// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. // QCall.H #ifndef __QCall_h__ #define __QCall_h__ #include "clr_std/type_traits" // // QCALLS // // QCalls are internal calls from managed code in mscorlib.dll to unmanaged code in mscorwks.dll. QCalls are very much like // a normal P/Invoke from mscorlib.dll to mscorwks.dll. // // Unlike FCalls, QCalls will marshal all arguments as unmanaged types like a normal P/Invoke. QCall also switch to preemptive // GC mode like a normal P/Invoke. These two features should make QCalls easier to write reliably compared to FCalls. // QCalls are not prone to GC holes and GC starvation bugs that are common with FCalls. // // QCalls perform better compared to FCalls w/ HelperMethodFrame. The QCall overhead is about 1.4x less compared to // FCall w/ HelperMethodFrame overhead on x86. The performance is about the same on x64. However, the implementation // of P/Invoke marshaling on x64 is not tuned for performance yet. The QCalls should become significantly faster compared // to FCalls w/ HelperMethodFrame on x64 as we do performance tuning of P/Invoke marshaling on x64. // // // The preferred type of QCall arguments is primitive types that efficiently handled by the P/Invoke marshaler (INT32, LPCWSTR, BOOL). // (Notice that BOOL is the correct boolean flavor for QCall arguments. CLR_BOOL is the correct boolean flavor for FCall arguments.) // // The pointers to common unmanaged EE structures should be wrapped into helper handle types. This is to make the managed implementation // type safe and avoid falling into unsafe C# everywhere. See the AssemblyHandle below for a good example. // // There is a way to pass raw object references in and out of QCalls. It is done by wrapping a pointer to // a local variable in a handle. It is intentionally cumbersome and should be avoided if reasonably possible. // See the StringHandleOnStack in the example below. String arguments will get marshaled in as LPCWSTR. // Returning objects, especially strings, from QCalls is the only common pattern // where returning the raw objects (as an OUT argument) is widely acceptable. // // // QCall example - managed part (do not replicate the comments into your actual QCall implementation): // --------------------------------------------------------------------------------------------------- // // class Foo { // // // All QCalls should have the following DllImport and SuppressUnmanagedCodeSecurity attributes // [DllImport(JitHelpers.QCall, CharSet = CharSet.Unicode)] // [SuppressUnmanagedCodeSecurity] // // QCalls should always be static extern. // private static extern bool Bar(int flags, string inString, StringHandleOnStack retString); // // // Many QCalls have a thin managed wrapper around them to expose them to the world in more meaningful way. // public string Bar(int flags) // { // string retString = null; // // // The strings are returned from QCalls by taking address // // of a local variable using JitHelpers.GetStringHandleOnStack method // if (!Bar(flags, this.Id, JitHelpers.GetStringHandleOnStack(ref retString))) // FatalError(); // // return retString; // } // // Every QCall produces a couple of bogus FXCop warnings currently. Just add them to the FXCop exlusion list for now. // // // QCall example - unmanaged part (do not replicate the comments into your actual QCall implementation): // ----------------------------------------------------------------------------------------------------- // // The entrypoints of all QCalls has to be registered in tables in vm\ecall.cpp using QCFuncEntry macro, // For example: QCFuncElement("Bar", FooNative::Bar) // // class FooNative { // public: // // All QCalls should be static and should be tagged with QCALLTYPE // static // BOOL QCALLTYPE Bar(int flags, LPCWSTR wszString, QCall::StringHandleOnStack retString); // }; // // BOOL QCALLTYPE FooNative::Bar(int flags, LPCWSTR wszString, QCall::StringHandleOnStack retString) // { // // All QCalls should have QCALL_CONTRACT. It is alias for THROWS; GC_TRIGGERS; MODE_PREEMPTIVE. // QCALL_CONTRACT; // // // Optionally, use QCALL_CHECK instead and the expanded form of the contract if you want to specify preconditions: // // CONTRACTL { // // QCALL_CHECK; // // PRECONDITION(wszString != NULL); // // } CONTRACTL_END; // // // The only line between QCALL_CONTRACT and BEGIN_QCALL // // should be the return value declaration if there is one. // BOOL retVal = FALSE; // // // The body has to be enclosed in BEGIN_QCALL/END_QCALL macro. It is necessary to make the exception handling work. // BEGIN_QCALL; // // // Validate arguments if necessary and throw exceptions like anywhere else in the EE. There is no convention currently // // on whether the argument validation should be done in managed or unmanaged code. // if (flags != 0) // COMPlusThrow(kArgumentException, L"InvalidFlags"); // // // No need to worry about GC moving strings passed into QCall. Marshaling pins them for us. // printf("%S", wszString); // // // This is the most efficient way to return strings back to managed code. No need to use StringBuilder. // retString.Set(L"Hello"); // // // You can not return from inside of BEGIN_QCALL/END_QCALL. The return value has to be passed out in helper variable. // retVal = TRUE; // // END_QCALL; // // return retVal; // } #ifdef PLATFORM_UNIX #define QCALLTYPE __cdecl #else // PLATFORM_UNIX #define QCALLTYPE __stdcall #endif // !PLATFORM_UNIX #define BEGIN_QCALL \ INSTALL_MANAGED_EXCEPTION_DISPATCHER \ INSTALL_UNWIND_AND_CONTINUE_HANDLER #define END_QCALL \ UNINSTALL_UNWIND_AND_CONTINUE_HANDLER \ UNINSTALL_MANAGED_EXCEPTION_DISPATCHER #define QCALL_CHECK \ THROWS; \ GC_TRIGGERS; \ MODE_PREEMPTIVE; \ #define QCALL_CONTRACT CONTRACTL { QCALL_CHECK; } CONTRACTL_END; // // Scope class for QCall helper methods and types // class QCall { public: // // Helper types to aid marshaling of QCall arguments in type-safe manner // // The C/C++ compiler has to treat these types as POD (plain old data) to generate // a calling convention compatible with P/Invoke marshaling. This means that: // NONE OF THESE HELPER TYPES CAN HAVE A CONSTRUCTOR OR DESTRUCTOR! // THESE HELPER TYPES CAN NOT BE IMPLEMENTED USING INHERITANCE OR TEMPLATES! // // // StringHandleOnStack is used for managed strings // struct StringHandleOnStack { StringObject ** m_ppStringObject; #ifndef DACCESS_COMPILE // // Helpers for returning managed string from QCall // // Raw setter - note that you need to be in cooperative mode void Set(STRINGREF s) { CONTRACTL { NOTHROW; GC_NOTRIGGER; MODE_COOPERATIVE; } CONTRACTL_END; // The space for the return value has to be on the stack _ASSERTE(Thread::IsAddressInCurrentStack(m_ppStringObject)); *m_ppStringObject = STRINGREFToObject(s); } void Set(const SString& value); void Set(LPCWSTR pwzValue); void Set(LPCUTF8 pszValue); #endif // !DACCESS_COMPILE }; // // ObjectHandleOnStack type is used for managed objects // struct ObjectHandleOnStack { Object ** m_ppObject; #ifndef DACCESS_COMPILE // // Helpers for returning common managed types from QCall // void Set(OBJECTREF o) { LIMITED_METHOD_CONTRACT; // The space for the return value has to be on the stack _ASSERTE(Thread::IsAddressInCurrentStack(m_ppObject)); *m_ppObject = OBJECTREFToObject(o); } void SetByteArray(const BYTE * p, COUNT_T length); void SetIntPtrArray(const PVOID * p, COUNT_T length); void SetGuidArray(const GUID * p, COUNT_T length); // Do not add operator overloads to convert this object into a stack reference to a specific object type // such as OBJECTREF *. While such things are correct, our debug checking logic is unable to verify that // the object reference is actually protected from access and therefore will assert. // See bug 254159 for details. #endif // !DACCESS_COMPILE }; // // StackCrawlMarkHandle is used for passing StackCrawlMark into QCalls // struct StackCrawlMarkHandle { StackCrawlMark * m_pMark; operator StackCrawlMark * () { LIMITED_METHOD_CONTRACT; return m_pMark; } }; struct AssemblyHandle { Object ** m_ppObject; DomainAssembly * m_pAssembly; operator DomainAssembly * () { LIMITED_METHOD_CONTRACT; return m_pAssembly; } DomainAssembly * operator->() const { LIMITED_METHOD_CONTRACT; return m_pAssembly; } }; struct ModuleHandle { Object ** m_ppObject; Module * m_pModule; operator Module * () { LIMITED_METHOD_CONTRACT; return m_pModule; } Module * operator->() const { LIMITED_METHOD_CONTRACT; return m_pModule; } }; struct TypeHandle { Object ** m_ppObject; PTR_VOID m_pTypeHandle; ::TypeHandle AsTypeHandle() { LIMITED_METHOD_CONTRACT; return ::TypeHandle::FromPtr(m_pTypeHandle); } }; struct LoaderAllocatorHandle { LoaderAllocator * m_pLoaderAllocator; operator LoaderAllocator * () { LIMITED_METHOD_CONTRACT; return m_pLoaderAllocator; } LoaderAllocator * operator -> () const { LIMITED_METHOD_CONTRACT; return m_pLoaderAllocator; } static LoaderAllocatorHandle From(LoaderAllocator * pLoaderAllocator) { LoaderAllocatorHandle h; h.m_pLoaderAllocator = pLoaderAllocator; return h; } }; // The lifetime management between managed and native Thread objects is broken. There is a resurrection // race where one can get a dangling pointer to the unmanaged Thread object. Once this race is fixed // we may need to revisit how the unmanaged thread handles are passed around. struct ThreadHandle { Thread * m_pThread; operator Thread * () { LIMITED_METHOD_CONTRACT; return m_pThread; } Thread * operator->() const { LIMITED_METHOD_CONTRACT; return m_pThread; } }; }; typedef void* EnregisteredTypeHandle; #endif //__QCall_h__