts of it are
    // still alive, it will realize that its in this mode and do the
    // right thing.
    if (GetDCB() != NULL)
    {
        GetDCB()->m_errorHR = errorHR;
        GetDCB()->m_errorCode = errorCode;
        EX_TRY
        {
            UpdateLeftSideDCBField(&(GetDCB()->m_errorHR), sizeof(GetDCB()->m_errorHR));
            UpdateLeftSideDCBField(&(GetDCB()->m_errorCode), sizeof(GetDCB()->m_errorCode));
        }
        EX_CATCH
        {
            _ASSERTE(!"Writing process memory failed, perhaps due to an unexpected disconnection from the target.");
        }
        EX_END_CATCH(SwallowAllExceptions);
    }

    //
    // Let the user know that we've hit an unrecoverable error.
    //
    if (m_cordb->m_managedCallback)
    {
        // We are about to send DebuggerError call back. The state of RS is undefined.
        // So we use the special Public Callback. We may be holding locks and stuff.
        // We may also be deeply nested within the RS.
        PUBLIC_CALLBACK_IN_THIS_SCOPE_DEBUGGERERROR(this);
        m_cordb->m_managedCallback->DebuggerError((ICorDebugProcess*) this,
                                                  errorHR,
                                                  errorCode);
    }
}


HRESULT CordbProcess::CheckForUnrecoverableError()
{
    HRESULT hr = S_OK;

    if (GetDCB() != NULL)
    {
        // be sure we have the latest information
        UpdateRightSideDCB();

        if (GetDCB()->m_errorHR != S_OK)
        {
            UnrecoverableError(GetDCB()->m_errorHR,
                               GetDCB()->m_errorCode,
                           __FILE__, __LINE__);

            hr = GetDCB()->m_errorHR;
        }
    }

    return hr;
}


/*
 * EnableLogMessages enables/disables sending of log messages to the
 * debugger for logging.
 */
HRESULT CordbProcess::EnableLogMessages(BOOL fOnOff)
{
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(this);
    HRESULT hr = S_OK;

    DebuggerIPCEvent *event = (DebuggerIPCEvent*) _alloca(CorDBIPC_BUFFER_SIZE);
    InitIPCEvent(event, DB_IPCE_ENABLE_LOG_MESSAGES, false, VMPTR_AppDomain::NullPtr());
    event->LogSwitchSettingMessage.iLevel = (int)fOnOff;

    hr = m_cordb->SendIPCEvent(this, event, CorDBIPC_BUFFER_SIZE);
    hr = WORST_HR(hr, event->hr);

    LOG((LF_CORDB, LL_INFO10000, "[%x] CP::EnableLogMessages: EnableLogMessages=%d sent.\n",
         GetCurrentThreadId(), fOnOff));

    return hr;
}

/*
 * ModifyLogSwitch modifies the specified switch's severity level.
 */
COM_METHOD CordbProcess::ModifyLogSwitch(__in_z WCHAR *pLogSwitchName, LONG lLevel)
{
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(this);

    HRESULT hr = S_OK;

    _ASSERTE (pLogSwitchName != NULL);

    DebuggerIPCEvent *event = (DebuggerIPCEvent*) _alloca(CorDBIPC_BUFFER_SIZE);
    InitIPCEvent(event, DB_IPCE_MODIFY_LOGSWITCH, false, VMPTR_AppDomain::NullPtr());
    event->LogSwitchSettingMessage.iLevel = lLevel;
    event->LogSwitchSettingMessage.szSwitchName.SetStringTruncate(pLogSwitchName);

    hr = m_cordb->SendIPCEvent(this, event, CorDBIPC_BUFFER_SIZE);
    hr = WORST_HR(hr, event->hr);

    LOG((LF_CORDB, LL_INFO10000, "[%x] CP::ModifyLogSwitch: ModifyLogSwitch sent.\n",
         GetCurrentThreadId()));

    return hr;
}

//-----------------------------------------------------------------------------
// Writes a buffer from the target and performs checks similar to SafeWriteStruct
//
// Arguments:
//    tb - TargetBuffer which represents the target memory we want to write to
//    pLocalBuffer - local pointer into source buffer
//    cbSize - the size of local buffer
//
// Exceptions
//    On error throws the result of WriteVirtual unless a short write is performed,
//    in which case throws ERROR_PARTIAL_COPY
//
void CordbProcess::SafeWriteBuffer(TargetBuffer tb,
                                   const BYTE * pLocalBuffer)
{
    _ASSERTE(m_pMutableDataTarget != NULL);
    HRESULT hr = m_pMutableDataTarget->WriteVirtual(tb.pAddress,
        pLocalBuffer,
        tb.cbSize);
    IfFailThrow(hr);
}

//-----------------------------------------------------------------------------
// Reads a buffer from the target and performs checks similar to SafeWriteStruct
//
// Arguments:
//    tb - TargetBuffer which represents the target memory to read from
//    pLocalBuffer - local pointer into source buffer
//    cbSize - the size of the remote buffer
//    throwOnError - determines whether the function throws exceptions or returns HRESULTs
//                   in failure cases
//
// Exceptions:
//    If throwOnError is TRUE
//      On error always throws the special CORDBG_E_READVIRTUAL_FAILURE, unless a short write is performed
//      in which case throws ERROR_PARTIAL_COPY
//   If throwOnError is FALSE
//      No exceptions are thrown, and instead the same error codes are returned as HRESULTs
//
HRESULT CordbProcess::SafeReadBuffer(TargetBuffer tb, BYTE * pLocalBuffer, BOOL throwOnError)
{
    ULONG32 cbRead;
    HRESULT hr = m_pDACDataTarget->ReadVirtual(tb.pAddress,
        pLocalBuffer,
        tb.cbSize,
        &cbRead);

    if (FAILED(hr))
    {
        if (throwOnError)
            ThrowHR(CORDBG_E_READVIRTUAL_FAILURE);
        else
            return CORDBG_E_READVIRTUAL_FAILURE;
    }

    if (cbRead != tb.cbSize)
    {
        if (throwOnError)
            ThrowWin32(ERROR_PARTIAL_COPY);
        else
            return HRESULT_FROM_WIN32(ERROR_PARTIAL_COPY);
    }
    return S_OK;
}


//---------------------------------------------------------------------------------------
// Lookup or create an appdomain.
//
// Arguments:
//     vmAppDomain - CLR appdomain to lookup
//
// Returns:
//     Instance of CordbAppDomain for the given appdomain. This is a cached instance.
//     If the CordbAppDomain does not yet exist, it will be created and added to the cache.
//     Never returns NULL. Throw on error.
CordbAppDomain * CordbProcess::LookupOrCreateAppDomain(VMPTR_AppDomain vmAppDomain)
{
    CordbAppDomain * pAppDomain = m_appDomains.GetBase(VmPtrToCookie(vmAppDomain));
    if (pAppDomain != NULL)
    {
        return pAppDomain;
    }
    return CacheAppDomain(vmAppDomain);
}

CordbAppDomain * CordbProcess::GetSharedAppDomain()
{
    if (m_sharedAppDomain == NULL)
    {
        CordbAppDomain *pAD = new CordbAppDomain(this, VMPTR_AppDomain::NullPtr());
        if (InterlockedCompareExchangeT<CordbAppDomain*>(&m_sharedAppDomain, pAD, NULL) != NULL)
        {
            delete pAD;
        }
		m_sharedAppDomain->InternalAddRef();
    }

    return m_sharedAppDomain;
}

//---------------------------------------------------------------------------------------
//
// Add a new appdomain to the cache.
//
// Arguments:
//      vmAppDomain - appdomain to add.
//
// Return Value:
//    Pointer to newly created appdomain, which should be the normal case.
//    Throws on failure. Never returns null.
//
// Assumptions:
//    Caller ensure the appdomain is not already cached.
//    Caller should have stop-go lock, which provides thread-safety.
//
// Notes:
//    This sets unrecoverable error on failure.
//
//---------------------------------------------------------------------------------------
CordbAppDomain * CordbProcess::CacheAppDomain(VMPTR_AppDomain vmAppDomain)
{
    INTERNAL_API_ENTRY(GetProcess());

    _ASSERTE(GetProcessLock()->HasLock());

    RSInitHolder<CordbAppDomain> pAppDomain;
    pAppDomain.Assign(new CordbAppDomain(this, vmAppDomain));  // throws

    // Add to the hash. This will addref the pAppDomain.
    // Caller ensures we're not already cached.
    // The cache will take ownership.
    m_appDomains.AddBaseOrThrow(pAppDomain);

    // see if this is the default AppDomain
    IDacDbiInterface * pDac = m_pProcess->GetDAC();
    BOOL               fIsDefaultDomain = FALSE;

    fIsDefaultDomain = pDac->IsDefaultDomain(vmAppDomain); // throws

    if (fIsDefaultDomain)
    {
        // If this assert fires, then it likely means the target is corrupted.
        TargetConsistencyCheck(m_pDefaultAppDomain == NULL);
        m_pDefaultAppDomain = pAppDomain;
    }

    CordbAppDomain * pReturn = pAppDomain;
    pAppDomain.ClearAndMarkDontNeuter();

    _ASSERTE(pReturn != NULL);
    return pReturn;
}

//---------------------------------------------------------------------------------------
//
// Callback for Appdomain enumeration.
//
// Arguments:
//      vmAppDomain - new appdomain to add to enumeration
//      pUserData - data passed with callback (a 'this' ptr for CordbProcess)
//
//
// Assumptions:
//    Invoked as callback from code:CordbProcess::PrepopulateAppDomains
//
//
//---------------------------------------------------------------------------------------

// static
void CordbProcess::AppDomainEnumerationCallback(VMPTR_AppDomain vmAppDomain, void * pUserData)
{
    CONTRACTL
    {
        THROWS;
    }
    CONTRACTL_END;

    CordbProcess * pProcess = static_cast<CordbProcess *> (pUserData);
    INTERNAL_DAC_CALLBACK(pProcess);

    pProcess->LookupOrCreateAppDomain(vmAppDomain);
}

//---------------------------------------------------------------------------------------
//
// Traverse appdomains in the target and build up our list.
//
// Arguments:
//
// Return Value:
//    returns on success.
//    Throws on error. AppDomain cache may be partially populated.
//
// Assumptions:
//    This is an non-invasive inspection operation called when the debuggee is stopped.
//
// Notes:
//    This can be called multiple times. If the list is non-empty, it will nop.
//---------------------------------------------------------------------------------------
void CordbProcess::PrepopulateAppDomainsOrThrow()
{
    CONTRACTL
    {
        THROWS;
    }
    CONTRACTL_END;

    INTERNAL_API_ENTRY(this);

    if (!IsDacInitialized())
    {
        return;
    }

    // DD-primitive  that invokes a callback.  This may throw.
    GetDAC()->EnumerateAppDomains(
        CordbProcess::AppDomainEnumerationCallback,
        this);
}

//---------------------------------------------------------------------------------------
//
// EnumerateAppDomains enumerates all app domains in the process.
//
// Arguments:
//      ppAppDomains - get appdomain enumerator
//
// Return Value:
//    S_OK on success.
//
// Assumptions:
//
//
// Notes:
//    This operation is non-invasive target.
//
//---------------------------------------------------------------------------------------
HRESULT CordbProcess::EnumerateAppDomains(ICorDebugAppDomainEnum **ppAppDomains)
{
    HRESULT hr = S_OK;
    PUBLIC_API_BEGIN(this);
    {
        ValidateOrThrow(ppAppDomains);

        // Ensure list is populated.
        PrepopulateAppDomainsOrThrow();

        RSInitHolder<CordbHashTableEnum> pEnum;
        CordbHashTableEnum::BuildOrThrow(
            this,
            GetContinueNeuterList(),
            &m_appDomains,
            IID_ICorDebugAppDomainEnum,
            pEnum.GetAddr());

        *ppAppDomains = static_cast<ICorDebugAppDomainEnum*> (pEnum);
        pEnum->ExternalAddRef();

        pEnum.ClearAndMarkDontNeuter();
    }
    PUBLIC_API_END(hr);
    return hr;
}

/*
 * GetObject returns the runtime process object.
 * Note: This method is not yet implemented.
 */
HRESULT CordbProcess::GetObject(ICorDebugValue **ppObject)
{
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    VALIDATE_POINTER_TO_OBJECT(ppObject, ICorDebugObjectValue **);

    return E_NOTIMPL;
}


//---------------------------------------------------------------------------------------
//
// Given a taskid, finding the corresponding thread. The function can fail if we do not
// find any thread with the given taskid
//
// Arguments:
//     taskId - The task ID to look for.
//     ppThread - OUT: Space for storing the thread corresponding to the taskId given.
//
// Return Value:
//     Typical HRESULT symantics, nothing abnormal.
//
HRESULT CordbProcess::GetThreadForTaskID(TASKID taskId, ICorDebugThread2 ** ppThread)
{
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess());

    HRESULT hr = S_OK;

    EX_TRY
    {
        RSLockHolder lockHolder(GetProcessLock());

        if (ppThread == NULL)
        {
            ThrowHR(E_INVALIDARG);
        }

        // On initialization, the task ID of every thread is INVALID_TASK_ID, unless a host is present and
        // the host calls IClrTask::SetTaskIdentifier().  So we need to explicitly check for INVALID_TASK_ID
        // here and return NULL if necessary.  We return S_FALSE because that's the return value for the case
        // where we can't find a thread for the specified task ID.
        if (taskId == INVALID_TASK_ID)
        {
            *ppThread = NULL;
            hr = S_FALSE;
        }
        else
        {
            PrepopulateThreadsOrThrow();

            // now find the ICorDebugThread corresponding to it
            CordbThread * pThread;
            HASHFIND hashFind;


            for (pThread  = m_userThreads.FindFirst(&hashFind);
                 pThread != NULL;
                 pThread  = m_userThreads.FindNext(&hashFind))
            {
                if (pThread->GetTaskID() == taskId)
                {
                    break;
                }
            }

            if (pThread == NULL)
            {
                *ppThread = NULL;
                hr = S_FALSE;
            }
            else
            {
                *ppThread = pThread;
                pThread->ExternalAddRef();
            }
        }
    }
    EX_CATCH_HRESULT(hr);
    return hr;
}   // CordbProcess::GetThreadForTaskid

HRESULT
CordbProcess::GetVersion(COR_VERSION* pVersion)
{
    if (NULL == pVersion)
    {
        return E_INVALIDARG;
    }

    //
    // Because we require a matching version of mscordbi.dll to debug a certain version of the runtime,
    // we can just use constants found in this particular mscordbi.dll to determine the version of the left side.
    pVersion->dwMajor = CLR_MAJOR_VERSION;
    pVersion->dwMinor = CLR_MINOR_VERSION;
    pVersion->dwBuild = CLR_BUILD_VERSION;
    pVersion->dwSubBuild = CLR_BUILD_VERSION_QFE;

    return S_OK;
}

#ifdef FEATURE_INTEROP_DEBUGGING
//-----------------------------------------------------------------------------
// Search for a native patch given the address. Return null if not found.
// Since we return an address, this is only valid until the table is disturbed.
//-----------------------------------------------------------------------------
NativePatch * CordbProcess::GetNativePatch(const void * pAddress)
{
    _ASSERTE(ThreadHoldsProcessLock());

    int cTotal = m_NativePatchList.Count();
    NativePatch * pTable = m_NativePatchList.Table();
    if (pTable == NULL)
    {
        return NULL;
    }

    for(int i = 0; i  < cTotal; i++)
    {
        if (pTable[i].pAddress == pAddress)
        {
            return &pTable[i];
        }
    }
    return NULL;
}

//-----------------------------------------------------------------------------
// Is there an break-opcode (int3 on x86) at the address in the debuggee?
//-----------------------------------------------------------------------------
bool CordbProcess::IsBreakOpcodeAtAddress(const void * address)
{
    // There should have been an int3 there already. Since we already put it in there,
    // we should be able to safely read it out.
#if defined(DBG_TARGET_ARM) || defined(DBG_TARGET_ARM64)
    PRD_TYPE opcodeTest = 0;
#elif defined(DBG_TARGET_AMD64) || defined(DBG_TARGET_X86)
    BYTE opcodeTest = 0;
#else
    PORTABILITY_ASSERT("NYI: Architecture specific opcode type to read");
#endif

    HRESULT hr = SafeReadStruct(PTR_TO_CORDB_ADDRESS(address), &opcodeTest);
    SIMPLIFYING_ASSUMPTION_SUCCEEDED(hr);

    return (opcodeTest == CORDbg_BREAK_INSTRUCTION);
}
#endif // FEATURE_INTEROP_DEBUGGING

//-----------------------------------------------------------------------------
// CordbProcess::SetUnmanagedBreakpoint
// Called by a native debugger to add breakpoints during Interop.
// address - remote address into the debuggee
// bufsize, buffer[] - initial size & buffer for the opcode that we're replacing.
// buflen - size of the buffer that we write to.
//-----------------------------------------------------------------------------
HRESULT
CordbProcess::SetUnmanagedBreakpoint(CORDB_ADDRESS address, ULONG32 bufsize, BYTE buffer[], ULONG32 * bufLen)
{
    LOG((LF_CORDB, LL_INFO100, "CP::SetUnBP: pProcess=%x, address=%p.\n", this, CORDB_ADDRESS_TO_PTR(address)));
#ifndef FEATURE_INTEROP_DEBUGGING
    return E_NOTIMPL;
#else
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    FAIL_IF_MANAGED_ONLY(this);
    _ASSERTE(!ThreadHoldsProcessLock());
    Lock();
    HRESULT hr = SetUnmanagedBreakpointInternal(address, bufsize, buffer, bufLen);
    Unlock();
    return hr;
#endif
}

//-----------------------------------------------------------------------------
// CordbProcess::SetUnmanagedBreakpointInternal
// The worker behind SetUnmanagedBreakpoint, this function can set both public
// breakpoints used by the debugger and internal breakpoints used for utility
// purposes in interop debugging.
// address - remote address into the debuggee
// bufsize, buffer[] - initial size & buffer for the opcode that we're replacing.
// buflen - size of the buffer that we write to.
//-----------------------------------------------------------------------------
HRESULT
CordbProcess::SetUnmanagedBreakpointInternal(CORDB_ADDRESS address, ULONG32 bufsize, BYTE buffer[], ULONG32 * bufLen)
{
    LOG((LF_CORDB, LL_INFO100, "CP::SetUnBPI: pProcess=%x, address=%p.\n", this, CORDB_ADDRESS_TO_PTR(address)));
#ifndef FEATURE_INTEROP_DEBUGGING
    return E_NOTIMPL;
#else

    INTERNAL_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    FAIL_IF_MANAGED_ONLY(this);
    _ASSERTE(ThreadHoldsProcessLock());

    HRESULT hr = S_OK;

    NativePatch * p = NULL;
#if defined(DBG_TARGET_X86) || defined(DBG_TARGET_AMD64)
    const BYTE patch = CORDbg_BREAK_INSTRUCTION;
    BYTE opcode;
#elif defined(DBG_TARGET_ARM64)
    const PRD_TYPE patch = CORDbg_BREAK_INSTRUCTION;
    PRD_TYPE opcode;
#else
    PORTABILITY_ASSERT("NYI: CordbProcess::SetUnmanagedBreakpoint, interop debugging NYI on this platform");
    hr = E_NOTIMPL;
    goto ErrExit;
#endif

    // Make sure args are good
    if ((buffer == NULL) || (bufsize < sizeof(patch)) || (bufLen == NULL))
    {
        hr = E_INVALIDARG;
        goto ErrExit;
    }

    // Fail if there's already a patch at this address.
    if (GetNativePatch(CORDB_ADDRESS_TO_PTR(address)) != NULL)
    {
        hr = CORDBG_E_NATIVE_PATCH_ALREADY_AT_ADDR;
        goto ErrExit;
    }

    // Preallocate this now so that if are oom, we can fail before we get half-way through.
    p = m_NativePatchList.Append();
    if (p == NULL)
    {
        hr = E_OUTOFMEMORY;
        goto ErrExit;
    }


    // Read out opcode. 1 byte on x86

    hr = ApplyRemotePatch(this, CORDB_ADDRESS_TO_PTR(address), &p->opcode);
    if (FAILED(hr))
        goto ErrExit;

    // It's all successful, so now update our out-params & internal bookkeaping.
#if defined(DBG_TARGET_X86) || defined(DBG_TARGET_AMD64)
    opcode = (BYTE)p->opcode;
    buffer[0] = opcode;
#elif defined(DBG_TARGET_ARM64)
    opcode = p->opcode;
    memcpy_s(buffer, bufsize, &opcode, sizeof(opcode));
#else
    PORTABILITY_ASSERT("NYI: CordbProcess::SetUnmanagedBreakpoint, interop debugging NYI on this platform");
#endif
    *bufLen = sizeof(opcode);

    p->pAddress = CORDB_ADDRESS_TO_PTR(address);
    p->opcode = opcode;

    _ASSERTE(SUCCEEDED(hr));

ErrExit:
    // If we failed, then free the patch
    if (FAILED(hr) && (p != NULL))
    {
        m_NativePatchList.Delete(*p);
    }

    return hr;

#endif // FEATURE_INTEROP_DEBUGGING
}


//-----------------------------------------------------------------------------
// CordbProcess::ClearUnmanagedBreakpoint
// Called by a native debugger to remove breakpoints during Interop.
// The patch is deleted even if the function fails.
//-----------------------------------------------------------------------------
HRESULT
CordbProcess::ClearUnmanagedBreakpoint(CORDB_ADDRESS address)
{
    LOG((LF_CORDB, LL_INFO100, "CP::ClearUnBP: pProcess=%x, address=%p.\n", this, CORDB_ADDRESS_TO_PTR(address)));
#ifndef FEATURE_INTEROP_DEBUGGING
    return E_NOTIMPL;
#else
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    FAIL_IF_MANAGED_ONLY(this);

    _ASSERTE(!ThreadHoldsProcessLock());

    HRESULT hr = S_OK;
    PRD_TYPE opcode;

    Lock();

    // Make sure this is a valid patch.
    int cTotal = m_NativePatchList.Count();
    NativePatch * pTable = m_NativePatchList.Table();
    if (pTable == NULL)
    {
        hr = CORDBG_E_NO_NATIVE_PATCH_AT_ADDR;
        goto ErrExit;
    }

    int i;
    for(i = 0; i  < cTotal; i++)
    {
        if (pTable[i].pAddress == CORDB_ADDRESS_TO_PTR(address))
            break;
    }

    if (i >= cTotal)
    {
        hr = CORDBG_E_NO_NATIVE_PATCH_AT_ADDR;
        goto ErrExit;
    }

    // Found it! Remove it from our table. Note that this may shuffle table contents
    // around, so don't keep pointers into the table.
    opcode = pTable[i].opcode;

    m_NativePatchList.Delete(pTable[i]);
    _ASSERTE(m_NativePatchList.Count() == cTotal - 1);

    // Now remove the patch.



    // Just call through to Write ProcessMemory
    hr = RemoveRemotePatch(this, CORDB_ADDRESS_TO_PTR(address), opcode);
    if (FAILED(hr))
        goto ErrExit;


    // Our internal bookeaping was already updated to remove the patch, so now we're done.
    // If we had a failure, we should have already bailed.
    _ASSERTE(SUCCEEDED(hr));

ErrExit:
    Unlock();
    return hr;
#endif // FEATURE_INTEROP_DEBUGGING
}


//------------------------------------------------------------------------------------
// StopCount, Sync, SyncReceived form our stop-status. This status is super-critical
// to most hangs, so we stress log it.
//------------------------------------------------------------------------------------
void CordbProcess::SetSynchronized(bool fSynch)
{
    _ASSERTE(ThreadHoldsProcessLock() || !"Must have process lock to toggle SyncStatus");
    STRESS_LOG1(LF_CORDB, LL_INFO1000, "CP:: set sync=%d\n", fSynch);
    m_synchronized = fSynch;
}

bool CordbProcess::GetSynchronized()
{
    // This can be accessed whether we're Locked or not. This means that the result
    // may change underneath us.
    return m_synchronized;
}

void CordbProcess::IncStopCount()
{
    _ASSERTE(ThreadHoldsProcessLock());
    m_stopCount++;
    STRESS_LOG1(LF_CORDB, LL_INFO1000, "CP:: Inc StopCount=%d\n", m_stopCount);
}
void CordbProcess::DecStopCount()
{
    // We can inc w/ just the process lock (b/c we can dispatch events from the W32ET)
    // But decrementing (eg, Continue), requires the stop-go lock.
    // This if an operation takes the SG lock, it ensures we don't continue from underneath it.
    ASSERT_SINGLE_THREAD_ONLY(HoldsLock(&m_StopGoLock));
    _ASSERTE(ThreadHoldsProcessLock());

    m_stopCount--;
    STRESS_LOG1(LF_CORDB, LL_INFO1000, "CP:: Dec StopCount=%d\n", m_stopCount);
}

// Just gets whether we're stopped or not (m_stopped > 0).
// You only need the StopGo lock for this.
bool CordbProcess::IsStopped()
{
    // We don't require the process-lock, just the SG-lock.
    // Holding the SG lock prevents another thread from continuing underneath you.
    // (see DecStopCount()).
    // But you could still be running free, and have another thread stop-underneath you.
    // Thus IsStopped() leans towards returning false.
    ASSERT_SINGLE_THREAD_ONLY(HoldsLock(&m_StopGoLock));

    return (m_stopCount > 0);
}

int CordbProcess::GetStopCount()
{
    _ASSERTE(ThreadHoldsProcessLock());
    return m_stopCount;
}

bool CordbProcess::GetSyncCompleteRecv()
{
    _ASSERTE(ThreadHoldsProcessLock());
    return m_syncCompleteReceived;
}

void CordbProcess::SetSyncCompleteRecv(bool fSyncRecv)
{
    _ASSERTE(ThreadHoldsProcessLock());
    STRESS_LOG1(LF_CORDB, LL_INFO1000, "CP:: set syncRecv=%d\n", fSyncRecv);
    m_syncCompleteReceived = fSyncRecv;
}

// This can be used if we ever need the RS to emulate old behavior of previous versions.
// This can not be used in QIs to deny queries for new interfaces.
// QIs must be consistent across the lifetime of an object. Say CordbThread used this in a QI
// do deny returning a ICorDebugThread2 interface when emulating v1.1. Once that Thread is neutered,
// it no longer has a pointer to the process, and it no longer knows if it should be denying
// the v2.0 query. An object's QI can't start returning new interfaces onces its neutered.
bool CordbProcess::SupportsVersion(CorDebugInterfaceVersion featureVersion)
{
    _ASSERTE(featureVersion == CorDebugVersion_2_0);
    return true;
}


//---------------------------------------------------------------------------------------
// Add an object to the process's Left-Side resource cleanup list
//
// Arguments:
//    pObject - non-null object to be added
//
// Notes:
//    This list tracks objects with process-scope that hold left-side
//    resources (like func-eval).
//    See code:CordbAppDomain::GetSweepableExitNeuterList for per-appdomain
//    objects with left-side resources.
void CordbProcess::AddToLeftSideResourceCleanupList(CordbBase * pObject)
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(pObject != NULL);

    m_LeftSideResourceCleanupList.Add(this, pObject);
}

// This list will get actively swept (looking for objects w/ external ref = 0) between continues.
void CordbProcess::AddToNeuterOnExitList(CordbBase *pObject)
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(pObject != NULL);

    HRESULT hr = S_OK;
    EX_TRY
    {
        this->m_ExitNeuterList.Add(this, pObject);
    }
    EX_CATCH_HRESULT(hr);
    SetUnrecoverableIfFailed(GetProcess(), hr);
}

// Mark that this object should be neutered the next time we Continue the process.
void CordbProcess::AddToNeuterOnContinueList(CordbBase *pObject)
{
    INTERNAL_API_ENTRY(this);
    _ASSERTE(pObject != NULL);

    m_ContinueNeuterList.Add(this, pObject); // throws
}


/* ------------------------------------------------------------------------- *
 * Runtime Controller Event Thread class
 * ------------------------------------------------------------------------- */

//
// Constructor
//
CordbRCEventThread::CordbRCEventThread(Cordb* cordb)
{
    _ASSERTE(cordb != NULL);

    m_cordb.Assign(cordb);
    m_thread = NULL;
    m_threadId = 0;
    m_run = TRUE;
    m_threadControlEvent = NULL;
    m_processStateChanged = FALSE;

    g_pRSDebuggingInfo->m_RCET = this;
}


//
// Destructor. Cleans up all of the open handles and such.
// This expects that the thread has been stopped and has terminated
// before being called.
//
CordbRCEventThread::~CordbRCEventThread()
{
    if (m_threadControlEvent != NULL)
        CloseHandle(m_threadControlEvent);

    if (m_thread != NULL)
        CloseHandle(m_thread);

    g_pRSDebuggingInfo->m_RCET = NULL;
}

//
// Init sets up all the objects that the thread will need to run.
//
HRESULT CordbRCEventThread::Init()
{
    if (m_cordb == NULL)
        return E_INVALIDARG;

    m_threadControlEvent = WszCreateEvent(NULL, FALSE, FALSE, NULL);

    if (m_threadControlEvent == NULL)
        return HRESULT_FROM_GetLastError();

    return S_OK;
}


#if defined(FEATURE_INTEROP_DEBUGGING)
//
// Helper to duplicate a handle or thorw
//
// Arguments:
//     pLocalHandle - handle to duplicate into the remote process
//     pRemoteHandle - RemoteHandle structure in IPC block to hold the remote handle.
// Return value:
//     None. Throws on error.
//
void CordbProcess::DuplicateHandleToLocalProcess(HANDLE * pLocalHandle, RemoteHANDLE * pRemoteHandle)
{
    _ASSERTE(m_pShim != NULL);

    // Dup RSEA and RSER into this process if we don't already have them.
    // On Launch, we don't have them yet, but on attach we do.
    if (*pLocalHandle == NULL)
    {
        BOOL fSuccess = pRemoteHandle->DuplicateToLocalProcess(m_handle, pLocalHandle);
        if (!fSuccess)
        {
            ThrowLastError();
        }
    }

}
#endif // FEATURE_INTEROP_DEBUGGING

// Public entry wrapper for code:CordbProcess::FinishInitializeIPCChannelWorker
void CordbProcess::FinishInitializeIPCChannel()
{
    // This is called directly from a shim callback.
    PUBLIC_API_ENTRY_FOR_SHIM(this);
    FinishInitializeIPCChannelWorker();
}

//
// Initialize the IPC channel. After this, IPC events can flow in both ways.
//
// Return value:
//     Returns S_OK on success.
//
// Notes:
//     This will dispatch an UnrecoverableError callback if it fails.
//     This will also initialize key state in the CordbProcess object.
//
// @dbgtodo remove helper-thread: this should eventually go away once we get rid of IPC events.
//
void CordbProcess::FinishInitializeIPCChannelWorker()
{
    CONTRACTL
    {
        THROWS;
    }
    CONTRACTL_END;

    HRESULT hr = S_OK;
    _ASSERTE(m_pShim != NULL);

    RSLockHolder lockHolder(&this->m_processMutex);

    // If it's already initialized, then nothing left to do.
    // this protects us if this function is called multiple times.
    if (m_initialized)
    {
        _ASSERTE(GetDCB() != NULL);
        return;
    }

    EX_TRY
    {
        LOG((LF_CORDB, LL_INFO1000, "[%x] RCET::HFRCE: first event..., process %p\n", GetCurrentThreadId(), this));

        BOOL fBlockExists;
        GetEventBlock(&fBlockExists); // throws on error

        LOG((LF_CORDB, LL_EVERYTHING, "Size of CdbP is %d\n", sizeof(CordbProcess)));

        m_pEventChannel->Init(m_handle);

#if defined(FEATURE_INTEROP_DEBUGGING)
        DuplicateHandleToLocalProcess(&m_leftSideUnmanagedWaitEvent, &GetDCB()->m_leftSideUnmanagedWaitEvent);
#endif // FEATURE_INTEROP_DEBUGGING

        // Read the Runtime Offsets struct out of the debuggee.
        hr = GetRuntimeOffsets();
        IfFailThrow(hr);

        // we need to be careful here. The LS will have a thread running free that may be initializing
        // fields of the DCB (specifically it may be setting up the helper thread), so we need to make sure
        // we don't overwrite any fields that the LS is writing. We need to be sure we only write to RS
        // status fields.
        m_initialized = true;
        GetDCB()->m_rightSideIsWin32Debugger = IsInteropDebugging();
        UpdateLeftSideDCBField(&(GetDCB()->m_rightSideIsWin32Debugger), sizeof(GetDCB()->m_rightSideIsWin32Debugger));

        LOG((LF_CORDB, LL_INFO1000, "[%x] RCET::HFRCE: ...went fine\n", GetCurrentThreadId()));
        _ASSERTE(SUCCEEDED(hr));

    } EX_CATCH_HRESULT(hr);
    if (SUCCEEDED(hr))
    {
        return;
    }

    // We only land here on failure cases.
    // We must have jumped to this label. Maybe we didn't set HR, so check now.
    STRESS_LOG1(LF_CORDB, LL_INFO1000, "HFCR: FAILED hr=0x%08x\n", hr);

    CloseIPCHandles();

    // Rethrow
    ThrowHR(hr);
}


//---------------------------------------------------------------------------------------
// Marshals over a string buffer in a managed event
//
// Arguments:
//    pTarget - data-target for read the buffer from the LeftSide.
//
// Throws on error
void Ls_Rs_BaseBuffer::CopyLSDataToRSWorker(ICorDebugDataTarget * pTarget)
{
    //
    const DWORD cbCacheSize = m_cbSize;

    // SHOULD not happen for more than once in well-behaved case.
    if (m_pbRS != NULL)
    {
        SIMPLIFYING_ASSUMPTION(!"m_pbRS is non-null; is this a corrupted event?");
        ThrowHR(E_INVALIDARG);
    }

    NewArrayHolder<BYTE> pData(new BYTE[cbCacheSize]);

    ULONG32 cbRead;
    HRESULT hrRead = pTarget->ReadVirtual(PTR_TO_CORDB_ADDRESS(m_pbLS), pData, cbCacheSize , &cbRead);

    if(FAILED(hrRead))
    {
        hrRead = CORDBG_E_READVIRTUAL_FAILURE;
    }

    if (SUCCEEDED(hrRead) && (cbCacheSize != cbRead))
    {
        hrRead = HRESULT_FROM_WIN32(ERROR_PARTIAL_COPY);
    }
    IfFailThrow(hrRead);

    // Now do Transfer
    m_pbRS = pData;
    pData.SuppressRelease();
}

//---------------------------------------------------------------------------------------
// Marshals over a Byte buffer in a managed event
//
// Arguments:
//    pTarget - data-target for read the buffer from the LeftSide.
//
// Throws on error
void Ls_Rs_ByteBuffer::CopyLSDataToRS(ICorDebugDataTarget * pTarget)
{
    CopyLSDataToRSWorker(pTarget);
}

//---------------------------------------------------------------------------------------
// Marshals over a string buffer in a managed event
//
// Arguments:
//    pTarget - data-target for read the buffer from the LeftSide.
//
// Throws on error
void Ls_Rs_StringBuffer::CopyLSDataToRS(ICorDebugDataTarget * pTarget)
{
    CopyLSDataToRSWorker(pTarget);

    // Ensure we're a valid, well-formed string.
    // @dbgtodo - this should only happen in corrupted scenarios. Perhaps a better HR here?
    // - null terminated.
    // - no embedded nulls.

    const WCHAR * pString = GetString();
    SIZE_T dwExpectedLenWithNull = m_cbSize / sizeof(WCHAR);

    // Should at least have 1 character for the null-terminator.
    if (dwExpectedLenWithNull == 0)
    {
        ThrowHR(CORDBG_E_TARGET_INCONSISTENT);
    }

    // Ensure that there's a null where we expect it to be.
    if (pString[dwExpectedLenWithNull-1] != 0)
    {
        ThrowHR(CORDBG_E_TARGET_INCONSISTENT);
    }

    // Now we know it's safe to call wcslen. The buffer is local, so we know the pages are there.
    // And we know there's a null capping the max length of the string.
    SIZE_T dwActualLenWithNull = wcslen(pString) + 1;
    if (dwActualLenWithNull != dwExpectedLenWithNull)
    {
        ThrowHR(CORDBG_E_TARGET_INCONSISTENT);
    }
}

//---------------------------------------------------------------------------------------
// Marshals the arguments in a managed-debug event.
//
// Arguments:
//    pManagedEvent - (IN/OUT) debug event to marshal. Events are not usable in the host process
//       until they are marshalled. This will marshal the event in-place, and may convert
//       some target addresses to host addresses.
//
// Return Value:
//    S_OK on success. Else Error.
//
// Assumptions:
//    Target is currently stopped and inspectable.
//    After the event is marshalled, it has resources that must be cleaned up
//    by calling code:DeleteIPCEventHelper.
//
// Notes:
//     Call a Copy function (CopyManagedEventFromTarget, CopyRCEventFromIPCBlock)to
//     get the event to marshal.
//     This will marshal args from the target into the host.
//     The debug event is fixed size. But since the debuggee is stopped, this can copy
//     arbitrary-length buffers out of of the debuggee.
//
//     This could be rolled into code:CordbProcess::RawDispatchEvent
//---------------------------------------------------------------------------------------
void CordbProcess::MarshalManagedEvent(DebuggerIPCEvent * pManagedEvent)
{
    CONTRACTL
    {
        THROWS;

        // Event has already been copied, now we do some quick Marshalling.
        // Thsi should be a private local copy, and not the one in the IPC block or Target.
        PRECONDITION(CheckPointer(pManagedEvent));
    }
    CONTRACTL_END;

    IfFailThrow(pManagedEvent->hr);

    // This may throw part way through marshalling. But that's ok because
    // code:DeleteIPCEventHelper can cleanup a partially-marshalled event.

    // Do a pre-processing on the event
    switch (pManagedEvent->type & DB_IPCE_TYPE_MASK)
    {
        case DB_IPCE_MDA_NOTIFICATION:
        {
            pManagedEvent->MDANotification.szName.CopyLSDataToRS(this->m_pDACDataTarget);
            pManagedEvent->MDANotification.szDescription.CopyLSDataToRS(this->m_pDACDataTarget);
            pManagedEvent->MDANotification.szXml.CopyLSDataToRS(this->m_pDACDataTarget);
            break;
        }

        case DB_IPCE_FIRST_LOG_MESSAGE:
        {
            pManagedEvent->FirstLogMessage.szContent.CopyLSDataToRS(this->m_pDACDataTarget);
            break;
        }

        default:
            break;
    }


}


//---------------------------------------------------------------------------------------
// Copy a managed debug event from the target process into this local process
//
// Arguments:
//    pRecord - native-debug event serving as the envelope for the managed event.
//    pLocalManagedEvent - (dst) required local buffer to hold managed event.
//
// Return Value:
//    * True if the event belongs to this runtime. This is very useful when multiple CLRs are
//    loaded into the target and all sending events wit the same exception code.
//    * False if this does not belong to this instance of ICorDebug. (perhaps it's an event
//    intended for another instance of the CLR in the target, or some rogue user code happening
//    to use our exception code).
//    In either case, the event can still be cleaned up via code:DeleteIPCEventHelper.
//
//    Throws on error. In the error case, the contents of pLocalManagedEvent are undefined.
//    They may have been partially copied from the target. The local managed event does not own
//    any resources until it's marshalled, so the buffer can be ignored if this function fails.
//
// Assumptions:
//
// Notes:
//    The events are sent form the target via code:Debugger::SendRawEvent
//    This just does a raw Byte copy, but does not do any Marshalling.
//    This should always succeed in the well-behaved case. However, A bad debuggee can
//    always send a poor-formed debug event.
//    We don't distinguish between a badly formed event and an event that's not ours.
//    The event still needs to be Marshaled before being used. (see code:CordbProcess::MarshalManagedEvent)
//
//---------------------------------------------------------------------------------------
#if defined(_MSC_VER) && defined(_TARGET_ARM_)
// This is a temporary workaround for an ARM specific MS C++ compiler bug (internal LKG build 18.1).
// Branch < if (ptrRemoteManagedEvent == NULL) > was always taken and the function always returned false.
// TODO: It should be removed once the bug is fixed.
#pragma optimize("", off)
#endif
bool CordbProcess::CopyManagedEventFromTarget(
    const EXCEPTION_RECORD * pRecord,
    DebuggerIPCEvent * pLocalManagedEvent)
{
    _ASSERTE(pRecord != NULL);
    _ASSERTE(pLocalManagedEvent != NULL);

    // Initialize the event enough such backout code can call code:DeleteIPCEventHelper.
    pLocalManagedEvent->type = DB_IPCE_DEBUGGER_INVALID;

    // Ensure we have a CLR instance ID by now.  Either we had one already, or we're in
    // V2 mode and this is the startup event, and so we'll set it now.
    HRESULT hr = EnsureClrInstanceIdSet();
    IfFailThrow(hr);
    _ASSERTE(m_clrInstanceId != 0);

    // Determine if the event is really a debug event, and for our instance.
    CORDB_ADDRESS ptrRemoteManagedEvent = IsEventDebuggerNotification(pRecord, m_clrInstanceId);

    if (ptrRemoteManagedEvent == NULL)
    {
        return false;
    }

    // What we are doing on Windows here is dangerous.  Any buffer for IPC events must be at least
    // CorDBIPC_BUFFER_SIZE big, but here we are only copying sizeof(DebuggerIPCEvent).  Fortunately, the
    // only case where an IPC event is bigger than sizeof(DebuggerIPCEvent) is for the second category
    // described in the comment for code:IEventChannel.  In this case, we are just transferring the IPC
    // event from the native pipeline to the event channel, and the event channel will read it directly from
    // the send buffer on the LS.  See code:CordbRCEventThread::WaitForIPCEventFromProcess.
#if !defined(FEATURE_DBGIPC_TRANSPORT_DI)
    hr = SafeReadStruct(ptrRemoteManagedEvent, pLocalManagedEvent);
#else
    // For Mac remote debugging the address returned above is actually a local address.
    // Also, we need to copy the entire buffer because once a debug event is read from the debugger
    // transport, it won't be available afterwards.
    memcpy(reinterpret_cast<BYTE *>(pLocalManagedEvent),
           CORDB_ADDRESS_TO_PTR(ptrRemoteManagedEvent),
           CorDBIPC_BUFFER_SIZE);
    hr = S_OK;
#endif
    SIMPLIFYING_ASSUMPTION(SUCCEEDED(hr));
    IfFailThrow(hr);

    return true;
}
#if defined(_MSC_VER) && defined(_TARGET_ARM_)
#pragma optimize("", on)
#endif

//---------------------------------------------------------------------------------------
// EnsureClrInstanceIdSet - Ensure we have a CLR Instance ID to debug
//
// In Arrowhead scenarios, the debugger is required to pass a valid CLR instance ID
// to us in OpenVirtualProcess.  In V2 scenarios, for compatibility, we'll allow a
// CordbProcess object to exist for a process that doesn't yet have the CLR loaded.
// In this case the CLR instance ID will start off as 0, but be filled in when we see the
// startup exception indicating the CLR has been loaded.
//
// If we don't already have an instance ID, this function sets it to the only CLR in the
// target process.  This requires that a CLR be loaded in the target process.
//
// Return Value:
//    S_OK - if m_clrInstanceId was already set, or is now set to a valid CLR instance ID
//    an error HRESULT - if m_clrInstanceId was 0, and cannot be set to a valid value
//                       (i.e. because we cannot find a CLR in the target process).
//
//    Note that we need to probe for this on attach, and it's common to attach before the
//    CLR has been loaded, so we avoid using exceptions for this common case.
//
HRESULT CordbProcess::EnsureClrInstanceIdSet()
{
    // If we didn't expect a specific CLR, then attempt to attach to any.
    if (m_clrInstanceId == 0)
    {

#ifdef FEATURE_CORESYSTEM
        if(m_cordb->GetTargetCLR() != 0)
        {
            m_clrInstanceId = PTR_TO_CORDB_ADDRESS(m_cordb->GetTargetCLR());
            return S_OK;
        }
#endif

        // The only case in which we're allowed to request the "default" CLR instance
        // ID is when we're running in V2 mode.  In V3, the client is required to pass
        // a non-zero value to OpenVirtualProcess.
        _ASSERTE(m_pShim != NULL);

        HRESULT hr = m_pShim->FindLoadedCLR(&m_clrInstanceId);
        if (FAILED(hr))
        {
            // Couldn't find a loaded clr - no CLR instance ID yet
            _ASSERTE(m_clrInstanceId == 0);
            return hr;
        }
    }

    // We've (now) got a valid CLR instance id
    return S_OK;
}

//---------------------------------------------------------------------------------------
// // Copy event from IPC block into local.
//
// Arguments:
//    pLocalManagedEvent - required local buffer to hold managed event.
//
// Return Value:
//    None. Always succeeds.
//
// Assumptions:
//    The IPC block has already been opened and filled in with an event.
//
// Notes:
//    This is copying from a shared-memory block, which is treated as local memory.
//    This just does a raw Byte copy, but does not do any Marshalling.
//    This does no validation on the event.
//    The event still needs to be Marshaled before being used. (see code:CordbProcess::MarshalManagedEvent)
//
//---------------------------------------------------------------------------------------
void inline CordbProcess::CopyRCEventFromIPCBlock(DebuggerIPCEvent * pLocalManagedEvent)
{
    _ASSERTE(pLocalManagedEvent != NULL);

    IfFailThrow(m_pEventChannel->GetEventFromLeftSide(pLocalManagedEvent));
}

// Return true if this is the RCEvent thread, else false.
bool CordbRCEventThread::IsRCEventThread()
{
    return (m_threadId == GetCurrentThreadId());
}

//---------------------------------------------------------------------------------------
// Runtime assert, throws CORDBG_E_TARGET_INCONSISTENT if the expression is not true.
//
// Arguments:
//     fExpression - assert parameter. If true, this function is a nop. If false,
//             this will throw a CORDBG_E_TARGET_INCONSISTENT error.
//
// Notes:
//     Use this for runtime checks to validate assumptions about the data-target.
//     IcorDebug can't trust that data from the debugee is consistent (perhaps it's
//     corrupted).
void CordbProcess::TargetConsistencyCheck(bool fExpression)
{
    if (!fExpression)
    {
        STRESS_LOG0(LF_CORDB, LL_INFO10000, "Target consistency check failed");

        // When debugging possibly corrupt targets, this failure may be expected.  For debugging purposes,
        // assert if we're not expecting any target inconsistencies.
        CONSISTENCY_CHECK_MSG( !m_fAssertOnTargetInconsistency, "Target consistency check failed unexpectedly");

        ThrowHR(CORDBG_E_TARGET_INCONSISTENT);
    }
}

//
// SendIPCEvent -- send an IPC event to the runtime controller. All this
// really does is copy the event into the process's send buffer and sets
// the RSEA then waits on RSER.
//
// Note: when sending a two-way event (replyRequired = true), the
// eventSize must be large enough for both the event sent and the
// result event.
//
// Returns whether the event was sent successfully. This is different than event->eventHr.
//
HRESULT CordbRCEventThread::SendIPCEvent(CordbProcess* process,
                                         DebuggerIPCEvent* event,
                                         SIZE_T eventSize)
{

    _ASSERTE(process != NULL);
    _ASSERTE(event != NULL);
    _ASSERTE(process->GetShim() != NULL);

#ifdef _DEBUG
    // We need to be synchronized whenever we're sending an IPC Event.
    // This may require our callers' using a Stop-Continue holder.
    // Attach + AsyncBreak are the only (obvious) exceptions.
    // For continue, we set Sync-Status to false before sending, so we exclude that too.
    // Everybody else should only be sending events when synced. We should never ever ever
    // send an event from a CorbXYZ dtor (b/c that would be called at any random time). Instead,
    // use a NeuterList.
    switch (event->type)
    {
        case DB_IPCE_ATTACHING:
        case DB_IPCE_ASYNC_BREAK:
        case DB_IPCE_CONTINUE:
            break;

        default:
            CONSISTENCY_CHECK_MSGF(process->GetSynchronized(), ("Must by synced while sending IPC event: %s (0x%x)",
                IPCENames::GetName(event->type), event->type));
    }
#endif


    LOG((LF_CORDB, LL_EVERYTHING, "SendIPCEvent in CordbRCEventThread called\n"));

    // For simplicity sake, we have the following conservative invariants when sending IPC events:
    // - Always hold the Stop-Go lock.
    // - never on the W32ET.
    // - Never hold the Process-lock (this allows the w32et to take that lock to pump)

    // Must have the stop-go lock to send an IPC event.
    CONSISTENCY_CHECK_MSGF(process->GetStopGoLock()->HasLock(), ("Must have stop-go lock to send event. proc=%p, event=%s",
        process, IPCENames::GetName(event->type)));

    // The w32 ET will need to take the process lock. So if we're holding it here, then we'll
    // deadlock (since W32 ET is blocked on lock, which we would hold; and we're blocked on W32 ET
    // to keep pumping.
    _ASSERTE(!process->ThreadHoldsProcessLock() || !"Can't hold P-lock while sending blocking IPC event");


    // Can't be on the w32 ET, or we can't be pumping.
    // Although we can trickle in here from public APIs, our caller should have validated
    // that we weren't on the w32et, so the assert here is justified. But just in case there's something we missed,
    // we have a runtime check (as a final backstop against a deadlock).
    _ASSERTE(!process->IsWin32EventThread());
    CORDBFailIfOnWin32EventThread(process);


    // If this is an async event, then we expect it to be sent while the process is locked.
    if (event->asyncSend)
    {
        // This may be on the w32et, so we can't hold the stop-go lock.
        _ASSERTE(event->type == DB_IPCE_ATTACHING); // only async event should be attaching.
    }


    // This will catch us if we've detached or exited.
    // Note if we exited, then we should have been neutered and so shouldn't even be sending an IPC event,
    // but just in case, we'll check.
    CORDBRequireProcessStateOK(process);


#ifdef _DEBUG
    // We should never send an Async Break on the RCET. This will deadlock.
    // - if we're on the RCET, we should be stopped, and thus Stop() should just bump up a stop count,
    //   and not actually send an AsyncBreak.
    // - Delayed-Continues help enforce this.
    // This is a special case of the deadlock check below.
    if (IsRCEventThread())
    {
        _ASSERTE(event->type != DB_IPCE_ASYNC_BREAK);
    }
#endif

#ifdef _DEBUG
    // This assert protects us against a deadlock.
    // 1) (RCET) blocked on (This function): If we're on the RCET, then the RCET is blocked until we return (duh).
    // 2) (LS) blocked on (RCET): If the LS is not synchronized, then it may be sending an event to the RCET, and thus blocked on the RCET.
    // 3) (Helper thread) blocked on (LS): That LS thread may be holding a lock that the helper thread needs, thus blocking the helper thread.
    // 4) (This function) blocked on (Helper Thread): We block until the helper thread can process our IPC event.
    //     #4 is not true for async events.
    //
    // If we hit this assert, it means we may get the deadlock above and we're calling SendIPCEvent at a time we shouldn't.
    // Note this race is as old as dirt.
    if (IsRCEventThread() && !event->asyncSend)
    {
        // Note that w/ Continue & Attach, GetSynchronized() has a different meaning and the race above won't happen.
        BOOL fPossibleDeadlock = process->GetSynchronized() || (event->type == DB_IPCE_CONTINUE) || (event->type == DB_IPCE_ATTACHING);
        CONSISTENCY_CHECK_MSGF(fPossibleDeadlock, ("Possible deadlock while sending: '%s'\n", IPCENames::GetName(event->type)));
    }
#endif



    // Cache this process into the MRU so that we can find it if we're debugging in retail.
    g_pRSDebuggingInfo->m_MRUprocess = process;

    HRESULT hr = S_OK;
    HRESULT hrEvent = S_OK;
    _ASSERTE(event != NULL);

    // NOTE: the eventSize parameter is only so you can specify an event size that is SMALLER than the process send
    // buffer size!!
    if (eventSize > CorDBIPC_BUFFER_SIZE)
        return E_INVALIDARG;

    STRESS_LOG4(LF_CORDB, LL_INFO1000, "CRCET::SIPCE: sending %s to AD 0x%x, proc 0x%x(%d)\n",
         IPCENames::GetName(event->type), VmPtrToCookie(event->vmAppDomain), process->m_id, process->m_id);

    // For 2-way events, this check is unnecessary (since we already check for LS exit)
    // But for async events, we need this.
    // So just check it up here and make everyone's life easier.
    if (process->m_terminated)
    {
        STRESS_LOG0(LF_CORDB, LL_INFO10000, "CRCET::SIPCE: LS already terminated, shortcut exiting\n");
        return CORDBG_E_PROCESS_TERMINATED;
    }

    // If the helper thread has died, we can't send an IPC event (and it's never coming back either).
    // Although we do wait on the thread's handle, there are strange windows where the thread's handle
    // is not yet signaled even though we've continued from the exit-thread event for the helper.
    if (process->m_helperThreadDead)
    {
        STRESS_LOG0(LF_CORDB, LL_INFO10000, "CRCET::SIPCE: Helper-thread dead, shortcut exiting\n");
        return CORDBG_E_PROCESS_TERMINATED;
    }

    BOOL fUnrecoverableError = TRUE;
    EX_TRY
    {
        hr = process->GetEventChannel()->SendEventToLeftSide(event, eventSize);
        fUnrecoverableError = FALSE;
    }
    EX_CATCH_HRESULT(hr);


    // If we're sending a Continue() event, then after this, the LS may run free.
    // If this is the last managed event before the LS exits, (which is the case
    // if we're responding to either an Exit-Thread or if we respond to a Detach)
    // the LS may exit at anytime from here on, so we need to be careful.


    if (fUnrecoverableError)
    {
        _ASSERTE(FAILED(hr));
        CORDBSetUnrecoverableError(process, hr, 0);
    }
    else
    {
        // Get a handle to the target process - this call always succeeds
        HANDLE hLSProcess = NULL;
        process->GetHandle(&hLSProcess);

        // We take locks to ensure that the CordbProcess object is still alive,
        // even if the OS process exited.
        _ASSERTE(hLSProcess != NULL);

        // Check if Sending the IPC event failed
        if (FAILED(hr))
        {
            // The failure to send an event may be due to the target process terminating
            // (especially, but not exclusively, in the case of async events).
            // There is a race here - we can't rely on any check above SendEventToLeftSide
            // to tell us whether the process has exited yet.
            // Check for that case and return an accurate hresult.
            DWORD ret = WaitForSingleObject(hLSProcess, 0);
            if (ret == WAIT_OBJECT_0)
            {
                return CORDBG_E_PROCESS_TERMINATED;
            }

            // Some other failure sending the IPC event - just return it.
            return hr;
        }

        STRESS_LOG0(LF_CORDB, LL_INFO1000, "CRCET::SIPCE: sent...\n");

        // If this is an async send, then don't wait for the left side to acknowledge that its read the event.
        _ASSERTE(!event->asyncSend || !event->replyRequired);

        if (process->GetEventChannel()->NeedToWaitForAck(event))
        {
            STRESS_LOG0(LF_CORDB, LL_INFO1000,"CRCET::SIPCE: waiting for left side to read event. (on RSER)\n");

            DWORD ret;

            // Wait for either a reply (common case) or the left side to go away.
            // We can't detach while waiting for a reply (because detach needs to send events).
            // All of the outcomes from this wait are completely disjoint.
            // It's possible for the LS to reply and then exit normally (Thread_Detach, Process_Detach)
            // and so ExitProcess may have been called, but it doesn't matter.

            enum {
                ID_RSER = WAIT_OBJECT_0,
                ID_LSPROCESS,
                ID_HELPERTHREAD,
            };

            // Only wait on the helper thread for cases where the process is stopped (and thus we don't expect it do exit on us).
            // If the process is running and we lose our helper thread, it ought to be during shutdown and we ough to
            // follow up with an exit.
            // This includes when we've dispatch Native events, and it includes the AsyncBreak sent to get us from a
            // win32 frozen state to a synchronized state).
            HANDLE hHelperThread = NULL;
            if (process->IsStopped())
            {
                hHelperThread = process->GetHelperThreadHandle();
            }


            // Note that in case of a tie (multiple handles signaled), WaitForMultipleObjects gives
            // priority to the handle earlier in the array.
            HANDLE waitSet[] = { process->GetEventChannel()->GetRightSideEventAckHandle(), hLSProcess, hHelperThread};
            DWORD cWaitSet = NumItems(waitSet);
            if (hHelperThread == NULL)
            {
                cWaitSet--;
            }

            do
            {
                ret = WaitForMultipleObjectsEx(cWaitSet, waitSet, FALSE, CordbGetWaitTimeout(), FALSE);
                // If we timeout because we're waiting for an uncontinued OOB event, we need to just keep waiting.
            } while ((ret == WAIT_TIMEOUT) && process->IsWaitingForOOBEvent());

            switch(ret)
            {
            case ID_RSER:
                // Normal reply from LS.
                // This is set iff the LS replied to our event. The LS may have exited since it replied
                // but we don't care. We still have the reply and we'll pass it on.
                STRESS_LOG0(LF_CORDB, LL_INFO1000, "CRCET::SIPCE: left side read the event.\n");

                // If this was a two-way event, then the result is already ready for us. Simply copy the result back
                // over the original event that was sent. Otherwise, the left side has simply read the event and is
                // processing it...
                if (event->replyRequired)
                {
                    process->GetEventChannel()->GetReplyFromLeftSide(event, eventSize);
                    hrEvent = event->hr;
                }
                break;

            case ID_LSPROCESS:
                // Left side exited on us.
                // ExitProcess may or may not have been called here (since it's on a different thread).
                STRESS_LOG0(LF_CORDB, LL_INFO1000, "CRCET::SIPCE: left side exiting while RS was waiting for reply.\n");
                hr = CORDBG_E_PROCESS_TERMINATED;
                break;

            case ID_HELPERTHREAD:
                // We can only send most IPC events while the LS is synchronized. We shouldn't lose our helper thread
                // when synced under any sort of normal conditions.
                // This won't fire if the process already exited, because LSPROCESS gets higher priority in the wait
                // (since it was placed earlier).
                // Thus the only "legitimate" window where this could happen would be in a shutdown scenario after
                // the helper is dead but before the process has died. We shouldn't be synced in that scenario,
                // so we shouldn't be sending IPC events during it.
                STRESS_LOG0(LF_CORDB, LL_INFO1000, "CRCET::SIPCE: lost helper thread.\n");


                // Assert because we want to know if we ever actually hit this in any detectable scenario.
                // However, shutdown can occur in preemptive mode. Thus if the RS does an AsyncBreak late
                // enough, then the LS will appear to be stopped but may still shutdown.
                // Since the debuggee can exit asynchronously at any time (eg, suppose somebody forcefully
                // kills it with taskman), this doesn't introduce a new case.
                // That aside, it would be great to be able to assert this:
                //_ASSERTE(!"Potential deadlock - Randomly Lost helper thread");

                // We'll piggy back this on the terminated case.
                hr = CORDBG_E_PROCESS_TERMINATED;
                break;

            default:
                {
                    // If we timed out/failed, check the left side to see if it is in the unrecoverable error mode. If it is,
                    // return the HR from the left side that caused the error.  Otherwise, return that we timed out and that
                    // we don't really know why.
                    HRESULT realHR = (ret == WAIT_FAILED) ? HRESULT_FROM_GetLastError() : ErrWrapper(CORDBG_E_TIMEOUT);

                    hr = process->CheckForUnrecoverableError();

                    if (hr == S_OK)
                    {
                        CORDBSetUnrecoverableError(process, realHR, 0);
                        hr = realHR;
                    }

                    STRESS_LOG1(LF_CORDB, LL_INFO1000, "CRCET::SIPCE: left side timeout/fail while RS waiting for reply. hr = 0x%08x\n", hr);
                }
                break;
            }

            // If the LS picked up RSEA, it will be reset (since it's an auto event).
            // But in the case that the wait failed or  that the LS exited, we need to explicitly reset RSEA
            if (hr != S_OK)
            {
                process->GetEventChannel()->ClearEventForLeftSide();
            }

            // Done waiting for reply.

        }
    }

    process->ForceDacFlush();

    // The hr and hrEvent are 2 very different things.
    // hr tells us whether the event was sent successfully.
    // hrEvent tells us how the LS responded to it.
    // if FAILED(hr), then hrEvent is useless b/c the LS never got it.
    // But if SUCCEEDED(hr), then hrEvent may still have failed and that could be
    // valuable information.

    return hr;
}

//---------------------------------------------------------------------------------------
// FlushQueuedEvents flushes a process's event queue.
//
// Arguments:
//    pProcess - non-null process object whose queue will be drained
//
// Notes:
//    @dbgtodo shim: this should be part of the shim.
//    This dispatches events that are queued up. The queue is populated by
//    the shim's proxy callback (see code:ShimProxyCallback). This will dispatch events
//    to the 'real' callback supplied by the debugger. This will dispatch events
//    as long as the debugger keeps calling continue.
//
//    This requires that the process lock be held, although it will toggle the lock.
void CordbRCEventThread::FlushQueuedEvents(CordbProcess* process)
{
    CONTRACTL
    {
        NOTHROW; // This is happening on the RCET thread, so there's no place to propogate an error back up.
    }
    CONTRACTL_END;

    STRESS_LOG0(LF_CORDB,LL_INFO10000, "CRCET::FQE: Beginning to flush queue\n");

    _ASSERTE(process->GetShim() != NULL);

    // We should only call this is we already have queued events
    _ASSERTE(!process->GetShim()->GetManagedEventQueue()->IsEmpty());

    //
    // Dispatch queued events so long as they keep calling Continue()
    // before returning from their callback. If they call Continue(),
    // process->m_synchronized will be false again and we know to
    // loop around and dispatch the next event.
    //
    _ASSERTE(process->ThreadHoldsProcessLock());


    // Give shim a chance to queue any faked attach events.  Grab a pointer to the
    // ShimProcess now, while we still hold the process lock.  Once we release the lock,
    // GetShim() may not work.
    RSExtSmartPtr<ShimProcess> pShim(process->GetShim());

    // Release lock before we call out to shim to Queue fake events.
    {
        RSInverseLockHolder inverseLockHolder(process->GetProcessLock());
        {
            PUBLIC_CALLBACK_IN_THIS_SCOPE0_NO_LOCK(pProcess);

            // Because we've released the lock, at any point from here forward the
            // CorDbProcess may suddenly get neutered if the user detaches the debugger.

            pShim->QueueFakeAttachEventsIfNeeded(false);
        }
    }

    // Now that we're holding the process lock again, we can safely check whether
    // process has become neutered
    if (process->IsNeutered())
    {
        return;
    }

    {

        // Main dispatch loop here. DispatchRCEvent will take events out of the
        // queue and invoke callbacks
        do
        {
            // DispatchRCEvent will mark the process as stopped before dispatching.
            process->DispatchRCEvent();

            LOG((LF_CORDB,LL_INFO10000, "CRCET::FQE: Finished w/ "
                 "DispatchRCEvent\n"));
        }
        while (process->GetSyncCompleteRecv() &&
               (process->GetSynchronized() == false) &&
               (process->GetShim() != NULL) && // may have lost Shim if we detached while dispatch
               (!process->GetShim()->GetManagedEventQueue()->IsEmpty()) &&
               (process->m_unrecoverableError == false));
    }

    //
    // If they returned from a callback without calling Continue() then
    // the process is still synchronized, so let the rc event thread
    // know that it need to update its process list and remove the
    // process's event.
    //
    if (process->GetSynchronized())
    {
        ProcessStateChanged();
    }

    LOG((LF_CORDB,LL_INFO10000, "CRCET::FQE: finished\n"));
}

//---------------------------------------------------------------------------------------
// Preliminary Handle an Notification event from the target. This may queue the event,
// but does not actually dispatch the event.
//
// Arguments:
//    pManagedEvent - local managed-event. On success, this function assumes ownership of the
//        event and will delete its memory. Assumed that caller allocated via 'new'.
//    pCallback - callback obecjt to dispatch events on.
//
// Return Value:
//    None. Throws on error. On error, caller still owns the pManagedEvent and must free it.
//
// Assumptions:
//    This should be called once a notification event is received from the target.
//
// Notes:
//    HandleRCEvent -- handle an IPC event received from the runtime controller.
//    This will update ICorDebug state and immediately dispatch the event.
//
//---------------------------------------------------------------------------------------
void CordbProcess::HandleRCEvent(
    DebuggerIPCEvent *         pManagedEvent,
    RSLockHolder *             pLockHolder,
    ICorDebugManagedCallback * pCallback)
{
    CONTRACTL
    {
        THROWS;
        PRECONDITION(CheckPointer(pManagedEvent));
        PRECONDITION(CheckPointer(pCallback));
        PRECONDITION(ThreadHoldsProcessLock());
    }
    CONTRACTL_END;

    if (!this->IsSafeToSendEvents() || this->m_exiting)
    {
        return;
    }

    // Marshals over some standard data from event.
    MarshalManagedEvent(pManagedEvent);

    STRESS_LOG4(LF_CORDB, LL_INFO1000, "RCET::TP: Got %s for AD 0x%x, proc 0x%x(%d)\n",
        IPCENames::GetName(pManagedEvent->type), VmPtrToCookie(pManagedEvent->vmAppDomain), this->m_id, this->m_id);

    RSExtSmartPtr<ICorDebugManagedCallback2> pCallback2;
    pCallback->QueryInterface(IID_ICorDebugManagedCallback2, reinterpret_cast<void **> (&pCallback2));

    RSExtSmartPtr<ICorDebugManagedCallback3> pCallback3;
    pCallback->QueryInterface(IID_ICorDebugManagedCallback3, reinterpret_cast<void **> (&pCallback3));

    RSExtSmartPtr<ICorDebugManagedCallback4> pCallback4;
    pCallback->QueryInterface(IID_ICorDebugManagedCallback4, reinterpret_cast<void **> (&pCallback4));

    // Dispatch directly. May not necessarily dispatch an event.
    // Toggles the lock to dispatch callbacks.
    RawDispatchEvent(pManagedEvent, pLockHolder, pCallback, pCallback2, pCallback3, pCallback4);
}

//
// ProcessStateChanged -- tell the rc event thread that the ICorDebug's
// process list has changed by setting its flag and thread control event.
// This will cause the rc event thread to update its set of handles to wait
// on.
//
void CordbRCEventThread::ProcessStateChanged()
{
    m_cordb->LockProcessList();
    STRESS_LOG0(LF_CORDB, LL_INFO100000, "CRCET::ProcessStateChanged\n");
    m_processStateChanged = TRUE;
    SetEvent(m_threadControlEvent);
    m_cordb->UnlockProcessList();
}


//---------------------------------------------------------------------------------------
// Primary loop of the Runtime Controller event thread.  This routine loops during the
// debug session taking IPC events from the IPC block and calling out to process them.
//
// Arguments:
//    None.
//
// Return Value:
//    None.
//
// Notes:
//    @dbgtodo shim: eventually hoist the entire RCET into the shim.
//---------------------------------------------------------------------------------------
void CordbRCEventThread::ThreadProc()
{
    HANDLE         waitSet[MAXIMUM_WAIT_OBJECTS];
    CordbProcess * rgProcessSet[MAXIMUM_WAIT_OBJECTS];
    unsigned int   waitCount;

#ifdef _DEBUG
    memset(&rgProcessSet, NULL, MAXIMUM_WAIT_OBJECTS * sizeof(CordbProcess *));
    memset(&waitSet, NULL, MAXIMUM_WAIT_OBJECTS * sizeof(HANDLE));
#endif


    // First event to wait on is always the thread control event.
    waitSet[0] = m_threadControlEvent;
    rgProcessSet[0] = NULL;
    waitCount = 1;

    while (m_run)
    {
        DWORD dwStatus = WaitForMultipleObjectsEx(waitCount, waitSet, FALSE, 2000, FALSE);

        if (dwStatus == WAIT_FAILED)
        {
            STRESS_LOG1(LF_CORDB, LL_INFO10000, "CordbRCEventThread::ThreadProc WaitFor"
                        "MultipleObjects failed: 0x%x\n", GetLastError());
        }
#ifdef _DEBUG
        else if ((dwStatus >= WAIT_OBJECT_0) && (dwStatus < WAIT_OBJECT_0 + waitCount) && m_run)
        {
            // Got an event. Figure out which process it came from.
            unsigned int procNumber = dwStatus - WAIT_OBJECT_0;

            if (procNumber != 0)
            {
                // @dbgtodo shim: rip all of this out. Leave the assert in for now to verify that we're not accidentally
                // going down this codepath. Once we rip this out, we can also simplify some of the code below.
                // Notification events  (including Sync-complete) should be coming from Win32 event thread via
                // V3 pipeline.
                _ASSERTE(!"Shouldn't be here");

            }
        }
#endif

        // Empty any queued work items.
        DrainWorkerQueue();

        // Check a flag to see if we need to update our list of processes to wait on.
        if (m_processStateChanged)
        {
            STRESS_LOG0(LF_CORDB, LL_INFO1000, "RCET::TP: refreshing process list.\n");

            unsigned int i;

            //
            // free the old wait list
            //
            for (i = 1; i < waitCount; i++)
            {
                rgProcessSet[i]->InternalRelease();
            }

            // Pass 1: iterate the hash of all processes and collect the unsynchronized ones into the wait list.
            // Note that Stop / Continue can still be called on a different thread while we're doing this.
            m_cordb->LockProcessList();
            m_processStateChanged = FALSE;

            waitCount = 1;

            CordbSafeHashTable<CordbProcess> * pHashTable = m_cordb->GetProcessList();
            HASHFIND hashFind;
            CordbProcess * pProcess;

            for (pProcess =  pHashTable->FindFirst(&hashFind); pProcess != NULL; pProcess = pHashTable->FindNext(&hashFind))
            {
                _ASSERTE(waitCount < MAXIMUM_WAIT_OBJECTS);

                if( waitCount >= MAXIMUM_WAIT_OBJECTS )
                {
                    break;
                }

                // Only listen to unsynchronized processes. Processes that are synchronized will not send events without
                // being asked by us first, so there is no need to async listen to them.
                //
                // Note: if a process is not synchronized then there is no way for it to transition to the syncrhonized
                // state without this thread receiving an event and taking action. So there is no need to lock the
                // per-process mutex when checking the process's synchronized flag here.
                if (!pProcess->GetSynchronized() && pProcess->IsSafeToSendEvents())
                {
                    STRESS_LOG2(LF_CORDB, LL_INFO1000, "RCET::TP: listening to process 0x%x(%d)\n",
                                pProcess->m_id, pProcess->m_id);

                    waitSet[waitCount] = pProcess->m_leftSideEventAvailable;
                    rgProcessSet[waitCount] = pProcess;
                    rgProcessSet[waitCount]->InternalAddRef();
                    waitCount++;
                }
            }

            m_cordb->UnlockProcessList();

            // Pass 2: for each process that we placed in the wait list, determine if there are any existing queued
            // events that need to be flushed.

            // Start i at 1 to skip the control event...
            i = 1;

            while(i < waitCount)
            {
                pProcess = rgProcessSet[i];

                // Take the process lock so we can check the queue safely
                pProcess->Lock();

                // Now that we've just locked the processes, we can safely inspect it and dispatch events.
                // The process may have changed since when we first added it to the process list in Pass 1,
                // so we can't make any assumptions about whether it's sync, live, or exiting.

                // Flush the queue if necessary. Note, we only do this if we've actually received a SyncComplete message
                // from this process. If we haven't received a SyncComplete yet, then we don't attempt to drain any
                // queued events yet. They'll be drained when the SyncComplete event is actually received.
                if (pProcess->GetSyncCompleteRecv() &&
                    (pProcess->GetShim() != NULL) &&
                    !pProcess->GetSynchronized())
                {
                    if (pProcess->GetShim()->GetManagedEventQueue()->IsEmpty())
                    {
                        // Effectively what we are doing here is to continue everything without actually
                        // handling an event.  We can get here if the event raised by the LS is a duplicate
                        // creation event, which the shim discards without adding it to the event queue.
                        // See code:ShimProcess::IsDuplicateCreationEvent.
                        //
                        // To continue, we need to increment the stop count first.  Also, we can't call
                        // Continue() while holding the process lock.
                        pProcess->SetSynchronized(true);
                        pProcess->IncStopCount();
                        pProcess->Unlock();
                        pProcess->ContinueInternal(FALSE);
                        pProcess->Lock();
                    }
                    else
                    {
                        // This may toggle the process-lock
                        FlushQueuedEvents(pProcess);
                    }
                }

                // Flushing could have left the process synchronized...
                // Common case is if the callback didn't call Continue().
                if (pProcess->GetSynchronized())
                {
                    // remove the process from the wait list by moving all the other processes down one.
                    if ((i + 1) < waitCount)
                    {
                        memcpy(&rgProcessSet[i], &(rgProcessSet[i+1]), sizeof(rgProcessSet[0]) * (waitCount - i - 1));
                        memcpy(&waitSet[i], &waitSet[i+1], sizeof(waitSet[0]) * (waitCount - i - 1));
                    }

                    // drop the count of processes to wait on
                    waitCount--;

                    pProcess->Unlock();

                    // make sure to release the reference we added when the process was added to the wait list.
                    pProcess->InternalRelease();

                    // We don't have to increment i because we've copied the next element into
                    // the current value at i.
                }
                else
                {
                    // Even after flushing, its still not syncd, so leave it in the wait list.
                    pProcess->Unlock();

                    // Increment i normally.
                    i++;
                }
            }
        } // end ProcessStateChanged
    }  // while (m_run)

#ifdef _DEBUG_IMPL
    // We intentionally return while leaking some CordbProcess objects inside
    // rgProcessSet, in some cases (e.g., I've seen this happen when detaching from a
    // debuggee almost immediately after attaching to it). In the future, we should
    // really consider not leaking these anymore. However, I'm unsure how safe it is to just
    // go and InternalRelease() those guys, as above we intentionally DON'T release them when
    // they're not synchronized. So for now, to make debug builds happy, exclude those
    // references when we run CheckMemLeaks() later on. In our next side-by-side release,
    // consider actually doing InternalRelease() on the remaining CordbProcesses on
    // retail, and then we can remove the following loop.
    for (UINT i=1; i < waitCount; i++)
    {
        InterlockedDecrement(&Cordb::s_DbgMemTotalOutstandingInternalRefs);
    }
#endif //_DEBUG_IMPL
}


//
// This is the thread's real thread proc. It simply calls to the
// thread proc on the given object.
//
/*static*/
DWORD WINAPI CordbRCEventThread::ThreadProc(LPVOID parameter)
{
    CordbRCEventThread * pThread = (CordbRCEventThread *) parameter;

    INTERNAL_THREAD_ENTRY(pThread);
    pThread->ThreadProc();
    return 0;
}

template<typename T>
InterlockedStack<T>::InterlockedStack()
{
    m_pHead = NULL;
}

template<typename T>
InterlockedStack<T>::~InterlockedStack()
{
    // This is an arbitrary choice. We expect the stacks be drained.
    _ASSERTE(m_pHead == NULL);
}

// Thread safe pushes + pops.
// Many threads can push simultaneously.
// Only 1 thread can pop.
template<typename T>
void InterlockedStack<T>::Push(T * pItem)
{
    // InterlockedCompareExchangePointer(&dest, ex, comp).
    // Really behaves like:
    //     val = *dest;
    //     if (*dest == comp) { *dest = ex; }
    //     return val;
    //
    // We can do a thread-safe assign { comp = dest; dest = ex } via:
    //     do { comp = dest } while (ICExPtr(&dest, ex, comp) != comp));


    do
    {
        pItem->m_next = m_pHead;
    }
    while(InterlockedCompareExchangeT(&m_pHead, pItem, pItem->m_next) != pItem->m_next);
}

// Returns NULL on empty,
// else returns the head of the list.
template<typename T>
T * InterlockedStack<T>::Pop()
{
    if (m_pHead == NULL)
    {
        return NULL;
    }

    // This allows 1 thread to Pop() and race against N threads doing a Push().
    T * pItem = NULL;
    do
    {
        pItem = m_pHead;
    } while(InterlockedCompareExchangeT(&m_pHead, pItem->m_next, pItem) != pItem);

    return pItem;
}


// RCET will take ownership of this item and delete it.
// This can be done w/o taking any locks (thus it can be called from any lock context)
// This may race w/ the RCET draining the queue.
void CordbRCEventThread::QueueAsyncWorkItem(RCETWorkItem * pItem)
{
    // @todo -
    // Non-blocking insert into queue.

    _ASSERTE(pItem != NULL);

    m_WorkerStack.Push(pItem);

    // Ping the RCET so that it drains the queue.
    SetEvent(m_threadControlEvent);
}

// Execute & delete all workitems in the queue.
// This can be done w/o taking any locks. (though individual items may take locks).
void CordbRCEventThread::DrainWorkerQueue()
{
    _ASSERTE(IsRCEventThread());

    while(true)
    {
        RCETWorkItem* pCur = m_WorkerStack.Pop();
        if (pCur == NULL)
        {
            break;
        }

        pCur->Do();
        delete pCur;
    }
}


//---------------------------------------------------------------------------------------
// Wait for an reply from the debuggee.
//
// Arguments:
//    pProcess - process for debuggee.
//    pAppDomain - not used.
//    pEvent - caller-allocated event to be filled out.
//             This is expected to be at least as big as CorDBIPC_BUFFER_SIZE.
//
// Return Value:
//    S_OK on success. else failure.
//
// Assumptions:
//    Caller allocates
//
// Notes:
//   WaitForIPCEventFromProcess waits for an event from just the specified
//   process. This should only be called when the process is in a synchronized
//   state, which ensures that the RCEventThread isn't listening to the
//   process's event, too, which would get confusing.
//
//   @dbgtodo - this function should eventually be obsolete once everything
//   is using DAC calls instead of helper-thread.
//
//---------------------------------------------------------------------------------------
HRESULT CordbRCEventThread::WaitForIPCEventFromProcess(CordbProcess * pProcess,
                                                       CordbAppDomain * pAppDomain,
                                                       DebuggerIPCEvent * pEvent)
{
    CORDBRequireProcessStateOKAndSync(pProcess, pAppDomain);

    DWORD dwStatus;
    HRESULT hr = S_OK;

    do
    {
        dwStatus = SafeWaitForSingleObject(pProcess,
                                           pProcess->m_leftSideEventAvailable,
                                           CordbGetWaitTimeout());

        if (pProcess->m_terminated)
        {
            return CORDBG_E_PROCESS_TERMINATED;
        }
        // If we timeout because we're waiting for an uncontinued OOB event, we need to just keep waiting.
    } while ((dwStatus == WAIT_TIMEOUT) && pProcess->IsWaitingForOOBEvent());




    if (dwStatus == WAIT_OBJECT_0)
    {
        pProcess->CopyRCEventFromIPCBlock(pEvent);

        EX_TRY
        {
            pProcess->MarshalManagedEvent(pEvent);

            STRESS_LOG4(LF_CORDB, LL_INFO1000, "CRCET::SIPCE: Got %s for AD 0x%x, proc 0x%x(%d)\n",
                        IPCENames::GetName(pEvent->type),
                        VmPtrToCookie(pEvent->vmAppDomain),
                        pProcess->m_id,
                        pProcess->m_id);

        }
        EX_CATCH_HRESULT(hr)

        SetEvent(pProcess->m_leftSideEventRead);

        return hr;
    }
    else if (dwStatus == WAIT_TIMEOUT)
    {
        //
        // If we timed out, check the left side to see if it is in the
        // unrecoverable error mode. If it is, return the HR from the
        // left side that caused the error. Otherwise, return that we timed
        // out and that we don't really know why.
        //
        HRESULT realHR = ErrWrapper(CORDBG_E_TIMEOUT);

        hr = pProcess->CheckForUnrecoverableError();

        if (hr == S_OK)
        {
            CORDBSetUnrecoverableError(pProcess, realHR, 0);
            return realHR;
        }
        else
            return hr;
    }
    else
    {
        _ASSERTE(dwStatus == WAIT_FAILED);

        hr = HRESULT_FROM_GetLastError();

        CORDBSetUnrecoverableError(pProcess, hr, 0);

        return hr;
    }
}


//
// Start actually creates and starts the thread.
//
HRESULT CordbRCEventThread::Start()
{
    if (m_threadControlEvent == NULL)
    {
        return E_INVALIDARG;
    }

    m_thread = CreateThread(NULL,
                            0,
                            &CordbRCEventThread::ThreadProc,
                            (LPVOID) this,
                            0,
                            &m_threadId);

    if (m_thread == NULL)
    {
        return HRESULT_FROM_GetLastError();
    }

    return S_OK;
}


//
// Stop causes the thread to stop receiving events and exit. It
// waits for it to exit before returning.
//
HRESULT CordbRCEventThread::Stop()
{
    if (m_thread != NULL)
    {
        LOG((LF_CORDB, LL_INFO100000, "CRCET::Stop\n"));

        m_run = FALSE;

        SetEvent(m_threadControlEvent);

        DWORD ret = WaitForSingleObject(m_thread, INFINITE);

        if (ret != WAIT_OBJECT_0)
        {
            return HRESULT_FROM_GetLastError();
        }
    }

    m_cordb.Clear();

    return S_OK;
}


/* ------------------------------------------------------------------------- *
 * Win32 Event Thread class
 * ------------------------------------------------------------------------- */

enum
{
    W32ETA_NONE              = 0,
    W32ETA_CREATE_PROCESS    = 1,
    W32ETA_ATTACH_PROCESS    = 2,
    W32ETA_CONTINUE          = 3,
    W32ETA_DETACH            = 4
};



//---------------------------------------------------------------------------------------
// Constructor
//
// Arguments:
//    pCordb - Pointer to the owning cordb object for this event thread.
//    pShim - Pointer to the shim for supporting V2 debuggers on V3 architecture.
//
//---------------------------------------------------------------------------------------
CordbWin32EventThread::CordbWin32EventThread(
    Cordb * pCordb,
    ShimProcess * pShim
    ) :
    m_thread(NULL), m_threadControlEvent(NULL),
    m_actionTakenEvent(NULL), m_run(TRUE),
    m_action(W32ETA_NONE)
{
    m_cordb.Assign(pCordb);
    _ASSERTE(pCordb != NULL);

    m_pShim = pShim;

    m_pNativePipeline = NULL;
}


//
// Destructor. Cleans up all of the open handles and such.
// This expects that the thread has been stopped and has terminated
// before being called.
//
CordbWin32EventThread::~CordbWin32EventThread()
{
    if (m_thread != NULL)
        CloseHandle(m_thread);

    if (m_threadControlEvent != NULL)
        CloseHandle(m_threadControlEvent);

    if (m_actionTakenEvent != NULL)
        CloseHandle(m_actionTakenEvent);

    if (m_pNativePipeline != NULL)
    {
        m_pNativePipeline->Delete();
        m_pNativePipeline = NULL;
    }

    m_sendToWin32EventThreadMutex.Destroy();
}


//
// Init sets up all the objects that the thread will need to run.
//
HRESULT CordbWin32EventThread::Init()
{
    if (m_cordb == NULL)
        return E_INVALIDARG;

    m_sendToWin32EventThreadMutex.Init("Win32-Send lock", RSLock::cLockFlat, RSLock::LL_WIN32_SEND_LOCK);

    m_threadControlEvent = WszCreateEvent(NULL, FALSE, FALSE, NULL);
    if (m_threadControlEvent == NULL)
        return HRESULT_FROM_GetLastError();

    m_actionTakenEvent = WszCreateEvent(NULL, FALSE, FALSE, NULL);
    if (m_actionTakenEvent == NULL)
        return HRESULT_FROM_GetLastError();

    m_pNativePipeline = NewPipelineWithDebugChecks();
    if (m_pNativePipeline == NULL)
    {
        return E_OUTOFMEMORY;
    }

    return S_OK;
}

//
// Main function of the Win32 Event Thread
//
void CordbWin32EventThread::ThreadProc()
{
#if defined(RSCONTRACTS)
    DbgRSThread::GetThread()->SetThreadType(DbgRSThread::cW32ET);

    // The win32 ET conceptually holds a lock (all threads do).
    DbgRSThread::GetThread()->TakeVirtualLock(RSLock::LL_WIN32_EVENT_THREAD);
#endif

    // In V2, the debuggee decides what to do if the debugger rudely exits / detaches. (This is
    // handled by host policy). With the OS native-debuggging pipeline, the debugger by default
    // kills the debuggee if it exits. To emulate V2 behavior, we need to override that default.
    BOOL fOk = m_pNativePipeline->DebugSetProcessKillOnExit(FALSE);
    (void)fOk; //prevent "unused variable" error from GCC
    _ASSERTE(fOk);


    // Run the top-level event loop.
    Win32EventLoop();

#if defined(RSCONTRACTS)
    // The win32 ET conceptually holds a lock (all threads do).
    DbgRSThread::GetThread()->ReleaseVirtualLock(RSLock::LL_WIN32_EVENT_THREAD);
#endif
}

// Define a holder that calls code:DeleteIPCEventHelper
NEW_WRAPPER_TEMPLATE1(DeleteIPCEventHolderHelper, DeleteIPCEventHelper);
typedef DeleteIPCEventHolderHelper<DebuggerIPCEvent>  DeleteIPCEventHolder;

//---------------------------------------------------------------------------------------
//
// Helper to clean up IPCEvent before deleting it.
// This must be called after an event is marshalled via code:CordbProcess::MarshalManagedEvent
//
// Arguments:
//     pManagedEvent - managed event to delete.
//
// Notes:
//     This can delete a partially marshalled event.
//
void DeleteIPCEventHelper(DebuggerIPCEvent *pManagedEvent)
{
    CONTRACTL
    {
        // This is backout code that shouldn't need to throw.
        NOTHROW;
    }
    CONTRACTL_END;
    if (pManagedEvent == NULL)
    {
        return;
    }
    switch (pManagedEvent->type & DB_IPCE_TYPE_MASK)
    {
        // so far only this event need to cleanup.
        case DB_IPCE_MDA_NOTIFICATION:
            pManagedEvent->MDANotification.szName.CleanUp();
            pManagedEvent->MDANotification.szDescription.CleanUp();
            pManagedEvent->MDANotification.szXml.CleanUp();
            break;

        case DB_IPCE_FIRST_LOG_MESSAGE:
            pManagedEvent->FirstLogMessage.szContent.CleanUp();
            break;

        default:
            break;
    }
    delete [] (BYTE *)pManagedEvent;
}

//---------------------------------------------------------------------------------------
// Handle a CLR specific notification event.
//
// Arguments:
//    pManagedEvent - non-null pointer to a managed event.
//    pLockHolder - hold to process lock that gets toggled if this dispatches an event.
//    pCallback - callback to dispatch potential managed events.
//
// Return Value:
//    Throws on error.
//
// Assumptions:
//    Target is stopped. Record was already determined to be a CLR event.
//
// Notes:
//    This is called after caller does WaitForDebugEvent.
//    Any exception this Filter does not recognize is treated as kNotClr.
//    Currently, this includes both managed-exceptions and unmanaged ones.
//    For interop-debugging, the interop logic will handle all kNotClr and triage if
//    it's really a non-CLR exception.
//
//---------------------------------------------------------------------------------------
void CordbProcess::FilterClrNotification(
    DebuggerIPCEvent * pManagedEvent,
    RSLockHolder * pLockHolder,
    ICorDebugManagedCallback * pCallback)
{
    CONTRACTL
    {
        THROWS;
        PRECONDITION(CheckPointer(pManagedEvent));
        PRECONDITION(CheckPointer(pCallback));
        PRECONDITION(ThreadHoldsProcessLock());
    }
    CONTRACTL_END;

    // There are 3 types of events from the LS:
    // 1) Replies (eg, corresponding to WaitForIPCEvent)
    //       we need to set LSEA/wait on LSER.
    // 2) Sync-Complete (kind of like a special notification)
    //       Ping the helper
    // 3) Notifications (eg, Module-load):
    //       these are dispatched immediately.
    // 4) Left-side Startup event


    // IF we're synced, then we must be getting a "Reply".
    bool fReply = this->GetSynchronized();

    LOG((LF_CORDB, LL_INFO10000, "CP::FCN - Received event %s; fReply: %d\n",
         IPCENames::GetName(pManagedEvent->type),
         fReply));

    if (fReply)
    {
        //
        _ASSERTE(m_pShim != NULL);
        //
        // Case 1: Reply
        //

        pLockHolder->Release();
        _ASSERTE(!ThreadHoldsProcessLock());

        // Save the IPC event and wake up the thread which is waiting for it from the LS.
        GetEventChannel()->SaveEventFromLeftSide(pManagedEvent);
        SetEvent(this->m_leftSideEventAvailable);

        // Some other thread called code:CordbRCEventThread::WaitForIPCEventFromProcess, and
        // that will respond here and set the event.

        DWORD dwResult = WaitForSingleObject(this->m_leftSideEventRead, CordbGetWaitTimeout());
        pLockHolder->Acquire();
        if (dwResult != WAIT_OBJECT_0)
        {
            // The wait failed.  This is probably WAIT_TIMEOUT which suggests a deadlock/assert on
            // the RCEventThread.
            CONSISTENCY_CHECK_MSGF(false, ("WaitForSingleObject failed: %d", dwResult));
            ThrowHR(CORDBG_E_TIMEOUT);
        }
    }
    else
    {
        if (pManagedEvent->type == DB_IPCE_LEFTSIDE_STARTUP)
        {
            //
            // Case 4: Left-side startup event. We'll mark that we're attached from oop.
            //

            // Now that LS is started, we should definitely be able to instantiate DAC.
            InitializeDac();

            // @dbgtodo 'attach-bit': we don't want the debugger automatically invading the process.
            GetDAC()->MarkDebuggerAttached(TRUE);
        }
        else if (pManagedEvent->type == DB_IPCE_SYNC_COMPLETE)
        {
            // Since V3 doesn't request syncs, it shouldn't get sync-complete.
            // @dbgtodo sync: this changes when V3 can explicitly request an AsyncBreak.
            _ASSERTE(m_pShim != NULL);

            //
            // Case 2: Sync Complete
            //

            HandleSyncCompleteRecieved();
        }
        else
        {
            //
            // Case 3: Notification. This will dispatch the event immediately.
            //

            // Toggles the process-lock if it dispatches callbacks.
            HandleRCEvent(pManagedEvent, pLockHolder, pCallback);

        } // end Notification
    }
}



//
// If the thread has an unhandled managed exception, hijack it.
//
// Arguments:
//     dwThreadId - OS Thread id.
//
// Returns:
//     True if hijacked; false if not.
//
// Notes:
//     This is called from shim to emulate being synchronized at an unhandled
//     exception.
//     Other ICorDebug operations could calls this (eg, func-eval at 2nd chance).
BOOL CordbProcess::HijackThreadForUnhandledExceptionIfNeeded(DWORD dwThreadId)
{
    PUBLIC_API_ENTRY(this); // from Shim

    BOOL fHijacked = FALSE;
    HRESULT hr = S_OK;
    EX_TRY
    {
        RSLockHolder lockHolder(GetProcessLock());

        // OS will not execute the Unhandled Exception Filter under native debugger, so
        // we need to hijack the thread to get it to execute the UEF, which will then do
        // work for unhandled managed exceptions.
        CordbThread * pThread = TryLookupOrCreateThreadByVolatileOSId(dwThreadId);
        if (pThread != NULL)
        {
            // If the thread has a managed exception, then we should have a pThread object.

            if (pThread->HasUnhandledNativeException())
            {
                _ASSERTE(pThread->IsThreadExceptionManaged()); // should have been marked earlier

                pThread->HijackForUnhandledException();
                fHijacked = TRUE;
            }
        }
    }
    EX_CATCH_HRESULT(hr);
    SIMPLIFYING_ASSUMPTION(SUCCEEDED(hr));

    return fHijacked;
}

//---------------------------------------------------------------------------------------
// Validate the given exception record or throw.
//
// Arguments:
//    pRawRecord - non-null raw bytes of the exception
//    countBytes - number of bytes in pRawRecord buffer.
//    format - format of pRawRecord
//
// Returns:
//    A type-safe exception record from the raw buffer.
//
// Notes:
//   This is a helper for code:CordbProcess::Filter.
//   This can do consistency checks on the incoming parameters such as:
//    * verify countBytes matches the expected size for the given format.
//    * verify the format is supported.
//
//   If we let a given ICD understand multiple formats (eg, have x86 understand both Exr32 and
//    Exr64), this would be the spot to allow the conversion.
//
const EXCEPTION_RECORD * CordbProcess::ValidateExceptionRecord(
        const BYTE pRawRecord[],
        DWORD countBytes,
        CorDebugRecordFormat format)
{
    ValidateOrThrow(pRawRecord);

    //
    // Check format against expected platform.
    //

    // @dbgtodo - , cross-plat: Once we do cross-plat, these should be based off target-architecture not host's.
#if defined(_WIN64)
    if (format != FORMAT_WINDOWS_EXCEPTIONRECORD64)
    {
        ThrowHR(E_INVALIDARG);
    }
#else
    if (format != FORMAT_WINDOWS_EXCEPTIONRECORD32)
    {
        ThrowHR(E_INVALIDARG);
    }
#endif

    // @dbgtodo cross-plat: once we do cross-plat, need to use correct EXCEPTION_RECORD variant.
    if (countBytes != sizeof(EXCEPTION_RECORD))
    {
        ThrowHR(E_INVALIDARG);
    }


    const EXCEPTION_RECORD * pRecord = reinterpret_cast<const EXCEPTION_RECORD *> (pRawRecord);

    return pRecord;
};

// Return value: S_OK or indication that no more room exists for enabled types
HRESULT CordbProcess::SetEnableCustomNotification(ICorDebugClass * pClass, BOOL fEnable)
{
    HRESULT hr = S_OK;
    PUBLIC_API_BEGIN(this); // takes the lock

    ValidateOrThrow(pClass);

    ((CordbClass *)pClass)->SetCustomNotifications(fEnable);

    PUBLIC_API_END(hr);
    return hr;
} // CordbProcess::SetEnableCustomNotification

//---------------------------------------------------------------------------------------
// Public implementation of ICDProcess4::Filter
//
// Arguments:
//    pRawRecord - non-null raw bytes of the exception
//    countBytes - number of bytes in pRawRecord buffer.
//    format - format of pRawRecord
//    dwFlags - flags providing auxillary info for exception record.
//    dwThreadId - thread that exception occurred on.
//    pCallback - callback to dispatch potential managed events on.
//    pContinueStatus - Continuation status for exception. This dictates what
//         to pass to kernel32!ContinueDebugEvent().
//
// Return Value:
//    S_OK on success.
//
// Assumptions:
//    Target is stopped.
//
// Notes:
//    The exception could be anything, including:
//    - a CLR notification,
//    - a random managed exception (both from managed code or the runtime),
//    - a non-CLR exception
//
//    This is cross-platform. The {pRawRecord, countBytes, format} describe events
//    on an arbitrary target architecture. On windows, this will be an EXCEPTION_RECORD.
//
HRESULT CordbProcess::Filter(
        const BYTE pRawRecord[],
        DWORD countBytes,
        CorDebugRecordFormat format,
        DWORD dwFlags,
        DWORD dwThreadId,
        ICorDebugManagedCallback * pCallback,
        DWORD * pContinueStatus
)
{
    HRESULT hr = S_OK;
    PUBLIC_API_BEGIN(this); // takes the lock
    {
        //
        // Validate parameters
        //

        // If we don't care about the continue status, we leave it untouched.
        ValidateOrThrow(pContinueStatus);
        ValidateOrThrow(pCallback);

        const EXCEPTION_RECORD * pRecord = ValidateExceptionRecord(pRawRecord, countBytes, format);

        DWORD dwFirstChance = (dwFlags & IS_FIRST_CHANCE);

        //
        // Deal with 2nd-chance exceptions. Don't actually hijack now (that's too invasive),
        // but mark that we have the exception in case a future operation (eg, func-eval) needs to hijack.
        //
        if (!dwFirstChance)
        {
            CordbThread * pThread = TryLookupOrCreateThreadByVolatileOSId(dwThreadId);

            // If we don't have a managed-thread object, then it certainly can't have a throwable.
            // It's possible this is still an exception from the native portion of the runtime,
            // but that's ok, we'll just treat it as a native exception.
            // This could be expensive, don't want to do it often... (definitely not on every Filter).


            // OS will not execute the Unhandled Exception Filter under native debugger, so
            // we need to hijack the thread to get it to execute the UEF, which will then do
            // work for unhandled managed exceptions.
            if ((pThread != NULL) && pThread->IsThreadExceptionManaged())
            {
                // Copy exception record for future use in case we decide to hijack.
                pThread->SetUnhandledNativeException(pRecord);
            }
            // we don't care about 2nd-chance exceptions, unless we decide to hijack it later.
        }

        //
        // Deal with CLR notifications
        //
        else if (pRecord->ExceptionCode == CLRDBG_NOTIFICATION_EXCEPTION_CODE) // Special event code
        {
            //
            // This may not be for us, or we may not have a managed thread object:
            // 1. Anybody can raise an exception with this exception code, so can't assume this belongs to us yet.
            // 2. Notifications may come on unmanaged threads if they're coming from MDAs or CLR internal events
            //    fired before the thread is created.
            //
            BYTE * pManagedEventBuffer = new BYTE[CorDBIPC_BUFFER_SIZE];
            DeleteIPCEventHolder pManagedEvent(reinterpret_cast<DebuggerIPCEvent *>(pManagedEventBuffer));

            bool fOwner = CopyManagedEventFromTarget(pRecord, pManagedEvent);
            if (fOwner)
            {
                // This toggles the lock if it dispatches callbacks
                FilterClrNotification(pManagedEvent, GET_PUBLIC_LOCK_HOLDER(), pCallback);

                // Cancel any notification events from target. These are just supposed to notify ICD and not
                // actually be real exceptions in the target.
                // Canceling here also prevents a VectoredExceptionHandler in the target from picking
                // up exceptions for the CLR.
                *pContinueStatus = DBG_CONTINUE;
            }

            // holder will invoke DeleteIPCEventHelper(pManagedEvent).
        }

    }
    PUBLIC_API_END(hr);
    // we may not find the correct mscordacwks so fail gracefully
    _ASSERTE(SUCCEEDED(hr) || (hr != HRESULT_FROM_WIN32(ERROR_MOD_NOT_FOUND)));

    return hr;
}

//---------------------------------------------------------------------------------------
// Wrapper to invoke ICorDebugMutableDataTarget::ContinueStatusChanged
//
// Arguments:
//   dwContinueStatus - new continue status
//
// Returns:
//   None. Throw on error.
//
// Notes:
//   Initial continue status is returned from code:CordbProcess::Filter.
//   Some operations (mainly hijacking on a 2nd-chance exception), may need to
//   override that continue status.
//   ICorDebug operations invoke a callback on the data-target to notify the debugger
//   of a change in status. Debugger may fail the request.
//
void CordbProcess::ContinueStatusChanged(DWORD dwThreadId, CORDB_CONTINUE_STATUS dwContinueStatus)
{
    HRESULT hr = m_pMutableDataTarget->ContinueStatusChanged(dwThreadId, dwContinueStatus);
    IfFailThrow(hr);
}

//---------------------------------------------------------------------------------------
// Request a synchronization to occur after a debug event is dispatched.
//
// Note:
//    This is called in response to a managed debug event, and so we know that we have
//    a worker thread in the process (the one that just sent the event!)
//    This can not be called asynchronously.
//---------------------------------------------------------------------------------------
void CordbProcess::RequestSyncAtEvent()
{
    GetDAC()->RequestSyncAtEvent();
}

//---------------------------------------------------------------------------------------
//
// Primary loop of the Win32 debug event thread.
//
//
// Arguments:
//    None.
//
// Return Value:
//    None.
//
// Notes:
//    This is it, you've found it, the main guy.  This function loops as long as the
//    debugger is around calling the OS WaitForDebugEvent() API.  It takes the OS Debug
//    Event and filters it thru the right-side, continuing the process if not recognized.
//
// @dbgtodo shim: this will become part of the shim.
//---------------------------------------------------------------------------------------
void CordbWin32EventThread::Win32EventLoop()
{
    // This must be called from the win32 event thread.
    _ASSERTE(IsWin32EventThread());

    LOG((LF_CORDB, LL_INFO1000, "W32ET::W32EL: entered win32 event loop\n"));


    DEBUG_EVENT event;

    // Allow the timeout for WFDE to be adjustable. Default to 25 ms based off perf numbers (see issue VSWhidbey 132368).
    DWORD dwWFDETimeout = CLRConfig::GetConfigValue(CLRConfig::UNSUPPORTED_DbgWFDETimeout);

    while (m_run)
    {
        BOOL fEventAvailable = FALSE;

        // We should not have any locks right now.


        // Have to wait on 2 sources:
        // WaitForMultipleObjects - ping for messages (create, attach, Continue, detach) and also
        //    process exits in the managed-only case.
        // Native Debug Events - This is a huge perf hit so we want to avoid it whenever we can.
        //    Only wait on these if we're interop debugging and if the process is not frozen.
        //    A frozen process can't send any debug events, so don't bother looking for them.


        unsigned int cWaitCount = 1;

        HANDLE rghWaitSet[2];

        rghWaitSet[0] = m_threadControlEvent;

        DWORD dwWaitTimeout = INFINITE;

        if (m_pProcess != NULL)
        {
            // Process is always built on Native debugging pipeline, so it needs to always be prepared to call WFDE
            // As an optimization, if the target is stopped, then we can avoid calling WFDE.
            {
#ifndef FEATURE_INTEROP_DEBUGGING
                // Managed-only, never win32 stopped, so always check for an event.
                dwWaitTimeout = 0;
                fEventAvailable = m_pNativePipeline->WaitForDebugEvent(&event, dwWFDETimeout, m_pProcess);
#else
                // Wait for a Win32 debug event from any processes that we may be attached to as the Win32 debugger.
                const bool fIsWin32Stopped = (m_pProcess->m_state & CordbProcess::PS_WIN32_STOPPED) != 0;
                const bool fSkipWFDE = fIsWin32Stopped;


                const bool fIsInteropDebugging = m_pProcess->IsInteropDebugging();
                (void)fIsInteropDebugging; //prevent "unused variable" error from GCC

                // Assert checks
                _ASSERTE(fIsInteropDebugging == m_pShim->IsInteropDebugging());

                if (!fSkipWFDE)
                {
                    dwWaitTimeout = 0;
                    fEventAvailable = m_pNativePipeline->WaitForDebugEvent(&event, dwWFDETimeout, m_pProcess);
                }
                else
                {
                    // If we're managed-only debugging, then the process should always be running,
                    // which means we always need to be calling WFDE to pump potential debug events.
                    // If we're interop-debugging, then the process can be stopped at a native-debug event,
                    // in which case we don't have to call WFDE until we resume it again.
                    // So we can only skip the WFDE when we're interop-debugging.
                    _ASSERTE(fIsInteropDebugging);
                }
#endif // FEATURE_INTEROP_DEBUGGING
            }


        } // end m_pProcess != NULL

#if defined(FEATURE_INTEROP_DEBUGGING)
        // While interop-debugging, the process may get killed rudely underneath us, even if we haven't
        // continued the last debug event. In such cases, The process object will get signalled normally.
        // If we didn't just get a native-exitProcess event, then listen on the process handle for exit.
        // (this includes all managed-only debugging)
        // It's very important to establish this before we go into the WaitForMutlipleObjects below
        // because the debuggee may exit while we're sitting in that loop (waiting for the debugger to call Continue).
        bool fDidNotJustGetExitProcessEvent = !fEventAvailable || (event.dwDebugEventCode != EXIT_PROCESS_DEBUG_EVENT);
#else
        // In non-interop scenarios, we'll never get any native debug events, let alone an ExitProcess native event.
        bool fDidNotJustGetExitProcessEvent = true;
#endif // FEATURE_INTEROP_DEBUGGING


        // The m_pProcess handle will get nulled out after we process the ExitProcess event, and
        // that will ensure that we only wait for an Exit event once.
        if ((m_pProcess != NULL) && fDidNotJustGetExitProcessEvent)
        {
            rghWaitSet[1] = m_pProcess->UnsafeGetProcessHandle();
            cWaitCount = 2;
        }

        // See if any process that we aren't attached to as the Win32 debugger have exited. (Note: this is a
        // polling action if we are also waiting for Win32 debugger events. We're also looking at the thread
        // control event here, too, to see if we're supposed to do something, like attach.
        DWORD dwStatus = WaitForMultipleObjectsEx(cWaitCount, rghWaitSet, FALSE, dwWaitTimeout, FALSE);

        _ASSERTE((dwStatus == WAIT_TIMEOUT) || (dwStatus < cWaitCount));

        if (!m_run)
        {
            _ASSERTE(m_action == W32ETA_NONE);
            break;
        }

        LOG((LF_CORDB, LL_INFO100000, "W32ET::W32EL - got event , ret=%d, has w32 dbg event=%d\n",
             dwStatus, fEventAvailable));

        // If we haven't timed out, or if it wasn't the thread control event
        // that was set, then a process has
        // exited...
        if ((dwStatus != WAIT_TIMEOUT) && (dwStatus != WAIT_OBJECT_0))
        {
            // Grab the process that exited.
            _ASSERTE((dwStatus - WAIT_OBJECT_0) == 1);
            ExitProcess(false); // not detach
            fEventAvailable = false;
        }
        // Should we create a process?
        else if (m_action == W32ETA_CREATE_PROCESS)
        {
            CreateProcess();
        }
        // Should we attach to a process?
        else if (m_action == W32ETA_ATTACH_PROCESS)
        {
            AttachProcess();
        }
        // Should we detach from a process?
        else if (m_action == W32ETA_DETACH)
        {
            ExitProcess(true); // detach case

            // Once we detach, we don't need to continue any outstanding event.
            // So act like we never got the event.
            fEventAvailable = false;
            PREFIX_ASSUME(m_pProcess == NULL); // W32 cleared process pointer
        }

#ifdef FEATURE_INTEROP_DEBUGGING
        // Should we continue the process?
        else if (m_action == W32ETA_CONTINUE)
        {
            HandleUnmanagedContinue();
        }
#endif // FEATURE_INTEROP_DEBUGGING

        // We don't need to sweep the FCH threads since we never hijack a thread in cooperative mode.


        // Only process an event if one is available.
        if (!fEventAvailable)
        {
            continue;
        }

        // The only ref we have is the one in the ProcessList hash;
        // If we dispatch an ExitProcess event, we may even lose that.
        // But since the CordbProcess is our parent object, we know it won't go away until
        // it neuters us, so we can safely proceed.
        // Find the process this event is for.
        PREFIX_ASSUME(m_pProcess != NULL);
        _ASSERTE(m_pProcess->m_id == GetProcessId(&event)); // should only get events for our proc
        g_pRSDebuggingInfo->m_MRUprocess = m_pProcess;

        // Must flush the dac cache since we were just running.
        m_pProcess->ForceDacFlush();

        // So we've filtered out CLR events.
        // Let the shim handle the remaining events. This will call back into Filter() if appropriate.
        // This will also ensure the debug event gets continued.
        HRESULT hrShim = S_OK;
        {
            PUBLIC_CALLBACK_IN_THIS_SCOPE0_NO_LOCK(NULL);
            hrShim = m_pShim->HandleWin32DebugEvent(&event);
        }
        // Any errors from the shim (eg. failure to load DAC) are unrecoverable
        SetUnrecoverableIfFailed(m_pProcess, hrShim);

    } // loop

    LOG((LF_CORDB, LL_INFO1000, "W32ET::W32EL: exiting event loop\n"));

    return;
}

//---------------------------------------------------------------------------------------
//
// Returns if the current thread is the win32 thread.
//
// Return Value:
//    true iff this is the win32 event thread.
//
//---------------------------------------------------------------------------------------
bool CordbProcess::IsWin32EventThread()
{
    _ASSERTE((m_pShim != NULL) || !"Don't check win32 event thread in V3 cases");
    return m_pShim->IsWin32EventThread();
}

//---------------------------------------------------------------------------------------
// Call when the sync complete event is received and can be processed.
//
// Notes:
//    This is called when the RS gets the sync-complete from the LS and can process it.
//
//    This has a somewhat elaborate contract to fill between Interop-debugging, Async-Break, draining the
//    managed event-queue, and coordinating with the dispatch thread (RCET).
//
//    @dbgtodo - this should eventually get hoisted into the shim.
void CordbProcess::HandleSyncCompleteRecieved()
{
    _ASSERTE(ThreadHoldsProcessLock());

    this->SetSyncCompleteRecv(true);

    // If some thread is waiting for the process to sync, notify that it can go now.
    if (this->m_stopRequested)
    {
        this->SetSynchronized(true);
        SetEvent(this->m_stopWaitEvent);
    }
    else
    {
        // Note: we set the m_stopWaitEvent all the time and leave it high while we're stopped. This
        // must be done after we've checked m_stopRequested.
        SetEvent(this->m_stopWaitEvent);

        // Otherwise, simply mark that the state of the process has changed and let the
        // managed event dispatch logic take over.
        //
        // Note: process->m_synchronized remains false, which indicates to the RC event
        // thread that it can dispatch the next managed event.
        m_cordb->ProcessStateChanged();
    }
}


#ifdef FEATURE_INTEROP_DEBUGGING

//---------------------------------------------------------------------------------------
//
// Get (create if needed) the unmanaged thread for an unmanaged debug event.
//
// Arguments:
//    event - native debug event.
//
// Return Value:
//    Unmanaged thread corresponding to the native debug event.
//
//
// Notes:
//    Thread may be newly allocated, or may be existing. CordbProcess holds
//    list of all CordbUnmanagedThreads, and will handle freeing memory.
//
//---------------------------------------------------------------------------------------
CordbUnmanagedThread * CordbProcess::GetUnmanagedThreadFromEvent(const DEBUG_EVENT * pEvent)
{
    _ASSERTE(ThreadHoldsProcessLock());
    HRESULT hr;

    CordbUnmanagedThread * pUnmanagedThread = NULL;

    // Remember newly created threads.
    if (pEvent->dwDebugEventCode == CREATE_PROCESS_DEBUG_EVENT)
    {
        // We absolutely should have an unmanaged callback by this point.
        // That means that the client debugger should have called ICorDebug::SetUnmanagedHandler by now.
        // However, we can't actually enforce that (see comment  in ICorDebug::SetUnmanagedHandler for details),
        // so we do a runtime check to check this.
        // This is an extremely gross API misuse and an issue in the client if the callback is not set yet.
        // Without the unmanaged callback, we absolutely can't do interop-debugging. We assert (checked builds) and
        // dispatch unrecoverable error (retail builds) to avoid an AV.


        if (this->m_cordb->m_unmanagedCallback == NULL)
        {
            CONSISTENCY_CHECK_MSGF((this->m_cordb->m_unmanagedCallback != NULL),
                ("GROSS API misuse!!\nNo unmanaged callback set by the time we've received CreateProcess debug event for proces 0x%x.\n",
                pEvent->dwProcessId));

            CORDBSetUnrecoverableError(this, CORDBG_E_INTEROP_NOT_SUPPORTED, 0);

            // Returning NULL will tell caller not to dispatch event to client. We have no callback object to dispatch upon.
            return NULL;
        }

        pUnmanagedThread = this->HandleUnmanagedCreateThread(pEvent->dwThreadId,
                                                             pEvent->u.CreateProcessInfo.hThread,
                                                             pEvent->u.CreateProcessInfo.lpThreadLocalBase);

        // Managed-attach won't start until after Cordbg continues from the loader-bp.
    }
    else if (pEvent->dwDebugEventCode == CREATE_THREAD_DEBUG_EVENT)
    {
        pUnmanagedThread = this->HandleUnmanagedCreateThread(pEvent->dwThreadId,
                                                             pEvent->u.CreateThread.hThread,
                                                             pEvent->u.CreateThread.lpThreadLocalBase);

        BOOL fBlockExists = FALSE;
        hr = S_OK;
        EX_TRY
        {
            // See if we have the debugger control block yet...

            this->GetEventBlock(&fBlockExists);

            // If we have the debugger control block, and if that control block has the address of the thread proc for
            // the helper thread, then we're initialized enough on the Left Side to recgonize the helper thread based on
            // its thread proc's address.
            if (this->GetDCB() != NULL)
            {
                // get the latest LS DCB information
                UpdateRightSideDCB();
                if ((this->GetDCB()->m_helperThreadStartAddr != NULL) && (pUnmanagedThread != NULL))
                {
                    void * pStartAddr = pEvent->u.CreateThread.lpStartAddress;

                    if (pStartAddr == this->GetDCB()->m_helperThreadStartAddr)
                    {
                        // Remember the ID of the helper thread.
                        this->m_helperThreadId = pEvent->dwThreadId;

                        LOG((LF_CORDB, LL_INFO1000, "W32ET::W32EL: Left Side Helper Thread is 0x%x\n", pEvent->dwThreadId));
                    }
                }
            }
        }
        EX_CATCH_HRESULT(hr)
        {
            if (fBlockExists && FAILED(hr))
            {
                _ASSERTE(IsLegalFatalError(hr));
                // Send up the DebuggerError event
                this->UnrecoverableError(hr, 0, NULL, 0);

                // Kill the process.
                // RS will pump events until we LS process exits.
                TerminateProcess(this->m_handle, hr);

                return pUnmanagedThread;
            }
        }
    }
    else
    {
        // Find the unmanaged thread that this event is for.
        pUnmanagedThread = this->GetUnmanagedThread(pEvent->dwThreadId);
    }

    return pUnmanagedThread;
}

//---------------------------------------------------------------------------------------
//
// Handle a native-debug event representing a managed sync-complete event.
//
//
// Return Value:
//    Reaction telling caller how to respond to the native-debug event.
//
// Assumptions:
//    Called within the Triage process after receiving a native-debug event.
//
//---------------------------------------------------------------------------------------
Reaction CordbProcess::TriageSyncComplete()
{
    _ASSERTE(ThreadHoldsProcessLock());

    STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::TSC: received 'sync complete' flare.\n");

    _ASSERTE(IsInteropDebugging());

    // Note: we really don't need to be suspending Runtime threads that we know have tripped
    // here. If we ever end up with a nice, quick way to know that about each unmanaged thread, then
    // we should put that to good use here.
    this->SuspendUnmanagedThreads();

    this->HandleSyncCompleteRecieved();

    // Let the process run free.
    return REACTION(cIgnore);

    // At this point, all managed threads are stopped at safe places and all unmanaged
    // threads are either suspended or hijacked. All stopped managed threads are also hard
    // suspended (due to the call to SuspendUnmanagedThreads above) except for the thread
    // that sent the sync complete flare.

    // We've handled this exception, so skip all further processing.
    UNREACHABLE();
}

//-----------------------------------------------------------------------------
// Triage a breakpoint (non-flare) on a "normal" thread.
//-----------------------------------------------------------------------------
Reaction CordbProcess::TriageBreakpoint(CordbUnmanagedThread * pUnmanagedThread, const DEBUG_EVENT * pEvent)
{
    _ASSERTE(ThreadHoldsProcessLock());

    HRESULT hr = S_OK;

    DWORD dwExCode = pEvent->u.Exception.ExceptionRecord.ExceptionCode;
    const void * pExAddress = pEvent->u.Exception.ExceptionRecord.ExceptionAddress;

    _ASSERTE(dwExCode == STATUS_BREAKPOINT);

    // There are three cases here:
    //
    // 1. The breakpoint definetly belongs to the Runtime. (I.e., a BP in our patch table that
    // is in managed code.) In this case, we continue the process with
    // DBG_EXCEPTION_NOT_HANDLED, which lets the in-process exception logic kick in as if we
    // weren't here.
    //
    // 2. The breakpoint is definetly not ours. (I.e., a BP that is not in our patch table.) We
    // pass these up as regular exception events, doing the can't stop check as usual.
    //
    // 3. We're not sure. (I.e., a BP in our patch table, but set in unmangaed code.) In this
    // case, we hijack as usual, also with can't stop check as usual.

    bool fPatchFound = false;
    bool fPatchIsUnmanaged = false;

    hr = this->FindPatchByAddress(PTR_TO_CORDB_ADDRESS(pExAddress),
                                  &fPatchFound,
                                  &fPatchIsUnmanaged);

    if (SUCCEEDED(hr))
    {
        if (fPatchFound)
        {
#ifdef _DEBUG
            // What if managed & native patch the same address? That could happen on a step out M --> U.
            {
                NativePatch * pNativePatch = GetNativePatch(pExAddress);
                SIMPLIFYING_ASSUMPTION_MSGF(pNativePatch == NULL, ("Have Managed & native patch at 0x%p", pExAddress));
            }
#endif

            // BP could be ours... if its unmanaged, then we still need to hijack, so fall
            // through to that logic. Otherwise, its ours.
            if (!fPatchIsUnmanaged)
            {
                LOG((LF_CORDB, LL_INFO1000, "W32ET::W32EL: breakpoint exception "
                     "belongs to runtime due to patch table match.\n"));

                return REACTION(cCLR);
            }
            else
            {
                LOG((LF_CORDB, LL_INFO1000, "W32ET::W32EL: breakpoint exception "
                     "matched in patch table, but its unmanaged so might hijack anyway.\n"));

                // If we're in cooperative mode, then we must have a inproc handler, and don't need to hijack
                // One way this can happen is the patch placed for a func-eval complete is hit in coop-mode.
                if (pUnmanagedThread->GetEEPGCDisabled())
                {
                    LOG((LF_CORDB, LL_INFO10000, "Already in coop-mode, don't need to hijack\n"));
                    return REACTION(cCLR);
                }
                else
                {
                    return REACTION(cBreakpointRequiringHijack);
                }
            }

            UNREACHABLE();
        }
        else // Patch not found
        {
            // If we're here, then we have a BP that's not in the managed patch table, and not
            // in the native patch list. This should be rare. Perhaps an int3 / DebugBreak() / Assert in
            // the native code stream.
            // Anyway, we don't know about this patch so we can't skip it. The only thing we can do
            // is chuck it up to Cordbg and hope they can help us. Note that this is the same case
            // we were in w. V1.

            // BP doesn't belong to CLR ... so dispatch it to Cordbg as either make it IB or OOB.
            // @todo - make the runtime 1 giant Can't stop region.
            bool fCantStop = pUnmanagedThread->IsCantStop();

#ifdef _DEBUG
            // We rarely expect a raw int3 here. Add a debug check that will assert.
            // Tests that know they don't have raw int3 can enable this regkey to get
            // extra coverage.
            static DWORD s_fBreakOnRawInt3 = -1;

            if (s_fBreakOnRawInt3 == -1)
                s_fBreakOnRawInt3 = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgBreakOnRawInt3);

            if (s_fBreakOnRawInt3)
            {
                CONSISTENCY_CHECK_MSGF(false, ("Unexpected Raw int3 at:%p on tid 0x%x (%d). CantStop=%d."
                    "This assert is used by specific tests to get extra checks."
                    "For normal cases it's ignorable and is enabled by setting DbgBreakOnRawInt3==1.",
                    pExAddress, pEvent->dwThreadId, pEvent->dwThreadId, fCantStop));
            }
#endif

            if (fCantStop)
            {
                // If we're in a can't stop region, then its OOB no matter what at this point.
                return REACTION(cOOB);
            }
            else
            {
                // PGC must be enabled if we're going to stop for an IB event.
                bool PGCDisabled = pUnmanagedThread->GetEEPGCDisabled();
                _ASSERTE(!PGCDisabled);

                // Bp is definitely not ours, and PGC is not disabled, so in-band exception.
                LOG((LF_CORDB, LL_INFO1000, "W32ET::W32EL: breakpoint exception "
                     "does not belong to the runtime due to failed patch table match.\n"));

                return REACTION(cInband);
            }

            UNREACHABLE();
        }

        UNREACHABLE();
    }
    else
    {
        // Patch table lookup failed? Only on OOM or if ReadProcessMemory fails...
        _ASSERTE(!"Patch table lookup failed!");
        CORDBSetUnrecoverableError(this, hr, 0);
        return REACTION(cOOB);
    }

    UNREACHABLE();
}

//---------------------------------------------------------------------------------------
//
// Triage a "normal" 1st chance exception on a "normal" thread.
// Not hijacked, not the helper thread, not a flare, etc.. This is the common
// case for a native exception from native code.
//
// Arguments:
//     pUnmanagedThread - Pointer to the CordbUnmanagedThread object that we want to hijack.
//     pEvent - Pointer to the debug event which contains the exception code and address.
//
// Return Value:
//     The Reaction tells if the event is in-band, out-of-band, CLR specific or ignorable.
//
//---------------------------------------------------------------------------------------
Reaction CordbProcess::Triage1stChanceNonSpecial(CordbUnmanagedThread * pUnmanagedThread, const DEBUG_EVENT * pEvent)
{
    _ASSERTE(ThreadHoldsProcessLock());
    CONTRACTL
    {
        THROWS;
    }
    CONTRACTL_END;

    HRESULT hr = S_OK;

    DWORD dwExCode = pEvent->u.Exception.ExceptionRecord.ExceptionCode;
    const void * pExAddress = pEvent->u.Exception.ExceptionRecord.ExceptionAddress;

    // This had better not be a flare. If it is, that means we have some race that unmarked
    // the hijacks.
    _ASSERTE(!ExceptionIsFlare(dwExCode, pExAddress));

    // Any first chance exception could belong to the Runtime, so long as the Runtime has actually been
    // initialized. Here we'll setup a first-chance hijack for this thread so that it can give us the
    // true answer that we need.

    // But none of those exceptions could possibly be ours unless we have a managed thread to go with
    // this unmanaged thread. A non-NULL EEThreadPtr tells us that there is indeed a managed thread for
    // this unmanaged thread, even if the Right Side hasn't received a managed ThreadCreate message yet.
    REMOTE_PTR pEEThread;
    hr = pUnmanagedThread->GetEEThreadPtr(&pEEThread);
    _ASSERTE(SUCCEEDED(hr));

    if (pEEThread == NULL)
    {
        // No managed thread, so it can't possibly belong to the runtime!
        // But it may still be in a can't-stop region (think some goofy shutdown case).
        if (pUnmanagedThread->IsCantStop())
        {
            return REACTION(cOOB);
        }
        else
        {
            return REACTION(cInband);
        }
    }



    // We have to be careful here. A Runtime thread may be in a place where we cannot let an
    // unmanaged exception stop it. For instance, an unmanaged user breakpoint set on
    // WaitForSingleObject will prevent Runtime threads from sending events to the Right Side. So at
    // various points below, we check to see if this Runtime thread is in a place were we can't let
    // it stop, and if so then we jump over to the out-of-band dispatch logic and treat this
    // exception as out-of-band. The debugger is supposed to continue from the out-of-band event
    // properly and help us avoid this problem altogether.

    // Grab a few flags from the thread's state...
    bool fThreadStepping = false;
    bool fSpecialManagedException = false;

    pUnmanagedThread->GetEEState(&fThreadStepping, &fSpecialManagedException);

    // If we've got a single step exception, and if the Left Side has indicated that it was
    // stepping the thread, then the exception is ours.
    if (dwExCode == STATUS_SINGLE_STEP)
    {
        if (fThreadStepping)
        {
            // Yup, its the Left Side that was stepping the thread...
            STRESS_LOG0(LF_CORDB, LL_INFO1000, "W32ET::W32EL: single step exception belongs to the runtime.\n");

            return REACTION(cCLR);
        }

        // Any single step that is triggered when the thread's state doesn't indicate that
        // we were stepping the thread automatically gets passed out as an unmanged event.
        STRESS_LOG0(LF_CORDB, LL_INFO1000, "W32ET::W32EL: single step exception "
             "does not belong to the runtime.\n");

        if (pUnmanagedThread->IsCantStop())
        {
            return REACTION(cOOB);
        }
        else
        {
            return REACTION(cInband);
        }

        UNREACHABLE();
    }

#ifdef CorDB_Short_Circuit_First_Chance_Ownership
    // If the runtime indicates that this is a special exception being thrown within the runtime,
    // then its ours no matter what.
    else if (fSpecialManagedException)
    {
        STRESS_LOG0(LF_CORDB, LL_INFO1000, "W32ET::W32EL: exception belongs to the runtime due to "
             "special managed exception marking.\n");

        return REACTION(cCLR);
    }
    else if ((dwExCode == EXCEPTION_COMPLUS) || (dwExCode == EXCEPTION_HIJACK))
    {
        STRESS_LOG0(LF_CORDB, LL_INFO1000,
             "W32ET::W32EL: exception belongs to Runtime due to match on built in exception code\n");

        return REACTION(cCLR);
    }
    else if (dwExCode == EXCEPTION_MSVC)
    {
        // The runtime may use C++ exceptions internally. We can still report these
        // to the debugger as long as we're outside of a can't-stop region.
        if (pUnmanagedThread->IsCantStop())
        {
            return REACTION(cCLR);
        }
        else
        {
            return REACTION(cInband);
        }
    }
    else if (dwExCode == STATUS_BREAKPOINT)
    {
        return TriageBreakpoint(pUnmanagedThread, pEvent);
    }// end BP case
#endif

    // It's not a breakpoint or single-step. Now it just comes down to the address from where
    // the exception is coming from. If it's managed, we give it back to the CLR. If it's
    // from native, then we dispatch to Cordbg.
    // We can use DAC to figure this out from Out-of-process.
    _ASSERTE(dwExCode != STATUS_BREAKPOINT); // BP were already handled.


    // Use DAC to decide if it's ours or not w/o going inproc.
    CORDB_ADDRESS address = PTR_TO_CORDB_ADDRESS(pExAddress);

    IDacDbiInterface::AddressType addrType;

    addrType = GetDAC()->GetAddressType(address);
    bool fIsCorCode =((addrType == IDacDbiInterface::kAddressManagedMethod) ||
                      (addrType == IDacDbiInterface::kAddressRuntimeManagedCode) ||
                      (addrType == IDacDbiInterface::kAddressRuntimeUnmanagedCode));

    STRESS_LOG2(LF_CORDB, LL_INFO1000, "W32ET::W32EL: IsCorCode(0x%I64p)=%d\n", address, fIsCorCode);


    if (fIsCorCode)
    {
        return REACTION(cCLR);
    }
    else
    {
        if (pUnmanagedThread->IsCantStop())
        {
            return REACTION(cOOB);
        }
        else
        {
            return REACTION(cInband);
        }
    }

    UNREACHABLE();
}

//---------------------------------------------------------------------------------------
//
// Triage a 1st-chance exception when the CLR is initialized.
//
// Arguments:
//    pUnmanagedThread - thread that the event has occurred on.
//    pEvent - native debug event for the exception that occurred that this is triaging.
//
// Return Value:
//    Reaction for how to handle this event.
//
// Assumptions:
//    Called when receiving a debug event when the process is stopped.
//
// Notes:
//    A 1st-chance event has a wide spectrum of possibility including:
//    - It may be unmanaged or managed.
//    - Or it may be an execution control exception for managed-exceution
//    - thread skipping an OOB event.
//
//---------------------------------------------------------------------------------------
Reaction CordbProcess::TriageExcep1stChanceAndInit(CordbUnmanagedThread * pUnmanagedThread,
                                                   const DEBUG_EVENT * pEvent)
{
    _ASSERTE(ThreadHoldsProcessLock());
    _ASSERTE(m_runtimeOffsetsInitialized);

    NativePatch * pNativePatch = NULL;
    DebuggerIPCRuntimeOffsets * pIPCRuntimeOffsets = &(this->m_runtimeOffsets);

    DWORD dwExCode = pEvent->u.Exception.ExceptionRecord.ExceptionCode;
    const void * pExAddress = pEvent->u.Exception.ExceptionRecord.ExceptionAddress;

    LOG((LF_CORDB, LL_INFO1000, "CP::TE1stCAI: Enter\n"));

#ifdef _DEBUG
    // Some Interop bugs involve threads that land at a bad IP. Since we're interop-debugging, we can't
    // attach a debugger to the LS. So we have some debug mode where we enable the SS flag and thus
    // produce a trace of where a thread is going.
    if (pUnmanagedThread->IsDEBUGTrace() && (dwExCode == STATUS_SINGLE_STEP))
    {
        pUnmanagedThread->ClearState(CUTS_DEBUG_SingleStep);
        LOG((LF_CORDB, LL_INFO10000, "DEBUG TRACE, thread %4x at IP: 0x%p\n", pUnmanagedThread->m_id, pExAddress));

        // Clear the exception and pretend this never happened.
        return REACTION(cIgnore);
    }
#endif

    // If we were stepping for exception retrigger and got the single step and it should be hidden then just ignore it.
    // Anything that isn't cInbandExceptionRetrigger will cause the debug event to be dequeued, stepping turned off, and
    // it will count as not retriggering
    // TODO: I don't think the IsSSFlagNeeded() check is needed here though it doesn't break anything
    if (pUnmanagedThread->IsSSFlagNeeded() && pUnmanagedThread->IsSSFlagHidden() && (dwExCode == STATUS_SINGLE_STEP))
    {
        LOG((LF_CORDB, LL_INFO10000, "CP::TE1stCAI: ignoring hidden single step\n"));
        return REACTION(cIgnore);
    }

    // Is this a breakpoint indicating that the Left Side is now synchronized?
    if ((dwExCode == STATUS_BREAKPOINT) &&
        (pExAddress == pIPCRuntimeOffsets->m_notifyRSOfSyncCompleteBPAddr))
    {
        return TriageSyncComplete();
    }
    else if ((dwExCode == STATUS_BREAKPOINT) &&
             (pExAddress == pIPCRuntimeOffsets->m_excepForRuntimeHandoffCompleteBPAddr))
    {
        _ASSERTE(!"This should be unused now");

        // This notification means that a thread that had been first-chance hijacked is now
        // finally leaving the hijack.
        STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::TE1stCAI: received 'first chance hijack handoff complete' flare.\n");

        // Let the process run.
        return REACTION(cIgnore);
    }
    else if ((dwExCode == STATUS_BREAKPOINT) &&
             (pExAddress == pIPCRuntimeOffsets->m_signalHijackCompleteBPAddr))
    {
        STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::TE1stCAI: received 'hijack complete' flare.\n");
        return REACTION(cInbandHijackComplete);
    }
    else if ((dwExCode == STATUS_BREAKPOINT) &&
             (pExAddress == m_runtimeOffsets.m_signalHijackStartedBPAddr))
    {
        STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::TE1stCAI: received 'hijack started' flare.\n");
        return REACTION(cFirstChanceHijackStarted);
    }
    else if ((dwExCode == STATUS_BREAKPOINT) && ((pNativePatch = GetNativePatch(pExAddress)) != NULL) )
    {
        // We hit a native BP placed by Cordbg.  This could happen on any thread (including helper)
        bool fCantStop = pUnmanagedThread->IsCantStop();

        // REVISIT_TODO: if the user also set a breakpoint here then we should dispatch to the debugger
        // and rely on the debugger to get us past this. Should be a rare case though.
        if (fCantStop)
        {
            // Need to skip it completely; never dispatch.
            pUnmanagedThread->SetupForSkipBreakpoint(pNativePatch);

            // Debuggee will single step over the patch, and fire a SS exception.
            // We'll then call FixupForSkipBreakpoint, and continue the process.
            return REACTION(cIgnore);
        }
        else
        {
            // Native patch in native code. A very common scenario.
            // Dispatch as an IB event to Cordbg.
            STRESS_LOG1(LF_CORDB, LL_INFO10000, "Native patch in native code (at %p), dispatching as IB event.\n", pExAddress);
            return REACTION(cInband);
        }

        UNREACHABLE();
    }

    else if ((dwExCode == STATUS_BREAKPOINT) && !IsBreakOpcodeAtAddress(pExAddress))
    {
        // If we got an int3 exception, but there's not actually an int3 at the address, then just reset the IP
        // to the address. This can happen if the int 3 is cleared after the thread has dispatched it (in which case
        // WFDE will pick it up) but before we realize it's one of ours.
        STRESS_LOG2(LF_CORDB, LL_INFO1000, "CP::TE1stCAI: Phantom Int3: Tid=0x%x, addr=%p\n", pEvent->dwThreadId, pExAddress);

        DT_CONTEXT context;

        context.ContextFlags = DT_CONTEXT_FULL;

        BOOL fSuccess = DbiGetThreadContext(pUnmanagedThread->m_handle, &context);

        _ASSERTE(fSuccess);

        if (fSuccess)
        {
            // Backup IP to point to the instruction we need to execute. Continuing from a breakpoint exception
            // continues execution at the instruction after the breakpoint, but we need to continue where the
            // breakpoint was.
            CORDbgSetIP(&context, (LPVOID) pExAddress);

            fSuccess = DbiSetThreadContext(pUnmanagedThread->m_handle, &context);
            _ASSERTE(fSuccess);
        }

        return REACTION(cIgnore);
    }
    else if (pUnmanagedThread->IsSkippingNativePatch())
    {
        // If we Single-Step over an exception, then the OS never gives us the single-step event.
        // Thus if we're skipping a native patch, we don't care what exception event we got.
        LOG((LF_CORDB, LL_INFO100000, "Done skipping native patch. Ex=0x%x\n, IsSS=%d",
             dwExCode,
             (dwExCode == STATUS_SINGLE_STEP)));

        // This is the 2nd half of skipping a native patch.
        // This could happen on any thread (including helper)
        // We've already removed the opcode and now we just finished a single-step over it.
        // So put the patch back in, and continue the process.
        pUnmanagedThread->FixupForSkipBreakpoint();

        return REACTION(cIgnore);
    }
    else if (this->IsHelperThreadWorked(pUnmanagedThread->GetOSTid()))
    {
        // We should never ever get a single-step event from the helper thread.
        CONSISTENCY_CHECK_MSGF(dwExCode != STATUS_SINGLE_STEP, (
                "Single-Step exception on helper thread (tid=0x%x/%d) in debuggee process (pid=0x%x/%d).\n"
                "For more information, attach a debuggee non-invasively to the LS to get the callstack.\n",
                pUnmanagedThread->m_id,
                pUnmanagedThread->m_id,
                this->m_id,
                this->m_id));

        // We ignore any first chance exceptions from the helper thread. There are lots of places
        // on the left side where we attempt to dereference bad object refs and such that will be
        // handled by exception handlers already in place.
        //
        // Note: we check this after checking for the sync complete notification, since that can
        // come from the helper thread.
        //
        // Note: we do let single step and breakpoint exceptions go through to the debugger for processing.
        if ((dwExCode != STATUS_BREAKPOINT) && (dwExCode != STATUS_SINGLE_STEP))
        {
            return REACTION(cCLR);
        }
        else
        {
            // Since the helper thread is part of the "can't stop" region, we should have already
            // skipped any BPs on it.
            // However, any Assert on the helper thread will hit this case.
            CONSISTENCY_CHECK_MSGF((dwExCode != STATUS_BREAKPOINT), (
                "Assert on helper thread (tid=0x%x/%d) in debuggee process (pid=0x%x/%d).\n"
                "For more information, attach a debuggee non-invasively to the LS to get the callstack.\n",
                pUnmanagedThread->m_id,
                pUnmanagedThread->m_id,
                this->m_id,
                this->m_id));

            // These breakpoint and single step exceptions have to be dispatched to the debugger as
            // out-of-band events. This tells the debugger that they must continue from these events
            // immediatly, and that no interaction with the Left Side is allowed until they do so. This
            // makes sense, since these events are on the helper thread.
            return REACTION(cOOB);
        }
        UNREACHABLE();
    }
    else if (pUnmanagedThread->IsFirstChanceHijacked() && this->ExceptionIsFlare(dwExCode, pExAddress))
    {
        _ASSERTE(!"This should be unused now");
    }
    else if (pUnmanagedThread->IsGenericHijacked())
    {
        if (this->ExceptionIsFlare(dwExCode, pExAddress))
        {
            STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::TE1stCAI: fixing up from generic hijack.\n");

            _ASSERTE(dwExCode == STATUS_BREAKPOINT);

            // Fixup the thread from the generic hijack.
            pUnmanagedThread->FixupFromGenericHijack();

            // We force continue from this flare, since its only purpose was to notify us that we had to
            // fixup the thread from a generic hijack.
            return REACTION(cIgnore);
        }
        else
        {
            // We might reach here due to the stack overflow issue, due to target
            // memory corruption, or even due to an exception thrown during hijacking

            BOOL bStackOverflow = FALSE;

            if (dwExCode == STATUS_ACCESS_VIOLATION || dwExCode == STATUS_STACK_OVERFLOW)
            {
                CORDB_ADDRESS stackLimit;
                CORDB_ADDRESS stackBase;
                if (pUnmanagedThread->GetStackRange(&stackBase, &stackLimit))
                {
                    TADDR addr = pEvent->u.Exception.ExceptionRecord.ExceptionInformation[1];
                    if (stackLimit <= addr && addr < stackBase)
                        bStackOverflow = TRUE;
                }
                else
                {
                    // to limit the impact of the change we'll consider failure to retrieve the stack
                    // bounds as stack overflow as well
                    bStackOverflow = TRUE;
                }
            }

            if (!bStackOverflow)
            {
                // generic hijack means we're in CantStop, so return cOOB
                return REACTION(cOOB);
            }

            // If generichijacked and its not a flare, and the address referenced is on the stack then we've
            // got our special stack overflow case. Take off generic hijacked, mark that the helper thread
            // is dead, throw this event on the floor, and pop anyone in SendIPCEvent out of their wait.
            pUnmanagedThread->ClearState(CUTS_GenericHijacked);

            this->m_helperThreadDead = true;

            // This only works on Windows, not on Mac.  We don't support interop-debugging on Mac anyway.
            SetEvent(m_pEventChannel->GetRightSideEventAckHandle());

            // Note: we remember that this was a second chance event from one of the special stack overflow
            // cases with CUES_ExceptionUnclearable. This tells us to force the process to terminate when we
            // continue from the event. Since for some odd reason the OS decides to re-raise this exception
            // (first chance then second chance) infinitely.

            _ASSERTE(pUnmanagedThread->HasIBEvent());

            pUnmanagedThread->IBEvent()->SetState(CUES_ExceptionUnclearable);

            //newEvent = false;
            return REACTION(cInband_NotNewEvent);
        }
    }
    else
    {
	    LOG((LF_CORDB, LL_INFO1000, "CP::TE1stCAI: Triage1stChanceNonSpecial\n"));

        Reaction r(REACTION(cOOB));
        HRESULT hrCheck = S_OK;;
        EX_TRY
        {
            r = Triage1stChanceNonSpecial(pUnmanagedThread, pEvent);
        }
        EX_CATCH_HRESULT(hrCheck);
        SIMPLIFYING_ASSUMPTION(SUCCEEDED(hrCheck));
        SetUnrecoverableIfFailed(this, hrCheck);

        return r;

    }

    // At this point, any first-chance exceptions that could be special have been handled. Any
    // first-chance exception that we're still processing at this point is destined to be
    // dispatched as an unmanaged event.
    UNREACHABLE();
}


//---------------------------------------------------------------------------------------
//
// Triage a 2nd-chance exception when the CLR is initialized.
//
// Arguments:
//    pUnmanagedThread - thread that the event has occurred on.
//    pEvent - native debug event for the exception that occurred that this is triaging.
//
// Return Value:
//    Reaction for how to handle this event.
//
// Assumptions:
//    Called when receiving a debug event when the process is stopped.
//
// Notes:
//    We already hijacked 2nd-chance managed exceptions, so this is just handling
//    some V2 Interop corner cases.
//    @dbgtodo interop: this should eventually completely go away with the V3 design.
//
//---------------------------------------------------------------------------------------
Reaction CordbProcess::TriageExcep2ndChanceAndInit(CordbUnmanagedThread * pUnmanagedThread, const DEBUG_EVENT * pEvent)
{
    _ASSERTE(ThreadHoldsProcessLock());

    DWORD dwExCode = pEvent->u.Exception.ExceptionRecord.ExceptionCode;

#ifdef _DEBUG
    // For debugging, add an extra knob that let us break on any 2nd chance exceptions.
    // Most tests don't throw 2nd-chance, so we could have this enabled most of the time and
    // catch bogus 2nd chance exceptions
    static DWORD dwNo2ndChance = -1;

    if (dwNo2ndChance == -1)
    {
        dwNo2ndChance = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgNo2ndChance);
    }

    if (dwNo2ndChance)
    {
        CONSISTENCY_CHECK_MSGF(false, ("2nd chance exception occurred on LS thread=0x%x, code=0x%08x, address=0x%p\n"
            "This assert is firing b/c you explicitly requested it by having the 'DbgNo2ndChance' knob enabled.\n"
            "Disable it to avoid asserts on 2nd chance.",
            pUnmanagedThread->m_id,
            dwExCode,
            pEvent->u.Exception.ExceptionRecord.ExceptionAddress));
    }
#endif


    // Second chance exception, Runtime initialized. It could belong to the Runtime, so we'll check. If it
    // does, then we'll hijack the thread. Otherwise, well just fall through and let it get
    // dispatched. Note: we do this so that the CLR's unhandled exception logic gets a chance to run even
    // though we've got a win32 debugger attached. But the unhandled exception logic never touches
    // breakpoint or single step exceptions, so we ignore those here, too.

    // There are strange cases with stack overflow exceptions. If a nieve application catches a stack
    // overflow exception and handles it, without resetting the guard page, then the app will get an AV when
    // it overflows the stack a second time. We will get the first chance AV, but when we continue from it the
    // OS won't run any SEH handlers, so our FCH won't actually work. Instead, we'll get the AV back on
    // second chance right away, and we'll end up right here.
    if (this->IsSpecialStackOverflowCase(pUnmanagedThread, pEvent))
    {
        // IsSpecialStackOverflowCase will queue the event for us, so its no longer a "new event". Setting
        // newEvent = false here basically prevents us from playing with the event anymore and we fall down
        // to the dispatch logic below, which will get our already queued first chance AV dispatched for
        // this thread.
        //newEvent = false;
        return REACTION(cInband_NotNewEvent);
    }
    else if (this->IsHelperThreadWorked(pUnmanagedThread->GetOSTid()))
    {
        // A second chance exception from the helper thread. This is pretty bad... we just force continue
        // from them and hope for the best.
        return REACTION(cCLR);
    }

    if(pUnmanagedThread->IsCantStop())
    {
        return REACTION(cOOB);
    }
    else
    {
        return REACTION(cInband);
    }
}


//---------------------------------------------------------------------------------------
//
// Triage a win32 Debug event to get a reaction
//
// Arguments:
//    pUnmanagedThread - thread that the event has occurred on.
//    pEvent - native debug event for the exception that occurred that this is triaging.
//
// Return Value:
//    Reaction for how to handle this event.
//
// Assumptions:
//    Called when receiving a debug event when the process is stopped.
//
// Notes:
//    This is the main triage routine for Win32 debug events, this delegates to the
//    1st and 2nd chance routines above appropriately.
//
//---------------------------------------------------------------------------------------
Reaction CordbProcess::TriageWin32DebugEvent(CordbUnmanagedThread * pUnmanagedThread, const DEBUG_EVENT * pEvent)
{
    _ASSERTE(ThreadHoldsProcessLock());

    // Lots of special cases for exception events. The vast majority of hybrid debugging work that takes
    // place is in response to exception events. The work below will consider certian exception events
    // special cases and rather than letting them be queued and dispatched, they will be handled right
    // here.
    if (pEvent->dwDebugEventCode == EXCEPTION_DEBUG_EVENT)
    {
        STRESS_LOG4(LF_CORDB, LL_INFO1000, "CP::TW32DE: unmanaged exception on "
             "tid 0x%x, code 0x%08x, addr 0x%08x, chance %d\n",
             pEvent->dwThreadId,
             pEvent->u.Exception.ExceptionRecord.ExceptionCode,
             pEvent->u.Exception.ExceptionRecord.ExceptionAddress,
             2-pEvent->u.Exception.dwFirstChance);

#ifdef LOGGING
        if (pEvent->u.Exception.ExceptionRecord.ExceptionCode == STATUS_ACCESS_VIOLATION)
        {
            LOG((LF_CORDB, LL_INFO1000, "\t<%s> address 0x%08x\n",
                 pEvent->u.Exception.ExceptionRecord.ExceptionInformation[0] ? "write to" : "read from",
                 pEvent->u.Exception.ExceptionRecord.ExceptionInformation[1]));
        }
#endif

        // Mark the loader bp for kicks. We won't start managed attach until native attach is finished.
        if (!this->m_loaderBPReceived)
        {
            // If its a first chance breakpoint, and its the first one, then its the loader breakpoint.
            if (pEvent->u.Exception.dwFirstChance &&
                (pEvent->u.Exception.ExceptionRecord.ExceptionCode == STATUS_BREAKPOINT))
            {
                LOG((LF_CORDB, LL_INFO1000, "CP::TW32DE: loader breakpoint received.\n"));

                // Remember that we've received the loader BP event.
                this->m_loaderBPReceived = true;

                // We never hijack the loader BP anymore (CLR 2.0+).
                // This is b/c w/ interop-attach, we don't start the managed-attach until _after_ Cordbg
                // continues from the loader-bp.
            }
        } // end of loader bp.

        // This event might be the retriggering of an event we already saw but previously had to hijack
        if(pUnmanagedThread->HasIBEvent())
        {
            const EXCEPTION_RECORD* pRecord1 = &(pEvent->u.Exception.ExceptionRecord);
            const EXCEPTION_RECORD* pRecord2 = &(pUnmanagedThread->IBEvent()->m_currentDebugEvent.u.Exception.ExceptionRecord);
            if(pRecord1->ExceptionCode == pRecord2->ExceptionCode &&
                pRecord1->ExceptionFlags == pRecord2->ExceptionFlags &&
                pRecord1->ExceptionAddress == pRecord2->ExceptionAddress)
            {
                STRESS_LOG0(LF_CORDB, LL_INFO1000, "CP::TW32DE: event is continuation of previously hijacked event.\n");
                // if we continued from the hijack then we should have already dispatched this event
                _ASSERTE(pUnmanagedThread->IBEvent()->IsDispatched());
                return REACTION(cInbandExceptionRetrigger);
            }
        }

        // We only care about exception events if they are first chance events and if the Runtime is
        // initialized within the process. Otherwise, we don't do anything special with them.
        if (pEvent->u.Exception.dwFirstChance && this->m_initialized)
        {
            return TriageExcep1stChanceAndInit(pUnmanagedThread, pEvent);
        }
        else if (!pEvent->u.Exception.dwFirstChance && this->m_initialized)
        {
            return TriageExcep2ndChanceAndInit(pUnmanagedThread, pEvent);
        }
        else
        {
            // An exception event, but the Runtime hasn't been initialize. I.e., its an exception event
            // that we will never try to hijack.
            return REACTION(cInband);
        }

        UNREACHABLE();
    }
    else
    // OOB
    {
        return REACTION(cOOB);
    }

}

//---------------------------------------------------------------------------------------
//
// Top-level handler for a win32 debug event during Interop-debugging.
//
// Arguments:
//    event - native debug event to handle.
//
// Assumptions:
//    The process just got a native debug event via WaitForDebugEvent
//
// Notes:
//    The function will Triage the excpetion and then handle it based on the
//    appropriate reaction (see: code:Reaction).
//
// @dbgtodo interop: this should all go into the shim.
//---------------------------------------------------------------------------------------
void CordbProcess::HandleDebugEventForInteropDebugging(const DEBUG_EVENT * pEvent)
{
    PUBLIC_API_ENTRY_FOR_SHIM(this);
    _ASSERTE(IsInteropDebugging() || !"Only do this in real interop handling path");


    STRESS_LOG3(LF_CORDB, LL_INFO1000, "W32ET::W32EL: got unmanaged event %d on thread 0x%x, proc 0x%x\n",
         pEvent->dwDebugEventCode, pEvent->dwThreadId, pEvent->dwProcessId);

    // Get the Lock.
    _ASSERTE(!this->ThreadHoldsProcessLock());

    RSSmartPtr<CordbProcess> pRef(this); // make sure we're alive...

    RSLockHolder processLockHolder(&this->m_processMutex);

    // If we get a new Win32 Debug event, then we need to flush any cached oop data structures.
    // This includes refreshing DAC and our patch table.
    ForceDacFlush();
    ClearPatchTable();

#ifdef _DEBUG
    // We want to detect if we've deadlocked. Unfortunately, w/ interop debugging, there can be a lot of
    // deadtime since we need to wait for a debug event. Thus the CPU usage may appear to be at 0%, but
    // we're not deadlocked b/c we're still receiving debug events.
    // So ping every X debug events.
    static int s_cCount = 0;
    static int s_iPingLevel = -1;
    if (s_iPingLevel == -1)
    {
        s_iPingLevel = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgPingInterop);
    }
    if (s_iPingLevel != 0)
    {
        s_cCount++;
        if (s_cCount >= s_iPingLevel)
        {
            s_cCount = 0;
            ::Beep(1000,100);

            // Refresh so we can adjust ping level midstream.
            s_iPingLevel = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgPingInterop);
        }
    }
#endif

    bool fNewEvent = true;

    // Mark the process as stopped.
    this->m_state |= CordbProcess::PS_WIN32_STOPPED;

    CordbUnmanagedThread * pUnmanagedThread = GetUnmanagedThreadFromEvent(pEvent);

    // In retail, if there is no unmanaged thread then we just continue and loop back around. UnrecoverableError has
    // already been set in this case. Note: there is an issue in the Win32 debugging API that can cause duplicate
    // ExitThread events. We therefore must handle not finding an unmanaged thread gracefully.

    _ASSERTE((pUnmanagedThread != NULL) || (pEvent->dwDebugEventCode == EXIT_THREAD_DEBUG_EVENT));

    if (pUnmanagedThread == NULL)
    {
        // Note: we use ContinueDebugEvent directly here since our continue is very simple and all of our other
        // continue mechanisms rely on having an UnmanagedThread object to play with ;)
        STRESS_LOG2(LF_CORDB, LL_INFO1000, "W32ET::W32EL: Continuing without thread on tid 0x%x, code=0x%x\n",
                    pEvent->dwThreadId,
                    pEvent->dwDebugEventCode);

        this->m_state &= ~CordbProcess::PS_WIN32_STOPPED;

        BOOL fOk = ContinueDebugEvent(pEvent->dwProcessId, pEvent->dwThreadId, DBG_EXCEPTION_NOT_HANDLED);

        _ASSERTE(fOk || !"ContinueDebugEvent failed when he have no thread. Debuggee is likely hung");

        return;
    }

    // There's an innate race such that we can get a Debug Event even after we've suspended a thread.
    // This can happen if the thread has already dispatched the debug event but we haven't called WFDE to pick it up
    // yet. This is sufficiently goofy that we want to stress log it.
    if (pUnmanagedThread->IsSuspended())
    {
        STRESS_LOG1(LF_CORDB, LL_INFO1000, "W32ET::W32EL: Thread 0x%x is suspended\n", pEvent->dwThreadId);
    }

    // For debugging races in retail, we'll keep a rolling queue of win32 debug events.
    this->DebugRecordWin32Event(pEvent, pUnmanagedThread);


    // Check to see if shutdown of the in-proc debugging services has begun. If it has, then we know we'll no longer
    // be running any managed code, and we know that we can stop hijacking threads. We remember this by setting
    // m_initialized to false, thus preventing most things from happening elsewhere.
    // Don't even bother checking the DCB fields until it's been verified (m_initialized == true)
    if (this->m_initialized && (this->GetDCB() != NULL))
    {
        UpdateRightSideDCB();
        if (this->GetDCB()->m_shutdownBegun)
        {
            STRESS_LOG0(LF_CORDB, LL_INFO1000, "W32ET::W32EL: shutdown begun...\n");
            this->m_initialized = false;
        }
    }

#ifdef _DEBUG
    //Verify that GetThreadContext agrees with the exception address
    if (pEvent->dwDebugEventCode == EXCEPTION_DEBUG_EVENT)
    {
        DT_CONTEXT tempDebugContext;
        tempDebugContext.ContextFlags = DT_CONTEXT_FULL;
        DbiGetThreadContext(pUnmanagedThread->m_handle, &tempDebugContext);
        CordbUnmanagedThread::LogContext(&tempDebugContext);
#if defined(DBG_TARGET_X86) || defined(DBG_TARGET_AMD64)
        const ULONG_PTR breakpointOpcodeSize = 1;
#elif defined(DBG_TARGET_ARM64)
        const ULONG_PTR breakpointOpcodeSize = 4;
#else
        const ULONG_PTR breakpointOpcodeSize = 1;
        PORTABILITY_ASSERT("NYI: Breakpoint size offset for this platform");
#endif
        _ASSERTE(CORDbgGetIP(&tempDebugContext) == pEvent->u.Exception.ExceptionRecord.ExceptionAddress ||
            (DWORD)CORDbgGetIP(&tempDebugContext) == ((DWORD)pEvent->u.Exception.ExceptionRecord.ExceptionAddress)+breakpointOpcodeSize);
    }
#endif

    // This call will decide what to do w/ the the win32 event we just got. It does a lot of work.
    Reaction reaction = TriageWin32DebugEvent(pUnmanagedThread, pEvent);


    // Stress-log the reaction.
#ifdef _DEBUG
    STRESS_LOG3(LF_CORDB, LL_INFO1000, "Reaction: %d (%s), line=%d\n",
                reaction.GetType(),
                reaction.GetReactionName(),
                reaction.GetLine());
#else
    STRESS_LOG1(LF_CORDB, LL_INFO1000, "Reaction: %d\n", reaction.GetType());
#endif

    // Make sure the lock wasn't accidentally released.
    _ASSERTE(ThreadHoldsProcessLock());
    CordbWin32EventThread * pW32EventThread = this->m_pShim->GetWin32EventThread();
    _ASSERTE(pW32EventThread != NULL);

    // if we were waiting for a retriggered exception but recieved any other event then turn
    // off the single stepping and dequeue the IB event. Right now we only use the SS flag internally
    // for stepping during possible retrigger.
    if(reaction.GetType() != Reaction::cInbandExceptionRetrigger && pUnmanagedThread->IsSSFlagNeeded())
    {
        _ASSERTE(pUnmanagedThread->HasIBEvent());
        CordbUnmanagedEvent* pUnmanagedEvent = pUnmanagedThread->IBEvent();
        _ASSERTE(pUnmanagedEvent->IsIBEvent());
        _ASSERTE(pUnmanagedEvent->IsEventContinuedUnhijacked());
        _ASSERTE(pUnmanagedEvent->IsDispatched());
        LOG((LF_CORDB, LL_INFO100000, "CP::HDEFID: IB event did not retrigger ue=0x%p\n", pUnmanagedEvent));

        DequeueUnmanagedEvent(pUnmanagedThread);
        pUnmanagedThread->EndStepping();
    }

    switch(reaction.GetType())
    {
    // Common for flares.
    case Reaction::cIgnore:

        // Shouldn't be suspending in the first place with outstanding flares.
        _ASSERTE(!pUnmanagedThread->IsSuspended());

        pW32EventThread->ForceDbgContinue(this, pUnmanagedThread, DBG_CONTINUE, false);
        goto LDone;

    case Reaction::cCLR:
        // Don't care if thread is suspended here. We'll just let the thread continue whatever it's doing.

        this->m_DbgSupport.m_TotalCLR++;

        // If this is for the CLR, then we just continue unhandled and know that the CLR has
        // a handler inplace to deal w/ this exception.
        pW32EventThread->ForceDbgContinue(this, pUnmanagedThread, DBG_EXCEPTION_NOT_HANDLED, false);
        goto LDone;


    case Reaction::cInband_NotNewEvent:
        fNewEvent = false;

        // fall through to Inband case...

    case Reaction::cInband:
    {
        this->m_DbgSupport.m_TotalIB++;

        // Hijack in-band events (exception events, exit threads) if there is already an event at the head
        // of the queue or if the process is currently synchronized. Of course, we only do this if the
        // process is initialized.
        //
        // Note: we also hijack these left over in-band events if we're actively trying to send the
        // managed continue message to the Left Side. This is controlled by m_specialDeferment below.

        // Only exceptions can be IB events - everything else is OOB.
        _ASSERTE(pEvent->dwDebugEventCode == EXCEPTION_DEBUG_EVENT);

        // CLR internal exceptions should be sent back to the CLR and never treated as inband events.
        // If this assert fires, the event was triaged wrong.
        CONSISTENCY_CHECK_MSGF((pEvent->u.Exception.ExceptionRecord.ExceptionCode != EXCEPTION_COMPLUS),
            ("Attempting to dispatch a CLR internal exception as an Inband event. Reaction line=%d\n",
             reaction.GetLine()));


        _ASSERTE(!pUnmanagedThread->IsCantStop());

        // We need to decide whether or not to dispatch this event immediately
        // We defer it to enforce that we only dispatch 1 IB event at a time (managed events are
        // considered IB here).
        // This means if:
        // 1) there's already an outstanding unmanaged inband event (an event the user has not continued from)
        // 2) If the process is synchronized (since that means we've already dispatched a managed event).
        // 3) If we've received a SyncComplete event, but aren't yet Sync.  This will almost always be the same as
        //    whether we're synced, but has a distict quality. It's always set by the w32 event thread in Interop,
        //    and so it's guaranteed to be serialized against this check here (also on the w32et).
        // 4) Special deferment - This covers the region where we're sending a Stop/Continue IPC event across.
        //    We defer it here to keep the Helper thread alive so that it can handle these IPC events.
        // Queued events will be dispatched when continue is called.
        BOOL fHasUserUncontinuedNativeEvents = HasUserUncontinuedNativeEvents();
        bool fDeferInbandEvent = (fHasUserUncontinuedNativeEvents ||
                                  GetSynchronized() ||
                                  GetSyncCompleteRecv() ||
                                  m_specialDeferment);

        // If we've got a new event, queue it.
        if (fNewEvent)
        {
            this->QueueUnmanagedEvent(pUnmanagedThread, pEvent);
        }

        if (fNewEvent && this->m_initialized && fDeferInbandEvent)
        {
            STRESS_LOG4(LF_CORDB, LL_INFO1000, "W32ET::W32EL: Needed to defer dispatching event: %d %d %d %d\n",
                 fHasUserUncontinuedNativeEvents,
                 GetSynchronized(),
                 GetSyncCompleteRecv(),
                 m_specialDeferment);

            // this continues the IB debug event into the hijack
            // the process is now running again
            pW32EventThread->DoDbgContinue(this, pUnmanagedThread->IBEvent());

            // Since we've hijacked this event, we don't need to do any further processing.
            goto LDone;
        }
        else
        {
            // No need to defer the dispatch, do it now
            this->DispatchUnmanagedInBandEvent();

            goto LDone;
        }
        UNREACHABLE();
    }

    case Reaction::cFirstChanceHijackStarted:
    {
        // determine the logical event we are handling, if any
        CordbUnmanagedEvent* pUnmanagedEvent = NULL;
        if(pUnmanagedThread->HasIBEvent())
        {
            pUnmanagedEvent = pUnmanagedThread->IBEvent();
        }
        LOG((LF_CORDB, LL_INFO100000, "W32ET::W32EL: IB hijack starting, ue=0x%p\n", pUnmanagedEvent));

        // fetch the LS memory set up for this hijack
        REMOTE_PTR pDebuggerWord = NULL;
        DebuggerIPCFirstChanceData fcd;
        pUnmanagedThread->GetEEDebuggerWord(&pDebuggerWord);
        SafeReadStruct(PTR_TO_CORDB_ADDRESS(pDebuggerWord), &fcd);

        LOG((LF_CORDB, LL_INFO100000, "W32ET::W32EL: old fcd DebugCounter=0x%x\n", fcd.debugCounter));

        // determine what action the LS should take
        if(pUnmanagedThread->IsBlockingForSync())
        {
            // there should be an event we hijacked in this case
            _ASSERTE(pUnmanagedEvent != NULL);

            // block that event
            LOG((LF_CORDB, LL_INFO100000, "W32ET::W32EL: blocking\n"));
            fcd.action = HIJACK_ACTION_WAIT;
            fcd.debugCounter = 0x2;
            SafeWriteStruct(PTR_TO_CORDB_ADDRESS(pDebuggerWord), &fcd);
        }
        else
        {
            // we don't need to block. We want the vectored handler to just exit
            // as if it wasn't there
            _ASSERTE(fcd.action == HIJACK_ACTION_EXIT_UNHANDLED);
            LOG((LF_CORDB, LL_INFO100000, "W32ET::W32EL: not blocking\n"));
        }

        LOG((LF_CORDB, LL_INFO100000, "W32ET::W32EL: continuing from flare\n"));
        pW32EventThread->ForceDbgContinue(this, pUnmanagedThread, DBG_CONTINUE, false);
        goto LDone;
    }

    case Reaction::cInbandHijackComplete:
    {
        // We now execute the hijack worker even when not actually hijacked
        // so can't assert this
        //_ASSERTE(pUnmanagedThread->IsFirstChanceHijacked());

        // we should not be stepping at the end of hijacks
        _ASSERTE(!pUnmanagedThread->IsSSFlagHidden());
        _ASSERTE(!pUnmanagedThread->IsSSFlagNeeded());

        // if we were hijacked then clean up
        if(pUnmanagedThread->IsFirstChanceHijacked())
        {
            LOG((LF_CORDB, LL_INFO100000, "W32ET::W32EL: hijack complete will restore context...\n"));
            DT_CONTEXT tempContext = { 0 };
            tempContext.ContextFlags = DT_CONTEXT_FULL;
            HRESULT hr = pUnmanagedThread->GetThreadContext(&tempContext);
            _ASSERTE(SUCCEEDED(hr));

            // The sync hijack returns normally but the m2uHandoff hijack needs to have the IP
            // deliberately restored
            if(!pUnmanagedThread->IsBlockingForSync())
            {
                // restore the context to the current un-hijacked context
                BOOL succ = DbiSetThreadContext(pUnmanagedThread->m_handle, &tempContext);
                _ASSERTE(succ);

                // Because hijacks don't return normally they might have pushed handlers without poping them
                // back off. To take care of that we explicitly restore the old SEH chain.
    #ifdef DBG_TARGET_X86
                hr = pUnmanagedThread->RestoreLeafSeh();
                _ASSERTE(SUCCEEDED(hr));
    #endif
            }
            else
            {
                _ASSERTE(pUnmanagedThread->HasIBEvent());
                CordbUnmanagedEvent* pUnmanagedEvent = pUnmanagedThread->IBEvent();
                LOG((LF_CORDB, LL_INFO100000, "W32ET::W32EL: IB hijack completing, continuing unhijacked ue=0x%p\n", pUnmanagedEvent));
                _ASSERTE(pUnmanagedEvent->IsEventContinuedHijacked());
                _ASSERTE(pUnmanagedEvent->IsDispatched());
                _ASSERTE(pUnmanagedEvent->IsEventUserContinued());
                _ASSERTE(!pUnmanagedEvent->IsEventContinuedUnhijacked());
                pUnmanagedEvent->SetState(CUES_EventContinuedUnhijacked);

                // fetch the LS memory set up for this hijack
                REMOTE_PTR pDebuggerWord = NULL;
                DebuggerIPCFirstChanceData fcd;
                pUnmanagedThread->GetEEDebuggerWord(&pDebuggerWord);
                SafeReadStruct(PTR_TO_CORDB_ADDRESS(pDebuggerWord), &fcd);

                LOG((LF_CORDB, LL_INFO10000, "W32ET::W32EL: pDebuggerWord is 0x%p\n", pDebuggerWord));

                //set the correct continuation action based upon the user's selection
                if(pUnmanagedEvent->IsExceptionCleared())
                {
                    LOG((LF_CORDB, LL_INFO10000, "W32ET::W32EL: exception cleared\n"));
                    fcd.action = HIJACK_ACTION_EXIT_HANDLED;
                }
                else
                {
                    LOG((LF_CORDB, LL_INFO10000, "W32ET::W32EL: exception not cleared\n"));
                    fcd.action = HIJACK_ACTION_EXIT_UNHANDLED;
                }

                //
                // LS context is restored here so that execution continues from next instruction that caused the hijack.
                // We shouldn't always restore the LS context though.
                // Consider the following case where this can cause issues:
                // Debuggee process hits an exception and calls KERNELBASE!RaiseException, debugger gets the notification and
                // prepares for first-chance hijack. Debugger(DBI) saves the current thread context (see SetupFirstChanceHijackForSync) which is restored
                // later below (see SafeWriteThreadContext call) when the process is in VEH (CLRVectoredExceptionHandlerShim->FirstChanceSuspendHijackWorker).
                // The thread context that got saved(by SetupFirstChanceHijackForSync) was for when the thread was executing RaiseException and when
                // this context gets restored in VEH, the thread resumes after the exception handler with a context that is not same as one with which
                // it entered. This inconsistency can lead to bad execution code-paths or even a debuggee crash.
                //
                // Example case where we should definitely update the LS context:
                // After a DbgBreakPoint call, IP gets updated to point to the instruction after int 3 and this is the context saved by debugger.
                // The IP in context passed to VEH still points to int 3 though and if we don't update the LS context in VEH, the breakpoint
                // instruction will get executed again.
                //
                // Here's a list of cases when we update the LS context:
                // * we know that context was explicitly updated during this hijack, OR
                // * if single-stepping flag was set on it originally, OR
                // * if this was a breakpoint event
                // Note that above list is a heuristic and it is possible that we need to add more such cases in future.
                //
                BOOL isBreakPointEvent = (pUnmanagedEvent->m_currentDebugEvent.dwDebugEventCode == EXCEPTION_DEBUG_EVENT &&
                    pUnmanagedEvent->m_currentDebugEvent.u.Exception.ExceptionRecord.ExceptionCode == STATUS_BREAKPOINT);
                if (pUnmanagedThread->IsContextSet() || IsSSFlagEnabled(&tempContext) || isBreakPointEvent)
                {
                    _ASSERTE(fcd.pLeftSideContext != NULL);
                    LOG((LF_CORDB, LL_INFO10000, "W32ET::W32EL: updating LS context at 0x%p\n", fcd.pLeftSideContext));
                    // write the new context over the old one on the LS
                    SafeWriteThreadContext(fcd.pLeftSideContext, &tempContext);
                }

                // Write the new Fcd data to the LS
                fcd.debugCounter = 0x1;
                SafeWriteStruct(PTR_TO_CORDB_ADDRESS(pDebuggerWord), &fcd);

                fcd.debugCounter = 0;
                SafeReadStruct(PTR_TO_CORDB_ADDRESS(pDebuggerWord), &fcd);
                _ASSERTE(fcd.debugCounter == 1);

                DequeueUnmanagedEvent(pUnmanagedThread);
            }

            _ASSERTE(m_cFirstChanceHijackedThreads > 0);
            m_cFirstChanceHijackedThreads--;
            if(m_cFirstChanceHijackedThreads == 0)
            {
                m_state &= ~PS_HIJACKS_IN_PLACE;
            }

            pUnmanagedThread->ClearState(CUTS_FirstChanceHijacked);
            pUnmanagedThread->ClearState(CUTS_BlockingForSync);

            // if the user set the context it either was already applied (m2uHandoff hijack)
            // or is about to be applied when the hijack returns (sync hijack).
            // There may still a small window where it won't appear accurate that
            // we just have to live with
            pUnmanagedThread->ClearState(CUTS_HasContextSet);
        }

        pW32EventThread->ForceDbgContinue(this, pUnmanagedThread, DBG_CONTINUE, false);

        // We've handled this event. Skip further processing.
        goto LDone;
    }

    case Reaction::cBreakpointRequiringHijack:
    {
        HRESULT hr = pUnmanagedThread->SetupFirstChanceHijack(EHijackReason::kM2UHandoff, &(pEvent->u.Exception.ExceptionRecord));
        _ASSERTE(SUCCEEDED(hr));
        pW32EventThread->ForceDbgContinue(this, pUnmanagedThread, DBG_CONTINUE, false);
        goto LDone;
    }

    case Reaction::cInbandExceptionRetrigger:
    {
        // this should be unused now
        _ASSERTE(FALSE);
        _ASSERTE(pUnmanagedThread->HasIBEvent());
        CordbUnmanagedEvent* pUnmanagedEvent = pUnmanagedThread->IBEvent();
        _ASSERTE(pUnmanagedEvent->IsIBEvent());
        _ASSERTE(pUnmanagedEvent->IsEventContinuedUnhijacked());
        _ASSERTE(pUnmanagedEvent->IsDispatched());
        LOG((LF_CORDB, LL_INFO100000, "W32ET::W32EL: IB event completing, continuing ue=0x%p\n", pUnmanagedEvent));

        DequeueUnmanagedEvent(pUnmanagedThread);
        // If this event came from RaiseException then flush the context to ensure we won't use it until we re-enter
        if(pUnmanagedEvent->m_owner->IsRaiseExceptionHijacked())
        {
            pUnmanagedEvent->m_owner->RestoreFromRaiseExceptionHijack();
            pUnmanagedEvent->m_owner->ClearRaiseExceptionEntryContext();
        }
        else // otherwise we should have been stepping
        {
            pUnmanagedThread->EndStepping();
        }
        pW32EventThread->ForceDbgContinue(this, pUnmanagedThread,
            pUnmanagedEvent->IsExceptionCleared() ? DBG_CONTINUE : DBG_EXCEPTION_NOT_HANDLED, false);

        // We've handled this event. Skip further processing.
        goto LDone;
    }

    case Reaction::cOOB:
    {
        // Don't care if this thread claimed to be suspended or not. Dispatch event anyways. After all,
        // OOB events can come at *any* time.

        // This thread may be suspended. We don't care.
        this->m_DbgSupport.m_TotalOOB++;

        // Not an  inband event. This includes ALL non-exception events (including EXIT_THREAD) as
        // well as any exception that can't be hijacked (ex, an exception on the helper thread).

        // If this is an exit thread or exit process event, then we need to mark the unmanaged thread as
        // exited for later.
        if ((pEvent->dwDebugEventCode == EXIT_PROCESS_DEBUG_EVENT) ||
            (pEvent->dwDebugEventCode == EXIT_THREAD_DEBUG_EVENT))
        {
            pUnmanagedThread->SetState(CUTS_Deleted);
        }

        // If we get an exit process or exit thread event on the helper thread, then we know we're loosing
        // the Left Side, so go ahead and remember that the helper thread has died.
        if (this->IsHelperThreadWorked(pUnmanagedThread->GetOSTid()))
        {
            if ((pEvent->dwDebugEventCode == EXIT_PROCESS_DEBUG_EVENT) ||
                (pEvent->dwDebugEventCode == EXIT_THREAD_DEBUG_EVENT))
            {
                this->m_helperThreadDead = true;
            }
        }

        // Queue the current out-of-band event.
        this->QueueOOBUnmanagedEvent(pUnmanagedThread, pEvent);

        // Go ahead and dispatch the event if its the first one.
        if (this->m_outOfBandEventQueue == pUnmanagedThread->OOBEvent())
        {
            // Set this to true to indicate to Continue() that we're in the unamnaged callback.
            CordbUnmanagedEvent * pUnmanagedEvent = pUnmanagedThread->OOBEvent();

            this->m_dispatchingOOBEvent = true;

            pUnmanagedEvent->SetState(CUES_Dispatched);

            this->Unlock();

            // Handler should have been registered by now.
            _ASSERTE(this->m_cordb->m_unmanagedCallback != NULL);

            // Call the callback with fIsOutOfBand = TRUE.
            {
                PUBLIC_WIN32_CALLBACK_IN_THIS_SCOPE(this, pEvent, TRUE);
                this->m_cordb->m_unmanagedCallback->DebugEvent(const_cast<DEBUG_EVENT*> (pEvent), TRUE);
            }

            this->Lock();

            // If m_dispatchingOOBEvent is false, that means that the user called Continue() from within
            // the callback. We know that we can go ahead and continue the process now.
            if (this->m_dispatchingOOBEvent == false)
            {
                // Note: this call will dispatch more OOB events if necessary.
                pW32EventThread->UnmanagedContinue(this, cOobUMContinue);
            }
            else
            {
                // We're not dispatching anymore, so set this back to false.
                this->m_dispatchingOOBEvent = false;
            }
        }

        // We've handled this event. Skip further processing.
        goto LDone;
    }
    } // end Switch on Reaction

    UNREACHABLE();

LDone:
    // Process Lock implicitly released by holder.

    STRESS_LOG0(LF_CORDB, LL_INFO1000, "W32ET::W32EL: done processing event.\n");

    return;
}

//
// Returns true if the exception is a flare from the left side, false otherwise.
//
bool CordbProcess::ExceptionIsFlare(DWORD exceptionCode, const void *exceptionAddress)
{
    _ASSERTE(m_runtimeOffsetsInitialized);

    // Can't have a flare if the left side isn't initialized
    if (m_initialized)
    {
        DebuggerIPCRuntimeOffsets *pRO = &m_runtimeOffsets;

        // All flares are breakpoints...
        if (exceptionCode == STATUS_BREAKPOINT)
        {
            // Does the breakpoint address match a flare address?
            if ((exceptionAddress == pRO->m_signalHijackStartedBPAddr) ||
                (exceptionAddress == pRO->m_excepForRuntimeHandoffStartBPAddr) ||
                (exceptionAddress == pRO->m_excepForRuntimeHandoffCompleteBPAddr) ||
                (exceptionAddress == pRO->m_signalHijackCompleteBPAddr) ||
                (exceptionAddress == pRO->m_excepNotForRuntimeBPAddr) ||
                (exceptionAddress == pRO->m_notifyRSOfSyncCompleteBPAddr))
                return true;
        }
    }

    return false;
}
#endif // FEATURE_INTEROP_DEBUGGING

// Allocate a buffer in the target and copy data into it.
//
// Arguments:
//    pDomain - an appdomain associated with the allocation request.
//    bufferSize - size of the buffer in bytes
//    bufferFrom - local buffer of data (bufferSize bytes) to copy data from.
//    ppRes - address into target of allocated buffer
//
// Returns:
//    S_OK on success, else error.
HRESULT CordbProcess::GetAndWriteRemoteBuffer(CordbAppDomain *pDomain, unsigned int bufferSize, const void *bufferFrom, void **ppRes)
{
    _ASSERTE(ppRes != NULL);
    *ppRes = NULL;

    HRESULT hr = S_OK;

    EX_TRY
    {
        TargetBuffer tbTarget = GetRemoteBuffer(bufferSize); // throws
        SafeWriteBuffer(tbTarget, (const BYTE*) bufferFrom); // throws

        // Succeeded.
        *ppRes = CORDB_ADDRESS_TO_PTR(tbTarget.pAddress);
    }
    EX_CATCH_HRESULT(hr);
    return hr;
}

#ifdef FEATURE_INTEROP_DEBUGGING

//
// Checks to see if the given second chance exception event actually signifies the death of the process due to a second
// stack overflow special case.
//
// There are strange cases with stack overflow exceptions. If a nieve application catches a stack overflow exception and
// handles it, without resetting the guard page, then the app will get an AV when it overflows the stack a second time. We
// will get the first chance AV, but when we continue from it the OS won't run any SEH handlers, so our FCH won't
// actually work. Instead, we'll get the AV back on second chance right away.
//
bool CordbProcess::IsSpecialStackOverflowCase(CordbUnmanagedThread *pUThread, const DEBUG_EVENT *pEvent)
{
    _ASSERTE(pEvent->dwDebugEventCode == EXCEPTION_DEBUG_EVENT);
    _ASSERTE(pEvent->u.Exception.dwFirstChance == 0);

    // If this is not an AV, it can't be our special case.
    if (pEvent->u.Exception.ExceptionRecord.ExceptionCode != STATUS_ACCESS_VIOLATION)
        return false;

    // If the thread isn't already first chance hijacked, it can't be our special case.
    if (!pUThread->IsFirstChanceHijacked())
        return false;

    // The first chance hijack didn't take, so we're not FCH anymore and we're not waiting for an answer
    // anymore... Note: by leaving this thread completely unhijacked, we'll report its true context, which is correct.
    pUThread->ClearState(CUTS_FirstChanceHijacked);

    // The process is techincally dead as a door nail here, so we'll mark that the helper thread is dead so our managed
    // API bails nicely.
    m_helperThreadDead = true;

    // Remember we're in our special case.
    pUThread->SetState(CUTS_HasSpecialStackOverflowCase);

    // Now, remember the second chance AV event in the second IB event slot for this thread and add it to the end of the
    // IB event queue.
    QueueUnmanagedEvent(pUThread, pEvent);

    // Note: returning true will ensure that the queued first chance AV for this thread is dispatched.
    return true;
}

//-----------------------------------------------------------------------------
// Longhorn broke ContinueDebugEvent.
// In previous OS releases, DBG_CONTINUE would continue a  non-continuable exception.
// In longhorn, we need to pass the DBG_FORCE_CONTINUE flag to do that.
// Note that all CLR exceptions are non-continuable.
// Now instead of DBG_CONTINUE, we need to pass DBG_FORCE_CONTINUE.
//-----------------------------------------------------------------------------

// Currently we don't have headers for the longhorn winnt.h. So we need to privately declare
// this here. We have a check such that if we do get headers, the value won't change underneath us.
#define MY_DBG_FORCE_CONTINUE               ((DWORD   )0x00010003L)
#ifndef DBG_FORCE_CONTINUE
#define DBG_FORCE_CONTINUE MY_DBG_FORCE_CONTINUE
#else
static_assert_no_msg(DBG_FORCE_CONTINUE == MY_DBG_FORCE_CONTINUE);
#endif

DWORD GetDbgContinueFlag()
{
    // Currently, default to not using the new DBG_FORCE_CONTINUE flag.
    static ConfigDWORD fNoFlagKey;
    bool fNoFlag = fNoFlagKey.val(CLRConfig::UNSUPPORTED_DbgNoForceContinue) != 0;


    if (!fNoFlag)
    {
        return DBG_FORCE_CONTINUE;
    }
    else
    {
        return DBG_CONTINUE;
    }
}


// Some Interop bugs involve threads that land at a bad IP. Since we're interop-debugging, we can't
// attach a debugger to the LS. So we have some debug mode where we enable the SS flag and thus
// produce a trace of where a thread is going.
#ifdef _DEBUG
void EnableDebugTrace(CordbUnmanagedThread *ut)
{
    // To enable, attach w/ a debugger and either set fTrace==true, or setip.
    static bool fTrace = false;
    if (!fTrace)
        return;

    // Give us a nop so that we can setip in the optimized case.
#ifdef _TARGET_X86_
    __asm {
        nop
    }
#endif

    fTrace = true;
    CordbProcess *pProcess = ut->GetProcess();

    // Get the context
    HRESULT hr = S_OK;
    DT_CONTEXT context;
    context.ContextFlags = DT_CONTEXT_FULL;


    hr = pProcess->GetThreadContext((DWORD) ut->m_id, sizeof(context), (BYTE*)&context);
    if (FAILED(hr))
        return;

    // If the flag is already set, then don't set it again - that will just get confusing.
    if (IsSSFlagEnabled(&context))
    {
        return;
    }
    _ASSERTE(CORDbgGetIP(&context) != 0);
    SetSSFlag(&context);

    // If SS flag not set, enable it. And remeber that it's us so we know how to handle
    // it when we get the debug event.
    hr = pProcess->SetThreadContext((DWORD)ut->m_id, sizeof(context), (BYTE*)&context);
    ut->SetState(CUTS_DEBUG_SingleStep);
}
#endif // _DEBUG

//-----------------------------------------------------------------------------
// DoDbgContinue
//
// Continues from a specific Win32 DEBUG_EVENT.
//
// Arguments:
//    pProcess - The process to continue.
//    pUnmanagedEvent - The event to continue.
//
//-----------------------------------------------------------------------------
void CordbWin32EventThread::DoDbgContinue(CordbProcess *pProcess,
                                          CordbUnmanagedEvent *pUnmanagedEvent)
{
    _ASSERTE(pProcess->ThreadHoldsProcessLock());
    _ASSERTE(IsWin32EventThread());
    _ASSERTE(pUnmanagedEvent != NULL);
    _ASSERTE(!pUnmanagedEvent->IsEventContinuedUnhijacked());

    STRESS_LOG3(LF_CORDB, LL_INFO1000,
         "W32ET::DDC: continue with ue=0x%p, thread=0x%p, tid=0x%x\n",
         pUnmanagedEvent,
         pUnmanagedEvent->m_owner,
         pUnmanagedEvent->m_owner->m_id);

#ifdef _DEBUG
    EnableDebugTrace(pUnmanagedEvent->m_owner);
#endif


    if (pUnmanagedEvent->IsEventContinuedHijacked())
    {
        LOG((LF_CORDB, LL_INFO100000, "W32ET::DDC: Skiping DoDbgContinue because event was already"
            " continued hijacked, ue=0x%p\n", pUnmanagedEvent));
        return;
    }

    BOOL threadIsHijacked = (pUnmanagedEvent->m_owner->IsFirstChanceHijacked() ||
                             pUnmanagedEvent->m_owner->IsGenericHijacked());

    BOOL eventIsIB = (pUnmanagedEvent->m_owner->HasIBEvent() &&
                      pUnmanagedEvent->m_owner->IBEvent() == pUnmanagedEvent);

    _ASSERTE((DWORD) pProcess->m_id == pUnmanagedEvent->m_currentDebugEvent.dwProcessId);
    _ASSERTE(pProcess->m_state & CordbProcess::PS_WIN32_STOPPED);

    DWORD dwContType;
    if(eventIsIB)
    {
        // 3 cases here...
        // event was already hijacked
        if(threadIsHijacked)
        {
            LOG((LF_CORDB, LL_INFO100000, "W32ET::DDC: Continuing IB, already hijacked, ue=0x%p\n", pUnmanagedEvent));
            pUnmanagedEvent->SetState(CUES_EventContinuedHijacked);
            dwContType = !pUnmanagedEvent->m_owner->IsBlockingForSync() ? GetDbgContinueFlag() : DBG_EXCEPTION_NOT_HANDLED;
        }
        // event was not hijacked but has been dispatched
        else if(!threadIsHijacked && pUnmanagedEvent->IsDispatched())
        {
            LOG((LF_CORDB, LL_INFO100000, "W32ET::DDC: Continuing IB, not hijacked, ue=0x%p\n", pUnmanagedEvent));
            _ASSERTE(pUnmanagedEvent->IsDispatched());
            _ASSERTE(pUnmanagedEvent->IsEventUserContinued());
            _ASSERTE(!pUnmanagedEvent->IsEventContinuedUnhijacked());
            pUnmanagedEvent->SetState(CUES_EventContinuedUnhijacked);
            dwContType = pUnmanagedEvent->IsExceptionCleared() ? GetDbgContinueFlag() : DBG_EXCEPTION_NOT_HANDLED;

            // The event was never hijacked and so will never need to retrigger, get rid
            // of it right now. If it had been hijacked then we would dequeue it either after the
            // hijack complete flare or one instruction after that when it has had a chance to retrigger
            pProcess->DequeueUnmanagedEvent(pUnmanagedEvent->m_owner);
        }
        // event was not hijacked nor dispatched
        else // if(!threadIsHijacked && !pUnmanagedEvent->IsDispatched())
        {
            LOG((LF_CORDB, LL_INFO100000, "W32ET::DDC: Continuing IB, now hijacked, ue=0x%p\n", pUnmanagedEvent));
            HRESULT hr = pProcess->HijackIBEvent(pUnmanagedEvent);
            _ASSERTE(SUCCEEDED(hr));
            pUnmanagedEvent->SetState(CUES_EventContinuedHijacked);
            dwContType = !pUnmanagedEvent->m_owner->IsBlockingForSync() ? GetDbgContinueFlag() : DBG_EXCEPTION_NOT_HANDLED;
        }
    }
    else
    {
        LOG((LF_CORDB, LL_INFO100000, "W32ET::DDC: Continuing OB, ue=0x%p\n", pUnmanagedEvent));
        // we might actually be hijacked here, but if we are it should be for a previous IB event
        // we just mark all OB events as continued unhijacked
        pUnmanagedEvent->SetState(CUES_EventContinuedUnhijacked);
        dwContType = pUnmanagedEvent->IsExceptionCleared() ? GetDbgContinueFlag() : DBG_EXCEPTION_NOT_HANDLED;
    }

    // If the exception is marked as unclearable, then make sure the continue type is correct and force the process
    // to terminate.
    if (pUnmanagedEvent->IsExceptionUnclearable())
    {
        TerminateProcess(pProcess->UnsafeGetProcessHandle(), pUnmanagedEvent->m_currentDebugEvent.u.Exception.ExceptionRecord.ExceptionCode);
        dwContType = DBG_EXCEPTION_NOT_HANDLED;
    }

    // If we're continuing from the loader-bp, then send the managed attach here.
    // (Note this will only be set if the runtime was loaded when we first tried to attach).
    // We assume that the loader-bp is the 1st BP exception. This is naive,
    // since it's not 100% accurate (someone could CreateThread w/ a threadproc of DebugBreak).
    // But it's the best we can do.
    // Note that it's critical we do this BEFORE continuing the process.  If this is mixed-mode, we've already
    // told VS about this breakpoint, and so it's set the attach-complete event.  As soon as we continue this debug
    // event the process can start moving again, so the CLR needs to know to wait for a managed attach.
    DWORD dwEventCode = pUnmanagedEvent->m_currentDebugEvent.dwDebugEventCode;
    if (dwEventCode == EXCEPTION_DEBUG_EVENT)
    {
        EXCEPTION_DEBUG_INFO * pDebugInfo = &pUnmanagedEvent->m_currentDebugEvent.u.Exception;
        if (pDebugInfo->dwFirstChance && pDebugInfo->ExceptionRecord.ExceptionCode == STATUS_BREAKPOINT)
        {
            HRESULT hrIgnore = S_OK;
            EX_TRY
            {
                LOG((LF_CORDB, LL_INFO1000, "W32ET::DDC: Continuing from LdrBp, doing managed attach.\n"));
                pProcess->QueueManagedAttachIfNeededWorker();
            }
            EX_CATCH_HRESULT(hrIgnore);
            SIMPLIFYING_ASSUMPTION(SUCCEEDED(hrIgnore));
        }
    }

    STRESS_LOG4(LF_CORDB, LL_INFO1000,
        "W32ET::DDC: calling ContinueDebugEvent(0x%x, 0x%x, 0x%x), process state=0x%x\n",
        pProcess->m_id, pUnmanagedEvent->m_owner->m_id, dwContType, pProcess->m_state);

    // Actually continue the debug event
    pProcess->m_state &= ~CordbProcess::PS_WIN32_STOPPED;
    BOOL fSuccess = m_pNativePipeline->ContinueDebugEvent((DWORD)pProcess->m_id, (DWORD)pUnmanagedEvent->m_owner->m_id, dwContType);

    // ContinueDebugEvent may 'fail' if we force kill the debuggee while stopped at the exit-process event.
    if (!fSuccess && (dwEventCode != EXIT_PROCESS_DEBUG_EVENT))
    {
        _ASSERTE(!"ContinueDebugEvent failed!");
        CORDBSetUnrecoverableError(pProcess, HRESULT_FROM_GetLastError(), 0);
        STRESS_LOG1(LF_CORDB, LL_INFO1000, "W32ET::DDC: Last error after ContinueDebugEvent is %d\n", GetLastError());
    }

    // If this thread is marked for deletion (exit thread or exit process event on it), then we need to delete the
    // unmanaged thread object.
    if ((dwEventCode == EXIT_PROCESS_DEBUG_EVENT) || (dwEventCode == EXIT_THREAD_DEBUG_EVENT))
    {
        CordbUnmanagedThread * pUnmanagedThread = pUnmanagedEvent->m_owner;
        _ASSERTE(pUnmanagedThread->IsDeleted());


        // Thread may have a hijacked inband event on it. Thus it's actually running free from the OS perspective,
        // and fair game to be terminated. In that case, we need to auto-dequeue the event.
        // This will just prevent the RS from making the underlying call to ContinueDebugEvent on this thread
        // for the inband event. Since we've already lost the thread, that's actually exactly what we want.
        if (pUnmanagedThread->HasIBEvent())
        {
            pProcess->DequeueUnmanagedEvent(pUnmanagedThread);
        }

        STRESS_LOG1(LF_CORDB, LL_INFO1000, "Removing thread 0x%x (%d) from process list\n", pUnmanagedThread->m_id);
        pProcess->m_unmanagedThreads.RemoveBase((ULONG_PTR)pUnmanagedThread->m_id);
    }


    // If we just continued from an exit process event, then its time to do the exit processing.
    if (dwEventCode == EXIT_PROCESS_DEBUG_EVENT)
    {
        pProcess->Unlock();
        ExitProcess(false); // not detach case
        pProcess->Lock();
    }

}

//---------------------------------------------------------------------------------------
//
// ForceDbgContinue continues from the last Win32 DEBUG_EVENT on the given thread, no matter what it was.
//
// Arguments:
//      pProcess - process object to continue
//      pUnmanagedThread - unmanaged thread object (maybe null if we're doing a raw cotninue)
//      contType - continuation status (DBG_CONTINUE or DBG_EXCEPTION_NOT_HANDLED)
//      fContinueProcess - do we resume hijacks?
//
void CordbWin32EventThread::ForceDbgContinue(CordbProcess *pProcess, CordbUnmanagedThread *pUnmanagedThread, DWORD contType,
                                             bool fContinueProcess)
{
    _ASSERTE(pProcess->ThreadHoldsProcessLock());
    _ASSERTE(pUnmanagedThread != NULL);
    STRESS_LOG4(LF_CORDB, LL_INFO1000,
         "W32ET::FDC: force continue with 0x%x (%s), contProcess=%d, tid=0x%x\n",
         contType,
         (contType == DBG_CONTINUE) ? "DBG_CONTINUE" : "DBG_EXCEPTION_NOT_HANDLED",
         fContinueProcess,
         pUnmanagedThread->m_id);

    if (fContinueProcess)
    {
        pProcess->ResumeHijackedThreads();
    }

    if (contType == DBG_CONTINUE)
    {
        contType = GetDbgContinueFlag();
    }

    _ASSERTE(pProcess->m_state & CordbProcess::PS_WIN32_STOPPED);

    // Remove the Win32 stopped flag so long as the OOB event queue is empty. We're forcing a continue here, so by
    // definition this should be the case...
    _ASSERTE(pProcess->m_outOfBandEventQueue == NULL);

    pProcess->m_state &= ~CordbProcess::PS_WIN32_STOPPED;

    STRESS_LOG4(LF_CORDB, LL_INFO1000, "W32ET::FDC: calling ContinueDebugEvent(0x%x, 0x%x, 0x%x), process state=0x%x\n",
         pProcess->m_id, pUnmanagedThread->m_id, contType, pProcess->m_state);


    #ifdef _DEBUG
    EnableDebugTrace(pUnmanagedThread);
    #endif
    BOOL ret = m_pNativePipeline->ContinueDebugEvent((DWORD)pProcess->m_id, (DWORD)pUnmanagedThread->m_id, contType);

    if (!ret)
    {
        // This could in theory fail from Process exit, but that really would only be on the DoDbgContinue path.
         _ASSERTE(!"ContinueDebugEvent failed #2!");
        STRESS_LOG1(LF_CORDB, LL_INFO1000, "W32ET::DDC: Last error after ContinueDebugEvent is %d\n", GetLastError());
    }
}
#endif // FEATURE_INTEROP_DEBUGGING

//
// This is the thread's real thread proc. It simply calls to the
// thread proc on the given object.
//
/*static*/ DWORD WINAPI CordbWin32EventThread::ThreadProc(LPVOID parameter)
{
    CordbWin32EventThread* t = (CordbWin32EventThread*) parameter;
    INTERNAL_THREAD_ENTRY(t);
    t->ThreadProc();
    return 0;
}


//
// Send a CreateProcess event to the Win32 thread to have it create us
// a new process.
//
HRESULT CordbWin32EventThread::SendCreateProcessEvent(
                                  MachineInfo machineInfo,
                                  LPCWSTR programName,
                                  __in_z LPWSTR  programArgs,
                                  LPSECURITY_ATTRIBUTES lpProcessAttributes,
                                  LPSECURITY_ATTRIBUTES lpThreadAttributes,
                                  BOOL bInheritHandles,
                                  DWORD dwCreationFlags,
                                  PVOID lpEnvironment,
                                  LPCWSTR lpCurrentDirectory,
                                  LPSTARTUPINFOW lpStartupInfo,
                                  LPPROCESS_INFORMATION lpProcessInformation,
                                  CorDebugCreateProcessFlags corDebugFlags)
{
    HRESULT hr = S_OK;

    LockSendToWin32EventThreadMutex();
    LOG((LF_CORDB, LL_EVERYTHING, "CordbWin32EventThread::SCPE Called\n"));
    m_actionData.createData.machineInfo = machineInfo;
    m_actionData.createData.programName = programName;
    m_actionData.createData.programArgs = programArgs;
    m_actionData.createData.lpProcessAttributes = lpProcessAttributes;
    m_actionData.createData.lpThreadAttributes = lpThreadAttributes;
    m_actionData.createData.bInheritHandles = bInheritHandles;
    m_actionData.createData.dwCreationFlags = dwCreationFlags;
    m_actionData.createData.lpEnvironment = lpEnvironment;
    m_actionData.createData.lpCurrentDirectory = lpCurrentDirectory;
    m_actionData.createData.lpStartupInfo = lpStartupInfo;
    m_actionData.createData.lpProcessInformation = lpProcessInformation;
    m_actionData.createData.corDebugFlags = corDebugFlags;

    // m_action is set last so that the win32 event thread can inspect
    // it and take action without actually having to take any
    // locks. The lock around this here is simply to prevent multiple
    // threads from making requests at the same time.
    m_action = W32ETA_CREATE_PROCESS;

    BOOL succ = SetEvent(m_threadControlEvent);

    if (succ)
    {
      DWORD ret = WaitForSingleObject(m_actionTakenEvent, INFINITE);

        LOG((LF_CORDB, LL_EVERYTHING, "Process Handle is: %x, m_threadControlEvent is %x\n",
             (UINT_PTR)m_actionData.createData.lpProcessInformation->hProcess, (UINT_PTR)m_threadControlEvent));

        if (ret == WAIT_OBJECT_0)
            hr = m_actionResult;
        else
            hr = HRESULT_FROM_GetLastError();
    }
    else
        hr = HRESULT_FROM_GetLastError();

    UnlockSendToWin32EventThreadMutex();

    return hr;
}


//---------------------------------------------------------------------------------------
//
// Create a process
//
// Assumptions:
//    This occurs on the win32 event thread. It is invokved via
//    a message sent from code:CordbWin32EventThread::SendCreateProcessEvent
//
// Notes:
//    Create a new process. This is called in the context of the Win32
//    event thread to ensure that if we're Win32 debugging the process
//    that the same thread that waits for debugging events will be the
//    thread that creates the process.
//
//---------------------------------------------------------------------------------------
void CordbWin32EventThread::CreateProcess()
{
    m_action = W32ETA_NONE;
    HRESULT hr = S_OK;

    DWORD dwCreationFlags = m_actionData.createData.dwCreationFlags;

    // If the creation flags has DEBUG_PROCESS in them, then we're
    // Win32 debugging this process. Otherwise, we have to create
    // suspended to give us time to setup up our side of the IPC
    // channel.
    BOOL fInteropDebugging   =
#if defined(FEATURE_INTEROP_DEBUGGING)
        (dwCreationFlags & (DEBUG_PROCESS | DEBUG_ONLY_THIS_PROCESS));
#else
        false; // Interop not supported.
#endif

    // Have Win32 create the process...
    hr = m_pNativePipeline->CreateProcessUnderDebugger(
                                      m_actionData.createData.machineInfo,
                                      m_actionData.createData.programName,
                                      m_actionData.createData.programArgs,
                                      m_actionData.createData.lpProcessAttributes,
                                      m_actionData.createData.lpThreadAttributes,
                                      m_actionData.createData.bInheritHandles,
                                      dwCreationFlags,
                                      m_actionData.createData.lpEnvironment,
                                      m_actionData.createData.lpCurrentDirectory,
                                      m_actionData.createData.lpStartupInfo,
                                      m_actionData.createData.lpProcessInformation);

    if (SUCCEEDED(hr))
    {
        // Process ID is filled in after process is succesfully created.
        DWORD dwProcessId = m_actionData.createData.lpProcessInformation->dwProcessId;
        ProcessDescriptor pd = ProcessDescriptor::FromPid(dwProcessId);

        RSUnsafeExternalSmartPtr<CordbProcess> pProcess;
        hr = m_pShim->InitializeDataTarget(&pd);

        if (SUCCEEDED(hr))
        {
            // To emulate V2 semantics, we pass 0 for the clrInstanceID into
            // OpenVirtualProcess. This will then connect to the first CLR
            // loaded.
            const ULONG64 cFirstClrLoaded = 0;
            hr = CordbProcess::OpenVirtualProcess(cFirstClrLoaded, m_pShim->GetDataTarget(), NULL, m_cordb, &pd, m_pShim, &pProcess);
        }

        // Shouldn't happen on a create, only an attach
        _ASSERTE(hr != CORDBG_E_DEBUGGER_ALREADY_ATTACHED);

        // Remember the process in the global list of processes.
        if (SUCCEEDED(hr))
        {
            EX_TRY
            {
                // Mark if we're interop-debugging
                if (fInteropDebugging)
                {
                    pProcess->EnableInteropDebugging();
                }

                m_cordb->AddProcess(pProcess); // will take ref if it succeeds
            }
            EX_CATCH_HRESULT(hr);
        }

        // If we're Win32 attached to this process, then increment the
        // proper count, otherwise add this process to the wait set
        // and resume the process's main thread.
        if (SUCCEEDED(hr))
        {
            _ASSERTE(m_pProcess == NULL);
            m_pProcess.Assign(pProcess);
        }
    }


    //
    // Signal the hr to the caller.
    //
    m_actionResult = hr;
    SetEvent(m_actionTakenEvent);
}


//
// Send a DebugActiveProcess event to the Win32 thread to have it attach to
// a new process.
//
HRESULT CordbWin32EventThread::SendDebugActiveProcessEvent(
                                                  MachineInfo machineInfo,
                                                  const ProcessDescriptor *pProcessDescriptor,
                                                  bool fWin32Attach,
                                                  CordbProcess *pProcess)
{
    HRESULT hr = S_OK;

    LockSendToWin32EventThreadMutex();

    m_actionData.attachData.machineInfo = machineInfo;
    m_actionData.attachData.processDescriptor = *pProcessDescriptor;
#if !defined(FEATURE_DBGIPC_TRANSPORT_DI)
    m_actionData.attachData.fWin32Attach = fWin32Attach;
#endif
    m_actionData.attachData.pProcess = pProcess;

    // m_action is set last so that the win32 event thread can inspect
    // it and take action without actually having to take any
    // locks. The lock around this here is simply to prevent multiple
    // threads from making requests at the same time.
    m_action = W32ETA_ATTACH_PROCESS;

    BOOL succ = SetEvent(m_threadControlEvent);

    if (succ)
    {
        DWORD ret = WaitForSingleObject(m_actionTakenEvent, INFINITE);

        if (ret == WAIT_OBJECT_0)
            hr = m_actionResult;
        else
            hr = HRESULT_FROM_GetLastError();
    }
    else
        hr = HRESULT_FROM_GetLastError();

    UnlockSendToWin32EventThreadMutex();

    return hr;
}

//-----------------------------------------------------------------------------
// Is the given thread id a helper thread (real or worker?)
//-----------------------------------------------------------------------------
bool CordbProcess::IsHelperThreadWorked(DWORD tid)
{
    // Check against the id gained by sniffing Thread-Create events.
    if (tid == this->m_helperThreadId)
    {
        return true;
    }

    // Now check for potential datate in the IPC block. If not there,
    // then we know it can't be the helper.
    DebuggerIPCControlBlock * pDCB = this->GetDCB();

    if (pDCB == NULL)
    {
        return false;
    }

    // get the latest information from the LS DCB
    UpdateRightSideDCB();
    return
        (tid == pDCB->m_realHelperThreadId) ||
        (tid == pDCB->m_temporaryHelperThreadId);

}

//---------------------------------------------------------------------------------------
//
// Cleans up the Left Side's DCB after a failed attach attempt.
//
// Assumptions:
//    Called when the left-site failed initialization
//
// Notes:
//    This can be called multiple times.
//---------------------------------------------------------------------------------------
void CordbProcess::CleanupHalfBakedLeftSide()
{
    if (GetDCB() != NULL)
    {
        EX_TRY
        {
            GetDCB()->m_rightSideIsWin32Debugger = false;
            UpdateLeftSideDCBField(&(GetDCB()->m_rightSideIsWin32Debugger), sizeof(GetDCB()->m_rightSideIsWin32Debugger));

            if (m_pEventChannel != NULL)
            {
                m_pEventChannel->Delete();
                m_pEventChannel = NULL;
            }
        }
        EX_CATCH
        {
            _ASSERTE(!"Writing process memory failed, perhaps due to an unexpected disconnection from the target.");
        }
        EX_END_CATCH(SwallowAllExceptions);
    }

    // Close and null out the various handles and events, including our process handle m_handle.
    CloseIPCHandles();

    m_cordb.Clear();

    // This process object is Dead-On-Arrival, so it doesn't really have anything to neuter.
    // But for safekeeping, we'll mark it as neutered.
    UnsafeNeuterDeadObject();
}


//---------------------------------------------------------------------------------------
//
// Attach to an existing process.
//
//
// Assumptions:
//    Called on W32Event Thread, in response to event sent by
//    code:CordbWin32EventThread::SendDebugActiveProcessEvent
//
// Notes:
//    Attach to a process. This is called in the context of the Win32
//    event thread to ensure that if we're Win32 debugging the process
//    that the same thread that waits for debugging events will be the
//    thread that attaches the process.
//
//    @dbgtodo shim: this will be part of the shim
//---------------------------------------------------------------------------------------
void CordbWin32EventThread::AttachProcess()
{
    _ASSERTE(IsWin32EventThread());

    RSUnsafeExternalSmartPtr<CordbProcess> pProcess;

    m_action = W32ETA_NONE;

    HRESULT hr = S_OK;

    ProcessDescriptor processDescriptor = m_actionData.attachData.processDescriptor;
    bool fNativeAttachSucceeded = false;

    // Always do OS attach to the target.
    // By this point, the pid should be valid (because OpenProcess above), pending some race where the process just exited.
    // The OS will enforce that only 1 debugger is attached.
    // Common failure paths here would be: access denied, double-attach
    {
        hr = m_pNativePipeline->DebugActiveProcess(m_actionData.attachData.machineInfo,
                                                   processDescriptor);
        if (FAILED(hr))
        {
            goto LExit;
        }
        fNativeAttachSucceeded = true;
    }


    hr = m_pShim->InitializeDataTarget(&processDescriptor);
    if (FAILED(hr))
    {
        goto LExit;
    }

    // To emulate V2 semantics, we pass 0 for the clrInstanceID into
    // OpenVirtualProcess. This will then connect to the first CLR
    // loaded.
    {
        const ULONG64 cFirstClrLoaded = 0;
        hr = CordbProcess::OpenVirtualProcess(cFirstClrLoaded, m_pShim->GetDataTarget(), NULL, m_cordb, &processDescriptor, m_pShim, &pProcess);
        if (FAILED(hr))
        {
            goto LExit;
        }
    }

    // Remember the process in the global list of processes.
    // The caller back in code:Cordb::DebugActiveProcess will then get this by fetching it from the list.

    EX_TRY
    {
        // Mark interop-debugging
        if (m_actionData.attachData.IsInteropDebugging())
        {
            pProcess->EnableInteropDebugging(); // Throwing
        }

        m_cordb->AddProcess(pProcess); // will take ref if it succeeds


        // Queue fake Attach event for CreateProcess
        {
            PUBLIC_CALLBACK_IN_THIS_SCOPE0_NO_LOCK(pProcess);
            m_pShim->BeginQueueFakeAttachEvents();
        }
    }
    EX_CATCH_HRESULT(hr);
    if (FAILED(hr))
    {
        goto LExit;
    }

    _ASSERTE(m_pProcess == NULL);
    m_pProcess.Assign(pProcess);
    pProcess.Clear();     // ownership transfered to m_pProcess

    // Should have succeeded if we got to this point.
    _ASSERTE(SUCCEEDED(hr));


LExit:
    if (FAILED(hr))
    {
        // If we succeed to do a native-attach, but then failed elsewhere, try to native-detach.
        if (fNativeAttachSucceeded)
        {
            m_pNativePipeline->DebugActiveProcessStop(processDescriptor.m_Pid);
        }

        if (pProcess != NULL)
        {
            // Safe to call this even if the process wasn't added.
            m_cordb->RemoveProcess(pProcess);
            pProcess->CleanupHalfBakedLeftSide();
            pProcess.Clear();
        }
        m_pProcess.Clear();
    }

    //
    // Signal the hr to the caller.
    //
    m_actionResult = hr;
    SetEvent(m_actionTakenEvent);
}


// Note that the actual 'DetachProcess' method is really ExitProcess with CW32ET_UNKNOWN_PROCESS_SLOT ==
// processSlot
HRESULT CordbWin32EventThread::SendDetachProcessEvent(CordbProcess *pProcess)
{
    LOG((LF_CORDB, LL_INFO1000, "W32ET::SDPE\n"));
    HRESULT hr = S_OK;

    LockSendToWin32EventThreadMutex();

    m_actionData.detachData.pProcess = pProcess;

    // m_action is set last so that the win32 event thread can inspect it and take action without actually
    // having to take any locks. The lock around this here is simply to prevent multiple threads from making
    // requests at the same time.
    m_action = W32ETA_DETACH;

    BOOL succ = SetEvent(m_threadControlEvent);

    if (succ)
    {
        DWORD ret = WaitForSingleObject(m_actionTakenEvent, INFINITE);

        if (ret == WAIT_OBJECT_0)
            hr = m_actionResult;
        else
            hr = HRESULT_FROM_GetLastError();
    }
    else
        hr = HRESULT_FROM_GetLastError();

    UnlockSendToWin32EventThreadMutex();

    return hr;
}

#ifdef FEATURE_INTEROP_DEBUGGING
//
// Send a UnmanagedContinue event to the Win32 thread to have it
// continue from an unmanged debug event.
//
HRESULT CordbWin32EventThread::SendUnmanagedContinue(CordbProcess *pProcess,
                                                     EUMContinueType eContType)
{
    HRESULT hr = S_OK;

    // If this were being called on the win32 EventThread, we'd deadlock.
    _ASSERTE(!IsWin32EventThread());

    // This can't hold the process lock, b/c we're making a cross-thread call,
    // and our target will need the process lock.
    _ASSERTE(!pProcess->ThreadHoldsProcessLock());

    LockSendToWin32EventThreadMutex();

    m_actionData.continueData.process = pProcess;
    m_actionData.continueData.eContType = eContType;

    // m_action is set last so that the win32 event thread can inspect
    // it and take action without actually having to take any
    // locks. The lock around this here is simply to prevent multiple
    // threads from making requests at the same time.
    m_action = W32ETA_CONTINUE;

    BOOL succ = SetEvent(m_threadControlEvent);

    if (succ)
    {
        DWORD ret = WaitForSingleObject(m_actionTakenEvent, INFINITE);

        if (ret == WAIT_OBJECT_0)
            hr = m_actionResult;
        else
            hr = HRESULT_FROM_GetLastError();
    }
    else
        hr = HRESULT_FROM_GetLastError();

    UnlockSendToWin32EventThreadMutex();

    return hr;
}


//
// Handle unmanaged continue. Continue an unmanaged debug
// event. Deferes to UnmanagedContinue. This is called in the context
// of the Win32 event thread to ensure that if we're Win32 debugging
// the process that the same thread that waits for debugging events
// will be the thread that continues the process.
//
void CordbWin32EventThread::HandleUnmanagedContinue()
{
    _ASSERTE(IsWin32EventThread());

    m_action = W32ETA_NONE;
    HRESULT hr = S_OK;

    // Continue the process
    CordbProcess *pProcess = m_actionData.continueData.process;

    // If we lost the process object, we must have exited.
    if (m_pProcess != NULL)
    {
        _ASSERTE(m_pProcess != NULL);
        _ASSERTE(pProcess == m_pProcess);

        _ASSERTE(!pProcess->ThreadHoldsProcessLock());

        RSSmartPtr<CordbProcess> proc(pProcess);
        RSLockHolder ch(&pProcess->m_processMutex);

        hr = UnmanagedContinue(pProcess, m_actionData.continueData.eContType);
    }

    // Signal the hr to the caller.
    m_actionResult = hr;
    SetEvent(m_actionTakenEvent);
}

//
// Continue an unmanaged debug event. This is called in the context of the Win32 Event thread to ensure that the same
// thread that waits for debug events will be the thread that continues the process.
//
HRESULT CordbWin32EventThread::UnmanagedContinue(CordbProcess *pProcess,
                                                 EUMContinueType eContType)
{
    _ASSERTE(pProcess->ThreadHoldsProcessLock());
    _ASSERTE(IsWin32EventThread());
    _ASSERTE(m_pShim != NULL);

    HRESULT hr = S_OK;

    STRESS_LOG1(LF_CORDB, LL_INFO1000, "UM Continue. type=%d\n", eContType);

    if (eContType == cOobUMContinue)
    {
        _ASSERTE(pProcess->m_outOfBandEventQueue != NULL);

        // Dequeue the OOB event.
        CordbUnmanagedEvent *ue = pProcess->m_outOfBandEventQueue;
        CordbUnmanagedThread *ut = ue->m_owner;
        pProcess->DequeueOOBUnmanagedEvent(ut);

        // Do a little extra work if that was an OOB exception event...
        hr = ue->m_owner->FixupAfterOOBException(ue);
        _ASSERTE(SUCCEEDED(hr));

        // Continue from the event.
        DoDbgContinue(pProcess, ue);

        // If there are more queued OOB events, dispatch them now.
        if (pProcess->m_outOfBandEventQueue != NULL)
            pProcess->DispatchUnmanagedOOBEvent();

        // Note: if we previously skipped letting the entire process go on an IB continue due to a blocking OOB event,
        // and if the OOB event queue is now empty, then go ahead and let the process continue now...
        if ((pProcess->m_doRealContinueAfterOOBBlock == true) &&
            (pProcess->m_outOfBandEventQueue == NULL))
            goto doRealContinue;
    }
    else if (eContType == cInternalUMContinue)
    {
        // We're trying to get into a synced state which means we need the process running (potentially
        // with some threads hijacked) in order to have the helper thread do the sync.
        LOG((LF_CORDB, LL_INFO1000, "W32ET::UC: internal continue.\n"));

        if (!pProcess->GetSynchronized())
        {
            LOG((LF_CORDB, LL_INFO1000, "W32ET::UC: internal continue, !sync'd.\n"));
            pProcess->ResumeUnmanagedThreads();

            // the event we may need to hijack and continue;
            CordbUnmanagedEvent* pEvent = pProcess->m_lastQueuedUnmanagedEvent;

            // It is possible to be stopped at either an IB or an OOB event here. We only want to
            // continue from an IB event here though
            if(pProcess->m_state & CordbProcess::PS_WIN32_STOPPED && pEvent != NULL &&
                pEvent->IsEventWaitingForContinue())
            {
                LOG((LF_CORDB, LL_INFO1000, "W32ET::UC: internal continue, frozen on IB event.\n"));

                // There should be a uncontinued IB event at the head of the queue
                _ASSERTE(pEvent->IsIBEvent());
                _ASSERTE(!pEvent->IsEventContinuedUnhijacked());
                _ASSERTE(!pEvent->IsEventContinuedHijacked());

                // Ensure that the event is hijacked now (it may not have been before) so that the
                // thread does not slip forward during the sync process. After that we can safely continue
                // it.
                pProcess->HijackIBEvent(pEvent);
                m_pShim->GetWin32EventThread()->DoDbgContinue(pProcess, pEvent);
            }
        }

        LOG((LF_CORDB, LL_INFO1000, "W32ET::UC: internal continue, done.\n"));
    }
    else
    {
        // If we're here, then we know 100% for sure that we've successfully gotten the managed continue event to the
        // Left Side, so we can stop force hijacking left over in-band events now. Note: if we had hijacked any such
        // events, they'll be dispatched below since they're properly queued.
        pProcess->m_specialDeferment = false;

        // We don't actually do any work if there is an outstanding out-of-band event. When we do continue from the
        // out-of-band event, we'll do this work, too.
        if (pProcess->m_outOfBandEventQueue != NULL)
        {
            LOG((LF_CORDB, LL_INFO1000, "W32ET::UC: ignoring real continue due to block by out-of-band event(s).\n"));

            _ASSERTE(pProcess->m_doRealContinueAfterOOBBlock == false);
            pProcess->m_doRealContinueAfterOOBBlock = true;
        }
        else
        {
doRealContinue:
            // This is either the Frozen -> Running transition or a
            // Synced -> Running transition
            _ASSERTE(pProcess->m_outOfBandEventQueue == NULL);


            pProcess->m_doRealContinueAfterOOBBlock = false;

            LOG((LF_CORDB, LL_INFO1000, "W32ET::UC: continuing the process.\n"));
            // Dispatch any more queued in-band events, or if there are none then just continue the process.
            //
            // Note: don't dispatch more events if we've already sent up the ExitProcess event... those events are just
            // lost.
            if ((pProcess->HasUndispatchedNativeEvents()) && (pProcess->m_exiting == false))
            {
                pProcess->DispatchUnmanagedInBandEvent();
            }
            else
            {
                // If the unmanaged event queue is empty now, and the process is synchronized, and there are queued
                // managed events, then go ahead and get more managed events dispatched.
                //
                // Note: don't dispatch more events if we've already sent up the ExitProcess event... those events are
                // just lost.
                if (pProcess->GetSynchronized() && (!m_pShim->GetManagedEventQueue()->IsEmpty()) && (pProcess->m_exiting == false))
                {
                    if(pProcess->m_state & CordbProcess::PS_WIN32_STOPPED)
                    {
                        DoDbgContinue(pProcess, pProcess->m_lastDispatchedIBEvent);

                        // This if should not be necessary, I am just being extra careful because this
                        // fix is going in late - see issue 818301
                        _ASSERTE(pProcess->m_lastDispatchedIBEvent != NULL);
                        if(pProcess->m_lastDispatchedIBEvent != NULL)
                        {
                            pProcess->m_lastDispatchedIBEvent->m_owner->InternalRelease();
                        pProcess->m_lastDispatchedIBEvent = NULL;
                    }
                    }

                    // Now, get more managed events dispatched.
                    pProcess->SetSynchronized(false);
                    pProcess->MarkAllThreadsDirty();
                    m_cordb->ProcessStateChanged();
                }
                else
                {
                    // free all the hijacked threads that hit native debug events
                    pProcess->ResumeHijackedThreads();

                    // after continuing the here the process should be running completely
                    // free... no hijacks, no suspended threads, and of course not frozen
                    if(pProcess->m_state & CordbProcess::PS_WIN32_STOPPED)
                    {
                        DoDbgContinue(pProcess, pProcess->m_lastDispatchedIBEvent);
                        // This if should not be necessary, I am just being extra careful because this
                        // fix is going in late - see issue 818301
                        _ASSERTE(pProcess->m_lastDispatchedIBEvent != NULL);
                        if(pProcess->m_lastDispatchedIBEvent != NULL)
                        {
                            pProcess->m_lastDispatchedIBEvent->m_owner->InternalRelease();
                        pProcess->m_lastDispatchedIBEvent = NULL;
                    }
                }
            }
            }

            // Implicit Release on UT
        }
    }

    return hr;
}
#endif // FEATURE_INTEROP_DEBUGGING

void ExitProcessWorkItem::Do()
{
    STRESS_LOG1(LF_CORDB, LL_INFO1000, "ExitProcessWorkItem proc=%p\n", GetProcess());

    // This is being called on the RCET.
    // That's the thread that dispatches managed events. Since it's calling us now, we know
    // it can't be dispatching a managed event, and so we don't need to both waiting for it

    {
        // Get the SG lock here to coordinate against any other continues.
        RSLockHolder ch(GetProcess()->GetStopGoLock());
        RSLockHolder ch2(&(GetProcess()->m_processMutex));

        LOG((LF_CORDB, LL_INFO1000,"W32ET::EP: ExitProcess callback\n"));

        // We're synchronized now, so mark the process as such.
        GetProcess()->SetSynchronized(true);
        GetProcess()->IncStopCount();

        // By the time we release the SG + Process locks here, the process object has been
        // marked as exiting + terminated (by the w32et which queued us). Future attemps to
        // continue should fail, and thus we should remain synchronized.
    }


    //  Just to be safe, neuter any children before the exit process callback.
    {
        RSLockHolder ch(GetProcess()->GetProcessLock());

        // Release the process.
        GetProcess()->NeuterChildren();
    }

    RSSmartPtr<Cordb> pCordb(NULL);

    // There is a race condition here where the debuggee process is killed while we are processing a process
    // detach.  We queue the process exit event for the Win32 event thread before queueing the process detach
    // event.  By the time this function is executed, we may have neutered the CordbProcess already as a
    // result of code:CordbProcess::Detach.  Detect that case here under the SG lock.
    {
        RSLockHolder ch(GetProcess()->GetStopGoLock());
        if (!GetProcess()->IsNeutered())
        {
            _ASSERTE(GetProcess()->m_cordb != NULL);
            pCordb.Assign(GetProcess()->m_cordb);
        }
    }

    // Move this into Shim?

    // Invoke the ExitProcess callback. This is very important since the a shell
    // may rely on it for proper shutdown and may hang if they don't get it.
    // We don't expect Cordbg to continue from this (we're certainly not going to wait for it).
    if ((pCordb != NULL) && (pCordb->m_managedCallback != NULL))
    {
        PUBLIC_CALLBACK_IN_THIS_SCOPE0_NO_LOCK(GetProcess());
        pCordb->m_managedCallback->ExitProcess(GetProcess());
    }

    // This CordbProcess object now has no reservations against a client calling ICorDebug::Terminate.
    // That call may race against the CordbProcess::Neuter below, but since we already neutered the children,
    // that neuter call will not do anything interesting that will conflict with Terminate.

    LOG((LF_CORDB, LL_INFO1000,"W32ET::EP: returned from ExitProcess callback\n"));

    {
        RSLockHolder ch(GetProcess()->GetStopGoLock());

        // Release the process.
        GetProcess()->Neuter();
    }

    // Our dtor will release the Process object.
    // This may be the final release on the process.
}


//---------------------------------------------------------------------------------------
//
// Handles process exiting and detach cases
//
// Arguments:
//    fDetach - true if detaching, false if process is exiting.
//
// Return Value:
//    The type of the next argument in the signature,
//    normalized.
//
// Assumptions:
//    On exit, the process has already exited and we detected this by either an EXIT_PROCESS
//    native debug event, or by waiting on the process handle.
//    On detach, the process is stil live.
//
// Notes:
//    ExitProcess is called when a process exits or detaches.
//    This does our final cleanup and removes the process from our wait sets.
//    We're either here because we're detaching (fDetach == TRUE), or because the process has really exited,
//    and we're doing shutdown logic.
//
//---------------------------------------------------------------------------------------
void CordbWin32EventThread::ExitProcess(bool fDetach)
{
    INTERNAL_API_ENTRY(this);

    // Consider the following when you're modifying this function:
    // - The OS can kill the debuggee at any time.
    // - ExitProcess can race with detach.

    LOG((LF_CORDB, LL_INFO1000,"W32ET::EP: begin ExitProcess, detach=%d\n", fDetach));


    // For the Mac remote debugging transport, DebugActiveProcessStop() is a nop.  The transport will be
    // shut down later when we neuter the CordbProcess.
#if !defined(FEATURE_DBGIPC_TRANSPORT_DI)
    // @dbgtodo shim: this is a primitive workaround for interop-detach
    // Eventually, the Debugger owns the detach pipeline, so this won't be necessary.
    if (fDetach && (m_pProcess != NULL))
    {
        HRESULT hr = m_pNativePipeline->DebugActiveProcessStop(m_pProcess->GetProcessDescriptor()->m_Pid);

        // We don't expect detach to fail (we check earlier for common conditions that
        // may cause it to fail)
        SIMPLIFYING_ASSUMPTION(SUCCEEDED(hr));
        if( FAILED(hr) )
        {
            m_actionResult = hr;
            SetEvent(m_actionTakenEvent);
            return;
        }
    }
#endif // !FEATURE_DBGIPC_TRANSPORT_DI


    // We don't really care if we're on the Win32 thread or not here. We just want to be sure that
    // the LS Exit case and the Detach case both occur on the same thread. This makes it much easier
    // to assert that if we exit while detaching, EP is only called once.
    // If we ever decide to make the RCET listen on the LS process handle for EP(exit), then we should also
    // make the EP(detach) handled on the RCET (via DoFavor() ).
    _ASSERTE(IsWin32EventThread());

    // So either the Exit case or Detach case must happen first.
    // 1) If Detach first, then LS process is removed from wait set and so EP(Exit) will never happen
    //    because we check wait set after returning from EP(Detach).
    // 2) If Exit is first, m_pProcess gets set=NULL. EP(detach) will still get called, so explicitly check that.
    if (fDetach && ((m_pProcess == NULL) || m_pProcess->m_terminated))
    {
        // m_terminated is only set after the LS exits.
        // So the only way (fDetach && m_terminated) is true is if the LS exited while detaching. In that case
        // we already called EP(exit) and we don't want to call it again for EP(detach). So return here.
        LOG((LF_CORDB, LL_INFO1000,"W32ET::EP: In EP(detach), but EP(exit) already called. Early failure\n"));

        m_actionResult = CORDBG_E_PROCESS_TERMINATED;
        SetEvent(m_actionTakenEvent);

        return;
    }

    // We null m_pProcess at the end here, so
    // Only way we could get here w/ null process is if we're called twice. We can only be called
    // by detach or exit. Can't detach twice, can't exit twice, so must have been one of each.
    // If exit is first, we got removed from the wait set, so 2nd call must be detach and we'd catch
    // that above. If detach is first, we'd get removed from the wait set and so exit would never happen.
    _ASSERTE(m_pProcess != NULL);
    _ASSERTE(!m_pProcess->ThreadHoldsProcessLock());



    // Mark the process teminated. After this, the RCET will never call FlushQueuedEvents. It will
    // ignore all events it receives (including a SyncComplete) and the RCET also does not listen
    // to terminated processes (so ProcessStateChange() won't cause a FQE either).
    m_pProcess->Terminating(fDetach);

    // Take care of the race where the process exits right after the user calls Continue() from the last
    // managed event but before the handler has actually returned.
    //
    // Also, To get through this lock means that either:
    // 1. FlushQueuedEvents is not currently executing and no one will call FQE.
    // 2. FQE is exiting but is in the middle of a callback (so AreDispatchingEvent = true)
    //
    m_pProcess->Lock();

    m_pProcess->m_exiting = true;

    if (fDetach)
    {
        m_pProcess->SetSynchronized(false);
    }

    // If we are exiting, we *must* dispatch the ExitProcess callback, but we will delete all the events
    // in the queue and not bother dispatching anything else. If (and only if) we are currently dispatching
    // an event, then we will wait while that event is finished before invoking ExitProcess.
    // (Note that a dispatched event has already been removed from the queue)

    // Remove the process from the global list of processes.
    m_cordb->RemoveProcess(m_pProcess);

    if (fDetach)
    {
        // Signal the hr to the caller.
        LOG((LF_CORDB, LL_INFO1000,"W32ET::EP: Detach: send result back!\n"));

        m_actionResult = S_OK;
        SetEvent(m_actionTakenEvent);
    }

    m_pProcess->Unlock();

    // Delete all queued events
    m_pProcess->DeleteQueuedEvents();


    // If we're detaching, then the Detach already neutered everybody, so nothing here.
    // If we're exiting, then we still need to neuter things, but we can't do that on this thread,
    // so we queue it. We also need to dispatch an exit process callback. We'll queue that onto the RCET
    // and dispatch it inband w/the other callbacks.
    if (!fDetach)
    {
#ifdef FEATURE_PAL
        // Cleanup the transport pipe and semaphore files that might be left by the target (LS) process.
        m_pNativePipeline->CleanupTargetProcess();
#endif
        ExitProcessWorkItem * pItem = new (nothrow) ExitProcessWorkItem(m_pProcess);
        if (pItem != NULL)
        {
            m_cordb->m_rcEventThread->QueueAsyncWorkItem(pItem);
        }
    }

    // This will remove the process from our wait lists (so that we don't send multiple ExitProcess events).
    m_pProcess.Clear();
}


//
// Start actually creates and starts the thread.
//
HRESULT CordbWin32EventThread::Start()
{
    HRESULT hr = S_OK;
    if (m_threadControlEvent == NULL)
        return E_INVALIDARG;

    // Create the thread suspended to make sure that m_threadId is set
    // before CordbWin32EventThread::ThreadProc runs
    // Stack size = 0x80000 = 512KB
    m_thread = CreateThread(NULL, 0x80000, &CordbWin32EventThread::ThreadProc,
                            (LPVOID) this, CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION, &m_threadId);

    if (m_thread == NULL)
        return HRESULT_FROM_GetLastError();

    DWORD succ = ResumeThread(m_thread);
    if (succ == (DWORD)-1)
        return HRESULT_FROM_GetLastError();
    return hr;
}


//
// Stop causes the thread to stop receiving events and exit. It
// waits for it to exit before returning.
//
HRESULT CordbWin32EventThread::Stop()
{
    HRESULT hr = S_OK;

    // m_pProcess may be NULL from CordbWin32EventThread::ExitProcess

    // Can't block on W32ET while holding the process-lock since the W32ET may need that to exit.
    // But since m_pProcess may be null, we can't enforce that.

    if (m_thread != NULL)
    {
        LockSendToWin32EventThreadMutex();
        m_action = W32ETA_NONE;
        m_run = FALSE;

        SetEvent(m_threadControlEvent);
        UnlockSendToWin32EventThreadMutex();

        DWORD ret = WaitForSingleObject(m_thread, INFINITE);

        if (ret != WAIT_OBJECT_0)
            hr = HRESULT_FROM_GetLastError();
    }

    m_pProcess.Clear();
    m_cordb.Clear();

    return hr;
}








// Allocate a buffer of cbBuffer bytes in the target.
//
// Arguments:
//     cbBuffer - count of bytes for the buffer.
//
// Returns:
//     a TargetBuffer describing the new memory region in the target.
//     Throws on error.
TargetBuffer CordbProcess::GetRemoteBuffer(ULONG cbBuffer)
{
    INTERNAL_SYNC_API_ENTRY(this); //

    // Create and initialize the event as synchronous
    DebuggerIPCEvent event;
    InitIPCEvent(&event,
                 DB_IPCE_GET_BUFFER,
                 true,
                 VMPTR_AppDomain::NullPtr());

    // Indicate the buffer size wanted
    event.GetBuffer.bufSize = cbBuffer;

    // Make the request, which is synchronous
    HRESULT hr = SendIPCEvent(&event, sizeof(event));
    IfFailThrow(hr);
    _ASSERTE(event.type == DB_IPCE_GET_BUFFER_RESULT);

    IfFailThrow(event.GetBufferResult.hr);

    // The request succeeded. Return the newly allocated range.
    return TargetBuffer(event.GetBufferResult.pBuffer, cbBuffer);
}

/*
 * This will release a previously allocated left side buffer.
 */
HRESULT CordbProcess::ReleaseRemoteBuffer(void **ppBuffer)
{
    INTERNAL_SYNC_API_ENTRY(this); //

    _ASSERTE(m_pShim != NULL);

    // Create and initialize the event as synchronous
    DebuggerIPCEvent event;
    InitIPCEvent(&event,
                 DB_IPCE_RELEASE_BUFFER,
                 true,
                 VMPTR_AppDomain::NullPtr());

    // Indicate the buffer to release
    event.ReleaseBuffer.pBuffer = (*ppBuffer);

    // Make the request, which is synchronous
    HRESULT hr = SendIPCEvent(&event, sizeof(event));
    TESTANDRETURNHR(hr);

    (*ppBuffer) = NULL;

    // Indicate success
    return event.ReleaseBufferResult.hr;
}

HRESULT CordbProcess::SetDesiredNGENCompilerFlags(DWORD dwFlags)
{
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);

#if defined(FEATURE_PREJIT)
    if ((dwFlags != CORDEBUG_JIT_DEFAULT) && (dwFlags != CORDEBUG_JIT_DISABLE_OPTIMIZATION))
    {
        return E_INVALIDARG;
    }

    CordbProcess *pProcess = GetProcess();
    ATT_REQUIRE_STOPPED_MAY_FAIL(pProcess);
    HRESULT  hr = S_OK;
    EX_TRY
    {
        // Left-side checks that this is a valid time to set the Ngen flags.
        hr = pProcess->GetDAC()->SetNGENCompilerFlags(dwFlags);
        if (!SUCCEEDED(hr) && GetShim() != NULL)
        {
            // Emulate V2 error semantics.
            hr = GetShim()->FilterSetNgenHresult(hr);
        }
    }
    EX_CATCH_HRESULT(hr);
    return hr;

#else  // !FEATURE_PREJIT
    return CORDBG_E_NGEN_NOT_SUPPORTED;

#endif // FEATURE_PREJIT
}

HRESULT CordbProcess::GetDesiredNGENCompilerFlags(DWORD *pdwFlags )
{
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    VALIDATE_POINTER_TO_OBJECT(pdwFlags, DWORD*);
    *pdwFlags = 0;

    CordbProcess *pProcess = GetProcess();
    ATT_REQUIRE_STOPPED_MAY_FAIL(pProcess);
    HRESULT  hr = S_OK;
    EX_TRY
    {
        hr = pProcess->GetDAC()->GetNGENCompilerFlags(pdwFlags);
    }
    EX_CATCH_HRESULT(hr);
    return hr;
}

//-----------------------------------------------------------------------------
// Get an ICorDebugReference Value for the GC handle.
// handle - raw bits for the GC handle.
// pOutHandle
//-----------------------------------------------------------------------------
HRESULT CordbProcess::GetReferenceValueFromGCHandle(
    UINT_PTR gcHandle,
    ICorDebugReferenceValue **pOutValue)
{
    PUBLIC_API_ENTRY(this);
    FAIL_IF_NEUTERED(this);
    ATT_REQUIRE_STOPPED_MAY_FAIL(this);
    VALIDATE_POINTER_TO_OBJECT(pOutValue, ICorDebugReferenceValue*);

    *pOutValue = NULL;
    HRESULT hr = S_OK;

    EX_TRY
    {
        if (gcHandle == NULL)
        {
            ThrowHR(CORDBG_E_BAD_REFERENCE_VALUE);
        }

        IDacDbiInterface* pDAC = GetProcess()->GetDAC();
        VMPTR_OBJECTHANDLE vmObjHandle = pDAC->GetVmObjectHandle(gcHandle);
        if(!pDAC->IsVmObjectHandleValid(vmObjHandle))
        {
            ThrowHR(CORDBG_E_BAD_REFERENCE_VALUE);
        }
        ULONG appDomainId = pDAC->GetAppDomainIdFromVmObjectHandle(vmObjHandle);
        VMPTR_AppDomain vmAppDomain = pDAC->GetAppDomainFromId(appDomainId);

        RSLockHolder lockHolder(GetProcessLock());
        CordbAppDomain * pAppDomain = LookupOrCreateAppDomain(vmAppDomain);
        lockHolder.Release();

        // Now that we finally have the AppDomain, we can go ahead and get a ReferenceValue
        // from the ObjectHandle.
        hr = CordbReferenceValue::BuildFromGCHandle(pAppDomain, vmObjHandle, pOutValue);
        _ASSERTE(SUCCEEDED(hr) == (*pOutValue != NULL));
        IfFailThrow(hr);
    }
    EX_CATCH_HRESULT(hr);
    return hr;
}

//-----------------------------------------------------------------------------
// Return count of outstanding GC handles held by CordbHandleValue objects
LONG CordbProcess::OutstandingHandles()
{
    return m_cOutstandingHandles;
}

//-----------------------------------------------------------------------------
// Increment the outstanding handle count for code:CordbProces::OutstandingHandles
// This is the inverse of code:CordbProces::DecrementOutstandingHandles
void CordbProcess::IncrementOutstandingHandles()
{
    _ASSERTE(ThreadHoldsProcessLock());
    m_cOutstandingHandles++;
}

//-----------------------------------------------------------------------------
// Decrement the outstanding handle count for code:CordbProces::OutstandingHandles
// This is the inverse of code:CordbProces::IncrementOutstandingHandles
void CordbProcess::DecrementOutstandingHandles()
{
    _ASSERTE(ThreadHoldsProcessLock());
    m_cOutstandingHandles--;
}


/*
 * IsReadyForDetach
 *
 * This method encapsulates all logic for deciding if it is ok for a debugger to
 * detach from the process at this time.
 *
 * Parameters: None.
 *
 * Returns: S_OK if it is ok to detach, else a specific HRESULT describing why it
 *   is not ok to detach.
 *
 */
HRESULT CordbProcess::IsReadyForDetach()
{
    INTERNAL_API_ENTRY(this);

    // Always safe to detach in V3 case.
    if (m_pShim == NULL)
    {
        return S_OK;
    }

    // If not initialized yet, then there are no detach liabilities.
    if (!m_initialized)
    {
        return S_OK;
    }

    RSLockHolder lockHolder(&this->m_processMutex);

    //
    // If there are any outstanding func-evals then fail the detach.
    //
    if (OutstandingEvalCount() != 0)
    {
        return CORDBG_E_DETACH_FAILED_OUTSTANDING_EVALS;
    }

    // V2 didn't check outstanding handles (code:CordbProcess::OutstandingHandles)
    // because it could automatically clean those up on detach.

    //
    // If there are any outstanding steppers then fail the detach.
    //
    if (m_steppers.IsInitialized() && (m_steppers.GetCount() > 0))
    {
        return CORDBG_E_DETACH_FAILED_OUTSTANDING_STEPPERS;
    }

    //
    // If there are any outstanding breakpoints then fail the detach.
    //
    HASHFIND foundAppDomain;
    CordbAppDomain *pAppDomain = m_appDomains.FindFirst(&foundAppDomain);

    while (pAppDomain != NULL)
    {
        if (pAppDomain->m_breakpoints.IsInitialized() && (pAppDomain->m_breakpoints.GetCount() > 0))
        {
            return CORDBG_E_DETACH_FAILED_OUTSTANDING_BREAKPOINTS;
        }

        // Check for any outstanding EnC modules.
        HASHFIND foundModule;
        CordbModule * pModule = pAppDomain->m_modules.FindFirst(&foundModule);
        while (pModule != NULL)
        {
            if (pModule->m_EnCCount > 0)
            {
                return CORDBG_E_DETACH_FAILED_ON_ENC;
            }
            pModule = pAppDomain->m_modules.FindNext(&foundModule);
        }


        pAppDomain = m_appDomains.FindNext(&foundAppDomain);
    }

    // If we're using the shim, give a chance to early-out if the OS doesn't support detach
    // so that the user can continue to debug in that case.
    // Ideally we'd just rely on the failure from DebugActiveProcessStop, but by then it's too late
    // to recover.  This function is our only chance to distinguish between graceful detach failures
    // and hard detach failures (after which the process object is neutered).
    if (m_pShim != NULL)
    {
#if !defined(FEATURE_CORESYSTEM) // CORESYSTEM TODO
        HModuleHolder hKernel32;
        hKernel32 = WszLoadLibrary(W("kernel32"));
        if (hKernel32 == NULL)
            return HRESULT_FROM_GetLastError();
        typedef BOOL (*DebugActiveProcessStopSig) (DWORD);
        DebugActiveProcessStopSig pDebugActiveProcessStop =
            reinterpret_cast<DebugActiveProcessStopSig>(GetProcAddress(hKernel32, "DebugActiveProcessStop"));
        if (pDebugActiveProcessStop == NULL)
            return COR_E_PLATFORMNOTSUPPORTED;
#endif
    }

    return S_OK;
}


/*
 * Look for any thread which was last seen in the specified AppDomain.
 * The CordbAppDomain object is about to be neutered due to an AD Unload
 * So the thread must no longer be considered to be in that domain.
 * Note that this is a workaround due to the existance of the (possibly incorrect)
 * cached AppDomain value.  Ideally we would remove the cached value entirely
 * and there would be no need for this.
 *
 * @dbgtodo: , appdomain: We should remove CordbThread::m_pAppDomain in the V3 architecture.
 * If we need the thread's current domain, we should get it accurately with DAC.
 */
void CordbProcess::UpdateThreadsForAdUnload(CordbAppDomain * pAppDomain)
{
    INTERNAL_API_ENTRY(this);

    // If we're doing an AD unload then we should have already seen the ATTACH
    // notification for the default domain.
    //_ASSERTE( m_pDefaultAppDomain != NULL );
    // @dbgtodo appdomain: fix Default domain invariants with DAC-izing Appdomain work.

    RSLockHolder lockHolder(GetProcessLock());

    CordbThread* t;
    HASHFIND find;

    // We don't need to prepopulate here (to collect LS state) because we're just updating RS state.
    for (t =  m_userThreads.FindFirst(&find);
         t != NULL;
         t =  m_userThreads.FindNext(&find))
    {
        if( t->GetAppDomain() == pAppDomain )
        {
            // This thread cannot actually be in this AppDomain anymore (since it's being
            // unloaded).  Reset it to point to the default AppDomain
            t->m_pAppDomain = m_pDefaultAppDomain;
        }
    }
}

// CordbProcess::LookupClass
// Looks up a previously constructed CordbClass instance without creating. May return NULL if the
// CordbClass instance doesn't exist.
// Argument: (in) vmDomainFile - pointer to the domainfile for the module
//           (in) mdTypeDef    - metadata token for the class
// Return value: pointer to a previously created CordbClass instance or NULL in none exists
CordbClass * CordbProcess::LookupClass(ICorDebugAppDomain * pAppDomain, VMPTR_DomainFile vmDomainFile, mdTypeDef classToken)
{
    _ASSERTE(ThreadHoldsProcessLock());

    if (pAppDomain != NULL)
    {
        CordbModule * pModule = ((CordbAppDomain *)pAppDomain)->m_modules.GetBase(VmPtrToCookie(vmDomainFile));
        if (pModule != NULL)
        {
            return pModule->LookupClass(classToken);
        }
    }
    return NULL;
} // CordbProcess::LookupClass

//---------------------------------------------------------------------------------------
// Look for a specific module in the process.
//
// Arguments:
//    vmDomainFile - non-null module to lookup
//
// Returns:
//    a CordbModule object for the given cookie. Object may be from the cache, or created
//    lazily.
//    Never returns null.  Throws on error.
//
// Notes:
//    A VMPTR_DomainFile has appdomain affinity, but is ultimately scoped to a process.
//    So if we get a raw VMPTR_DomainFile (eg, from the stackwalker or from some other
//    lookup function), then we need to do a process wide lookup since we don't know which
//    appdomain it's in. If you know the appdomain, you can use code:CordbAppDomain::LookupOrCreateModule.
//
CordbModule * CordbProcess::LookupOrCreateModule(VMPTR_DomainFile vmDomainFile)
{
    INTERNAL_API_ENTRY(this);

    RSLockHolder lockHolder(GetProcess()->GetProcessLock());
    _ASSERTE(!vmDomainFile.IsNull());

    DomainFileInfo data;
    GetDAC()->GetDomainFileData(vmDomainFile, &data); // throws

    CordbAppDomain * pAppDomain = LookupOrCreateAppDomain(data.vmAppDomain);
    return pAppDomain->LookupOrCreateModule(vmDomainFile);
}

//---------------------------------------------------------------------------------------
// Determine if the process has any in-band queued events which have not been dispatched
//
// Returns:
//    TRUE iff there are undispatched IB events
//
#ifdef FEATURE_INTEROP_DEBUGGING
BOOL CordbProcess::HasUndispatchedNativeEvents()
{
    INTERNAL_API_ENTRY(this);

    CordbUnmanagedEvent* pEvent = m_unmanagedEventQueue;
    while(pEvent != NULL && pEvent->IsDispatched())
    {
        pEvent = pEvent->m_next;
    }

    return pEvent != NULL;
}
#endif

//---------------------------------------------------------------------------------------
// Determine if the process has any in-band queued events which have not been user continued
//
// Returns:
//    TRUE iff there are user uncontinued IB events
//
#ifdef FEATURE_INTEROP_DEBUGGING
BOOL CordbProcess::HasUserUncontinuedNativeEvents()
{
    INTERNAL_API_ENTRY(this);

    CordbUnmanagedEvent* pEvent = m_unmanagedEventQueue;
    while(pEvent != NULL && pEvent->IsEventUserContinued())
    {
        pEvent = pEvent->m_next;
    }

    return pEvent != NULL;
}
#endif

//---------------------------------------------------------------------------------------
// Hijack the thread which had this event. If the thread is already hijacked this method
// has no effect.
//
// Arguments:
//    pUnmanagedEvent - the debug event which requires us to hijack
//
// Returns:
//    S_OK on success, failing HRESULT if the hijack could not be set up
//
#ifdef FEATURE_INTEROP_DEBUGGING
HRESULT CordbProcess::HijackIBEvent(CordbUnmanagedEvent * pUnmanagedEvent)
{
    // Can't hijack after the event has already been continued hijacked
    _ASSERTE(!pUnmanagedEvent->IsEventContinuedHijacked());
    // Can only hijack IB events
    _ASSERTE(pUnmanagedEvent->IsIBEvent());

    // If we already hijacked the event then there is nothing left to do
    if(pUnmanagedEvent->m_owner->IsFirstChanceHijacked() ||
        pUnmanagedEvent->m_owner->IsGenericHijacked())
    {
        return S_OK;
    }

    ResetEvent(this->m_leftSideUnmanagedWaitEvent);
    if (pUnmanagedEvent->m_currentDebugEvent.u.Exception.dwFirstChance)
    {
        HRESULT hr = pUnmanagedEvent->m_owner->SetupFirstChanceHijackForSync();
        SIMPLIFYING_ASSUMPTION(SUCCEEDED(hr));
        return hr;
    }
    else // Second chance exceptions must be generic hijacked.
    {
        HRESULT hr = pUnmanagedEvent->m_owner->SetupGenericHijack(pUnmanagedEvent->m_currentDebugEvent.dwDebugEventCode, &pUnmanagedEvent->m_currentDebugEvent.u.Exception.ExceptionRecord);
        SIMPLIFYING_ASSUMPTION(SUCCEEDED(hr));
        return hr;
    }
}
#endif

// Sets a bitfield reflecting the managed debugging state at the time of
// the jit attach.
HRESULT CordbProcess::GetAttachStateFlags(CLR_DEBUGGING_PROCESS_FLAGS *pFlags)
{
    HRESULT hr = S_OK;
    PUBLIC_REENTRANT_API_BEGIN(this)
    {
        if(pFlags == NULL)
            hr = E_POINTER;
        else
            *pFlags = GetDAC()->GetAttachStateFlags();
    }
    PUBLIC_API_END(hr);

    return hr;
}

// Determine if this version of ICorDebug is compatibile with the ICorDebug in the specified major CLR version
bool CordbProcess::IsCompatibleWith(DWORD clrMajorVersion)
{
    // The debugger versioning policy is that debuggers generally need to opt-in to supporting major new
    // versions of the CLR.  Often new versions of the CLR violate some invariant that previous debuggers assume
    // (eg. hot/cold splitting in Whidbey, multiple CLRs in a process in CLR v4), and neither VS or the CLR
    // teams generally want the support burden of forward compatibility.

    //
    // If this assert is firing for you, its probably because the major version
    // number of the clr.dll has changed. This assert is here to remind you to do a bit of other
    // work you may not have realized you needed to do so that our versioning works smoothly
    // for debugging. You probably want to contact the CLR DST team if you are a
    // non-debugger person hitting this. DON'T JUST DELETE THIS ASSERT!!!
    //
    // 1) You should ensure new versions of all ICorDebug users in DevDiv (VS Debugger, MDbg, etc.)
    //    are using a creation path that explicitly specifies that they support this new major
    //    version of the CLR.
    // 2) You should file an issue to track blocking earlier debuggers from targetting this
    //    version of the CLR (i.e. update requiredVersion to the new CLR major
    //    version).  To enable a smooth internal transition, this often isn't done until absolutely
    //    necessary (sometimes as late as Beta2).
    // 3) You can consider updating the CLR_ID guid used by the shim to recognize a CLR, but only
    //    if it's important to completely hide newer CLRs from the shim.  The expectation now
    //    is that we won't need to do this (i.e. we'd like VS to give a nice error message about
    //    needed a newer version of the debugger, rather than just acting as if a process has no CLR).
    // 4) Update this assert so that it no longer fires for your new CLR version or any of
    //    the previous versions, but don't delete the assert...
    //    the next CLR version after yours will probably need the same reminder

    _ASSERTE_MSG(clrMajorVersion <= 4,
        "Found major CLR version greater than 4 in mscordbi.dll from CLRv4 - contact CLRDST");

    // This knob lets us enable forward compatibility for internal scenarios, and also simulate new
    // versions of the runtime for testing the failure user-experience in a version of the debugger
    // before it is shipped.
    // We don't want to risk customers getting this, so for RTM builds this must be CHK-only.
    // To aid in internal transition, we may temporarily enable this in RET builds, but when
    // doing so must file a bug to track making it CHK only again before RTM.
    // For example, Dev10 Beta2 shipped with this knob, but it was made CHK-only at the start of RC.
    // In theory we might have a point release someday where we break debugger compat, but
    // it seems unlikely and since this knob is unsupported anyway we can always extend it
    // then (support reading a string value, etc.).  So for now we just map the number
    // to the major CLR version number.
    DWORD requiredVersion = 0;
#ifdef _DEBUG
    requiredVersion = CLRConfig::GetConfigValue(CLRConfig::UNSUPPORTED_Debugging_RequiredVersion);
#endif

    // If unset (the only supported configuration), then we require a debugger designed for CLRv4
    //  for desktop, where we do not allow forward compat.
    // For SL, we allow forward compat.  Right now, that means SLv2+ debugger requests can be
    //  honored for SLv4.
    if (requiredVersion <= 0)
    {
        requiredVersion = 2;
    }

    // Compare the version we were created for against the minimum required
    return (clrMajorVersion >= requiredVersion);
}

bool CordbProcess::IsThreadSuspendedOrHijacked(ICorDebugThread * pICorDebugThread)
{
    // An RS lock can be held while this is called. Specifically,
    // CordbThread::EnumerateChains may be on the stack, and it uses
    // ATT_REQUIRE_STOPPED_MAY_FAIL, which holds the CordbProcess::m_StopGoLock lock for
    // its entire duration. As a result, this needs to be considered a reentrant API. See
    // comments above code:PrivateShimCallbackHolder for more info.
    PUBLIC_REENTRANT_API_ENTRY_FOR_SHIM(this);

    CordbThread * pCordbThread = static_cast<CordbThread *> (pICorDebugThread);
    return GetDAC()->IsThreadSuspendedOrHijacked(pCordbThread->m_vmThreadToken);
}

void CordbProcess::HandleControlCTrapResult(HRESULT result)
{
    RSLockHolder ch(GetStopGoLock());

    DebuggerIPCEvent eventControlCResult;

    InitIPCEvent(&eventControlCResult,
        DB_IPCE_CONTROL_C_EVENT_RESULT,
        false,
        VMPTR_AppDomain::NullPtr());

    // Indicate whether the debugger has handled the event.
    eventControlCResult.hr = result;

    // Send the reply to the LS.
    SendIPCEvent(&eventControlCResult, sizeof(eventControlCResult));
}