summaryrefslogtreecommitdiff
path: root/src/System.Private.CoreLib/shared/System/Text/Unicode/Utf8Utility.Transcoding.cs
blob: 126974c892dedd066d50bc8cb982c33a9a60b79f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

using System.Buffers;
using System.Buffers.Binary;
using System.Diagnostics;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics.X86;
using Internal.Runtime.CompilerServices;

#if BIT64
using nint = System.Int64;
using nuint = System.UInt64;
#else // BIT64
using nint = System.Int32;
using nuint = System.UInt32;
#endif // BIT64

namespace System.Text.Unicode
{
    internal static unsafe partial class Utf8Utility
    {
#if DEBUG
        static Utf8Utility()
        {
            Debug.Assert(sizeof(nint) == IntPtr.Size && nint.MinValue < 0, "nint is defined incorrectly.");
            Debug.Assert(sizeof(nuint) == IntPtr.Size && nuint.MinValue == 0, "nuint is defined incorrectly.");

            _ValidateAdditionalNIntDefinitions();
        }
#endif // DEBUG

        // On method return, pInputBufferRemaining and pOutputBufferRemaining will both point to where
        // the next byte would have been consumed from / the next char would have been written to.
        // inputLength in bytes, outputCharsRemaining in chars.
        public static OperationStatus TranscodeToUtf16(byte* pInputBuffer, int inputLength, char* pOutputBuffer, int outputCharsRemaining, out byte* pInputBufferRemaining, out char* pOutputBufferRemaining)
        {
            Debug.Assert(inputLength >= 0, "Input length must not be negative.");
            Debug.Assert(pInputBuffer != null || inputLength == 0, "Input length must be zero if input buffer pointer is null.");

            Debug.Assert(outputCharsRemaining >= 0, "Destination length must not be negative.");
            Debug.Assert(pOutputBuffer != null || outputCharsRemaining == 0, "Destination length must be zero if destination buffer pointer is null.");

            // First, try vectorized conversion.

            {
                nuint numElementsConverted = ASCIIUtility.WidenAsciiToUtf16(pInputBuffer, pOutputBuffer, (uint)Math.Min(inputLength, outputCharsRemaining));

                pInputBuffer += numElementsConverted;
                pOutputBuffer += numElementsConverted;

                // Quick check - did we just end up consuming the entire input buffer?
                // If so, short-circuit the remainder of the method.

                if ((int)numElementsConverted == inputLength)
                {
                    pInputBufferRemaining = pInputBuffer;
                    pOutputBufferRemaining = pOutputBuffer;
                    return OperationStatus.Done;
                }

                inputLength -= (int)numElementsConverted;
                outputCharsRemaining -= (int)numElementsConverted;
            }

            if (inputLength < sizeof(uint))
            {
                goto ProcessInputOfLessThanDWordSize;
            }

            byte* pFinalPosWhereCanReadDWordFromInputBuffer = pInputBuffer + (uint)inputLength - 4;

            // Begin the main loop.

#if DEBUG
            byte* pLastBufferPosProcessed = null; // used for invariant checking in debug builds
#endif

            while (pInputBuffer <= pFinalPosWhereCanReadDWordFromInputBuffer)
            {
                // Read 32 bits at a time. This is enough to hold any possible UTF8-encoded scalar.

                uint thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);

            AfterReadDWord:

#if DEBUG
                Debug.Assert(pLastBufferPosProcessed < pInputBuffer, "Algorithm should've made forward progress since last read.");
                pLastBufferPosProcessed = pInputBuffer;
#endif
                // First, check for the common case of all-ASCII bytes.

                if (ASCIIUtility.AllBytesInUInt32AreAscii(thisDWord))
                {
                    // We read an all-ASCII sequence.

                    if (outputCharsRemaining < sizeof(uint))
                    {
                        goto ProcessRemainingBytesSlow; // running out of space, but may be able to write some data
                    }

                    Widen4AsciiBytesToCharsAndWrite(ref *pOutputBuffer, thisDWord);
                    pInputBuffer += 4;
                    pOutputBuffer += 4;
                    outputCharsRemaining -= 4;

                    // If we saw a sequence of all ASCII, there's a good chance a significant amount of following data is also ASCII.
                    // Below is basically unrolled loops with poor man's vectorization.

                    uint remainingInputBytes = (uint)(void*)Unsafe.ByteOffset(ref *pInputBuffer, ref *pFinalPosWhereCanReadDWordFromInputBuffer) + 4;
                    uint maxIters = Math.Min(remainingInputBytes, (uint)outputCharsRemaining) / (2 * sizeof(uint));
                    uint secondDWord;
                    int i;
                    for (i = 0; (uint)i < maxIters; i++)
                    {
                        // Reading two DWORDs in parallel benchmarked faster than reading a single QWORD.

                        thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);
                        secondDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer + sizeof(uint));

                        if (!ASCIIUtility.AllBytesInUInt32AreAscii(thisDWord | secondDWord))
                        {
                            goto LoopTerminatedEarlyDueToNonAsciiData;
                        }

                        pInputBuffer += 8;

                        Widen4AsciiBytesToCharsAndWrite(ref pOutputBuffer[0], thisDWord);
                        Widen4AsciiBytesToCharsAndWrite(ref pOutputBuffer[4], secondDWord);

                        pOutputBuffer += 8;
                    }

                    outputCharsRemaining -= 8 * i;

                    continue; // need to perform a bounds check because we might be running out of data

                LoopTerminatedEarlyDueToNonAsciiData:

                    if (ASCIIUtility.AllBytesInUInt32AreAscii(thisDWord))
                    {
                        // The first DWORD contained all-ASCII bytes, so expand it.

                        Widen4AsciiBytesToCharsAndWrite(ref *pOutputBuffer, thisDWord);

                        // continue the outer loop from the second DWORD

                        Debug.Assert(!ASCIIUtility.AllBytesInUInt32AreAscii(secondDWord));
                        thisDWord = secondDWord;

                        pInputBuffer += 4;
                        pOutputBuffer += 4;
                        outputCharsRemaining -= 4;
                    }

                    outputCharsRemaining -= 8 * i;

                    // We know that there's *at least* one DWORD of data remaining in the buffer.
                    // We also know that it's not all-ASCII. We can skip the logic at the beginning of the main loop.

                    goto AfterReadDWordSkipAllBytesAsciiCheck;
                }

            AfterReadDWordSkipAllBytesAsciiCheck:

                Debug.Assert(!ASCIIUtility.AllBytesInUInt32AreAscii(thisDWord)); // this should have been handled earlier

                // Next, try stripping off ASCII bytes one at a time.
                // We only handle up to three ASCII bytes here since we handled the four ASCII byte case above.

                if (UInt32FirstByteIsAscii(thisDWord))
                {
                    if (outputCharsRemaining >= 3)
                    {
                        // Fast-track: we don't need to check the destination length for subsequent
                        // ASCII bytes since we know we can write them all now.

                        uint thisDWordLittleEndian = ToLittleEndian(thisDWord);

                        nuint adjustment = 1;
                        pOutputBuffer[0] = (char)(byte)thisDWordLittleEndian;

                        if (UInt32SecondByteIsAscii(thisDWord))
                        {
                            adjustment++;
                            thisDWordLittleEndian >>= 8;
                            pOutputBuffer[1] = (char)(byte)thisDWordLittleEndian;

                            if (UInt32ThirdByteIsAscii(thisDWord))
                            {
                                adjustment++;
                                thisDWordLittleEndian >>= 8;
                                pOutputBuffer[2] = (char)(byte)thisDWordLittleEndian;
                            }
                        }

                        pInputBuffer += adjustment;
                        pOutputBuffer += adjustment;
                        outputCharsRemaining -= (int)adjustment;
                    }
                    else
                    {
                        // Slow-track: we need to make sure each individual write has enough
                        // of a buffer so that we don't overrun the destination.

                        if (outputCharsRemaining == 0)
                        {
                            goto OutputBufferTooSmall;
                        }

                        uint thisDWordLittleEndian = ToLittleEndian(thisDWord);

                        pInputBuffer++;
                        *pOutputBuffer++ = (char)(byte)thisDWordLittleEndian;
                        outputCharsRemaining--;

                        if (UInt32SecondByteIsAscii(thisDWord))
                        {
                            if (outputCharsRemaining == 0)
                            {
                                goto OutputBufferTooSmall;
                            }

                            pInputBuffer++;
                            thisDWordLittleEndian >>= 8;
                            *pOutputBuffer++ = (char)(byte)thisDWordLittleEndian;

                            // We can perform a small optimization here. We know at this point that
                            // the output buffer is fully consumed (we read two ASCII bytes and wrote
                            // two ASCII chars, and we checked earlier that the destination buffer
                            // can't store a third byte). If the next byte is ASCII, we can jump straight
                            // to the return statement since the end-of-method logic only relies on the
                            // destination buffer pointer -- NOT the output chars remaining count -- being
                            // correct. If the next byte is not ASCII, we'll need to continue with the
                            // rest of the main loop, but we can set the buffer length directly to zero
                            // rather than decrementing it from 1 to 0.

                            Debug.Assert(outputCharsRemaining == 1);

                            if (UInt32ThirdByteIsAscii(thisDWord))
                            {
                                goto OutputBufferTooSmall;
                            }
                            else
                            {
                                outputCharsRemaining = 0;
                            }
                        }
                    }

                    if (pInputBuffer > pFinalPosWhereCanReadDWordFromInputBuffer)
                    {
                        goto ProcessRemainingBytesSlow; // input buffer doesn't contain enough data to read a DWORD
                    }
                    else
                    {
                        // The input buffer at the current offset contains a non-ASCII byte.
                        // Read an entire DWORD and fall through to multi-byte consumption logic.
                        thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);
                    }
                }

            BeforeProcessTwoByteSequence:

                // At this point, we know we're working with a multi-byte code unit,
                // but we haven't yet validated it.

                // The masks and comparands are derived from the Unicode Standard, Table 3-6.
                // Additionally, we need to check for valid byte sequences per Table 3-7.

                // Check the 2-byte case.

                if (UInt32BeginsWithUtf8TwoByteMask(thisDWord))
                {
                    // Per Table 3-7, valid sequences are:
                    // [ C2..DF ] [ 80..BF ]

                    if (UInt32BeginsWithOverlongUtf8TwoByteSequence(thisDWord))
                    {
                        goto Error;
                    }

                ProcessTwoByteSequenceSkipOverlongFormCheck:

                    // Optimization: If this is a two-byte-per-character language like Cyrillic or Hebrew,
                    // there's a good chance that if we see one two-byte run then there's another two-byte
                    // run immediately after. Let's check that now.

                    // On little-endian platforms, we can check for the two-byte UTF8 mask *and* validate that
                    // the value isn't overlong using a single comparison. On big-endian platforms, we'll need
                    // to validate the mask and validate that the sequence isn't overlong as two separate comparisons.

                    if ((BitConverter.IsLittleEndian && UInt32EndsWithValidUtf8TwoByteSequenceLittleEndian(thisDWord))
                        || (!BitConverter.IsLittleEndian && (UInt32EndsWithUtf8TwoByteMask(thisDWord) && !UInt32EndsWithOverlongUtf8TwoByteSequence(thisDWord))))
                    {
                        // We have two runs of two bytes each.

                        if (outputCharsRemaining < 2)
                        {
                            goto ProcessRemainingBytesSlow; // running out of output buffer
                        }

                        Unsafe.WriteUnaligned<uint>(pOutputBuffer, ExtractTwoCharsPackedFromTwoAdjacentTwoByteSequences(thisDWord));

                        pInputBuffer += 4;
                        pOutputBuffer += 2;
                        outputCharsRemaining -= 2;

                        if (pInputBuffer <= pFinalPosWhereCanReadDWordFromInputBuffer)
                        {
                            // Optimization: If we read a long run of two-byte sequences, the next sequence is probably
                            // also two bytes. Check for that first before going back to the beginning of the loop.

                            thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);

                            if (BitConverter.IsLittleEndian)
                            {
                                if (UInt32BeginsWithValidUtf8TwoByteSequenceLittleEndian(thisDWord))
                                {
                                    // The next sequence is a valid two-byte sequence.
                                    goto ProcessTwoByteSequenceSkipOverlongFormCheck;
                                }
                            }
                            else
                            {
                                if (UInt32BeginsWithUtf8TwoByteMask(thisDWord))
                                {
                                    if (UInt32BeginsWithOverlongUtf8TwoByteSequence(thisDWord))
                                    {
                                        goto Error; // The next sequence purports to be a 2-byte sequence but is overlong.
                                    }

                                    goto ProcessTwoByteSequenceSkipOverlongFormCheck;
                                }
                            }

                            // If we reached this point, the next sequence is something other than a valid
                            // two-byte sequence, so go back to the beginning of the loop.
                            goto AfterReadDWord;
                        }
                        else
                        {
                            goto ProcessRemainingBytesSlow; // Running out of data - go down slow path
                        }
                    }

                    // The buffer contains a 2-byte sequence followed by 2 bytes that aren't a 2-byte sequence.
                    // Unlikely that a 3-byte sequence would follow a 2-byte sequence, so perhaps remaining
                    // bytes are ASCII?

                    uint charToWrite = ExtractCharFromFirstTwoByteSequence(thisDWord); // optimistically compute this now, but don't store until we know dest is large enough

                    if (UInt32ThirdByteIsAscii(thisDWord))
                    {
                        if (UInt32FourthByteIsAscii(thisDWord))
                        {
                            if (outputCharsRemaining < 3)
                            {
                                goto ProcessRemainingBytesSlow; // running out of output buffer
                            }

                            pOutputBuffer[0] = (char)charToWrite;
                            if (BitConverter.IsLittleEndian)
                            {
                                thisDWord >>= 16;
                                pOutputBuffer[1] = (char)(byte)thisDWord;
                                thisDWord >>= 8;
                                pOutputBuffer[2] = (char)thisDWord;
                            }
                            else
                            {
                                pOutputBuffer[2] = (char)(byte)thisDWord;
                                pOutputBuffer[1] = (char)(byte)(thisDWord >> 8);
                            }
                            pInputBuffer += 4;
                            pOutputBuffer += 3;
                            outputCharsRemaining -= 3;

                            continue; // go back to original bounds check and check for ASCII
                        }
                        else
                        {
                            if (outputCharsRemaining < 2)
                            {
                                goto ProcessRemainingBytesSlow; // running out of output buffer
                            }

                            pOutputBuffer[0] = (char)charToWrite;
                            pOutputBuffer[1] = (char)(byte)(thisDWord >> (BitConverter.IsLittleEndian ? 16 : 8));
                            pInputBuffer += 3;
                            pOutputBuffer += 2;
                            outputCharsRemaining -= 2;

                            // A two-byte sequence followed by an ASCII byte followed by a non-ASCII byte.
                            // Read in the next DWORD and jump directly to the start of the multi-byte processing block.

                            if (pFinalPosWhereCanReadDWordFromInputBuffer < pInputBuffer)
                            {
                                goto ProcessRemainingBytesSlow; // Running out of data - go down slow path
                            }
                            else
                            {
                                thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);
                                goto BeforeProcessTwoByteSequence;
                            }
                        }
                    }
                    else
                    {
                        if (outputCharsRemaining == 0)
                        {
                            goto ProcessRemainingBytesSlow; // running out of output buffer
                        }

                        pOutputBuffer[0] = (char)charToWrite;
                        pInputBuffer += 2;
                        pOutputBuffer += 1;
                        outputCharsRemaining--;

                        if (pFinalPosWhereCanReadDWordFromInputBuffer < pInputBuffer)
                        {
                            goto ProcessRemainingBytesSlow; // Running out of data - go down slow path
                        }
                        else
                        {
                            thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);
                            goto BeforeProcessThreeByteSequence; // we know the next byte isn't ASCII, and it's not the start of a 2-byte sequence (this was checked above)
                        }
                    }
                }

            // Check the 3-byte case.

            BeforeProcessThreeByteSequence:

                if (UInt32BeginsWithUtf8ThreeByteMask(thisDWord))
                {
                ProcessThreeByteSequenceWithCheck:

                    // We need to check for overlong or surrogate three-byte sequences.
                    //
                    // Per Table 3-7, valid sequences are:
                    // [   E0   ] [ A0..BF ] [ 80..BF ]
                    // [ E1..EC ] [ 80..BF ] [ 80..BF ]
                    // [   ED   ] [ 80..9F ] [ 80..BF ]
                    // [ EE..EF ] [ 80..BF ] [ 80..BF ]
                    //
                    // Big-endian examples of using the above validation table:
                    // E0A0 = 1110 0000 1010 0000 => invalid (overlong ) patterns are 1110 0000 100# ####
                    // ED9F = 1110 1101 1001 1111 => invalid (surrogate) patterns are 1110 1101 101# ####
                    // If using the bitmask ......................................... 0000 1111 0010 0000 (=0F20),
                    // Then invalid (overlong) patterns match the comparand ......... 0000 0000 0000 0000 (=0000),
                    // And invalid (surrogate) patterns match the comparand ......... 0000 1101 0010 0000 (=0D20).

                    if (BitConverter.IsLittleEndian)
                    {
                        // The "overlong or surrogate" check can be implemented using a single jump, but there's
                        // some overhead to moving the bits into the correct locations in order to perform the
                        // correct comparison, and in practice the processor's branch prediction capability is
                        // good enough that we shouldn't bother. So we'll use two jumps instead.

                        // Can't extract this check into its own helper method because JITter produces suboptimal
                        // assembly, even with aggressive inlining.

                        // Code below becomes 5 instructions: test, jz, lea, test, jz

                        if (((thisDWord & 0x0000_200Fu) == 0) || (((thisDWord - 0x0000_200Du) & 0x0000_200Fu) == 0))
                        {
                            goto Error; // overlong or surrogate
                        }
                    }
                    else
                    {
                        if (((thisDWord & 0x0F20_0000u) == 0) || (((thisDWord - 0x0D20_0000u) & 0x0F20_0000u) == 0))
                        {
                            goto Error; // overlong or surrogate
                        }
                    }

                    // At this point, we know the incoming scalar is well-formed.

                    if (outputCharsRemaining == 0)
                    {
                        goto OutputBufferTooSmall; // not enough space in the destination buffer to write
                    }

                    // As an optimization, on compatible platforms check if a second three-byte sequence immediately
                    // follows the one we just read, and if so use BSWAP and BMI2 to extract them together.

                    if (Bmi2.X64.IsSupported)
                    {
                        Debug.Assert(BitConverter.IsLittleEndian, "BMI2 requires little-endian.");

                        // First, check that the leftover byte from the original DWORD is in the range [ E0..EF ], which
                        // would indicate the potential start of a second three-byte sequence.

                        if (((thisDWord - 0xE000_0000u) & 0xF000_0000u) == 0)
                        {
                            // The const '3' below is correct because pFinalPosWhereCanReadDWordFromInputBuffer represents
                            // the final place where we can safely perform a DWORD read, and we want to probe whether it's
                            // safe to read a DWORD beginning at address &pInputBuffer[3].

                            if (outputCharsRemaining > 1 && (nint)(void*)Unsafe.ByteOffset(ref *pInputBuffer, ref *pFinalPosWhereCanReadDWordFromInputBuffer) >= 3)
                            {
                                // We're going to attempt to read a second 3-byte sequence and write them both out simultaneously using PEXT.
                                // We need to check the continuation bit mask on the remaining two bytes (and we may as well check the leading
                                // byte mask again since it's free), then perform overlong + surrogate checks. If the overlong or surrogate
                                // checks fail, we'll fall through to the remainder of the logic which will transcode the original valid
                                // 3-byte UTF-8 sequence we read; and on the next iteration of the loop the validation routine will run again,
                                // fail, and redirect control flow to the error handling logic at the very end of this method.

                                uint secondDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer + 3);

                                if (UInt32BeginsWithUtf8ThreeByteMask(secondDWord)
                                    && ((secondDWord & 0x0000_200Fu) != 0)
                                    && (((secondDWord - 0x0000_200Du) & 0x0000_200Fu) != 0))
                                {
                                    // combinedQWord = [ 1110ZZZZ 10YYYYYY 10XXXXXX ######## | 1110zzzz 10yyyyyy 10xxxxxx ######## ], where xyz are from first DWORD, XYZ are from second DWORD
                                    ulong combinedQWord = ((ulong)BinaryPrimitives.ReverseEndianness(secondDWord) << 32) | BinaryPrimitives.ReverseEndianness(thisDWord);
                                    thisDWord = secondDWord; // store this value in the correct local for the ASCII drain logic

                                    // extractedQWord = [ 00000000 00000000 00000000 00000000 | ZZZZYYYYYYXXXXXX zzzzyyyyyyxxxxxx ]
                                    ulong extractedQWord = Bmi2.X64.ParallelBitExtract(combinedQWord, 0x0F3F3F00_0F3F3F00ul);

                                    Unsafe.WriteUnaligned<uint>(pOutputBuffer, (uint)extractedQWord);
                                    pInputBuffer += 6;
                                    pOutputBuffer += 2;
                                    outputCharsRemaining -= 2;

                                    // Drain any ASCII data following the second three-byte sequence.

                                    goto CheckForAsciiByteAfterThreeByteSequence;
                                }
                            }
                        }
                    }

                    // Couldn't extract 2x three-byte sequences together, just do this one by itself.

                    *pOutputBuffer = (char)ExtractCharFromFirstThreeByteSequence(thisDWord);
                    pInputBuffer += 3;
                    pOutputBuffer += 1;
                    outputCharsRemaining -= 1;

                CheckForAsciiByteAfterThreeByteSequence:

                    // Occasionally one-off ASCII characters like spaces, periods, or newlines will make their way
                    // in to the text. If this happens strip it off now before seeing if the next character
                    // consists of three code units.

                    if (UInt32FourthByteIsAscii(thisDWord))
                    {
                        if (outputCharsRemaining == 0)
                        {
                            goto OutputBufferTooSmall;
                        }

                        if (BitConverter.IsLittleEndian)
                        {
                            *pOutputBuffer = (char)(thisDWord >> 24);
                        }
                        else
                        {
                            *pOutputBuffer = (char)(byte)thisDWord;
                        }

                        pInputBuffer += 1;
                        pOutputBuffer += 1;
                        outputCharsRemaining -= 1;
                    }

                    if (pInputBuffer <= pFinalPosWhereCanReadDWordFromInputBuffer)
                    {
                        thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);

                        // Optimization: A three-byte character could indicate CJK text, which makes it likely
                        // that the character following this one is also CJK. We'll check for a three-byte sequence
                        // marker now and jump directly to three-byte sequence processing if we see one, skipping
                        // all of the logic at the beginning of the loop.

                        if (UInt32BeginsWithUtf8ThreeByteMask(thisDWord))
                        {
                            goto ProcessThreeByteSequenceWithCheck; // found a three-byte sequence marker; validate and consume
                        }
                        else
                        {
                            goto AfterReadDWord; // probably ASCII punctuation or whitespace
                        }
                    }
                    else
                    {
                        goto ProcessRemainingBytesSlow; // Running out of data - go down slow path
                    }
                }

                // Assume the 4-byte case, but we need to validate.

                {
                    // We need to check for overlong or invalid (over U+10FFFF) four-byte sequences.
                    //
                    // Per Table 3-7, valid sequences are:
                    // [   F0   ] [ 90..BF ] [ 80..BF ] [ 80..BF ]
                    // [ F1..F3 ] [ 80..BF ] [ 80..BF ] [ 80..BF ]
                    // [   F4   ] [ 80..8F ] [ 80..BF ] [ 80..BF ]

                    if (!UInt32BeginsWithUtf8FourByteMask(thisDWord))
                    {
                        goto Error;
                    }

                    // Now check for overlong / out-of-range sequences.

                    if (BitConverter.IsLittleEndian)
                    {
                        // The DWORD we read is [ 10xxxxxx 10yyyyyy 10zzzzzz 11110www ].
                        // We want to get the 'w' byte in front of the 'z' byte so that we can perform
                        // a single range comparison. We'll take advantage of the fact that the JITter
                        // can detect a ROR / ROL operation, then we'll just zero out the bytes that
                        // aren't involved in the range check.

                        uint toCheck = thisDWord & 0x0000_FFFFu;

                        // At this point, toCheck = [ 00000000 00000000 10zzzzzz 11110www ].

                        toCheck = BitOperations.RotateRight(toCheck, 8);

                        // At this point, toCheck = [ 11110www 00000000 00000000 10zzzzzz ].

                        if (!UnicodeUtility.IsInRangeInclusive(toCheck, 0xF000_0090u, 0xF400_008Fu))
                        {
                            goto Error;
                        }
                    }
                    else
                    {
                        if (!UnicodeUtility.IsInRangeInclusive(thisDWord, 0xF090_0000u, 0xF48F_FFFFu))
                        {
                            goto Error;
                        }
                    }

                    // Validation complete.

                    if (outputCharsRemaining < 2)
                    {
                        // There's no point to falling back to the "drain the input buffer" logic, since we know
                        // we can't write anything to the destination. So we'll just exit immediately.
                        goto OutputBufferTooSmall;
                    }

                    Unsafe.WriteUnaligned<uint>(pOutputBuffer, ExtractCharsFromFourByteSequence(thisDWord));

                    pInputBuffer += 4;
                    pOutputBuffer += 2;
                    outputCharsRemaining -= 2;

                    continue; // go back to beginning of loop for processing
                }
            }

        ProcessRemainingBytesSlow:
            inputLength = (int)(void*)Unsafe.ByteOffset(ref *pInputBuffer, ref *pFinalPosWhereCanReadDWordFromInputBuffer) + 4;

        ProcessInputOfLessThanDWordSize:
            while (inputLength > 0)
            {
                uint firstByte = pInputBuffer[0];
                if (firstByte <= 0x7Fu)
                {
                    if (outputCharsRemaining == 0)
                    {
                        goto OutputBufferTooSmall; // we have no hope of writing anything to the output
                    }

                    // 1-byte (ASCII) case
                    *pOutputBuffer = (char)firstByte;

                    pInputBuffer += 1;
                    pOutputBuffer += 1;
                    inputLength -= 1;
                    outputCharsRemaining -= 1;
                    continue;
                }

                // Potentially the start of a multi-byte sequence?

                firstByte -= 0xC2u;
                if ((byte)firstByte <= (0xDFu - 0xC2u))
                {
                    // Potentially a 2-byte sequence?
                    if (inputLength < 2)
                    {
                        goto InputBufferTooSmall; // out of data
                    }

                    uint secondByte = pInputBuffer[1];
                    if (!IsLowByteUtf8ContinuationByte(secondByte))
                    {
                        goto Error; // 2-byte marker not followed by continuation byte
                    }

                    if (outputCharsRemaining == 0)
                    {
                        goto OutputBufferTooSmall; // we have no hope of writing anything to the output
                    }

                    uint asChar = (firstByte << 6) + secondByte + ((0xC2u - 0xC0u) << 6) - 0x80u; // remove UTF-8 markers from scalar
                    *pOutputBuffer = (char)asChar;

                    pInputBuffer += 2;
                    pOutputBuffer += 1;
                    inputLength -= 2;
                    outputCharsRemaining -= 1;
                    continue;
                }
                else if ((byte)firstByte <= (0xEFu - 0xC2u))
                {
                    // Potentially a 3-byte sequence?
                    if (inputLength >= 3)
                    {
                        uint secondByte = pInputBuffer[1];
                        uint thirdByte = pInputBuffer[2];
                        if (!IsLowByteUtf8ContinuationByte(secondByte) || !IsLowByteUtf8ContinuationByte(thirdByte))
                        {
                            goto Error; // 3-byte marker not followed by 2 continuation bytes
                        }

                        // To speed up the validation logic below, we're not going to remove the UTF-8 markers from the partial char just yet.
                        // We account for this in the comparisons below.

                        uint partialChar = (firstByte << 12) + (secondByte << 6);
                        if (partialChar < ((0xE0u - 0xC2u) << 12) + (0xA0u << 6))
                        {
                            goto Error; // this is an overlong encoding; fail
                        }

                        partialChar -= ((0xEDu - 0xC2u) << 12) + (0xA0u << 6); //if partialChar = 0, we're at beginning of UTF-16 surrogate code point range
                        if (partialChar < (0x0800u /* number of code points in UTF-16 surrogate code point range */))
                        {
                            goto Error; // attempted to encode a UTF-16 surrogate code point; fail
                        }

                        if (outputCharsRemaining == 0)
                        {
                            goto OutputBufferTooSmall; // we have no hope of writing anything to the output
                        }

                        // Now restore the full scalar value.

                        partialChar += thirdByte;
                        partialChar += 0xD800; // undo "move to beginning of UTF-16 surrogate code point range" from earlier, fold it with later adds
                        partialChar -= 0x80u; // remove third byte continuation marker

                        *pOutputBuffer = (char)partialChar;

                        pInputBuffer += 3;
                        pOutputBuffer += 1;
                        inputLength -= 3;
                        outputCharsRemaining -= 1;
                        continue;
                    }
                    else if (inputLength >= 2)
                    {
                        uint secondByte = pInputBuffer[1];
                        if (!IsLowByteUtf8ContinuationByte(secondByte))
                        {
                            goto Error; // 3-byte marker not followed by continuation byte
                        }

                        // We can't build up the entire scalar value now, but we can check for overlong / surrogate representations
                        // from just the first two bytes.

                        uint partialChar = (firstByte << 6) + secondByte; // don't worry about fixing up the UTF-8 markers; we'll account for it in the below comparison
                        if (partialChar < ((0xE0u - 0xC2u) << 6) + 0xA0u)
                        {
                            goto Error; // failed overlong check
                        }
                        if (UnicodeUtility.IsInRangeInclusive(partialChar, ((0xEDu - 0xC2u) << 6) + 0xA0u, ((0xEEu - 0xC2u) << 6) + 0x7Fu))
                        {
                            goto Error; // failed surrogate check
                        }
                    }

                    goto InputBufferTooSmall; // out of data
                }
                else if ((byte)firstByte <= (0xF4u - 0xC2u))
                {
                    // Potentially a 4-byte sequence?

                    if (inputLength < 2)
                    {
                        goto InputBufferTooSmall; // ran out of data
                    }

                    uint nextByte = pInputBuffer[1];
                    if (!IsLowByteUtf8ContinuationByte(nextByte))
                    {
                        goto Error; // 4-byte marker not followed by a continuation byte
                    }

                    uint asPartialChar = (firstByte << 6) + nextByte; // don't worry about fixing up the UTF-8 markers; we'll account for it in the below comparison
                    if (!UnicodeUtility.IsInRangeInclusive(asPartialChar, ((0xF0u - 0xC2u) << 6) + 0x90u, ((0xF4u - 0xC2u) << 6) + 0x8Fu))
                    {
                        goto Error; // failed overlong / out-of-range check
                    }

                    if (inputLength < 3)
                    {
                        goto InputBufferTooSmall; // ran out of data
                    }

                    if (!IsLowByteUtf8ContinuationByte(pInputBuffer[2]))
                    {
                        goto Error; // third byte in 4-byte sequence not a continuation byte
                    }

                    if (inputLength < 4)
                    {
                        goto InputBufferTooSmall; // ran out of data
                    }

                    if (!IsLowByteUtf8ContinuationByte(pInputBuffer[3]))
                    {
                        goto Error; // fourth byte in 4-byte sequence not a continuation byte
                    }

                    // If we read a valid astral scalar value, the only way we could've fallen down this code path
                    // is that we didn't have enough output buffer to write the result.

                    goto OutputBufferTooSmall;
                }
                else
                {
                    goto Error; // didn't begin with [ C2 .. F4 ], so invalid multi-byte sequence header byte
                }
            }

            OperationStatus retVal = OperationStatus.Done;
            goto ReturnCommon;

        InputBufferTooSmall:
            retVal = OperationStatus.NeedMoreData;
            goto ReturnCommon;

        OutputBufferTooSmall:
            retVal = OperationStatus.DestinationTooSmall;
            goto ReturnCommon;

        Error:
            retVal = OperationStatus.InvalidData;
            goto ReturnCommon;

        ReturnCommon:
            pInputBufferRemaining = pInputBuffer;
            pOutputBufferRemaining = pOutputBuffer;
            return retVal;
        }

        // On method return, pInputBufferRemaining and pOutputBufferRemaining will both point to where
        // the next char would have been consumed from / the next byte would have been written to.
        // inputLength in chars, outputBytesRemaining in bytes.
        public static OperationStatus TranscodeToUtf8(char* pInputBuffer, int inputLength, byte* pOutputBuffer, int outputBytesRemaining, out char* pInputBufferRemaining, out byte* pOutputBufferRemaining)
        {
            const int CharsPerDWord = sizeof(uint) / sizeof(char);

            Debug.Assert(inputLength >= 0, "Input length must not be negative.");
            Debug.Assert(pInputBuffer != null || inputLength == 0, "Input length must be zero if input buffer pointer is null.");

            Debug.Assert(outputBytesRemaining >= 0, "Destination length must not be negative.");
            Debug.Assert(pOutputBuffer != null || outputBytesRemaining == 0, "Destination length must be zero if destination buffer pointer is null.");

            // First, try vectorized conversion.

            {
                nuint numElementsConverted = ASCIIUtility.NarrowUtf16ToAscii(pInputBuffer, pOutputBuffer, (uint)Math.Min(inputLength, outputBytesRemaining));

                pInputBuffer += numElementsConverted;
                pOutputBuffer += numElementsConverted;

                // Quick check - did we just end up consuming the entire input buffer?
                // If so, short-circuit the remainder of the method.

                if ((int)numElementsConverted == inputLength)
                {
                    pInputBufferRemaining = pInputBuffer;
                    pOutputBufferRemaining = pOutputBuffer;
                    return OperationStatus.Done;
                }

                inputLength -= (int)numElementsConverted;
                outputBytesRemaining -= (int)numElementsConverted;
            }

            if (inputLength < CharsPerDWord)
            {
                goto ProcessInputOfLessThanDWordSize;
            }

            char* pFinalPosWhereCanReadDWordFromInputBuffer = pInputBuffer + (uint)inputLength - CharsPerDWord;

            // Begin the main loop.

#if DEBUG
            char* pLastBufferPosProcessed = null; // used for invariant checking in debug builds
#endif

            uint thisDWord;

            while (pInputBuffer <= pFinalPosWhereCanReadDWordFromInputBuffer)
            {
                // Read 32 bits at a time. This is enough to hold any possible UTF16-encoded scalar.

                thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);

            AfterReadDWord:

#if DEBUG
                Debug.Assert(pLastBufferPosProcessed < pInputBuffer, "Algorithm should've made forward progress since last read.");
                pLastBufferPosProcessed = pInputBuffer;
#endif

                // First, check for the common case of all-ASCII chars.

                if (Utf16Utility.AllCharsInUInt32AreAscii(thisDWord))
                {
                    // We read an all-ASCII sequence (2 chars).

                    if (outputBytesRemaining < 2)
                    {
                        goto ProcessOneCharFromCurrentDWordAndFinish; // running out of space, but may be able to write some data
                    }

                    // The high WORD of the local declared below might be populated with garbage
                    // as a result of our shifts below, but that's ok since we're only going to
                    // write the low WORD.
                    //
                    // [ 00000000 0bbbbbbb | 00000000 0aaaaaaa ] -> [ 00000000 0bbbbbbb | 0bbbbbbb 0aaaaaaa ]
                    // (Same logic works regardless of endianness.)
                    uint valueToWrite = thisDWord | (thisDWord >> 8);

                    Unsafe.WriteUnaligned<ushort>(pOutputBuffer, (ushort)valueToWrite);

                    pInputBuffer += 2;
                    pOutputBuffer += 2;
                    outputBytesRemaining -= 2;

                    // If we saw a sequence of all ASCII, there's a good chance a significant amount of following data is also ASCII.
                    // Below is basically unrolled loops with poor man's vectorization.

                    uint inputCharsRemaining = (uint)(pFinalPosWhereCanReadDWordFromInputBuffer - pInputBuffer) + 2;
                    uint minElementsRemaining = (uint)Math.Min(inputCharsRemaining, outputBytesRemaining);

                    if (Bmi2.X64.IsSupported)
                    {
                        Debug.Assert(BitConverter.IsLittleEndian, "BMI2 requires little-endian.");
                        const ulong PEXT_MASK = 0x00FF00FF_00FF00FFul;

                        // Try reading and writing 8 elements per iteration.
                        uint maxIters = minElementsRemaining / 8;
                        ulong firstQWord, secondQWord;
                        int i;
                        for (i = 0; (uint)i < maxIters; i++)
                        {
                            firstQWord = Unsafe.ReadUnaligned<ulong>(pInputBuffer);
                            secondQWord = Unsafe.ReadUnaligned<ulong>(pInputBuffer + 4);

                            if (!Utf16Utility.AllCharsInUInt64AreAscii(firstQWord | secondQWord))
                            {
                                goto LoopTerminatedDueToNonAsciiData;
                            }

                            Unsafe.WriteUnaligned<uint>(pOutputBuffer, (uint)Bmi2.X64.ParallelBitExtract(firstQWord, PEXT_MASK));
                            Unsafe.WriteUnaligned<uint>(pOutputBuffer + 4, (uint)Bmi2.X64.ParallelBitExtract(secondQWord, PEXT_MASK));

                            pInputBuffer += 8;
                            pOutputBuffer += 8;
                        }

                        outputBytesRemaining -= 8 * i;

                        // Can we perform one more iteration, but reading & writing 4 elements instead of 8?

                        if ((minElementsRemaining & 4) != 0)
                        {
                            secondQWord = Unsafe.ReadUnaligned<ulong>(pInputBuffer);

                            if (!Utf16Utility.AllCharsInUInt64AreAscii(secondQWord))
                            {
                                goto LoopTerminatedDueToNonAsciiDataInSecondQWord;
                            }

                            Unsafe.WriteUnaligned<uint>(pOutputBuffer, (uint)Bmi2.X64.ParallelBitExtract(secondQWord, PEXT_MASK));

                            pInputBuffer += 4;
                            pOutputBuffer += 4;
                            outputBytesRemaining -= 4;
                        }

                        continue; // Go back to beginning of main loop, read data, check for ASCII

                    LoopTerminatedDueToNonAsciiData:

                        outputBytesRemaining -= 8 * i;

                        // First, see if we can drain any ASCII data from the first QWORD.

                        if (Utf16Utility.AllCharsInUInt64AreAscii(firstQWord))
                        {
                            Unsafe.WriteUnaligned<uint>(pOutputBuffer, (uint)Bmi2.X64.ParallelBitExtract(firstQWord, PEXT_MASK));
                            pInputBuffer += 4;
                            pOutputBuffer += 4;
                            outputBytesRemaining -= 4;
                        }
                        else
                        {
                            secondQWord = firstQWord;
                        }

                    LoopTerminatedDueToNonAsciiDataInSecondQWord:

                        Debug.Assert(!Utf16Utility.AllCharsInUInt64AreAscii(secondQWord)); // this condition should've been checked earlier

                        thisDWord = (uint)secondQWord;
                        if (Utf16Utility.AllCharsInUInt32AreAscii(thisDWord))
                        {
                            // [ 00000000 0bbbbbbb | 00000000 0aaaaaaa ] -> [ 00000000 0bbbbbbb | 0bbbbbbb 0aaaaaaa ]
                            Unsafe.WriteUnaligned<ushort>(pOutputBuffer, (ushort)(thisDWord | (thisDWord >> 8)));
                            pInputBuffer += 2;
                            pOutputBuffer += 2;
                            outputBytesRemaining -= 2;
                            thisDWord = (uint)(secondQWord >> 32);
                        }

                        goto AfterReadDWordSkipAllCharsAsciiCheck;
                    }
                    else
                    {
                        // Can't use BMI2 x64, so we'll only read and write 4 elements per iteration.
                        uint maxIters = minElementsRemaining / 4;
                        uint secondDWord;
                        int i;
                        for (i = 0; (uint)i < maxIters; i++)
                        {
                            thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);
                            secondDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer + 2);

                            if (!Utf16Utility.AllCharsInUInt32AreAscii(thisDWord | secondDWord))
                            {
                                goto LoopTerminatedDueToNonAsciiData;
                            }

                            // [ 00000000 0bbbbbbb | 00000000 0aaaaaaa ] -> [ 00000000 0bbbbbbb | 0bbbbbbb 0aaaaaaa ]
                            // (Same logic works regardless of endianness.)
                            Unsafe.WriteUnaligned<ushort>(pOutputBuffer, (ushort)(thisDWord | (thisDWord >> 8)));
                            Unsafe.WriteUnaligned<ushort>(pOutputBuffer + 2, (ushort)(secondDWord | (secondDWord >> 8)));

                            pInputBuffer += 4;
                            pOutputBuffer += 4;
                        }

                        outputBytesRemaining -= 4 * i;

                        continue; // Go back to beginning of main loop, read data, check for ASCII

                    LoopTerminatedDueToNonAsciiData:

                        outputBytesRemaining -= 4 * i;

                        // First, see if we can drain any ASCII data from the first DWORD.

                        if (Utf16Utility.AllCharsInUInt32AreAscii(thisDWord))
                        {
                            // [ 00000000 0bbbbbbb | 00000000 0aaaaaaa ] -> [ 00000000 0bbbbbbb | 0bbbbbbb 0aaaaaaa ]
                            // (Same logic works regardless of endianness.)
                            Unsafe.WriteUnaligned<ushort>(pOutputBuffer, (ushort)(thisDWord | (thisDWord >> 8)));
                            pInputBuffer += 2;
                            pOutputBuffer += 2;
                            outputBytesRemaining -= 2;
                            thisDWord = secondDWord;
                        }

                        goto AfterReadDWordSkipAllCharsAsciiCheck;
                    }
                }

            AfterReadDWordSkipAllCharsAsciiCheck:

                Debug.Assert(!Utf16Utility.AllCharsInUInt32AreAscii(thisDWord)); // this should have been handled earlier

                // Next, try stripping off the first ASCII char if it exists.
                // We don't check for a second ASCII char since that should have been handled above.

                if (IsFirstCharAscii(thisDWord))
                {
                    if (outputBytesRemaining == 0)
                    {
                        goto OutputBufferTooSmall;
                    }

                    if (BitConverter.IsLittleEndian)
                    {
                        pOutputBuffer[0] = (byte)thisDWord; // extract [ ## ## 00 AA ]
                    }
                    else
                    {
                        pOutputBuffer[0] = (byte)(thisDWord >> 24); // extract [ AA 00 ## ## ]
                    }

                    pInputBuffer += 1;
                    pOutputBuffer += 1;
                    outputBytesRemaining -= 1;

                    if (pInputBuffer > pFinalPosWhereCanReadDWordFromInputBuffer)
                    {
                        goto ProcessNextCharAndFinish; // input buffer doesn't contain enough data to read a DWORD
                    }
                    else
                    {
                        // The input buffer at the current offset contains a non-ASCII char.
                        // Read an entire DWORD and fall through to non-ASCII consumption logic.
                        thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);
                    }
                }

                // At this point, we know the first char in the buffer is non-ASCII, but we haven't yet validated it.

                if (!IsFirstCharAtLeastThreeUtf8Bytes(thisDWord))
                {
                TryConsumeMultipleTwoByteSequences:

                    // For certain text (Greek, Cyrillic, ...), 2-byte sequences tend to be clustered. We'll try transcoding them in
                    // a tight loop without falling back to the main loop.

                    if (IsSecondCharTwoUtf8Bytes(thisDWord))
                    {
                        // We have two runs of two bytes each.

                        if (outputBytesRemaining < 4)
                        {
                            goto ProcessOneCharFromCurrentDWordAndFinish; // running out of output buffer
                        }

                        Unsafe.WriteUnaligned<uint>(pOutputBuffer, ExtractTwoUtf8TwoByteSequencesFromTwoPackedUtf16Chars(thisDWord));

                        pInputBuffer += 2;
                        pOutputBuffer += 4;
                        outputBytesRemaining -= 4;

                        if (pInputBuffer > pFinalPosWhereCanReadDWordFromInputBuffer)
                        {
                            goto ProcessNextCharAndFinish; // Running out of data - go down slow path
                        }
                        else
                        {
                            // Optimization: If we read a long run of two-byte sequences, the next sequence is probably
                            // also two bytes. Check for that first before going back to the beginning of the loop.

                            thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);

                            if (IsFirstCharTwoUtf8Bytes(thisDWord))
                            {
                                // Validated we have a two-byte sequence coming up
                                goto TryConsumeMultipleTwoByteSequences;
                            }

                            // If we reached this point, the next sequence is something other than a valid
                            // two-byte sequence, so go back to the beginning of the loop.
                            goto AfterReadDWord;
                        }
                    }

                    if (outputBytesRemaining < 2)
                    {
                        goto OutputBufferTooSmall;
                    }

                    Unsafe.WriteUnaligned<ushort>(pOutputBuffer, (ushort)ExtractUtf8TwoByteSequenceFromFirstUtf16Char(thisDWord));

                    // The buffer contains a 2-byte sequence followed by 2 bytes that aren't a 2-byte sequence.
                    // Unlikely that a 3-byte sequence would follow a 2-byte sequence, so perhaps remaining
                    // char is ASCII?

                    if (IsSecondCharAscii(thisDWord))
                    {
                        if (outputBytesRemaining >= 3)
                        {
                            if (BitConverter.IsLittleEndian)
                            {
                                thisDWord >>= 16;
                            }
                            pOutputBuffer[2] = (byte)thisDWord;

                            pInputBuffer += 2;
                            pOutputBuffer += 3;
                            outputBytesRemaining -= 3;

                            continue; // go back to original bounds check and check for ASCII
                        }
                        else
                        {
                            pInputBuffer += 1;
                            pOutputBuffer += 2;
                            goto OutputBufferTooSmall;
                        }
                    }
                    else
                    {
                        pInputBuffer += 1;
                        pOutputBuffer += 2;
                        outputBytesRemaining -= 2;

                        if (pInputBuffer > pFinalPosWhereCanReadDWordFromInputBuffer)
                        {
                            goto ProcessNextCharAndFinish; // Running out of data - go down slow path
                        }
                        else
                        {
                            thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);
                            goto BeforeProcessThreeByteSequence; // we know the next byte isn't ASCII, and it's not the start of a 2-byte sequence (this was checked above)
                        }
                    }
                }

            // Check the 3-byte case.

            BeforeProcessThreeByteSequence:

                if (!IsFirstCharSurrogate(thisDWord))
                {
                    // Optimization: A three-byte character could indicate CJK text, which makes it likely
                    // that the character following this one is also CJK. We'll perform the check now
                    // rather than jumping to the beginning of the main loop.

                    if (IsSecondCharAtLeastThreeUtf8Bytes(thisDWord))
                    {
                        if (!IsSecondCharSurrogate(thisDWord))
                        {
                            if (outputBytesRemaining < 6)
                            {
                                goto ConsumeSingleThreeByteRun; // not enough space - try consuming as much as we can
                            }

                            WriteTwoUtf16CharsAsTwoUtf8ThreeByteSequences(ref *pOutputBuffer, thisDWord);

                            pInputBuffer += 2;
                            pOutputBuffer += 6;
                            outputBytesRemaining -= 6;

                            // Try to remain in the 3-byte processing loop if at all possible.

                            if (pInputBuffer > pFinalPosWhereCanReadDWordFromInputBuffer)
                            {
                                goto ProcessNextCharAndFinish; // Running out of data - go down slow path
                            }
                            else
                            {
                                thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);

                                if (IsFirstCharAtLeastThreeUtf8Bytes(thisDWord))
                                {
                                    goto BeforeProcessThreeByteSequence;
                                }
                                else
                                {
                                    // Fall back to standard processing loop since we don't know how to optimize this.
                                    goto AfterReadDWord;
                                }
                            }
                        }
                    }

                ConsumeSingleThreeByteRun:

                    if (outputBytesRemaining < 3)
                    {
                        goto OutputBufferTooSmall;
                    }

                    WriteFirstUtf16CharAsUtf8ThreeByteSequence(ref *pOutputBuffer, thisDWord);

                    pInputBuffer += 1;
                    pOutputBuffer += 3;
                    outputBytesRemaining -= 3;

                    // Occasionally one-off ASCII characters like spaces, periods, or newlines will make their way
                    // in to the text. If this happens strip it off now before seeing if the next character
                    // consists of three code units.

                    if (IsSecondCharAscii(thisDWord))
                    {
                        if (outputBytesRemaining == 0)
                        {
                            goto OutputBufferTooSmall;
                        }

                        if (BitConverter.IsLittleEndian)
                        {
                            *pOutputBuffer = (byte)(thisDWord >> 16);
                        }
                        else
                        {
                            *pOutputBuffer = (byte)(thisDWord);
                        }

                        pInputBuffer += 1;
                        pOutputBuffer += 1;
                        outputBytesRemaining -= 1;

                        if (pInputBuffer > pFinalPosWhereCanReadDWordFromInputBuffer)
                        {
                            goto ProcessNextCharAndFinish; // Running out of data - go down slow path
                        }
                        else
                        {
                            thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);

                            if (IsFirstCharAtLeastThreeUtf8Bytes(thisDWord))
                            {
                                goto BeforeProcessThreeByteSequence;
                            }
                            else
                            {
                                // Fall back to standard processing loop since we don't know how to optimize this.
                                goto AfterReadDWord;
                            }
                        }
                    }

                    if (pInputBuffer > pFinalPosWhereCanReadDWordFromInputBuffer)
                    {
                        goto ProcessNextCharAndFinish; // Running out of data - go down slow path
                    }
                    else
                    {
                        thisDWord = Unsafe.ReadUnaligned<uint>(pInputBuffer);
                        goto AfterReadDWordSkipAllCharsAsciiCheck; // we just checked above that this value isn't ASCII
                    }
                }

                // Four byte sequence processing

                if (IsWellFormedUtf16SurrogatePair(thisDWord))
                {
                    if (outputBytesRemaining < 4)
                    {
                        goto OutputBufferTooSmall;
                    }

                    Unsafe.WriteUnaligned<uint>(pOutputBuffer, ExtractFourUtf8BytesFromSurrogatePair(thisDWord));

                    pInputBuffer += 2;
                    pOutputBuffer += 4;
                    outputBytesRemaining -= 4;

                    continue; // go back to beginning of loop for processing
                }

                goto Error; // an ill-formed surrogate sequence: high not followed by low, or low not preceded by high
            }

        ProcessNextCharAndFinish:
            inputLength = (int)(pFinalPosWhereCanReadDWordFromInputBuffer - pInputBuffer) + CharsPerDWord;

        ProcessInputOfLessThanDWordSize:
            Debug.Assert(inputLength < CharsPerDWord);

            if (inputLength == 0)
            {
                goto InputBufferFullyConsumed;
            }

            uint thisChar = *pInputBuffer;
            goto ProcessFinalChar;

        ProcessOneCharFromCurrentDWordAndFinish:
            if (BitConverter.IsLittleEndian)
            {
                thisChar = thisDWord & 0xFFFFu; // preserve only the first char
            }
            else
            {
                thisChar = thisDWord >> 16; // preserve only the first char
            }

        ProcessFinalChar:
            {
                if (thisChar <= 0x7Fu)
                {
                    if (outputBytesRemaining == 0)
                    {
                        goto OutputBufferTooSmall; // we have no hope of writing anything to the output
                    }

                    // 1-byte (ASCII) case
                    *pOutputBuffer = (byte)thisChar;

                    pInputBuffer += 1;
                    pOutputBuffer += 1;
                }
                else if (thisChar < 0x0800u)
                {
                    if (outputBytesRemaining < 2)
                    {
                        goto OutputBufferTooSmall; // we have no hope of writing anything to the output
                    }

                    // 2-byte case
                    pOutputBuffer[1] = (byte)((thisChar & 0x3Fu) | unchecked((uint)(sbyte)0x80)); // [ 10xxxxxx ]
                    pOutputBuffer[0] = (byte)((thisChar >> 6) | unchecked((uint)(sbyte)0xC0)); // [ 110yyyyy ]

                    pInputBuffer += 1;
                    pOutputBuffer += 2;
                }
                else if (!UnicodeUtility.IsSurrogateCodePoint(thisChar))
                {
                    if (outputBytesRemaining < 3)
                    {
                        goto OutputBufferTooSmall; // we have no hope of writing anything to the output
                    }

                    // 3-byte case
                    pOutputBuffer[2] = (byte)((thisChar & 0x3Fu) | unchecked((uint)(sbyte)0x80)); // [ 10xxxxxx ]
                    pOutputBuffer[1] = (byte)(((thisChar >> 6) & 0x3Fu) | unchecked((uint)(sbyte)0x80)); // [ 10yyyyyy ]
                    pOutputBuffer[0] = (byte)((thisChar >> 12) | unchecked((uint)(sbyte)0xE0)); // [ 1110zzzz ]

                    pInputBuffer += 1;
                    pOutputBuffer += 3;
                }
                else if (thisChar <= 0xDBFFu)
                {
                    // UTF-16 high surrogate code point with no trailing data, report incomplete input buffer
                    goto InputBufferTooSmall;
                }
                else
                {
                    // UTF-16 low surrogate code point with no leading data, report error
                    goto Error;
                }
            }

            // There are two ways we can end up here. Either we were running low on input data,
            // or we were running low on space in the destination buffer. If we're running low on
            // input data (label targets ProcessInputOfLessThanDWordSize and ProcessNextCharAndFinish),
            // then the inputLength value is guaranteed to be between 0 and 1, and we should return Done.
            // If we're running low on destination buffer space (label target ProcessOneCharFromCurrentDWordAndFinish),
            // then we didn't modify inputLength since entering the main loop, which means it should
            // still have a value of >= 2. So checking the value of inputLength is all we need to do to determine
            // which of the two scenarios we're in.

            if (inputLength > 1)
            {
                goto OutputBufferTooSmall;
            }

        InputBufferFullyConsumed:
            OperationStatus retVal = OperationStatus.Done;
            goto ReturnCommon;

        InputBufferTooSmall:
            retVal = OperationStatus.NeedMoreData;
            goto ReturnCommon;

        OutputBufferTooSmall:
            retVal = OperationStatus.DestinationTooSmall;
            goto ReturnCommon;

        Error:
            retVal = OperationStatus.InvalidData;
            goto ReturnCommon;

        ReturnCommon:
            pInputBufferRemaining = pInputBuffer;
            pOutputBufferRemaining = pOutputBuffer;
            return retVal;
        }
    }
}