summaryrefslogtreecommitdiff
path: root/src/System.Private.CoreLib/shared/System/Threading/ThreadPool.cs
blob: 19c043da5ad64c6ab9085a7a946510e1cd2e47df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*=============================================================================
**
**
**
** Purpose: Class for creating and managing a threadpool
**
**
=============================================================================*/

#nullable enable
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using System.Diagnostics.CodeAnalysis;
using System.Diagnostics.Tracing;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading.Tasks;
using Internal.Runtime.CompilerServices;

namespace System.Threading
{
    internal static class ThreadPoolGlobals
    {
        public static readonly int processorCount = Environment.ProcessorCount;

        public static volatile bool threadPoolInitialized;
        public static bool enableWorkerTracking;

        public static readonly ThreadPoolWorkQueue workQueue = new ThreadPoolWorkQueue();

        /// <summary>Shim used to invoke <see cref="IAsyncStateMachineBox.MoveNext"/> of the supplied <see cref="IAsyncStateMachineBox"/>.</summary>
        internal static readonly Action<object?> s_invokeAsyncStateMachineBox = state =>
        {
            if (!(state is IAsyncStateMachineBox box))
            {
                ThrowHelper.ThrowArgumentOutOfRangeException(ExceptionArgument.state);
                return;
            }

            box.MoveNext();
        };
    }

    [StructLayout(LayoutKind.Sequential)] // enforce layout so that padding reduces false sharing
    internal sealed class ThreadPoolWorkQueue
    {
        internal static class WorkStealingQueueList
        {
            private static volatile WorkStealingQueue[] _queues = new WorkStealingQueue[0];

            public static WorkStealingQueue[] Queues => _queues;

            public static void Add(WorkStealingQueue queue)
            {
                Debug.Assert(queue != null);
                while (true)
                {
                    WorkStealingQueue[] oldQueues = _queues;
                    Debug.Assert(Array.IndexOf(oldQueues, queue) == -1);

                    var newQueues = new WorkStealingQueue[oldQueues.Length + 1];
                    Array.Copy(oldQueues, 0, newQueues, 0, oldQueues.Length);
                    newQueues[newQueues.Length - 1] = queue;
                    if (Interlocked.CompareExchange(ref _queues, newQueues, oldQueues) == oldQueues)
                    {
                        break;
                    }
                }
            }

            public static void Remove(WorkStealingQueue queue)
            {
                Debug.Assert(queue != null);
                while (true)
                {
                    WorkStealingQueue[] oldQueues = _queues;
                    if (oldQueues.Length == 0)
                    {
                        return;
                    }

                    int pos = Array.IndexOf(oldQueues, queue);
                    if (pos == -1)
                    {
                        Debug.Fail("Should have found the queue");
                        return;
                    }

                    var newQueues = new WorkStealingQueue[oldQueues.Length - 1];
                    if (pos == 0)
                    {
                        Array.Copy(oldQueues, 1, newQueues, 0, newQueues.Length);
                    }
                    else if (pos == oldQueues.Length - 1)
                    {
                        Array.Copy(oldQueues, 0, newQueues, 0, newQueues.Length);
                    }
                    else
                    {
                        Array.Copy(oldQueues, 0, newQueues, 0, pos);
                        Array.Copy(oldQueues, pos + 1, newQueues, pos, newQueues.Length - pos);
                    }

                    if (Interlocked.CompareExchange(ref _queues, newQueues, oldQueues) == oldQueues)
                    {
                        break;
                    }
                }
            }
        }

        internal sealed class WorkStealingQueue
        {
            private const int INITIAL_SIZE = 32;
            internal volatile object?[] m_array = new object[INITIAL_SIZE]; // SOS's ThreadPool command depends on this name
            private volatile int m_mask = INITIAL_SIZE - 1;

#if DEBUG
            // in debug builds, start at the end so we exercise the index reset logic.
            private const int START_INDEX = int.MaxValue;
#else
            private const int START_INDEX = 0;
#endif

            private volatile int m_headIndex = START_INDEX;
            private volatile int m_tailIndex = START_INDEX;

            private SpinLock m_foreignLock = new SpinLock(enableThreadOwnerTracking: false);

            public void LocalPush(object obj)
            {
                int tail = m_tailIndex;

                // We're going to increment the tail; if we'll overflow, then we need to reset our counts
                if (tail == int.MaxValue)
                {
                    bool lockTaken = false;
                    try
                    {
                        m_foreignLock.Enter(ref lockTaken);

                        if (m_tailIndex == int.MaxValue)
                        {
                            //
                            // Rather than resetting to zero, we'll just mask off the bits we don't care about.
                            // This way we don't need to rearrange the items already in the queue; they'll be found
                            // correctly exactly where they are.  One subtlety here is that we need to make sure that
                            // if head is currently < tail, it remains that way.  This happens to just fall out from
                            // the bit-masking, because we only do this if tail == int.MaxValue, meaning that all
                            // bits are set, so all of the bits we're keeping will also be set.  Thus it's impossible
                            // for the head to end up > than the tail, since you can't set any more bits than all of 
                            // them.
                            //
                            m_headIndex = m_headIndex & m_mask;
                            m_tailIndex = tail = m_tailIndex & m_mask;
                            Debug.Assert(m_headIndex <= m_tailIndex);
                        }
                    }
                    finally
                    {
                        if (lockTaken)
                            m_foreignLock.Exit(useMemoryBarrier: true);
                    }
                }

                // When there are at least 2 elements' worth of space, we can take the fast path.
                if (tail < m_headIndex + m_mask)
                {
                    Volatile.Write(ref m_array[tail & m_mask], obj);
                    m_tailIndex = tail + 1;
                }
                else
                {
                    // We need to contend with foreign pops, so we lock.
                    bool lockTaken = false;
                    try
                    {
                        m_foreignLock.Enter(ref lockTaken);

                        int head = m_headIndex;
                        int count = m_tailIndex - m_headIndex;

                        // If there is still space (one left), just add the element.
                        if (count >= m_mask)
                        {
                            // We're full; expand the queue by doubling its size.
                            var newArray = new object?[m_array.Length << 1];
                            for (int i = 0; i < m_array.Length; i++)
                                newArray[i] = m_array[(i + head) & m_mask];

                            // Reset the field values, incl. the mask.
                            m_array = newArray;
                            m_headIndex = 0;
                            m_tailIndex = tail = count;
                            m_mask = (m_mask << 1) | 1;
                        }

                        Volatile.Write(ref m_array[tail & m_mask], obj);
                        m_tailIndex = tail + 1;
                    }
                    finally
                    {
                        if (lockTaken)
                            m_foreignLock.Exit(useMemoryBarrier: false);
                    }
                }
            }

            [SuppressMessage("Microsoft.Concurrency", "CA8001", Justification = "Reviewed for thread safety")]
            public bool LocalFindAndPop(object obj)
            {
                // Fast path: check the tail. If equal, we can skip the lock.
                if (m_array[(m_tailIndex - 1) & m_mask] == obj)
                {
                    object? unused = LocalPop();
                    Debug.Assert(unused == null || unused == obj);
                    return unused != null;
                }

                // Else, do an O(N) search for the work item. The theory of work stealing and our
                // inlining logic is that most waits will happen on recently queued work.  And
                // since recently queued work will be close to the tail end (which is where we
                // begin our search), we will likely find it quickly.  In the worst case, we
                // will traverse the whole local queue; this is typically not going to be a
                // problem (although degenerate cases are clearly an issue) because local work
                // queues tend to be somewhat shallow in length, and because if we fail to find
                // the work item, we are about to block anyway (which is very expensive).
                for (int i = m_tailIndex - 2; i >= m_headIndex; i--)
                {
                    if (m_array[i & m_mask] == obj)
                    {
                        // If we found the element, block out steals to avoid interference.
                        bool lockTaken = false;
                        try
                        {
                            m_foreignLock.Enter(ref lockTaken);

                            // If we encountered a race condition, bail.
                            if (m_array[i & m_mask] == null)
                                return false;

                            // Otherwise, null out the element.
                            Volatile.Write(ref m_array[i & m_mask], null);

                            // And then check to see if we can fix up the indexes (if we're at
                            // the edge).  If we can't, we just leave nulls in the array and they'll
                            // get filtered out eventually (but may lead to superfluous resizing).
                            if (i == m_tailIndex)
                                m_tailIndex -= 1;
                            else if (i == m_headIndex)
                                m_headIndex += 1;

                            return true;
                        }
                        finally
                        {
                            if (lockTaken)
                                m_foreignLock.Exit(useMemoryBarrier: false);
                        }
                    }
                }

                return false;
            }

            public object? LocalPop() => m_headIndex < m_tailIndex ? LocalPopCore() : null;

            [SuppressMessage("Microsoft.Concurrency", "CA8001", Justification = "Reviewed for thread safety")]
            private object? LocalPopCore()
            {
                while (true)
                {
                    int tail = m_tailIndex;
                    if (m_headIndex >= tail)
                    {
                        return null;
                    }

                    // Decrement the tail using a fence to ensure subsequent read doesn't come before.
                    tail -= 1;
                    Interlocked.Exchange(ref m_tailIndex, tail);

                    // If there is no interaction with a take, we can head down the fast path.
                    if (m_headIndex <= tail)
                    {
                        int idx = tail & m_mask;
                        object? obj = Volatile.Read(ref m_array[idx]);

                        // Check for nulls in the array.
                        if (obj == null) continue;

                        m_array[idx] = null;
                        return obj;
                    }
                    else
                    {
                        // Interaction with takes: 0 or 1 elements left.
                        bool lockTaken = false;
                        try
                        {
                            m_foreignLock.Enter(ref lockTaken);

                            if (m_headIndex <= tail)
                            {
                                // Element still available. Take it.
                                int idx = tail & m_mask;
                                object? obj = Volatile.Read(ref m_array[idx]);

                                // Check for nulls in the array.
                                if (obj == null) continue;

                                m_array[idx] = null;
                                return obj;
                            }
                            else
                            {
                                // If we encountered a race condition and element was stolen, restore the tail.
                                m_tailIndex = tail + 1;
                                return null;
                            }
                        }
                        finally
                        {
                            if (lockTaken)
                                m_foreignLock.Exit(useMemoryBarrier: false);
                        }
                    }
                }
            }

            public bool CanSteal => m_headIndex < m_tailIndex;

            public object? TrySteal(ref bool missedSteal)
            {
                while (true)
                {
                    if (CanSteal)
                    {
                        bool taken = false;
                        try
                        {
                            m_foreignLock.TryEnter(ref taken);
                            if (taken)
                            {
                                // Increment head, and ensure read of tail doesn't move before it (fence).
                                int head = m_headIndex;
                                Interlocked.Exchange(ref m_headIndex, head + 1);

                                if (head < m_tailIndex)
                                {
                                    int idx = head & m_mask;
                                    object? obj = Volatile.Read(ref m_array[idx]);

                                    // Check for nulls in the array.
                                    if (obj == null) continue;

                                    m_array[idx] = null;
                                    return obj;
                                }
                                else
                                {
                                    // Failed, restore head.
                                    m_headIndex = head;
                                }
                            }
                        }
                        finally
                        {
                            if (taken)
                                m_foreignLock.Exit(useMemoryBarrier: false);
                        }

                        missedSteal = true;
                    }

                    return null;
                }
            }
        }

        internal bool loggingEnabled;
        internal readonly ConcurrentQueue<object> workItems = new ConcurrentQueue<object>(); // SOS's ThreadPool command depends on this name

        private Internal.PaddingFor32 pad1;

        private volatile int numOutstandingThreadRequests = 0;

        private Internal.PaddingFor32 pad2;

        public ThreadPoolWorkQueue()
        {
            loggingEnabled = FrameworkEventSource.Log.IsEnabled(EventLevel.Verbose, FrameworkEventSource.Keywords.ThreadPool | FrameworkEventSource.Keywords.ThreadTransfer);
        }

        public ThreadPoolWorkQueueThreadLocals GetOrCreateThreadLocals() =>
            ThreadPoolWorkQueueThreadLocals.threadLocals ?? CreateThreadLocals();

        [MethodImpl(MethodImplOptions.NoInlining)]
        private ThreadPoolWorkQueueThreadLocals CreateThreadLocals()
        {
            Debug.Assert(ThreadPoolWorkQueueThreadLocals.threadLocals == null);

            return (ThreadPoolWorkQueueThreadLocals.threadLocals = new ThreadPoolWorkQueueThreadLocals(this));
        }

        internal void EnsureThreadRequested()
        {
            //
            // If we have not yet requested #procs threads, then request a new thread.
            //
            // CoreCLR: Note that there is a separate count in the VM which has already been incremented
            // by the VM by the time we reach this point.
            //
            int count = numOutstandingThreadRequests;
            while (count < ThreadPoolGlobals.processorCount)
            {
                int prev = Interlocked.CompareExchange(ref numOutstandingThreadRequests, count + 1, count);
                if (prev == count)
                {
                    ThreadPool.RequestWorkerThread();
                    break;
                }
                count = prev;
            }
        }

        internal void MarkThreadRequestSatisfied()
        {
            //
            // One of our outstanding thread requests has been satisfied.
            // Decrement the count so that future calls to EnsureThreadRequested will succeed.
            //
            // CoreCLR: Note that there is a separate count in the VM which has already been decremented
            // by the VM by the time we reach this point.
            //
            int count = numOutstandingThreadRequests;
            while (count > 0)
            {
                int prev = Interlocked.CompareExchange(ref numOutstandingThreadRequests, count - 1, count);
                if (prev == count)
                {
                    break;
                }
                count = prev;
            }
        }

        public void Enqueue(object callback, bool forceGlobal)
        {
            Debug.Assert((callback is IThreadPoolWorkItem) ^ (callback is Task));

            if (loggingEnabled)
                System.Diagnostics.Tracing.FrameworkEventSource.Log.ThreadPoolEnqueueWorkObject(callback);

            ThreadPoolWorkQueueThreadLocals? tl = null;
            if (!forceGlobal)
                tl = ThreadPoolWorkQueueThreadLocals.threadLocals;

            if (null != tl)
            {
                tl.workStealingQueue.LocalPush(callback);
            }
            else
            {
                workItems.Enqueue(callback);
            }

            EnsureThreadRequested();
        }

        internal bool LocalFindAndPop(object callback)
        {
            ThreadPoolWorkQueueThreadLocals tl = ThreadPoolWorkQueueThreadLocals.threadLocals;
            return tl != null && tl.workStealingQueue.LocalFindAndPop(callback);
        }

        public object? Dequeue(ThreadPoolWorkQueueThreadLocals tl, ref bool missedSteal)
        {
            WorkStealingQueue localWsq = tl.workStealingQueue;
            object? callback;

            if ((callback = localWsq.LocalPop()) == null && // first try the local queue
                !workItems.TryDequeue(out callback)) // then try the global queue
            {
                // finally try to steal from another thread's local queue
                WorkStealingQueue[] queues = WorkStealingQueueList.Queues;
                int c = queues.Length;
                Debug.Assert(c > 0, "There must at least be a queue for this thread.");
                int maxIndex = c - 1;
                int i = tl.random.Next(c);
                while (c > 0)
                {
                    i = (i < maxIndex) ? i + 1 : 0;
                    WorkStealingQueue otherQueue = queues[i];
                    if (otherQueue != localWsq && otherQueue.CanSteal)
                    {
                        callback = otherQueue.TrySteal(ref missedSteal);
                        if (callback != null)
                        {
                            break;
                        }
                    }
                    c--;
                }
            }

            return callback;
        }

        /// <summary>
        /// Dispatches work items to this thread.
        /// </summary>
        /// <returns>
        /// <c>true</c> if this thread did as much work as was available or its quantum expired.
        /// <c>false</c> if this thread stopped working early.
        /// </returns>
        internal static bool Dispatch()
        {
            ThreadPoolWorkQueue outerWorkQueue = ThreadPoolGlobals.workQueue;

            //
            // Save the start time
            //
            int startTickCount = Environment.TickCount;

            //
            // Update our records to indicate that an outstanding request for a thread has now been fulfilled.
            // From this point on, we are responsible for requesting another thread if we stop working for any
            // reason, and we believe there might still be work in the queue.
            //
            // CoreCLR: Note that if this thread is aborted before we get a chance to request another one, the VM will
            // record a thread request on our behalf.  So we don't need to worry about getting aborted right here.
            //
            outerWorkQueue.MarkThreadRequestSatisfied();

            // Has the desire for logging changed since the last time we entered?
            outerWorkQueue.loggingEnabled = FrameworkEventSource.Log.IsEnabled(EventLevel.Verbose, FrameworkEventSource.Keywords.ThreadPool | FrameworkEventSource.Keywords.ThreadTransfer);

            //
            // Assume that we're going to need another thread if this one returns to the VM.  We'll set this to 
            // false later, but only if we're absolutely certain that the queue is empty.
            //
            bool needAnotherThread = true;
            object? outerWorkItem = null;
            try
            {
                //
                // Set up our thread-local data
                //
                // Use operate on workQueue local to try block so it can be enregistered 
                ThreadPoolWorkQueue workQueue = outerWorkQueue;
                ThreadPoolWorkQueueThreadLocals tl = workQueue.GetOrCreateThreadLocals();
                Thread currentThread = tl.currentThread;

                // Start on clean ExecutionContext and SynchronizationContext
                currentThread._executionContext = null;
                currentThread._synchronizationContext = null;

                //
                // Loop until our quantum expires or there is no work.
                //
                while (ThreadPool.KeepDispatching(startTickCount))
                {
                    bool missedSteal = false;
                    // Use operate on workItem local to try block so it can be enregistered 
                    object? workItem = outerWorkItem = workQueue.Dequeue(tl, ref missedSteal);

                    if (workItem == null)
                    {
                        //
                        // No work.
                        // If we missed a steal, though, there may be more work in the queue.
                        // Instead of looping around and trying again, we'll just request another thread.  Hopefully the thread
                        // that owns the contended work-stealing queue will pick up its own workitems in the meantime, 
                        // which will be more efficient than this thread doing it anyway.
                        //
                        needAnotherThread = missedSteal;

                        // Tell the VM we're returning normally, not because Hill Climbing asked us to return.
                        return true;
                    }

                    if (workQueue.loggingEnabled)
                        System.Diagnostics.Tracing.FrameworkEventSource.Log.ThreadPoolDequeueWorkObject(workItem);

                    //
                    // If we found work, there may be more work.  Ask for another thread so that the other work can be processed
                    // in parallel.  Note that this will only ask for a max of #procs threads, so it's safe to call it for every dequeue.
                    //
                    workQueue.EnsureThreadRequested();

                    //
                    // Execute the workitem outside of any finally blocks, so that it can be aborted if needed.
                    //
                    if (ThreadPoolGlobals.enableWorkerTracking)
                    {
                        bool reportedStatus = false;
                        try
                        {
                            ThreadPool.ReportThreadStatus(isWorking: true);
                            reportedStatus = true;
                            if (workItem is Task task)
                            {
                                task.ExecuteFromThreadPool(currentThread);
                            }
                            else
                            {
                                Debug.Assert(workItem is IThreadPoolWorkItem);
                                Unsafe.As<IThreadPoolWorkItem>(workItem).Execute();
                            }
                        }
                        finally
                        {
                            if (reportedStatus)
                                ThreadPool.ReportThreadStatus(isWorking: false);
                        }
                    }
                    else if (workItem is Task task)
                    {
                        // Check for Task first as it's currently faster to type check
                        // for Task and then Unsafe.As for the interface, rather than
                        // vice versa, in particular when the object implements a bunch
                        // of interfaces.
                        task.ExecuteFromThreadPool(currentThread);
                    }
                    else
                    {
                        Debug.Assert(workItem is IThreadPoolWorkItem);
                        Unsafe.As<IThreadPoolWorkItem>(workItem).Execute();
                    }

                    currentThread.ResetThreadPoolThread();

                    // Release refs
                    outerWorkItem = workItem = null;

                    // Return to clean ExecutionContext and SynchronizationContext
                    ExecutionContext.ResetThreadPoolThread(currentThread);

                    // 
                    // Notify the VM that we executed this workitem.  This is also our opportunity to ask whether Hill Climbing wants
                    // us to return the thread to the pool or not.
                    //
                    if (!ThreadPool.NotifyWorkItemComplete())
                        return false;
                }

                // If we get here, it's because our quantum expired.  Tell the VM we're returning normally.
                return true;
            }
            finally
            {
                //
                // If we are exiting for any reason other than that the queue is definitely empty, ask for another
                // thread to pick up where we left off.
                //
                if (needAnotherThread)
                    outerWorkQueue.EnsureThreadRequested();
            }
        }
    }

    // Simple random number generator. We don't need great randomness, we just need a little and for it to be fast.
    internal struct FastRandom // xorshift prng
    {
        private uint _w, _x, _y, _z;

        public FastRandom(int seed)
        {
            _x = (uint)seed;
            _w = 88675123;
            _y = 362436069;
            _z = 521288629;
        }

        public int Next(int maxValue)
        {
            Debug.Assert(maxValue > 0);

            uint t = _x ^ (_x << 11);
            _x = _y; _y = _z; _z = _w;
            _w = _w ^ (_w >> 19) ^ (t ^ (t >> 8));

            return (int)(_w % (uint)maxValue);
        }
    }

    // Holds a WorkStealingQueue, and removes it from the list when this object is no longer referenced.
    internal sealed class ThreadPoolWorkQueueThreadLocals
    {
        [ThreadStatic]
        public static ThreadPoolWorkQueueThreadLocals threadLocals;

        public readonly ThreadPoolWorkQueue workQueue;
        public readonly ThreadPoolWorkQueue.WorkStealingQueue workStealingQueue;
        public readonly Thread currentThread;
        public FastRandom random = new FastRandom(Thread.CurrentThread.ManagedThreadId); // mutable struct, do not copy or make readonly

        public ThreadPoolWorkQueueThreadLocals(ThreadPoolWorkQueue tpq)
        {
            workQueue = tpq;
            workStealingQueue = new ThreadPoolWorkQueue.WorkStealingQueue();
            ThreadPoolWorkQueue.WorkStealingQueueList.Add(workStealingQueue);
            currentThread = Thread.CurrentThread;
        }

        ~ThreadPoolWorkQueueThreadLocals()
        {
            // Transfer any pending workitems into the global queue so that they will be executed by another thread
            if (null != workStealingQueue)
            {
                if (null != workQueue)
                {
                    object? cb;
                    while ((cb = workStealingQueue.LocalPop()) != null)
                    {
                        Debug.Assert(null != cb);
                        workQueue.Enqueue(cb, forceGlobal: true);
                    }
                }

                ThreadPoolWorkQueue.WorkStealingQueueList.Remove(workStealingQueue);
            }
        }
    }

    public delegate void WaitCallback(object? state);

    public delegate void WaitOrTimerCallback(object? state, bool timedOut);  // signaled or timed out

    internal abstract class QueueUserWorkItemCallbackBase : IThreadPoolWorkItem
    {
#if DEBUG
        private volatile int executed;

        [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Performance", "CA1821:RemoveEmptyFinalizers")]
        ~QueueUserWorkItemCallbackBase()
        {
            Debug.Assert(
                executed != 0, "A QueueUserWorkItemCallback was never called!");
        }
#endif

        public virtual void Execute()
        {
#if DEBUG
            GC.SuppressFinalize(this);
            Debug.Assert(
                0 == Interlocked.Exchange(ref executed, 1),
                "A QueueUserWorkItemCallback was called twice!");
#endif
        }
    }

    internal sealed class QueueUserWorkItemCallback : QueueUserWorkItemCallbackBase
    {
        private WaitCallback? _callback; // SOS's ThreadPool command depends on this name
        private readonly object? _state;
        private readonly ExecutionContext _context;

        private static readonly Action<QueueUserWorkItemCallback> s_executionContextShim = quwi =>
        {
            Debug.Assert(quwi._callback != null);
            WaitCallback callback = quwi._callback;
            quwi._callback = null;

            callback(quwi._state);
        };

        internal QueueUserWorkItemCallback(WaitCallback callback, object? state, ExecutionContext context)
        {
            Debug.Assert(context != null);

            _callback = callback;
            _state = state;
            _context = context;
        }

        public override void Execute()
        {
            base.Execute();

            ExecutionContext.RunForThreadPoolUnsafe(_context, s_executionContextShim, this);
        }
    }

    internal sealed class QueueUserWorkItemCallback<TState> : QueueUserWorkItemCallbackBase
    {
        private Action<TState>? _callback; // SOS's ThreadPool command depends on this name
        private readonly TState _state;
        private readonly ExecutionContext _context;

        internal QueueUserWorkItemCallback(Action<TState> callback, TState state, ExecutionContext context)
        {
            Debug.Assert(callback != null);

            _callback = callback;
            _state = state;
            _context = context;
        }

        public override void Execute()
        {
            base.Execute();

            Debug.Assert(_callback != null);
            Action<TState> callback = _callback;
            _callback = null;

            ExecutionContext.RunForThreadPoolUnsafe(_context, callback, in _state);
        }
    }

    internal sealed class QueueUserWorkItemCallbackDefaultContext : QueueUserWorkItemCallbackBase
    {
        private WaitCallback? _callback; // SOS's ThreadPool command depends on this name
        private readonly object? _state;

        internal QueueUserWorkItemCallbackDefaultContext(WaitCallback callback, object? state)
        {
            Debug.Assert(callback != null);

            _callback = callback;
            _state = state;
        }

        public override void Execute()
        {
            ExecutionContext.CheckThreadPoolAndContextsAreDefault();
            base.Execute();

            Debug.Assert(_callback != null);
            WaitCallback callback = _callback;
            _callback = null;

            callback(_state);

            // ThreadPoolWorkQueue.Dispatch will handle notifications and reset EC and SyncCtx back to default
        }
    }

    internal sealed class QueueUserWorkItemCallbackDefaultContext<TState> : QueueUserWorkItemCallbackBase
    {
        private Action<TState>? _callback; // SOS's ThreadPool command depends on this name
        private readonly TState _state;

        internal QueueUserWorkItemCallbackDefaultContext(Action<TState> callback, TState state)
        {
            Debug.Assert(callback != null);

            _callback = callback;
            _state = state;
        }

        public override void Execute()
        {
            ExecutionContext.CheckThreadPoolAndContextsAreDefault();
            base.Execute();

            Debug.Assert(_callback != null);
            Action<TState> callback = _callback;
            _callback = null;

            callback(_state);

            // ThreadPoolWorkQueue.Dispatch will handle notifications and reset EC and SyncCtx back to default
        }
    }

    internal sealed class _ThreadPoolWaitOrTimerCallback
    {
        private WaitOrTimerCallback _waitOrTimerCallback;
        private ExecutionContext? _executionContext;
        private object? _state;
        private static readonly ContextCallback _ccbt = new ContextCallback(WaitOrTimerCallback_Context_t);
        private static readonly ContextCallback _ccbf = new ContextCallback(WaitOrTimerCallback_Context_f);

        internal _ThreadPoolWaitOrTimerCallback(WaitOrTimerCallback waitOrTimerCallback, object? state, bool flowExecutionContext)
        {
            _waitOrTimerCallback = waitOrTimerCallback;
            _state = state;

            if (flowExecutionContext)
            {
                // capture the exection context
                _executionContext = ExecutionContext.Capture();
            }
        }

        private static void WaitOrTimerCallback_Context_t(object state) =>
            WaitOrTimerCallback_Context(state, timedOut: true);

        private static void WaitOrTimerCallback_Context_f(object state) =>
            WaitOrTimerCallback_Context(state, timedOut: false);

        private static void WaitOrTimerCallback_Context(object state, bool timedOut)
        {
            _ThreadPoolWaitOrTimerCallback helper = (_ThreadPoolWaitOrTimerCallback)state;
            helper._waitOrTimerCallback(helper._state, timedOut);
        }

        // call back helper
        internal static void PerformWaitOrTimerCallback(_ThreadPoolWaitOrTimerCallback helper, bool timedOut)
        {
            Debug.Assert(helper != null, "Null state passed to PerformWaitOrTimerCallback!");
            // call directly if it is an unsafe call OR EC flow is suppressed
            ExecutionContext? context = helper._executionContext;
            if (context == null)
            {
                WaitOrTimerCallback callback = helper._waitOrTimerCallback;
                callback(helper._state, timedOut);
            }
            else
            {
                ExecutionContext.Run(context, timedOut ? _ccbt : _ccbf, helper);
            }
        }
    }

    public static partial class ThreadPool
    {
        [CLSCompliant(false)]
        public static RegisteredWaitHandle RegisterWaitForSingleObject(
             WaitHandle waitObject,
             WaitOrTimerCallback callBack,
             object? state,
             uint millisecondsTimeOutInterval,
             bool executeOnlyOnce    // NOTE: we do not allow other options that allow the callback to be queued as an APC
             )
        {
            if (millisecondsTimeOutInterval > (uint)int.MaxValue && millisecondsTimeOutInterval != uint.MaxValue)
                throw new ArgumentOutOfRangeException(nameof(millisecondsTimeOutInterval), SR.ArgumentOutOfRange_LessEqualToIntegerMaxVal);
            return RegisterWaitForSingleObject(waitObject, callBack, state, millisecondsTimeOutInterval, executeOnlyOnce, true);
        }

        [CLSCompliant(false)]
        public static RegisteredWaitHandle UnsafeRegisterWaitForSingleObject(
             WaitHandle waitObject,
             WaitOrTimerCallback callBack,
             object? state,
             uint millisecondsTimeOutInterval,
             bool executeOnlyOnce    // NOTE: we do not allow other options that allow the callback to be queued as an APC
             )
        {
            if (millisecondsTimeOutInterval > (uint)int.MaxValue && millisecondsTimeOutInterval != uint.MaxValue)
                throw new ArgumentOutOfRangeException(nameof(millisecondsTimeOutInterval), SR.ArgumentOutOfRange_NeedNonNegOrNegative1);
            return RegisterWaitForSingleObject(waitObject, callBack, state, millisecondsTimeOutInterval, executeOnlyOnce, false);
        }

        public static RegisteredWaitHandle RegisterWaitForSingleObject(
             WaitHandle waitObject,
             WaitOrTimerCallback callBack,
             object? state,
             int millisecondsTimeOutInterval,
             bool executeOnlyOnce    // NOTE: we do not allow other options that allow the callback to be queued as an APC
             )
        {
            if (millisecondsTimeOutInterval < -1)
                throw new ArgumentOutOfRangeException(nameof(millisecondsTimeOutInterval), SR.ArgumentOutOfRange_NeedNonNegOrNegative1);
            return RegisterWaitForSingleObject(waitObject, callBack, state, (uint)millisecondsTimeOutInterval, executeOnlyOnce, true);
        }

        public static RegisteredWaitHandle UnsafeRegisterWaitForSingleObject(
             WaitHandle waitObject,
             WaitOrTimerCallback callBack,
             object? state,
             int millisecondsTimeOutInterval,
             bool executeOnlyOnce    // NOTE: we do not allow other options that allow the callback to be queued as an APC
             )
        {
            if (millisecondsTimeOutInterval < -1)
                throw new ArgumentOutOfRangeException(nameof(millisecondsTimeOutInterval), SR.ArgumentOutOfRange_NeedNonNegOrNegative1);
            return RegisterWaitForSingleObject(waitObject, callBack, state, (uint)millisecondsTimeOutInterval, executeOnlyOnce, false);
        }

        public static RegisteredWaitHandle RegisterWaitForSingleObject(
            WaitHandle waitObject,
            WaitOrTimerCallback callBack,
            object? state,
            long millisecondsTimeOutInterval,
            bool executeOnlyOnce    // NOTE: we do not allow other options that allow the callback to be queued as an APC
        )
        {
            if (millisecondsTimeOutInterval < -1)
                throw new ArgumentOutOfRangeException(nameof(millisecondsTimeOutInterval), SR.ArgumentOutOfRange_NeedNonNegOrNegative1);
            if (millisecondsTimeOutInterval > (uint)int.MaxValue)
                throw new ArgumentOutOfRangeException(nameof(millisecondsTimeOutInterval), SR.ArgumentOutOfRange_LessEqualToIntegerMaxVal);
            return RegisterWaitForSingleObject(waitObject, callBack, state, (uint)millisecondsTimeOutInterval, executeOnlyOnce, true);
        }

        public static RegisteredWaitHandle UnsafeRegisterWaitForSingleObject(
            WaitHandle waitObject,
            WaitOrTimerCallback callBack,
            object? state,
            long millisecondsTimeOutInterval,
            bool executeOnlyOnce    // NOTE: we do not allow other options that allow the callback to be queued as an APC
        )
        {
            if (millisecondsTimeOutInterval < -1)
                throw new ArgumentOutOfRangeException(nameof(millisecondsTimeOutInterval), SR.ArgumentOutOfRange_NeedNonNegOrNegative1);
            if (millisecondsTimeOutInterval > (uint)int.MaxValue)
                throw new ArgumentOutOfRangeException(nameof(millisecondsTimeOutInterval), SR.ArgumentOutOfRange_LessEqualToIntegerMaxVal);
            return RegisterWaitForSingleObject(waitObject, callBack, state, (uint)millisecondsTimeOutInterval, executeOnlyOnce, false);
        }

        public static RegisteredWaitHandle RegisterWaitForSingleObject(
                          WaitHandle waitObject,
                          WaitOrTimerCallback callBack,
                          object? state,
                          TimeSpan timeout,
                          bool executeOnlyOnce
                          )
        {
            long tm = (long)timeout.TotalMilliseconds;
            if (tm < -1)
                throw new ArgumentOutOfRangeException(nameof(timeout), SR.ArgumentOutOfRange_NeedNonNegOrNegative1);
            if (tm > (long)int.MaxValue)
                throw new ArgumentOutOfRangeException(nameof(timeout), SR.ArgumentOutOfRange_LessEqualToIntegerMaxVal);
            return RegisterWaitForSingleObject(waitObject, callBack, state, (uint)tm, executeOnlyOnce, true);
        }

        public static RegisteredWaitHandle UnsafeRegisterWaitForSingleObject(
                          WaitHandle waitObject,
                          WaitOrTimerCallback callBack,
                          object? state,
                          TimeSpan timeout,
                          bool executeOnlyOnce
                          )
        {
            long tm = (long)timeout.TotalMilliseconds;
            if (tm < -1)
                throw new ArgumentOutOfRangeException(nameof(timeout), SR.ArgumentOutOfRange_NeedNonNegOrNegative1);
            if (tm > (long)int.MaxValue)
                throw new ArgumentOutOfRangeException(nameof(timeout), SR.ArgumentOutOfRange_LessEqualToIntegerMaxVal);
            return RegisterWaitForSingleObject(waitObject, callBack, state, (uint)tm, executeOnlyOnce, false);
        }

        public static bool QueueUserWorkItem(WaitCallback callBack) =>
            QueueUserWorkItem(callBack, null);

        public static bool QueueUserWorkItem(WaitCallback callBack, object? state)
        {
            if (callBack == null)
            {
                ThrowHelper.ThrowArgumentNullException(ExceptionArgument.callBack);
            }

            EnsureInitialized();

            ExecutionContext? context = ExecutionContext.Capture();

            object tpcallBack = (context == null || context.IsDefault) ?
                new QueueUserWorkItemCallbackDefaultContext(callBack!, state) :
                (object)new QueueUserWorkItemCallback(callBack!, state, context);

            ThreadPoolGlobals.workQueue.Enqueue(tpcallBack, forceGlobal: true);

            return true;
        }

        public static bool QueueUserWorkItem<TState>(Action<TState> callBack, TState state, bool preferLocal)
        {
            if (callBack == null)
            {
                ThrowHelper.ThrowArgumentNullException(ExceptionArgument.callBack);
            }

            EnsureInitialized();

            ExecutionContext? context = ExecutionContext.Capture();

            object tpcallBack = (context == null || context.IsDefault) ?
                new QueueUserWorkItemCallbackDefaultContext<TState>(callBack!, state) :
                (object)new QueueUserWorkItemCallback<TState>(callBack!, state, context);

            ThreadPoolGlobals.workQueue.Enqueue(tpcallBack, forceGlobal: !preferLocal);

            return true;
        }

        public static bool UnsafeQueueUserWorkItem<TState>(Action<TState> callBack, TState state, bool preferLocal)
        {
            if (callBack == null)
            {
                ThrowHelper.ThrowArgumentNullException(ExceptionArgument.callBack);
            }

            // If the callback is the runtime-provided invocation of an IAsyncStateMachineBox,
            // then we can queue the Task state directly to the ThreadPool instead of 
            // wrapping it in a QueueUserWorkItemCallback.
            //
            // This occurs when user code queues its provided continuation to the ThreadPool;
            // internally we call UnsafeQueueUserWorkItemInternal directly for Tasks.
            if (ReferenceEquals(callBack, ThreadPoolGlobals.s_invokeAsyncStateMachineBox))
            {
                if (!(state is IAsyncStateMachineBox))
                {
                    // The provided state must be the internal IAsyncStateMachineBox (Task) type
                    ThrowHelper.ThrowArgumentOutOfRangeException(ExceptionArgument.state);
                }

                UnsafeQueueUserWorkItemInternal((object)state!, preferLocal);
                return true;
            }

            EnsureInitialized();

            ThreadPoolGlobals.workQueue.Enqueue(
                new QueueUserWorkItemCallbackDefaultContext<TState>(callBack!, state), forceGlobal: !preferLocal);

            return true;
        }

        public static bool UnsafeQueueUserWorkItem(WaitCallback callBack, object? state)
        {
            if (callBack == null)
            {
                ThrowHelper.ThrowArgumentNullException(ExceptionArgument.callBack);
            }

            EnsureInitialized();

            object tpcallBack = new QueueUserWorkItemCallbackDefaultContext(callBack!, state);

            ThreadPoolGlobals.workQueue.Enqueue(tpcallBack, forceGlobal: true);

            return true;
        }

        public static bool UnsafeQueueUserWorkItem(IThreadPoolWorkItem callBack, bool preferLocal)
        {
            if (callBack == null)
            {
                ThrowHelper.ThrowArgumentNullException(ExceptionArgument.callBack);
            }
            if (callBack is Task)
            {
                // Prevent code from queueing a derived Task that also implements the interface,
                // as that would bypass Task.Start and its safety checks.
                ThrowHelper.ThrowArgumentOutOfRangeException(ExceptionArgument.callBack);
            }

            UnsafeQueueUserWorkItemInternal(callBack!, preferLocal);
            return true;
        }

        internal static void UnsafeQueueUserWorkItemInternal(object callBack, bool preferLocal)
        {
            Debug.Assert((callBack is IThreadPoolWorkItem) ^ (callBack is Task));

            EnsureInitialized();

            ThreadPoolGlobals.workQueue.Enqueue(callBack, forceGlobal: !preferLocal);
        }

        // This method tries to take the target callback out of the current thread's queue.
        internal static bool TryPopCustomWorkItem(object workItem)
        {
            Debug.Assert(null != workItem);
            return
                ThreadPoolGlobals.threadPoolInitialized && // if not initialized, so there's no way this workitem was ever queued.
                ThreadPoolGlobals.workQueue.LocalFindAndPop(workItem);
        }

        // Get all workitems.  Called by TaskScheduler in its debugger hooks.
        internal static IEnumerable<object> GetQueuedWorkItems()
        {
            // Enumerate global queue
            foreach (object workItem in ThreadPoolGlobals.workQueue.workItems)
            {
                yield return workItem;
            }

            // Enumerate each local queue
            foreach (ThreadPoolWorkQueue.WorkStealingQueue wsq in ThreadPoolWorkQueue.WorkStealingQueueList.Queues)
            {
                if (wsq != null && wsq.m_array != null)
                {
                    object?[] items = wsq.m_array;
                    for (int i = 0; i < items.Length; i++)
                    {
                        object? item = items[i];
                        if (item != null)
                        {
                            yield return item;
                        }
                    }
                }
            }
        }

        internal static IEnumerable<object> GetLocallyQueuedWorkItems()
        {
            ThreadPoolWorkQueue.WorkStealingQueue wsq = ThreadPoolWorkQueueThreadLocals.threadLocals.workStealingQueue;
            if (wsq != null && wsq.m_array != null)
            {
                object?[] items = wsq.m_array;
                for (int i = 0; i < items.Length; i++)
                {
                    object? item = items[i];
                    if (item != null)
                        yield return item;
                }
            }
        }

        internal static IEnumerable<object> GetGloballyQueuedWorkItems() => ThreadPoolGlobals.workQueue.workItems;

        private static object[] ToObjectArray(IEnumerable<object> workitems)
        {
            int i = 0;
            foreach (object item in workitems)
            {
                i++;
            }

            object[] result = new object[i];
            i = 0;
            foreach (object item in workitems)
            {
                if (i < result.Length) //just in case someone calls us while the queues are in motion
                    result[i] = item;
                i++;
            }

            return result;
        }

        // This is the method the debugger will actually call, if it ends up calling
        // into ThreadPool directly.  Tests can use this to simulate a debugger, as well.
        internal static object[] GetQueuedWorkItemsForDebugger() =>
            ToObjectArray(GetQueuedWorkItems());

        internal static object[] GetGloballyQueuedWorkItemsForDebugger() =>
            ToObjectArray(GetGloballyQueuedWorkItems());

        internal static object[] GetLocallyQueuedWorkItemsForDebugger() =>
            ToObjectArray(GetLocallyQueuedWorkItems());
    }
}