summaryrefslogtreecommitdiff
path: root/src/System.Private.CoreLib/shared/System/Text/ASCIIUtility.cs
blob: b37b01779deb2034ecfe6d03a9f241d63c3a97f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

using System.Diagnostics;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
using Internal.Runtime.CompilerServices;

#if BIT64
using nint = System.Int64;
using nuint = System.UInt64;
#else // BIT64
using nint = System.Int32;
using nuint = System.UInt32;
#endif // BIT64

namespace System.Text
{
    internal static partial class ASCIIUtility
    {
#if DEBUG
        static ASCIIUtility()
        {
            Debug.Assert(sizeof(nint) == IntPtr.Size && nint.MinValue < 0, "nint is defined incorrectly.");
            Debug.Assert(sizeof(nuint) == IntPtr.Size && nuint.MinValue == 0, "nuint is defined incorrectly.");
        }
#endif // DEBUG

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static bool AllBytesInUInt64AreAscii(ulong value)
        {
            // If the high bit of any byte is set, that byte is non-ASCII.

            return ((value & UInt64HighBitsOnlyMask) == 0);
        }

        /// <summary>
        /// Returns <see langword="true"/> iff all chars in <paramref name="value"/> are ASCII.
        /// </summary>
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static bool AllCharsInUInt32AreAscii(uint value)
        {
            return ((value & ~0x007F007Fu) == 0);
        }

        /// <summary>
        /// Returns <see langword="true"/> iff all chars in <paramref name="value"/> are ASCII.
        /// </summary>
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static bool AllCharsInUInt64AreAscii(ulong value)
        {
            return ((value & ~0x007F007F_007F007Ful) == 0);
        }

        /// <summary>
        /// Given a DWORD which represents two packed chars in machine-endian order,
        /// <see langword="true"/> iff the first char (in machine-endian order) is ASCII.
        /// </summary>
        /// <param name="value"></param>
        /// <returns></returns>
        private static bool FirstCharInUInt32IsAscii(uint value)
        {
            return (BitConverter.IsLittleEndian && (value & 0xFF80u) == 0)
                || (!BitConverter.IsLittleEndian && (value & 0xFF800000u) == 0);
        }

        /// <summary>
        /// Returns the index in <paramref name="pBuffer"/> where the first non-ASCII byte is found.
        /// Returns <paramref name="bufferLength"/> if the buffer is empty or all-ASCII.
        /// </summary>
        /// <returns>An ASCII byte is defined as 0x00 - 0x7F, inclusive.</returns>
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static unsafe nuint GetIndexOfFirstNonAsciiByte(byte* pBuffer, nuint bufferLength)
        {
            // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
            // code below. This has two benefits: (a) we can take advantage of specific instructions like
            // pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while
            // this method is running.

            return (Sse2.IsSupported)
                ? GetIndexOfFirstNonAsciiByte_Sse2(pBuffer, bufferLength)
                : GetIndexOfFirstNonAsciiByte_Default(pBuffer, bufferLength);
        }

        private static unsafe nuint GetIndexOfFirstNonAsciiByte_Default(byte* pBuffer, nuint bufferLength)
        {
            // Squirrel away the original buffer reference. This method works by determining the exact
            // byte reference where non-ASCII data begins, so we need this base value to perform the
            // final subtraction at the end of the method to get the index into the original buffer.

            byte* pOriginalBuffer = pBuffer;

            // Before we drain off byte-by-byte, try a generic vectorized loop.
            // Only run the loop if we have at least two vectors we can pull out.
            // Note use of SBYTE instead of BYTE below; we're using the two's-complement
            // representation of negative integers to act as a surrogate for "is ASCII?".

            if (Vector.IsHardwareAccelerated && bufferLength >= 2 * (uint)Vector<sbyte>.Count)
            {
                uint SizeOfVectorInBytes = (uint)Vector<sbyte>.Count; // JIT will make this a const

                if (Vector.GreaterThanOrEqualAll(Unsafe.ReadUnaligned<Vector<sbyte>>(pBuffer), Vector<sbyte>.Zero))
                {
                    // The first several elements of the input buffer were ASCII. Bump up the pointer to the
                    // next aligned boundary, then perform aligned reads from here on out until we find non-ASCII
                    // data or we approach the end of the buffer. It's possible we'll reread data; this is ok.

                    byte* pFinalVectorReadPos = pBuffer + bufferLength - SizeOfVectorInBytes;
                    pBuffer = (byte*)(((nuint)pBuffer + SizeOfVectorInBytes) & ~(nuint)(SizeOfVectorInBytes - 1));

#if DEBUG
                    long numBytesRead = pBuffer - pOriginalBuffer;
                    Debug.Assert(0 < numBytesRead && numBytesRead <= SizeOfVectorInBytes, "We should've made forward progress of at least one byte.");
                    Debug.Assert((nuint)numBytesRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
#endif

                    Debug.Assert(pBuffer <= pFinalVectorReadPos, "Should be able to read at least one vector.");

                    do
                    {
                        Debug.Assert((nuint)pBuffer % SizeOfVectorInBytes == 0, "Vector read should be aligned.");
                        if (Vector.LessThanAny(Unsafe.Read<Vector<sbyte>>(pBuffer), Vector<sbyte>.Zero))
                        {
                            break; // found non-ASCII data
                        }

                        pBuffer += SizeOfVectorInBytes;
                    } while (pBuffer <= pFinalVectorReadPos);

                    // Adjust the remaining buffer length for the number of elements we just consumed.

                    bufferLength -= (nuint)pBuffer;
                    bufferLength += (nuint)pOriginalBuffer;
                }
            }

            // At this point, the buffer length wasn't enough to perform a vectorized search, or we did perform
            // a vectorized search and encountered non-ASCII data. In either case go down a non-vectorized code
            // path to drain any remaining ASCII bytes.
            //
            // We're going to perform unaligned reads, so prefer 32-bit reads instead of 64-bit reads.
            // This also allows us to perform more optimized bit twiddling tricks to count the number of ASCII bytes.

            uint currentUInt32;

            // Try reading 64 bits at a time in a loop.

            for (; bufferLength >= 8; bufferLength -= 8)
            {
                currentUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer);
                uint nextUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer + 4);

                if (!AllBytesInUInt32AreAscii(currentUInt32 | nextUInt32))
                {
                    // One of these two values contains non-ASCII bytes.
                    // Figure out which one it is, then put it in 'current' so that we can drain the ASCII bytes.

                    if (AllBytesInUInt32AreAscii(currentUInt32))
                    {
                        currentUInt32 = nextUInt32;
                        pBuffer += 4;
                    }

                    goto FoundNonAsciiData;
                }

                pBuffer += 8; // consumed 8 ASCII bytes
            }

            // From this point forward we don't need to update bufferLength.
            // Try reading 32 bits.

            if ((bufferLength & 4) != 0)
            {
                currentUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer);
                if (!AllBytesInUInt32AreAscii(currentUInt32))
                {
                    goto FoundNonAsciiData;
                }

                pBuffer += 4;
            }

            // Try reading 16 bits.

            if ((bufferLength & 2) != 0)
            {
                currentUInt32 = Unsafe.ReadUnaligned<ushort>(pBuffer);
                if (!AllBytesInUInt32AreAscii(currentUInt32))
                {
                    goto FoundNonAsciiData;
                }

                pBuffer += 2;
            }

            // Try reading 8 bits

            if ((bufferLength & 1) != 0)
            {
                // If the buffer contains non-ASCII data, the comparison below will fail, and
                // we'll end up not incrementing the buffer reference.

                if (*(sbyte*)pBuffer >= 0)
                {
                    pBuffer++;
                }
            }

        Finish:

            nuint totalNumBytesRead = (nuint)pBuffer - (nuint)pOriginalBuffer;
            return totalNumBytesRead;

        FoundNonAsciiData:

            Debug.Assert(!AllBytesInUInt32AreAscii(currentUInt32), "Shouldn't have reached this point if we have an all-ASCII input.");

            // The method being called doesn't bother looking at whether the high byte is ASCII. There are only
            // two scenarios: (a) either one of the earlier bytes is not ASCII and the search terminates before
            // we get to the high byte; or (b) all of the earlier bytes are ASCII, so the high byte must be
            // non-ASCII. In both cases we only care about the low 24 bits.

            pBuffer += CountNumberOfLeadingAsciiBytesFromUInt32WithSomeNonAsciiData(currentUInt32);
            goto Finish;
        }

        private static unsafe nuint GetIndexOfFirstNonAsciiByte_Sse2(byte* pBuffer, nuint bufferLength)
        {
            // JIT turns the below into constants

            uint SizeOfVector128 = (uint)Unsafe.SizeOf<Vector128<byte>>();
            nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1);

            Debug.Assert(Sse2.IsSupported, "Should've been checked by caller.");
            Debug.Assert(BitConverter.IsLittleEndian, "SSE2 assumes little-endian.");

            uint currentMask, secondMask;
            byte* pOriginalBuffer = pBuffer;

            // This method is written such that control generally flows top-to-bottom, avoiding
            // jumps as much as possible in the optimistic case of a large enough buffer and
            // "all ASCII". If we see non-ASCII data, we jump out of the hot paths to targets
            // after all the main logic.

            if (bufferLength < SizeOfVector128)
            {
                goto InputBufferLessThanOneVectorInLength; // can't vectorize; drain primitives instead
            }

            // Read the first vector unaligned.

            currentMask = (uint)Sse2.MoveMask(Sse2.LoadVector128(pBuffer)); // unaligned load

            if (currentMask != 0)
            {
                goto FoundNonAsciiDataInCurrentMask;
            }

            // If we have less than 32 bytes to process, just go straight to the final unaligned
            // read. There's no need to mess with the loop logic in the middle of this method.

            if (bufferLength < 2 * SizeOfVector128)
            {
                goto IncrementCurrentOffsetBeforeFinalUnalignedVectorRead;
            }

            // Now adjust the read pointer so that future reads are aligned.

            pBuffer = (byte*)(((nuint)pBuffer + SizeOfVector128) & ~(nuint)MaskOfAllBitsInVector128);

#if DEBUG
            long numBytesRead = pBuffer - pOriginalBuffer;
            Debug.Assert(0 < numBytesRead && numBytesRead <= SizeOfVector128, "We should've made forward progress of at least one byte.");
            Debug.Assert((nuint)numBytesRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
#endif

            // Adjust the remaining length to account for what we just read.

            bufferLength += (nuint)pOriginalBuffer;
            bufferLength -= (nuint)pBuffer;

            // The buffer is now properly aligned.
            // Read 2 vectors at a time if possible.

            if (bufferLength >= 2 * SizeOfVector128)
            {
                byte* pFinalVectorReadPos = (byte*)((nuint)pBuffer + bufferLength - 2 * SizeOfVector128);

                // After this point, we no longer need to update the bufferLength value.

                do
                {
                    Vector128<byte> firstVector = Sse2.LoadAlignedVector128(pBuffer);
                    Vector128<byte> secondVector = Sse2.LoadAlignedVector128(pBuffer + SizeOfVector128);

                    currentMask = (uint)Sse2.MoveMask(firstVector);
                    secondMask = (uint)Sse2.MoveMask(secondVector);

                    if ((currentMask | secondMask) != 0)
                    {
                        goto FoundNonAsciiDataInInnerLoop;
                    }

                    pBuffer += 2 * SizeOfVector128;
                } while (pBuffer <= pFinalVectorReadPos);
            }

            // We have somewhere between 0 and (2 * vector length) - 1 bytes remaining to read from.
            // Since the above loop doesn't update bufferLength, we can't rely on its absolute value.
            // But we _can_ rely on it to tell us how much remaining data must be drained by looking
            // at what bits of it are set. This works because had we updated it within the loop above,
            // we would've been adding 2 * SizeOfVector128 on each iteration, but we only care about
            // bits which are less significant than those that the addition would've acted on.

            // If there is fewer than one vector length remaining, skip the next aligned read.

            if ((bufferLength & SizeOfVector128) == 0)
            {
                goto DoFinalUnalignedVectorRead;
            }

            // At least one full vector's worth of data remains, so we can safely read it.
            // Remember, at this point pBuffer is still aligned.

            currentMask = (uint)Sse2.MoveMask(Sse2.LoadAlignedVector128(pBuffer));
            if (currentMask != 0)
            {
                goto FoundNonAsciiDataInCurrentMask;
            }

        IncrementCurrentOffsetBeforeFinalUnalignedVectorRead:

            pBuffer += SizeOfVector128;

        DoFinalUnalignedVectorRead:

            if (((byte)bufferLength & MaskOfAllBitsInVector128) != 0)
            {
                // Perform an unaligned read of the last vector.
                // We need to adjust the pointer because we're re-reading data.

                pBuffer += (bufferLength & MaskOfAllBitsInVector128) - SizeOfVector128;

                currentMask = (uint)Sse2.MoveMask(Sse2.LoadVector128(pBuffer)); // unaligned load
                if (currentMask != 0)
                {
                    goto FoundNonAsciiDataInCurrentMask;
                }

                pBuffer += SizeOfVector128;
            }

        Finish:

            return (nuint)pBuffer - (nuint)pOriginalBuffer; // and we're done!

        FoundNonAsciiDataInInnerLoop:

            // If the current (first) mask isn't the mask that contains non-ASCII data, then it must
            // instead be the second mask. If so, skip the entire first mask and drain ASCII bytes
            // from the second mask.

            if (currentMask == 0)
            {
                pBuffer += SizeOfVector128;
                currentMask = secondMask;
            }

        FoundNonAsciiDataInCurrentMask:

            // The mask contains - from the LSB - a 0 for each ASCII byte we saw, and a 1 for each non-ASCII byte.
            // Tzcnt is the correct operation to count the number of zero bits quickly. If this instruction isn't
            // available, we'll fall back to a normal loop.

            Debug.Assert(currentMask != 0, "Shouldn't be here unless we see non-ASCII data.");
            pBuffer += (uint)BitOperations.TrailingZeroCount(currentMask);

            goto Finish;

        FoundNonAsciiDataInCurrentDWord:

            uint currentDWord;
            Debug.Assert(!AllBytesInUInt32AreAscii(currentDWord), "Shouldn't be here unless we see non-ASCII data.");
            pBuffer += CountNumberOfLeadingAsciiBytesFromUInt32WithSomeNonAsciiData(currentDWord);

            goto Finish;

        InputBufferLessThanOneVectorInLength:

            // These code paths get hit if the original input length was less than one vector in size.
            // We can't perform vectorized reads at this point, so we'll fall back to reading primitives
            // directly. Note that all of these reads are unaligned.

            Debug.Assert(bufferLength < SizeOfVector128);

            // QWORD drain

            if ((bufferLength & 8) != 0)
            {
                if (Bmi1.X64.IsSupported)
                {
                    // If we can use 64-bit tzcnt to count the number of leading ASCII bytes, prefer it.

                    ulong candidateUInt64 = Unsafe.ReadUnaligned<ulong>(pBuffer);
                    if (!AllBytesInUInt64AreAscii(candidateUInt64))
                    {
                        // Clear everything but the high bit of each byte, then tzcnt.
                        // Remember the / 8 at the end to convert bit count to byte count.

                        candidateUInt64 &= UInt64HighBitsOnlyMask;
                        pBuffer += (nuint)(Bmi1.X64.TrailingZeroCount(candidateUInt64) / 8);
                        goto Finish;
                    }
                }
                else
                {
                    // If we can't use 64-bit tzcnt, no worries. We'll just do 2x 32-bit reads instead.

                    currentDWord = Unsafe.ReadUnaligned<uint>(pBuffer);
                    uint nextDWord = Unsafe.ReadUnaligned<uint>(pBuffer + 4);

                    if (!AllBytesInUInt32AreAscii(currentDWord | nextDWord))
                    {
                        // At least one of the values wasn't all-ASCII.
                        // We need to figure out which one it was and stick it in the currentMask local.

                        if (AllBytesInUInt32AreAscii(currentDWord))
                        {
                            currentDWord = nextDWord; // this one is the culprit
                            pBuffer += 4;
                        }

                        goto FoundNonAsciiDataInCurrentDWord;
                    }
                }

                pBuffer += 8; // successfully consumed 8 ASCII bytes
            }

            // DWORD drain

            if ((bufferLength & 4) != 0)
            {
                currentDWord = Unsafe.ReadUnaligned<uint>(pBuffer);

                if (!AllBytesInUInt32AreAscii(currentDWord))
                {
                    goto FoundNonAsciiDataInCurrentDWord;
                }

                pBuffer += 4; // successfully consumed 4 ASCII bytes
            }

            // WORD drain
            // (We movzx to a DWORD for ease of manipulation.)

            if ((bufferLength & 2) != 0)
            {
                currentDWord = Unsafe.ReadUnaligned<ushort>(pBuffer);

                if (!AllBytesInUInt32AreAscii(currentDWord))
                {
                    // We only care about the 0x0080 bit of the value. If it's not set, then we
                    // increment currentOffset by 1. If it's set, we don't increment it at all.

                    pBuffer += (nuint)((nint)(sbyte)currentDWord >> 7) + 1;
                    goto Finish;
                }

                pBuffer += 2; // successfully consumed 2 ASCII bytes
            }

            // BYTE drain

            if ((bufferLength & 1) != 0)
            {
                // sbyte has non-negative value if byte is ASCII.

                if (*(sbyte*)(pBuffer) >= 0)
                {
                    pBuffer++; // successfully consumed a single byte
                }
            }

            goto Finish;
        }

        /// <summary>
        /// Returns the index in <paramref name="pBuffer"/> where the first non-ASCII char is found.
        /// Returns <paramref name="bufferLength"/> if the buffer is empty or all-ASCII.
        /// </summary>
        /// <returns>An ASCII char is defined as 0x0000 - 0x007F, inclusive.</returns>
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static unsafe nuint GetIndexOfFirstNonAsciiChar(char* pBuffer, nuint bufferLength /* in chars */)
        {
            // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
            // code below. This has two benefits: (a) we can take advantage of specific instructions like
            // pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while
            // this method is running.

            return (Sse2.IsSupported)
                ? GetIndexOfFirstNonAsciiChar_Sse2(pBuffer, bufferLength)
                : GetIndexOfFirstNonAsciiChar_Default(pBuffer, bufferLength);
        }

        private static unsafe nuint GetIndexOfFirstNonAsciiChar_Default(char* pBuffer, nuint bufferLength /* in chars */)
        {
            // Squirrel away the original buffer reference.This method works by determining the exact
            // char reference where non-ASCII data begins, so we need this base value to perform the
            // final subtraction at the end of the method to get the index into the original buffer.

            char* pOriginalBuffer = pBuffer;

            Debug.Assert(bufferLength <= nuint.MaxValue / sizeof(char));

            // Before we drain off char-by-char, try a generic vectorized loop.
            // Only run the loop if we have at least two vectors we can pull out.

            if (Vector.IsHardwareAccelerated && bufferLength >= 2 * (uint)Vector<ushort>.Count)
            {
                uint SizeOfVectorInChars = (uint)Vector<ushort>.Count; // JIT will make this a const
                uint SizeOfVectorInBytes = (uint)Vector<byte>.Count; // JIT will make this a const

                Vector<ushort> maxAscii = new Vector<ushort>(0x007F);

                if (Vector.LessThanOrEqualAll(Unsafe.ReadUnaligned<Vector<ushort>>(pBuffer), maxAscii))
                {
                    // The first several elements of the input buffer were ASCII. Bump up the pointer to the
                    // next aligned boundary, then perform aligned reads from here on out until we find non-ASCII
                    // data or we approach the end of the buffer. It's possible we'll reread data; this is ok.

                    char* pFinalVectorReadPos = pBuffer + bufferLength - SizeOfVectorInChars;
                    pBuffer = (char*)(((nuint)pBuffer + SizeOfVectorInBytes) & ~(nuint)(SizeOfVectorInBytes - 1));

#if DEBUG
                    long numCharsRead = pBuffer - pOriginalBuffer;
                    Debug.Assert(0 < numCharsRead && numCharsRead <= SizeOfVectorInChars, "We should've made forward progress of at least one char.");
                    Debug.Assert((nuint)numCharsRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
#endif

                    Debug.Assert(pBuffer <= pFinalVectorReadPos, "Should be able to read at least one vector.");

                    do
                    {
                        Debug.Assert((nuint)pBuffer % SizeOfVectorInChars == 0, "Vector read should be aligned.");
                        if (Vector.GreaterThanAny(Unsafe.Read<Vector<ushort>>(pBuffer), maxAscii))
                        {
                            break; // found non-ASCII data
                        }
                        pBuffer += SizeOfVectorInChars;
                    } while (pBuffer <= pFinalVectorReadPos);

                    // Adjust the remaining buffer length for the number of elements we just consumed.

                    bufferLength -= ((nuint)pBuffer - (nuint)pOriginalBuffer) / sizeof(char);
                }
            }

            // At this point, the buffer length wasn't enough to perform a vectorized search, or we did perform
            // a vectorized search and encountered non-ASCII data. In either case go down a non-vectorized code
            // path to drain any remaining ASCII chars.
            //
            // We're going to perform unaligned reads, so prefer 32-bit reads instead of 64-bit reads.
            // This also allows us to perform more optimized bit twiddling tricks to count the number of ASCII chars.

            uint currentUInt32;

            // Try reading 64 bits at a time in a loop.

            for (; bufferLength >= 4; bufferLength -= 4) // 64 bits = 4 * 16-bit chars
            {
                currentUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer);
                uint nextUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer + 4 / sizeof(char));

                if (!AllCharsInUInt32AreAscii(currentUInt32 | nextUInt32))
                {
                    // One of these two values contains non-ASCII chars.
                    // Figure out which one it is, then put it in 'current' so that we can drain the ASCII chars.

                    if (AllCharsInUInt32AreAscii(currentUInt32))
                    {
                        currentUInt32 = nextUInt32;
                        pBuffer += 2;
                    }

                    goto FoundNonAsciiData;
                }

                pBuffer += 4; // consumed 4 ASCII chars
            }

            // From this point forward we don't need to keep track of the remaining buffer length.
            // Try reading 32 bits.

            if ((bufferLength & 2) != 0) // 32 bits = 2 * 16-bit chars
            {
                currentUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer);
                if (!AllCharsInUInt32AreAscii(currentUInt32))
                {
                    goto FoundNonAsciiData;
                }

                pBuffer += 2;
            }

            // Try reading 16 bits.
            // No need to try an 8-bit read after this since we're working with chars.

            if ((bufferLength & 1) != 0)
            {
                // If the buffer contains non-ASCII data, the comparison below will fail, and
                // we'll end up not incrementing the buffer reference.

                if (*pBuffer <= 0x007F)
                {
                    pBuffer++;
                }
            }

        Finish:

            nuint totalNumBytesRead = (nuint)pBuffer - (nuint)pOriginalBuffer;
            Debug.Assert(totalNumBytesRead % sizeof(char) == 0, "Total number of bytes read should be even since we're working with chars.");
            return totalNumBytesRead / sizeof(char); // convert byte count -> char count before returning

        FoundNonAsciiData:

            Debug.Assert(!AllCharsInUInt32AreAscii(currentUInt32), "Shouldn't have reached this point if we have an all-ASCII input.");

            // We don't bother looking at the second char - only the first char.

            if (FirstCharInUInt32IsAscii(currentUInt32))
            {
                pBuffer++;
            }

            goto Finish;
        }

        private static unsafe nuint GetIndexOfFirstNonAsciiChar_Sse2(char* pBuffer, nuint bufferLength /* in chars */)
        {
            // This method contains logic optimized for both SSE2 and SSE41. Much of the logic in this method
            // will be elided by JIT once we determine which specific ISAs we support.

            // Quick check for empty inputs.

            if (bufferLength == 0)
            {
                return 0;
            }

            // JIT turns the below into constants

            uint SizeOfVector128InBytes = (uint)Unsafe.SizeOf<Vector128<byte>>();
            uint SizeOfVector128InChars = SizeOfVector128InBytes / sizeof(char);

            Debug.Assert(Sse2.IsSupported, "Should've been checked by caller.");
            Debug.Assert(BitConverter.IsLittleEndian, "SSE2 assumes little-endian.");

            Vector128<short> firstVector, secondVector;
            uint currentMask;
            char* pOriginalBuffer = pBuffer;

            if (bufferLength < SizeOfVector128InChars)
            {
                goto InputBufferLessThanOneVectorInLength; // can't vectorize; drain primitives instead
            }

            // This method is written such that control generally flows top-to-bottom, avoiding
            // jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII
            // data, we jump out of the hot paths to targets at the end of the method.

            Vector128<short> asciiMaskForPTEST = Vector128.Create(unchecked((short)0xFF80)); // used for PTEST on supported hardware
            Vector128<ushort> asciiMaskForPMINUW = Vector128.Create((ushort)0x0080); // used for PMINUW on supported hardware
            Vector128<short> asciiMaskForPXOR = Vector128.Create(unchecked((short)0x8000)); // used for PXOR
            Vector128<short> asciiMaskForPCMPGTW = Vector128.Create(unchecked((short)0x807F)); // used for PCMPGTW

            Debug.Assert(bufferLength <= nuint.MaxValue / sizeof(char));

            // Read the first vector unaligned.

            firstVector = Sse2.LoadVector128((short*)pBuffer); // unaligned load

            if (Sse41.IsSupported)
            {
                // The SSE41-optimized code path works by forcing the 0x0080 bit in each WORD of the vector to be
                // set iff the WORD element has value >= 0x0080 (non-ASCII). Then we'll treat it as a BYTE vector
                // in order to extract the mask.
                currentMask = (uint)Sse2.MoveMask(Sse41.Min(firstVector.AsUInt16(), asciiMaskForPMINUW).AsByte());
            }
            else
            {
                // The SSE2-optimized code path works by forcing each WORD of the vector to be 0xFFFF iff the WORD
                // element has value >= 0x0080 (non-ASCII). Then we'll treat it as a BYTE vector in order to extract
                // the mask.
                currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
            }

            if (currentMask != 0)
            {
                goto FoundNonAsciiDataInCurrentMask;
            }

            // If we have less than 32 bytes to process, just go straight to the final unaligned
            // read. There's no need to mess with the loop logic in the middle of this method.

            // Adjust the remaining length to account for what we just read.
            // For the remainder of this code path, bufferLength will be in bytes, not chars.

            bufferLength <<= 1; // chars to bytes

            if (bufferLength < 2 * SizeOfVector128InBytes)
            {
                goto IncrementCurrentOffsetBeforeFinalUnalignedVectorRead;
            }

            // Now adjust the read pointer so that future reads are aligned.

            pBuffer = (char*)(((nuint)pBuffer + SizeOfVector128InBytes) & ~(nuint)(SizeOfVector128InBytes - 1));

#if DEBUG
            long numCharsRead = pBuffer - pOriginalBuffer;
            Debug.Assert(0 < numCharsRead && numCharsRead <= SizeOfVector128InChars, "We should've made forward progress of at least one char.");
            Debug.Assert((nuint)numCharsRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
#endif

            // Adjust remaining buffer length.

            bufferLength += (nuint)pOriginalBuffer;
            bufferLength -= (nuint)pBuffer;

            // The buffer is now properly aligned.
            // Read 2 vectors at a time if possible.

            if (bufferLength >= 2 * SizeOfVector128InBytes)
            {
                char* pFinalVectorReadPos = (char*)((nuint)pBuffer + bufferLength - 2 * SizeOfVector128InBytes);

                // After this point, we no longer need to update the bufferLength value.

                do
                {
                    firstVector = Sse2.LoadAlignedVector128((short*)pBuffer);
                    secondVector = Sse2.LoadAlignedVector128((short*)pBuffer + SizeOfVector128InChars);
                    Vector128<short> combinedVector = Sse2.Or(firstVector, secondVector);

                    if (Sse41.IsSupported)
                    {
                        // If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data.
                        // Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data.
                        if (!Sse41.TestZ(combinedVector, asciiMaskForPTEST))
                        {
                            goto FoundNonAsciiDataInFirstOrSecondVector;
                        }
                    }
                    else
                    {
                        // See comment earlier in the method for an explanation of how the below logic works.
                        if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(combinedVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
                        {
                            goto FoundNonAsciiDataInFirstOrSecondVector;
                        }
                    }

                    pBuffer += 2 * SizeOfVector128InChars;
                } while (pBuffer <= pFinalVectorReadPos);
            }

            // We have somewhere between 0 and (2 * vector length) - 1 bytes remaining to read from.
            // Since the above loop doesn't update bufferLength, we can't rely on its absolute value.
            // But we _can_ rely on it to tell us how much remaining data must be drained by looking
            // at what bits of it are set. This works because had we updated it within the loop above,
            // we would've been adding 2 * SizeOfVector128 on each iteration, but we only care about
            // bits which are less significant than those that the addition would've acted on.

            // If there is fewer than one vector length remaining, skip the next aligned read.
            // Remember, at this point bufferLength is measured in bytes, not chars.

            if ((bufferLength & SizeOfVector128InBytes) == 0)
            {
                goto DoFinalUnalignedVectorRead;
            }

            // At least one full vector's worth of data remains, so we can safely read it.
            // Remember, at this point pBuffer is still aligned.

            firstVector = Sse2.LoadAlignedVector128((short*)pBuffer);

            if (Sse41.IsSupported)
            {
                // If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data.
                // Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data.
                if (!Sse41.TestZ(firstVector, asciiMaskForPTEST))
                {
                    goto FoundNonAsciiDataInFirstVector;
                }
            }
            else
            {
                // See comment earlier in the method for an explanation of how the below logic works.
                currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
                if (currentMask != 0)
                {
                    goto FoundNonAsciiDataInCurrentMask;
                }
            }

        IncrementCurrentOffsetBeforeFinalUnalignedVectorRead:

            pBuffer += SizeOfVector128InChars;

        DoFinalUnalignedVectorRead:

            if (((byte)bufferLength & (SizeOfVector128InBytes - 1)) != 0)
            {
                // Perform an unaligned read of the last vector.
                // We need to adjust the pointer because we're re-reading data.

                pBuffer = (char*)((byte*)pBuffer + (bufferLength & (SizeOfVector128InBytes - 1)) - SizeOfVector128InBytes);
                firstVector = Sse2.LoadVector128((short*)pBuffer); // unaligned load

                if (Sse41.IsSupported)
                {
                    // If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data.
                    // Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data.
                    if (!Sse41.TestZ(firstVector, asciiMaskForPTEST))
                    {
                        goto FoundNonAsciiDataInFirstVector;
                    }
                }
                else
                {
                    // See comment earlier in the method for an explanation of how the below logic works.
                    currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
                    if (currentMask != 0)
                    {
                        goto FoundNonAsciiDataInCurrentMask;
                    }
                }

                pBuffer += SizeOfVector128InChars;
            }

        Finish:

            Debug.Assert(((nuint)pBuffer - (nuint)pOriginalBuffer) % 2 == 0, "Shouldn't have incremented any pointer by an odd byte count.");
            return ((nuint)pBuffer - (nuint)pOriginalBuffer) / sizeof(char); // and we're done! (remember to adjust for char count)

        FoundNonAsciiDataInFirstOrSecondVector:

            // We don't know if the first or the second vector contains non-ASCII data. Check the first
            // vector, and if that's all-ASCII then the second vector must be the culprit. Either way
            // we'll make sure the first vector local is the one that contains the non-ASCII data.

            // See comment earlier in the method for an explanation of how the below logic works.
            if (Sse41.IsSupported)
            {
                if (!Sse41.TestZ(firstVector, asciiMaskForPTEST))
                {
                    goto FoundNonAsciiDataInFirstVector;
                }
            }
            else
            {
                currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
                if (currentMask != 0)
                {
                    goto FoundNonAsciiDataInCurrentMask;
                }
            }

            // Wasn't the first vector; must be the second.

            pBuffer += SizeOfVector128InChars;
            firstVector = secondVector;

        FoundNonAsciiDataInFirstVector:

            // See comment earlier in the method for an explanation of how the below logic works.
            if (Sse41.IsSupported)
            {
                currentMask = (uint)Sse2.MoveMask(Sse41.Min(firstVector.AsUInt16(), asciiMaskForPMINUW).AsByte());
            }
            else
            {
                currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
            }

        FoundNonAsciiDataInCurrentMask:

            // The mask contains - from the LSB - a 0 for each ASCII byte we saw, and a 1 for each non-ASCII byte.
            // Tzcnt is the correct operation to count the number of zero bits quickly. If this instruction isn't
            // available, we'll fall back to a normal loop. (Even though the original vector used WORD elements,
            // masks work on BYTE elements, and we account for this in the final fixup.)

            Debug.Assert(currentMask != 0, "Shouldn't be here unless we see non-ASCII data.");
            pBuffer = (char*)((byte*)pBuffer + (uint)BitOperations.TrailingZeroCount(currentMask));

            goto Finish;

        FoundNonAsciiDataInCurrentDWord:

            uint currentDWord;
            Debug.Assert(!AllCharsInUInt32AreAscii(currentDWord), "Shouldn't be here unless we see non-ASCII data.");

            if (FirstCharInUInt32IsAscii(currentDWord))
            {
                pBuffer++; // skip past the ASCII char
            }

            goto Finish;

        InputBufferLessThanOneVectorInLength:

            // These code paths get hit if the original input length was less than one vector in size.
            // We can't perform vectorized reads at this point, so we'll fall back to reading primitives
            // directly. Note that all of these reads are unaligned.

            // Reminder: If this code path is hit, bufferLength is still a char count, not a byte count.
            // We skipped the code path that multiplied the count by sizeof(char).

            Debug.Assert(bufferLength < SizeOfVector128InChars);

            // QWORD drain

            if ((bufferLength & 4) != 0)
            {
                if (Bmi1.X64.IsSupported)
                {
                    // If we can use 64-bit tzcnt to count the number of leading ASCII chars, prefer it.

                    ulong candidateUInt64 = Unsafe.ReadUnaligned<ulong>(pBuffer);
                    if (!AllCharsInUInt64AreAscii(candidateUInt64))
                    {
                        // Clear the low 7 bits (the ASCII bits) of each char, then tzcnt.
                        // Remember the / 8 at the end to convert bit count to byte count,
                        // then the & ~1 at the end to treat a match in the high byte of
                        // any char the same as a match in the low byte of that same char.

                        candidateUInt64 &= 0xFF80FF80_FF80FF80ul;
                        pBuffer = (char*)((byte*)pBuffer + ((nuint)(Bmi1.X64.TrailingZeroCount(candidateUInt64) / 8) & ~(nuint)1));
                        goto Finish;
                    }
                }
                else
                {
                    // If we can't use 64-bit tzcnt, no worries. We'll just do 2x 32-bit reads instead.

                    currentDWord = Unsafe.ReadUnaligned<uint>(pBuffer);
                    uint nextDWord = Unsafe.ReadUnaligned<uint>(pBuffer + 4 / sizeof(char));

                    if (!AllCharsInUInt32AreAscii(currentDWord | nextDWord))
                    {
                        // At least one of the values wasn't all-ASCII.
                        // We need to figure out which one it was and stick it in the currentMask local.

                        if (AllCharsInUInt32AreAscii(currentDWord))
                        {
                            currentDWord = nextDWord; // this one is the culprit
                            pBuffer += 4 / sizeof(char);
                        }

                        goto FoundNonAsciiDataInCurrentDWord;
                    }
                }

                pBuffer += 4; // successfully consumed 4 ASCII chars
            }

            // DWORD drain

            if ((bufferLength & 2) != 0)
            {
                currentDWord = Unsafe.ReadUnaligned<uint>(pBuffer);

                if (!AllCharsInUInt32AreAscii(currentDWord))
                {
                    goto FoundNonAsciiDataInCurrentDWord;
                }

                pBuffer += 2; // successfully consumed 2 ASCII chars
            }

            // WORD drain
            // This is the final drain; there's no need for a BYTE drain since our elemental type is 16-bit char.

            if ((bufferLength & 1) != 0)
            {
                if (*pBuffer <= 0x007F)
                {
                    pBuffer++; // successfully consumed a single char
                }
            }

            goto Finish;
        }

        /// <summary>
        /// Given a QWORD which represents a buffer of 4 ASCII chars in machine-endian order,
        /// narrows each WORD to a BYTE, then writes the 4-byte result to the output buffer
        /// also in machine-endian order.
        /// </summary>
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static void NarrowFourUtf16CharsToAsciiAndWriteToBuffer(ref byte outputBuffer, ulong value)
        {
            Debug.Assert(AllCharsInUInt64AreAscii(value));

            if (Bmi2.X64.IsSupported)
            {
                // BMI2 will work regardless of the processor's endianness.
                Unsafe.WriteUnaligned(ref outputBuffer, (uint)Bmi2.X64.ParallelBitExtract(value, 0x00FF00FF_00FF00FFul));
            }
            else
            {
                if (BitConverter.IsLittleEndian)
                {
                    outputBuffer = (byte)value;
                    value >>= 16;
                    Unsafe.Add(ref outputBuffer, 1) = (byte)value;
                    value >>= 16;
                    Unsafe.Add(ref outputBuffer, 2) = (byte)value;
                    value >>= 16;
                    Unsafe.Add(ref outputBuffer, 3) = (byte)value;
                }
                else
                {
                    Unsafe.Add(ref outputBuffer, 3) = (byte)value;
                    value >>= 16;
                    Unsafe.Add(ref outputBuffer, 2) = (byte)value;
                    value >>= 16;
                    Unsafe.Add(ref outputBuffer, 1) = (byte)value;
                    value >>= 16;
                    outputBuffer = (byte)value;
                }
            }
        }

        /// <summary>
        /// Given a DWORD which represents a buffer of 2 ASCII chars in machine-endian order,
        /// narrows each WORD to a BYTE, then writes the 2-byte result to the output buffer also in
        /// machine-endian order.
        /// </summary>
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static void NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref byte outputBuffer, uint value)
        {
            Debug.Assert(AllCharsInUInt32AreAscii(value));

            if (BitConverter.IsLittleEndian)
            {
                outputBuffer = (byte)value;
                Unsafe.Add(ref outputBuffer, 1) = (byte)(value >> 16);
            }
            else
            {
                Unsafe.Add(ref outputBuffer, 1) = (byte)value;
                outputBuffer = (byte)(value >> 16);
            }
        }

        /// <summary>
        /// Copies as many ASCII characters (U+0000..U+007F) as possible from <paramref name="pUtf16Buffer"/>
        /// to <paramref name="pAsciiBuffer"/>, stopping when the first non-ASCII character is encountered
        /// or once <paramref name="elementCount"/> elements have been converted. Returns the total number
        /// of elements that were able to be converted.
        /// </summary>
        public static unsafe nuint NarrowUtf16ToAscii(char* pUtf16Buffer, byte* pAsciiBuffer, nuint elementCount)
        {
            nuint currentOffset = 0;

            uint utf16Data32BitsHigh = 0, utf16Data32BitsLow = 0;
            ulong utf16Data64Bits = 0;

            // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
            // code below. This has two benefits: (a) we can take advantage of specific instructions like
            // pmovmskb, ptest, vpminuw which we know are optimized, and (b) we can avoid downclocking the
            // processor while this method is running.

            if (Sse2.IsSupported)
            {
                Debug.Assert(BitConverter.IsLittleEndian, "Assume little endian if SSE2 is supported.");

                if (elementCount >= 2 * (uint)Unsafe.SizeOf<Vector128<byte>>())
                {
                    // Since there's overhead to setting up the vectorized code path, we only want to
                    // call into it after a quick probe to ensure the next immediate characters really are ASCII.
                    // If we see non-ASCII data, we'll jump immediately to the draining logic at the end of the method.

                    if (IntPtr.Size >= 8)
                    {
                        utf16Data64Bits = Unsafe.ReadUnaligned<ulong>(pUtf16Buffer);
                        if (!AllCharsInUInt64AreAscii(utf16Data64Bits))
                        {
                            goto FoundNonAsciiDataIn64BitRead;
                        }
                    }
                    else
                    {
                        utf16Data32BitsHigh = Unsafe.ReadUnaligned<uint>(pUtf16Buffer);
                        utf16Data32BitsLow = Unsafe.ReadUnaligned<uint>(pUtf16Buffer + 4 / sizeof(char));
                        if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow))
                        {
                            goto FoundNonAsciiDataIn64BitRead;
                        }
                    }

                    currentOffset = NarrowUtf16ToAscii_Sse2(pUtf16Buffer, pAsciiBuffer, elementCount);
                }
            }
            else if (Vector.IsHardwareAccelerated)
            {
                uint SizeOfVector = (uint)Unsafe.SizeOf<Vector<byte>>(); // JIT will make this a const

                // Only bother vectorizing if we have enough data to do so.
                if (elementCount >= 2 * SizeOfVector)
                {
                    // Since there's overhead to setting up the vectorized code path, we only want to
                    // call into it after a quick probe to ensure the next immediate characters really are ASCII.
                    // If we see non-ASCII data, we'll jump immediately to the draining logic at the end of the method.

                    if (IntPtr.Size >= 8)
                    {
                        utf16Data64Bits = Unsafe.ReadUnaligned<ulong>(pUtf16Buffer);
                        if (!AllCharsInUInt64AreAscii(utf16Data64Bits))
                        {
                            goto FoundNonAsciiDataIn64BitRead;
                        }
                    }
                    else
                    {
                        utf16Data32BitsHigh = Unsafe.ReadUnaligned<uint>(pUtf16Buffer);
                        utf16Data32BitsLow = Unsafe.ReadUnaligned<uint>(pUtf16Buffer + 4 / sizeof(char));
                        if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow))
                        {
                            goto FoundNonAsciiDataIn64BitRead;
                        }
                    }

                    Vector<ushort> maxAscii = new Vector<ushort>(0x007F);

                    nuint finalOffsetWhereCanLoop = elementCount - 2 * SizeOfVector;
                    do
                    {
                        Vector<ushort> utf16VectorHigh = Unsafe.ReadUnaligned<Vector<ushort>>(pUtf16Buffer + currentOffset);
                        Vector<ushort> utf16VectorLow = Unsafe.ReadUnaligned<Vector<ushort>>(pUtf16Buffer + currentOffset + Vector<ushort>.Count);

                        if (Vector.GreaterThanAny(Vector.BitwiseOr(utf16VectorHigh, utf16VectorLow), maxAscii))
                        {
                            break; // found non-ASCII data
                        }

                        // TODO: Is the below logic also valid for big-endian platforms?
                        Vector<byte> asciiVector = Vector.Narrow(utf16VectorHigh, utf16VectorLow);
                        Unsafe.WriteUnaligned<Vector<byte>>(pAsciiBuffer + currentOffset, asciiVector);

                        currentOffset += SizeOfVector;
                    } while (currentOffset <= finalOffsetWhereCanLoop);
                }
            }

            Debug.Assert(currentOffset <= elementCount);
            nuint remainingElementCount = elementCount - currentOffset;

            // Try to narrow 64 bits -> 32 bits at a time.
            // We needn't update remainingElementCount after this point.

            if (remainingElementCount >= 4)
            {
                nuint finalOffsetWhereCanLoop = currentOffset + remainingElementCount - 4;
                do
                {
                    if (IntPtr.Size >= 8)
                    {
                        // Only perform QWORD reads on a 64-bit platform.
                        utf16Data64Bits = Unsafe.ReadUnaligned<ulong>(pUtf16Buffer + currentOffset);
                        if (!AllCharsInUInt64AreAscii(utf16Data64Bits))
                        {
                            goto FoundNonAsciiDataIn64BitRead;
                        }

                        NarrowFourUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data64Bits);
                    }
                    else
                    {
                        utf16Data32BitsHigh = Unsafe.ReadUnaligned<uint>(pUtf16Buffer + currentOffset);
                        utf16Data32BitsLow = Unsafe.ReadUnaligned<uint>(pUtf16Buffer + currentOffset + 4 / sizeof(char));
                        if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow))
                        {
                            goto FoundNonAsciiDataIn64BitRead;
                        }

                        NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);
                        NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset + 2], utf16Data32BitsLow);
                    }

                    currentOffset += 4;
                } while (currentOffset <= finalOffsetWhereCanLoop);
            }

            // Try to narrow 32 bits -> 16 bits.

            if (((uint)remainingElementCount & 2) != 0)
            {
                utf16Data32BitsHigh = Unsafe.ReadUnaligned<uint>(pUtf16Buffer + currentOffset);
                if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh))
                {
                    goto FoundNonAsciiDataInHigh32Bits;
                }

                NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);
                currentOffset += 2;
            }

            // Try to narrow 16 bits -> 8 bits.

            if (((uint)remainingElementCount & 1) != 0)
            {
                utf16Data32BitsHigh = pUtf16Buffer[currentOffset];
                if (utf16Data32BitsHigh <= 0x007Fu)
                {
                    pAsciiBuffer[currentOffset] = (byte)utf16Data32BitsHigh;
                    currentOffset++;
                }
            }

        Finish:

            return currentOffset;

        FoundNonAsciiDataIn64BitRead:

            if (IntPtr.Size >= 8)
            {
                // Try checking the first 32 bits of the buffer for non-ASCII data.
                // Regardless, we'll move the non-ASCII data into the utf16Data32BitsHigh local.

                if (BitConverter.IsLittleEndian)
                {
                    utf16Data32BitsHigh = (uint)utf16Data64Bits;
                }
                else
                {
                    utf16Data32BitsHigh = (uint)(utf16Data64Bits >> 32);
                }

                if (AllCharsInUInt32AreAscii(utf16Data32BitsHigh))
                {
                    NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);

                    if (BitConverter.IsLittleEndian)
                    {
                        utf16Data32BitsHigh = (uint)(utf16Data64Bits >> 32);
                    }
                    else
                    {
                        utf16Data32BitsHigh = (uint)utf16Data64Bits;
                    }

                    currentOffset += 2;
                }
            }
            else
            {
                // Need to determine if the high or the low 32-bit value contained non-ASCII data.
                // Regardless, we'll move the non-ASCII data into the utf16Data32BitsHigh local.

                if (AllCharsInUInt32AreAscii(utf16Data32BitsHigh))
                {
                    NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);
                    utf16Data32BitsHigh = utf16Data32BitsLow;
                    currentOffset += 2;
                }
            }

        FoundNonAsciiDataInHigh32Bits:

            Debug.Assert(!AllCharsInUInt32AreAscii(utf16Data32BitsHigh), "Shouldn't have reached this point if we have an all-ASCII input.");

            // There's at most one char that needs to be drained.

            if (FirstCharInUInt32IsAscii(utf16Data32BitsHigh))
            {
                if (!BitConverter.IsLittleEndian)
                {
                    utf16Data32BitsHigh >>= 16; // move high char down to low char
                }

                pAsciiBuffer[currentOffset] = (byte)utf16Data32BitsHigh;
                currentOffset++;
            }

            goto Finish;
        }

        private static unsafe nuint NarrowUtf16ToAscii_Sse2(char* pUtf16Buffer, byte* pAsciiBuffer, nuint elementCount)
        {
            // This method contains logic optimized for both SSE2 and SSE41. Much of the logic in this method
            // will be elided by JIT once we determine which specific ISAs we support.

            // JIT turns the below into constants

            uint SizeOfVector128 = (uint)Unsafe.SizeOf<Vector128<byte>>();
            nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1);

            // This method is written such that control generally flows top-to-bottom, avoiding
            // jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII
            // data, we jump out of the hot paths to targets at the end of the method.

            Debug.Assert(Sse2.IsSupported);
            Debug.Assert(BitConverter.IsLittleEndian);
            Debug.Assert(elementCount >= 2 * SizeOfVector128);

            Vector128<short> asciiMaskForPTEST = Vector128.Create(unchecked((short)0xFF80)); // used for PTEST on supported hardware
            Vector128<short> asciiMaskForPXOR = Vector128.Create(unchecked((short)0x8000)); // used for PXOR
            Vector128<short> asciiMaskForPCMPGTW = Vector128.Create(unchecked((short)0x807F)); // used for PCMPGTW

            // First, perform an unaligned read of the first part of the input buffer.

            Vector128<short> utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer); // unaligned load

            // If there's non-ASCII data in the first 8 elements of the vector, there's nothing we can do.
            // See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works.

            if (Sse41.IsSupported)
            {
                if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST))
                {
                    return 0;
                }
            }
            else
            {
                if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
                {
                    return 0;
                }
            }

            // Turn the 8 ASCII chars we just read into 8 ASCII bytes, then copy it to the destination.

            Vector128<byte> asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst);
            Sse2.StoreScalar((ulong*)pAsciiBuffer, asciiVector.AsUInt64()); // ulong* calculated here is UNALIGNED

            nuint currentOffsetInElements = SizeOfVector128 / 2; // we processed 8 elements so far

            // We're going to get the best performance when we have aligned writes, so we'll take the
            // hit of potentially unaligned reads in order to hit this sweet spot.

            // pAsciiBuffer points to the start of the destination buffer, immediately before where we wrote
            // the 8 bytes previously. If the 0x08 bit is set at the pinned address, then the 8 bytes we wrote
            // previously mean that the 0x08 bit is *not* set at address &pAsciiBuffer[SizeOfVector128 / 2]. In
            // that case we can immediately back up to the previous aligned boundary and start the main loop.
            // If the 0x08 bit is *not* set at the pinned address, then it means the 0x08 bit *is* set at
            // address &pAsciiBuffer[SizeOfVector128 / 2], and we should perform one more 8-byte write to bump
            // just past the next aligned boundary address.

            if (((uint)pAsciiBuffer & (SizeOfVector128 / 2)) == 0)
            {
                // We need to perform one more partial vector write before we can get the alignment we want.

                utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements); // unaligned load

                // See comments earlier in this method for information about how this works.
                if (Sse41.IsSupported)
                {
                    if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST))
                    {
                        goto Finish;
                    }
                }
                else
                {
                    if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
                    {
                        goto Finish;
                    }
                }

                // Turn the 8 ASCII chars we just read into 8 ASCII bytes, then copy it to the destination.
                asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst);
                Sse2.StoreScalar((ulong*)(pAsciiBuffer + currentOffsetInElements), asciiVector.AsUInt64()); // ulong* calculated here is UNALIGNED
            }

            // Calculate how many elements we wrote in order to get pAsciiBuffer to its next alignment
            // point, then use that as the base offset going forward.

            currentOffsetInElements = SizeOfVector128 - ((nuint)pAsciiBuffer & MaskOfAllBitsInVector128);
            Debug.Assert(0 < currentOffsetInElements && currentOffsetInElements <= SizeOfVector128, "We wrote at least 1 byte but no more than a whole vector.");

            Debug.Assert(currentOffsetInElements <= elementCount, "Shouldn't have overrun the destination buffer.");
            Debug.Assert(elementCount - currentOffsetInElements >= SizeOfVector128, "We should be able to run at least one whole vector.");

            nuint finalOffsetWhereCanRunLoop = elementCount - SizeOfVector128;
            do
            {
                // In a loop, perform two unaligned reads, narrow to a single vector, then aligned write one vector.

                utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements); // unaligned load
                Vector128<short> utf16VectorSecond = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements + SizeOfVector128 / sizeof(short)); // unaligned load
                Vector128<short> combinedVector = Sse2.Or(utf16VectorFirst, utf16VectorSecond);

                // See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works.
                if (Sse41.IsSupported)
                {
                    if (!Sse41.TestZ(combinedVector, asciiMaskForPTEST))
                    {
                        goto FoundNonAsciiDataInLoop;
                    }
                }
                else
                {
                    if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(combinedVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
                    {
                        goto FoundNonAsciiDataInLoop;
                    }
                }

                // Build up the UTF-8 vector and perform the store.

                asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorSecond);

                Debug.Assert(((nuint)pAsciiBuffer + currentOffsetInElements) % SizeOfVector128 == 0, "Write should be aligned.");
                Sse2.StoreAligned(pAsciiBuffer + currentOffsetInElements, asciiVector); // aligned

                currentOffsetInElements += SizeOfVector128;
            } while (currentOffsetInElements <= finalOffsetWhereCanRunLoop);

        Finish:

            // There might be some ASCII data left over. That's fine - we'll let our caller handle the final drain.
            return currentOffsetInElements;

        FoundNonAsciiDataInLoop:

            // Can we at least narrow the high vector?
            // See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works.
            if (Sse41.IsSupported)
            {
                if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST))
                {
                    goto Finish; // found non-ASCII data
                }
            }
            else
            {
                if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
                {
                    goto Finish; // found non-ASCII data
                }
            }

            // First part was all ASCII, narrow and aligned write. Note we're only filling in the low half of the vector.
            asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst);

            Debug.Assert(((nuint)pAsciiBuffer + currentOffsetInElements) % sizeof(ulong) == 0, "Destination should be ulong-aligned.");

            Sse2.StoreScalar((ulong*)(pAsciiBuffer + currentOffsetInElements), asciiVector.AsUInt64()); // ulong* calculated here is aligned
            currentOffsetInElements += SizeOfVector128 / 2;

            goto Finish;
        }

        /// <summary>
        /// Copies as many ASCII bytes (00..7F) as possible from <paramref name="pAsciiBuffer"/>
        /// to <paramref name="pUtf16Buffer"/>, stopping when the first non-ASCII byte is encountered
        /// or once <paramref name="elementCount"/> elements have been converted. Returns the total number
        /// of elements that were able to be converted.
        /// </summary>
        public static unsafe nuint WidenAsciiToUtf16(byte* pAsciiBuffer, char* pUtf16Buffer, nuint elementCount)
        {
            nuint currentOffset = 0;

            // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
            // code below. This has two benefits: (a) we can take advantage of specific instructions like
            // pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while
            // this method is running.

            if (Sse2.IsSupported)
            {
                if (elementCount >= 2 * (uint)Unsafe.SizeOf<Vector128<byte>>())
                {
                    currentOffset = WidenAsciiToUtf16_Sse2(pAsciiBuffer, pUtf16Buffer, elementCount);
                }
            }
            else if (Vector.IsHardwareAccelerated)
            {
                uint SizeOfVector = (uint)Unsafe.SizeOf<Vector<byte>>(); // JIT will make this a const

                // Only bother vectorizing if we have enough data to do so.
                if (elementCount >= SizeOfVector)
                {
                    // Note use of SBYTE instead of BYTE below; we're using the two's-complement
                    // representation of negative integers to act as a surrogate for "is ASCII?".

                    nuint finalOffsetWhereCanLoop = elementCount - SizeOfVector;
                    do
                    {
                        Vector<sbyte> asciiVector = Unsafe.ReadUnaligned<Vector<sbyte>>(pAsciiBuffer + currentOffset);
                        if (Vector.LessThanAny(asciiVector, Vector<sbyte>.Zero))
                        {
                            break; // found non-ASCII data
                        }

                        Vector.Widen(Vector.AsVectorByte(asciiVector), out Vector<ushort> utf16LowVector, out Vector<ushort> utf16HighVector);

                        // TODO: Is the below logic also valid for big-endian platforms?
                        Unsafe.WriteUnaligned<Vector<ushort>>(pUtf16Buffer + currentOffset, utf16LowVector);
                        Unsafe.WriteUnaligned<Vector<ushort>>(pUtf16Buffer + currentOffset + Vector<ushort>.Count, utf16HighVector);

                        currentOffset += SizeOfVector;
                    } while (currentOffset <= finalOffsetWhereCanLoop);
                }
            }

            Debug.Assert(currentOffset <= elementCount);
            nuint remainingElementCount = elementCount - currentOffset;

            // Try to widen 32 bits -> 64 bits at a time.
            // We needn't update remainingElementCount after this point.

            uint asciiData;

            if (remainingElementCount >= 4)
            {
                nuint finalOffsetWhereCanLoop = currentOffset + remainingElementCount - 4;
                do
                {
                    asciiData = Unsafe.ReadUnaligned<uint>(pAsciiBuffer + currentOffset);
                    if (!AllBytesInUInt32AreAscii(asciiData))
                    {
                        goto FoundNonAsciiData;
                    }

                    WidenFourAsciiBytesToUtf16AndWriteToBuffer(ref pUtf16Buffer[currentOffset], asciiData);
                    currentOffset += 4;
                } while (currentOffset <= finalOffsetWhereCanLoop);
            }

            // Try to widen 16 bits -> 32 bits.

            if (((uint)remainingElementCount & 2) != 0)
            {
                asciiData = Unsafe.ReadUnaligned<ushort>(pAsciiBuffer + currentOffset);
                if (!AllBytesInUInt32AreAscii(asciiData))
                {
                    goto FoundNonAsciiData;
                }

                if (BitConverter.IsLittleEndian)
                {
                    pUtf16Buffer[currentOffset] = (char)(byte)asciiData;
                    pUtf16Buffer[currentOffset + 1] = (char)(asciiData >> 8);
                }
                else
                {
                    pUtf16Buffer[currentOffset + 1] = (char)(byte)asciiData;
                    pUtf16Buffer[currentOffset] = (char)(asciiData >> 8);
                }

                currentOffset += 2;
            }

            // Try to widen 8 bits -> 16 bits.

            if (((uint)remainingElementCount & 1) != 0)
            {
                asciiData = pAsciiBuffer[currentOffset];
                if (((byte)asciiData & 0x80) != 0)
                {
                    goto Finish;
                }

                pUtf16Buffer[currentOffset] = (char)asciiData;
                currentOffset += 1;
            }

        Finish:

            return currentOffset;

        FoundNonAsciiData:

            Debug.Assert(!AllBytesInUInt32AreAscii(asciiData), "Shouldn't have reached this point if we have an all-ASCII input.");

            // Drain ASCII bytes one at a time.

            while (((byte)asciiData & 0x80) == 0)
            {
                pUtf16Buffer[currentOffset] = (char)(byte)asciiData;
                currentOffset += 1;
                asciiData >>= 8;
            }

            goto Finish;
        }

        private static unsafe nuint WidenAsciiToUtf16_Sse2(byte* pAsciiBuffer, char* pUtf16Buffer, nuint elementCount)
        {
            // JIT turns the below into constants

            uint SizeOfVector128 = (uint)Unsafe.SizeOf<Vector128<byte>>();
            nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1);

            // This method is written such that control generally flows top-to-bottom, avoiding
            // jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII
            // data, we jump out of the hot paths to targets at the end of the method.

            Debug.Assert(Sse2.IsSupported);
            Debug.Assert(BitConverter.IsLittleEndian);
            Debug.Assert(elementCount >= 2 * SizeOfVector128);

            // We're going to get the best performance when we have aligned writes, so we'll take the
            // hit of potentially unaligned reads in order to hit this sweet spot.

            Vector128<byte> asciiVector;
            Vector128<byte> utf16FirstHalfVector;
            uint mask;

            // First, perform an unaligned read of the first part of the input buffer.

            asciiVector = Sse2.LoadVector128(pAsciiBuffer); // unaligned load
            mask = (uint)Sse2.MoveMask(asciiVector);

            // If there's non-ASCII data in the first 8 elements of the vector, there's nothing we can do.

            if ((byte)mask != 0)
            {
                return 0;
            }

            // Then perform an unaligned write of the first part of the input buffer.

            Vector128<byte> zeroVector = Vector128<byte>.Zero;

            utf16FirstHalfVector = Sse2.UnpackLow(asciiVector, zeroVector);
            Sse2.Store((byte*)pUtf16Buffer, utf16FirstHalfVector); // unaligned

            // Calculate how many elements we wrote in order to get pOutputBuffer to its next alignment
            // point, then use that as the base offset going forward. Remember the >> 1 to account for
            // that we wrote chars, not bytes. This means we may re-read data in the next iteration of
            // the loop, but this is ok.

            nuint currentOffset = (SizeOfVector128 >> 1) - (((nuint)pUtf16Buffer >> 1) & (MaskOfAllBitsInVector128 >> 1));
            Debug.Assert(0 < currentOffset && currentOffset <= SizeOfVector128 / sizeof(char));

            nuint finalOffsetWhereCanRunLoop = elementCount - SizeOfVector128;

            do
            {
                // In a loop, perform an unaligned read, widen to two vectors, then aligned write the two vectors.

                asciiVector = Sse2.LoadVector128(pAsciiBuffer + currentOffset); // unaligned load
                mask = (uint)Sse2.MoveMask(asciiVector);

                if (mask != 0)
                {
                    // non-ASCII byte somewhere
                    goto NonAsciiDataSeenInInnerLoop;
                }

                byte* pStore = (byte*)(pUtf16Buffer + currentOffset);
                Sse2.StoreAligned(pStore, Sse2.UnpackLow(asciiVector, zeroVector));

                pStore += SizeOfVector128;
                Sse2.StoreAligned(pStore, Sse2.UnpackHigh(asciiVector, zeroVector));

                currentOffset += SizeOfVector128;
            } while (currentOffset <= finalOffsetWhereCanRunLoop);

        Finish:

            return currentOffset;

        NonAsciiDataSeenInInnerLoop:

            // Can we at least widen the first part of the vector?

            if ((byte)mask == 0)
            {
                // First part was all ASCII, widen
                utf16FirstHalfVector = Sse2.UnpackLow(asciiVector, zeroVector);
                Sse2.StoreAligned((byte*)(pUtf16Buffer + currentOffset), utf16FirstHalfVector);
                currentOffset += SizeOfVector128 / 2;
            }

            goto Finish;
        }

        /// <summary>
        /// Given a DWORD which represents a buffer of 4 bytes, widens the buffer into 4 WORDs and
        /// writes them to the output buffer with machine endianness.
        /// </summary>
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static void WidenFourAsciiBytesToUtf16AndWriteToBuffer(ref char outputBuffer, uint value)
        {
            Debug.Assert(AllBytesInUInt32AreAscii(value));

            if (Bmi2.X64.IsSupported)
            {
                // BMI2 will work regardless of the processor's endianness.
                Unsafe.WriteUnaligned(ref Unsafe.As<char, byte>(ref outputBuffer), Bmi2.X64.ParallelBitDeposit(value, 0x00FF00FF_00FF00FFul));
            }
            else
            {
                if (BitConverter.IsLittleEndian)
                {
                    outputBuffer = (char)(byte)value;
                    value >>= 8;
                    Unsafe.Add(ref outputBuffer, 1) = (char)(byte)value;
                    value >>= 8;
                    Unsafe.Add(ref outputBuffer, 2) = (char)(byte)value;
                    value >>= 8;
                    Unsafe.Add(ref outputBuffer, 3) = (char)value;
                }
                else
                {
                    Unsafe.Add(ref outputBuffer, 3) = (char)(byte)value;
                    value >>= 8;
                    Unsafe.Add(ref outputBuffer, 2) = (char)(byte)value;
                    value >>= 8;
                    Unsafe.Add(ref outputBuffer, 1) = (char)(byte)value;
                    value >>= 8;
                    outputBuffer = (char)value;
                }
            }
        }
    }
}