summaryrefslogtreecommitdiff
path: root/src/System.Private.CoreLib/shared/System/Single.cs
blob: d31518c8271a0d3289ea757a240ff987a7c56984 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*============================================================
**
**
**
** Purpose: A wrapper class for the primitive type float.
**
**
===========================================================*/

using System.Globalization;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;

using Internal.Runtime.CompilerServices;

namespace System
{
    [Serializable]
    [StructLayout(LayoutKind.Sequential)]
    [TypeForwardedFrom("mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")]
    public readonly struct Single : IComparable, IConvertible, IFormattable, IComparable<float>, IEquatable<float>, ISpanFormattable
    {
        private readonly float m_value; // Do not rename (binary serialization)

        //
        // Public constants
        //
        public const float MinValue = (float)-3.40282346638528859e+38;
        public const float Epsilon = (float)1.4e-45;
        public const float MaxValue = (float)3.40282346638528859e+38;
        public const float PositiveInfinity = (float)1.0 / (float)0.0;
        public const float NegativeInfinity = (float)-1.0 / (float)0.0;
        public const float NaN = (float)0.0 / (float)0.0;

        // We use this explicit definition to avoid the confusion between 0.0 and -0.0.
        internal const float NegativeZero = (float)-0.0;

        //
        // Constants for manipulating the private bit-representation
        //

        internal const uint SignMask = 0x8000_0000;
        internal const int SignShift = 31;
        internal const int ShiftedSignMask = (int)(SignMask >> SignShift);

        internal const uint ExponentMask = 0x7F80_0000;
        internal const int ExponentShift = 23;
        internal const int ShiftedExponentMask = (int)(ExponentMask >> ExponentShift);

        internal const uint SignificandMask = 0x007F_FFFF;

        internal const byte MinSign = 0;
        internal const byte MaxSign = 1;

        internal const byte MinExponent = 0x00;
        internal const byte MaxExponent = 0xFF;

        internal const uint MinSignificand = 0x0000_0000;
        internal const uint MaxSignificand = 0x007F_FFFF;

        /// <summary>Determines whether the specified value is finite (zero, subnormal, or normal).</summary>
        [NonVersionable]
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static bool IsFinite(float f)
        {
            var bits = BitConverter.SingleToInt32Bits(f);
            return (bits & 0x7FFFFFFF) < 0x7F800000;
        }

        /// <summary>Determines whether the specified value is infinite.</summary>
        [NonVersionable]
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static unsafe bool IsInfinity(float f)
        {
            var bits = BitConverter.SingleToInt32Bits(f);
            return (bits & 0x7FFFFFFF) == 0x7F800000;
        }

        /// <summary>Determines whether the specified value is NaN.</summary>
        [NonVersionable]
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static unsafe bool IsNaN(float f)
        {
            var bits = BitConverter.SingleToInt32Bits(f);
            return (bits & 0x7FFFFFFF) > 0x7F800000;
        }

        /// <summary>Determines whether the specified value is negative.</summary>
        [NonVersionable]
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static unsafe bool IsNegative(float f)
        {
            return BitConverter.SingleToInt32Bits(f) < 0;
        }

        /// <summary>Determines whether the specified value is negative infinity.</summary>
        [NonVersionable]
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static unsafe bool IsNegativeInfinity(float f)
        {
            return (f == float.NegativeInfinity);
        }

        /// <summary>Determines whether the specified value is normal.</summary>
        [NonVersionable]
        // This is probably not worth inlining, it has branches and should be rarely called
        public static unsafe bool IsNormal(float f)
        {
            var bits = BitConverter.SingleToInt32Bits(f);
            bits &= 0x7FFFFFFF;
            return (bits < 0x7F800000) && (bits != 0) && ((bits & 0x7F800000) != 0);
        }

        /// <summary>Determines whether the specified value is positive infinity.</summary>
        [NonVersionable]
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static unsafe bool IsPositiveInfinity(float f)
        {
            return (f == float.PositiveInfinity);
        }

        /// <summary>Determines whether the specified value is subnormal.</summary>
        [NonVersionable]
        // This is probably not worth inlining, it has branches and should be rarely called
        public static unsafe bool IsSubnormal(float f)
        {
            var bits = BitConverter.SingleToInt32Bits(f);
            bits &= 0x7FFFFFFF;
            return (bits < 0x7F800000) && (bits != 0) && ((bits & 0x7F800000) == 0);
        }

        internal static int ExtractExponentFromBits(uint bits)
        {
            return (int)(bits >> ExponentShift) & ShiftedExponentMask;
        }

        internal static uint ExtractSignificandFromBits(uint bits)
        {
            return bits & SignificandMask;
        }

        // Compares this object to another object, returning an integer that
        // indicates the relationship.
        // Returns a value less than zero if this  object
        // null is considered to be less than any instance.
        // If object is not of type Single, this method throws an ArgumentException.
        //
        public int CompareTo(object? value)
        {
            if (value == null)
            {
                return 1;
            }
            if (value is float)
            {
                float f = (float)value;
                if (m_value < f) return -1;
                if (m_value > f) return 1;
                if (m_value == f) return 0;

                // At least one of the values is NaN.
                if (IsNaN(m_value))
                    return (IsNaN(f) ? 0 : -1);
                else // f is NaN.
                    return 1;
            }
            throw new ArgumentException(SR.Arg_MustBeSingle);
        }


        public int CompareTo(float value)
        {
            if (m_value < value) return -1;
            if (m_value > value) return 1;
            if (m_value == value) return 0;

            // At least one of the values is NaN.
            if (IsNaN(m_value))
                return (IsNaN(value) ? 0 : -1);
            else // f is NaN.
                return 1;
        }

        [NonVersionable]
        public static bool operator ==(float left, float right)
        {
            return left == right;
        }

        [NonVersionable]
        public static bool operator !=(float left, float right)
        {
            return left != right;
        }

        [NonVersionable]
        public static bool operator <(float left, float right)
        {
            return left < right;
        }

        [NonVersionable]
        public static bool operator >(float left, float right)
        {
            return left > right;
        }

        [NonVersionable]
        public static bool operator <=(float left, float right)
        {
            return left <= right;
        }

        [NonVersionable]
        public static bool operator >=(float left, float right)
        {
            return left >= right;
        }

        public override bool Equals(object? obj)
        {
            if (!(obj is float))
            {
                return false;
            }
            float temp = ((float)obj).m_value;
            if (temp == m_value)
            {
                return true;
            }

            return IsNaN(temp) && IsNaN(m_value);
        }

        public bool Equals(float obj)
        {
            if (obj == m_value)
            {
                return true;
            }

            return IsNaN(obj) && IsNaN(m_value);
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public override int GetHashCode()
        {
            var bits = Unsafe.As<float, int>(ref Unsafe.AsRef(in m_value));

            // Optimized check for IsNan() || IsZero()
            if (((bits - 1) & 0x7FFFFFFF) >= 0x7F800000)
            {
                // Ensure that all NaNs and both zeros have the same hash code
                bits &= 0x7F800000;
            }

            return bits;
        }

        public override string ToString()
        {
            return Number.FormatSingle(m_value, null, NumberFormatInfo.CurrentInfo);
        }

        public string ToString(IFormatProvider? provider)
        {
            return Number.FormatSingle(m_value, null, NumberFormatInfo.GetInstance(provider));
        }

        public string ToString(string? format)
        {
            return Number.FormatSingle(m_value, format, NumberFormatInfo.CurrentInfo);
        }

        public string ToString(string? format, IFormatProvider? provider)
        {
            return Number.FormatSingle(m_value, format, NumberFormatInfo.GetInstance(provider));
        }

        public bool TryFormat(Span<char> destination, out int charsWritten, ReadOnlySpan<char> format = default, IFormatProvider? provider = null)
        {
            return Number.TryFormatSingle(m_value, format, NumberFormatInfo.GetInstance(provider), destination, out charsWritten);
        }

        // Parses a float from a String in the given style.  If
        // a NumberFormatInfo isn't specified, the current culture's
        // NumberFormatInfo is assumed.
        //
        // This method will not throw an OverflowException, but will return
        // PositiveInfinity or NegativeInfinity for a number that is too
        // large or too small.
        //
        public static float Parse(string s)
        {
            if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s);
            return Number.ParseSingle(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo);
        }

        public static float Parse(string s, NumberStyles style)
        {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s);
            return Number.ParseSingle(s, style, NumberFormatInfo.CurrentInfo);
        }

        public static float Parse(string s, IFormatProvider? provider)
        {
            if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s);
            return Number.ParseSingle(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider));
        }

        public static float Parse(string s, NumberStyles style, IFormatProvider? provider)
        {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s);
            return Number.ParseSingle(s, style, NumberFormatInfo.GetInstance(provider));
        }

        public static float Parse(ReadOnlySpan<char> s, NumberStyles style = NumberStyles.Float | NumberStyles.AllowThousands, IFormatProvider? provider = null)
        {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return Number.ParseSingle(s, style, NumberFormatInfo.GetInstance(provider));
        }

        public static bool TryParse(string? s, out float result)
        {
            if (s == null)
            {
                result = 0;
                return false;
            }

            return TryParse((ReadOnlySpan<char>)s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result);
        }

        public static bool TryParse(ReadOnlySpan<char> s, out float result)
        {
            return TryParse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result);
        }

        public static bool TryParse(string? s, NumberStyles style, IFormatProvider? provider, out float result)
        {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);

            if (s == null)
            {
                result = 0;
                return false;
            }

            return TryParse((ReadOnlySpan<char>)s, style, NumberFormatInfo.GetInstance(provider), out result);
        }

        public static bool TryParse(ReadOnlySpan<char> s, NumberStyles style, IFormatProvider? provider, out float result)
        {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result);
        }

        private static bool TryParse(ReadOnlySpan<char> s, NumberStyles style, NumberFormatInfo info, out float result)
        {
            return Number.TryParseSingle(s, style, info, out result);
        }

        //
        // IConvertible implementation
        //

        public TypeCode GetTypeCode()
        {
            return TypeCode.Single;
        }


        bool IConvertible.ToBoolean(IFormatProvider? provider)
        {
            return Convert.ToBoolean(m_value);
        }

        char IConvertible.ToChar(IFormatProvider? provider)
        {
            throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "Single", "Char"));
        }

        sbyte IConvertible.ToSByte(IFormatProvider? provider)
        {
            return Convert.ToSByte(m_value);
        }

        byte IConvertible.ToByte(IFormatProvider? provider)
        {
            return Convert.ToByte(m_value);
        }

        short IConvertible.ToInt16(IFormatProvider? provider)
        {
            return Convert.ToInt16(m_value);
        }

        ushort IConvertible.ToUInt16(IFormatProvider? provider)
        {
            return Convert.ToUInt16(m_value);
        }

        int IConvertible.ToInt32(IFormatProvider? provider)
        {
            return Convert.ToInt32(m_value);
        }

        uint IConvertible.ToUInt32(IFormatProvider? provider)
        {
            return Convert.ToUInt32(m_value);
        }

        long IConvertible.ToInt64(IFormatProvider? provider)
        {
            return Convert.ToInt64(m_value);
        }

        ulong IConvertible.ToUInt64(IFormatProvider? provider)
        {
            return Convert.ToUInt64(m_value);
        }

        float IConvertible.ToSingle(IFormatProvider? provider)
        {
            return m_value;
        }

        double IConvertible.ToDouble(IFormatProvider? provider)
        {
            return Convert.ToDouble(m_value);
        }

        decimal IConvertible.ToDecimal(IFormatProvider? provider)
        {
            return Convert.ToDecimal(m_value);
        }

        DateTime IConvertible.ToDateTime(IFormatProvider? provider)
        {
            throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "Single", "DateTime"));
        }

        object IConvertible.ToType(Type type, IFormatProvider? provider)
        {
            return Convert.DefaultToType((IConvertible)this, type, provider);
        }
    }
}