// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. /*++ Module Name: synchash.cpp --*/ #include "common.h" #include "hash.h" #include "excep.h" #include "syncclean.hpp" #include "threadsuspend.h" //--------------------------------------------------------------------- // Array of primes, used by hash table to choose the number of buckets // Review: would we want larger primes? e.g., for 64-bit? const DWORD g_rgPrimes[] = { 5,11,17,23,29,37,47,59,71,89,107,131,163,197,239,293,353,431,521,631,761,919, 1103,1327,1597,1931,2333,2801,3371,4049,4861,5839,7013,8419,10103,12143,14591, 17519,21023,25229,30293,36353,43627,52361,62851,75431,90523, 108631, 130363, 156437, 187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403, 968897, 1162687, 1395263, 1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471, 7199369 }; const SIZE_T g_rgNumPrimes = sizeof(g_rgPrimes) / sizeof(*g_rgPrimes); const unsigned int SLOTS_PER_BUCKET = 4; #ifndef DACCESS_COMPILE void *PtrHashMap::operator new(size_t size, LoaderHeap *pHeap) { STATIC_CONTRACT_THROWS; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FAULT; //return NULL; return pHeap->AllocMem(S_SIZE_T(size)); } void PtrHashMap::operator delete(void *p) { } //----------------------------------------------------------------- // Bucket methods BOOL Bucket::InsertValue(const UPTR key, const UPTR value) { STATIC_CONTRACT_NOTHROW; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FAULT; //return FALSE; _ASSERTE(key != EMPTY); _ASSERTE(key != DELETED); if (!HasFreeSlots()) return false; //no free slots // might have a free slot for (UPTR i = 0; i < SLOTS_PER_BUCKET; i++) { //@NOTE we can't reuse DELETED slots if (m_rgKeys[i] == EMPTY) { SetValue (value, i); // On multiprocessors we should make sure that // the value is propagated before we proceed. // inline memory barrier call, refer to // function description at the beginning of this MemoryBarrier(); m_rgKeys[i] = key; return true; } } // for i= 0; i < SLOTS_PER_BUCKET; loop SetCollision(); // otherwise set the collision bit return false; } #endif // !DACCESS_COMPILE //--------------------------------------------------------------------- // inline Bucket* HashMap::Buckets() // get the pointer to the bucket array inline PTR_Bucket HashMap::Buckets() { LIMITED_METHOD_DAC_CONTRACT; #if !defined(DACCESS_COMPILE) && !defined(CROSSGEN_COMPILE) _ASSERTE (!g_fEEStarted || !m_fAsyncMode || GetThread() == NULL || GetThread()->PreemptiveGCDisabled() || IsGCThread()); #endif return m_rgBuckets + 1; } //--------------------------------------------------------------------- // inline size_t HashMap::GetSize(PTR_Bucket rgBuckets) // get the number of buckets inline DWORD HashMap::GetSize(PTR_Bucket rgBuckets) { LIMITED_METHOD_DAC_CONTRACT; PTR_size_t pSize = dac_cast(rgBuckets - 1); _ASSERTE(FitsIn(pSize[0])); return static_cast(pSize[0]); } //--------------------------------------------------------------------- // inline size_t HashMap::HashFunction(UPTR key, UINT numBuckets, UINT &seed, UINT &incr) // get the first & second hash function. // H(key, i) = h1(key) + i*h2(key, hashSize); 0 <= i < numBuckets // h2 must return a value >= 1 and < numBuckets. inline void HashMap::HashFunction(const UPTR key, const UINT numBuckets, UINT &seed, UINT &incr) { LIMITED_METHOD_CONTRACT; // First hash function // We commonly use pointers, which are 4 byte aligned, so the two least // significant bits are often 0, then we mod this value by something like // 11. We can get a better distribution for pointers by dividing by 4. // REVIEW: Is 64-bit truncation better or should we be doing something with the // upper 32-bits in either of these hash functions. seed = static_cast(key >> 2); // Second hash function incr = (UINT)(1 + (((static_cast(key >> 5)) + 1) % ((UINT)numBuckets - 1))); _ASSERTE(incr > 0 && incr < numBuckets); } #ifndef DACCESS_COMPILE //--------------------------------------------------------------------- // inline void HashMap::SetSize(Bucket *rgBuckets, size_t size) // set the number of buckets inline void HashMap::SetSize(Bucket *rgBuckets, size_t size) { LIMITED_METHOD_CONTRACT; ((size_t*)rgBuckets)[0] = size; } //--------------------------------------------------------------------- // HashMap::HashMap() // constructor, initialize all values // HashMap::HashMap() { STATIC_CONTRACT_NOTHROW; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FORBID_FAULT; m_rgBuckets = NULL; m_pCompare = NULL; // comparsion object m_cbInserts = 0; // track inserts m_cbDeletes = 0; // track deletes m_cbPrevSlotsInUse = 0; // track valid slots present during previous rehash //Debug data member #ifdef _DEBUG m_fInSyncCode = false; #endif // profile data members #ifdef HASHTABLE_PROFILE m_cbRehash = 0; m_cbRehashSlots = 0; m_cbObsoleteTables = 0; m_cbTotalBuckets =0; m_cbInsertProbesGt8 = 0; // inserts that needed more than 8 probes maxFailureProbe =0; memset(m_rgLookupProbes,0,HASHTABLE_LOOKUP_PROBES_DATA*sizeof(LONG)); #endif // HASHTABLE_PROFILE #ifdef _DEBUG m_lockData = NULL; m_pfnLockOwner = NULL; #endif // _DEBUG } //--------------------------------------------------------------------- // void HashMap::Init(unsigned cbInitialSize, CompareFnPtr ptr, bool fAsyncMode) // set the initial size of the hash table and provide the comparison // function pointer // void HashMap::Init(DWORD cbInitialSize, CompareFnPtr ptr, BOOL fAsyncMode, LockOwner *pLock) { CONTRACTL { THROWS; GC_NOTRIGGER; INJECT_FAULT(COMPlusThrowOM()); } CONTRACTL_END Compare* pCompare = NULL; if (ptr != NULL) { pCompare = new Compare(ptr); } Init(cbInitialSize, pCompare, fAsyncMode, pLock); } DWORD HashMap::GetNearestIndex(DWORD cbInitialSize) { LIMITED_METHOD_CONTRACT; DWORD lowIndex = 0; DWORD highIndex = g_rgNumPrimes - 1; DWORD midIndex = (highIndex + 1) / 2; if (cbInitialSize <= g_rgPrimes[0]) return 0; if (cbInitialSize >= g_rgPrimes[highIndex]) return highIndex; while (true) { if (cbInitialSize < g_rgPrimes[midIndex]) { highIndex = midIndex; } else { if (cbInitialSize == g_rgPrimes[midIndex]) return midIndex; lowIndex = midIndex; } midIndex = lowIndex + (highIndex - lowIndex + 1)/2; if (highIndex == midIndex) { _ASSERTE(g_rgPrimes[highIndex] >= cbInitialSize); _ASSERTE(highIndex < g_rgNumPrimes); return highIndex; } } } //--------------------------------------------------------------------- // void HashMap::Init(unsigned cbInitialSize, Compare* pCompare, bool fAsyncMode) // set the initial size of the hash table and provide the comparison // function pointer // void HashMap::Init(DWORD cbInitialSize, Compare* pCompare, BOOL fAsyncMode, LockOwner *pLock) { CONTRACTL { THROWS; GC_NOTRIGGER; INJECT_FAULT(COMPlusThrowOM()); } CONTRACTL_END m_iPrimeIndex = GetNearestIndex(cbInitialSize); DWORD size = g_rgPrimes[m_iPrimeIndex]; PREFIX_ASSUME(size < 0x7fffffff); m_rgBuckets = new Bucket[size+1]; memset (m_rgBuckets, 0, (size+1)*sizeof(Bucket)); SetSize(m_rgBuckets, size); m_pCompare = pCompare; m_fAsyncMode = fAsyncMode != FALSE; // assert null comparison returns true //ASSERT( // m_pCompare == NULL || // (m_pCompare->CompareHelper(0,0) != 0) // ); #ifdef HASHTABLE_PROFILE m_cbTotalBuckets = size+1; #endif #ifdef _DEBUG if (pLock == NULL) { m_lockData = NULL; m_pfnLockOwner = NULL; } else { m_lockData = pLock->lock; m_pfnLockOwner = pLock->lockOwnerFunc; } if (m_pfnLockOwner == NULL) { m_writerThreadId.SetToCurrentThread(); } #endif // _DEBUG } //--------------------------------------------------------------------- // void PtrHashMap::Init(unsigned cbInitialSize, CompareFnPtr ptr, bool fAsyncMode) // set the initial size of the hash table and provide the comparison // function pointer // void PtrHashMap::Init(DWORD cbInitialSize, CompareFnPtr ptr, BOOL fAsyncMode, LockOwner *pLock) { CONTRACTL { THROWS; GC_NOTRIGGER; INJECT_FAULT(COMPlusThrowOM()); } CONTRACTL_END ComparePtr *compare = NULL; if (ptr != NULL) compare = new ComparePtr(ptr); m_HashMap.Init(cbInitialSize, compare, fAsyncMode, pLock); } //--------------------------------------------------------------------- // HashMap::~HashMap() // destructor, free the current array of buckets // HashMap::~HashMap() { STATIC_CONTRACT_NOTHROW; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FORBID_FAULT; // free the current table Clear(); // compare object if (NULL != m_pCompare) delete m_pCompare; } //--------------------------------------------------------------------- // HashMap::Clear() // Remove all elements from table // void HashMap::Clear() { STATIC_CONTRACT_NOTHROW; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FORBID_FAULT; // free the current table delete [] m_rgBuckets; m_rgBuckets = NULL; } //--------------------------------------------------------------------- // UPTR HashMap::CompareValues(const UPTR value1, const UPTR value2) // compare values with the function pointer provided // #ifndef _DEBUG inline #endif UPTR HashMap::CompareValues(const UPTR value1, const UPTR value2) { WRAPPER_NO_CONTRACT; #ifndef _DEBUG CONTRACTL { DISABLED(THROWS); // This is not a bug, we cannot decide, since the function ptr called may be either. DISABLED(GC_NOTRIGGER); // This is not a bug, we cannot decide, since the function ptr called may be either. } CONTRACTL_END; #endif // !_DEBUG /// NOTE:: the ordering of arguments are random return (m_pCompare == NULL || m_pCompare->CompareHelper(value1,value2)); } //--------------------------------------------------------------------- // bool HashMap::Enter() // bool HashMap::Leave() // check valid use of the hash table in synchronus mode #ifdef _DEBUG #ifndef DACCESS_COMPILE void HashMap::Enter(HashMap *map) { LIMITED_METHOD_CONTRACT; // check proper concurrent use of the hash table if (map->m_fInSyncCode) ASSERT(0); // oops multiple access to sync.-critical code map->m_fInSyncCode = true; } #else // In DAC builds, we don't want to take the lock, we just want to know if it's held. If it is, // we assume the hash map is in an inconsistent state and throw an exception. // Arguments: // input: map - the map controlled by the lock. // Note: Throws void HashMap::Enter(HashMap *map) { LIMITED_METHOD_DAC_CONTRACT; // check proper concurrent use of the hash table if (map->m_fInSyncCode) { ThrowHR(CORDBG_E_PROCESS_NOT_SYNCHRONIZED); // oops multiple access to sync.-critical code } } #endif // DACCESS_COMPILE void HashMap::Leave(HashMap *map) { LIMITED_METHOD_CONTRACT; // check proper concurrent use of the hash table if (map->m_fInSyncCode == false) ASSERT(0); // oops multiple access to sync.-critical code map->m_fInSyncCode = false; } #endif // _DEBUG #endif // !DACCESS_COMPILE //--------------------------------------------------------------------- // void HashMap::ProfileLookup(unsigned ntry) // profile helper code void HashMap::ProfileLookup(UPTR ntry, UPTR retValue) { STATIC_CONTRACT_NOTHROW; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FORBID_FAULT; #ifndef DACCESS_COMPILE #ifdef HASHTABLE_PROFILE if (ntry < HASHTABLE_LOOKUP_PROBES_DATA - 2) FastInterlockIncrement(&m_rgLookupProbes[ntry]); else FastInterlockIncrement(&m_rgLookupProbes[HASHTABLE_LOOKUP_PROBES_DATA - 2]); if (retValue == NULL) { // failure probes FastInterlockIncrement(&m_rgLookupProbes[HASHTABLE_LOOKUP_PROBES_DATA - 1]); // the following code is usually executed // only for special case of lookup done before insert // check hash.h SyncHash::InsertValue if (maxFailureProbe < ntry) { maxFailureProbe = ntry; } } #endif // HASHTABLE_PROFILE #endif // !DACCESS_COMPILE } #ifndef DACCESS_COMPILE //--------------------------------------------------------------------- // void HashMap::InsertValue (UPTR key, UPTR value) // Insert into hash table, if the number of retries // becomes greater than threshold, expand hash table // void HashMap::InsertValue (UPTR key, UPTR value) { STATIC_CONTRACT_THROWS; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FAULT; _ASSERTE (OwnLock()); // BROKEN: This is called for the RCWCache on the GC thread GCX_MAYBE_COOP_NO_THREAD_BROKEN(m_fAsyncMode); ASSERT(m_rgBuckets != NULL); // check proper use in synchronous mode SyncAccessHolder holder(this); // no-op in NON debug code ASSERT(value <= VALUE_MASK); ASSERT (key > DELETED); Bucket* rgBuckets = Buckets(); DWORD cbSize = GetSize(rgBuckets); UINT seed, incr; HashFunction(key, cbSize, seed, incr); for (UPTR ntry =0; ntry < 8; ntry++) { Bucket* pBucket = &rgBuckets[seed % cbSize]; if(pBucket->InsertValue(key,value)) { goto LReturn; } seed += incr; } // for ntry loop // We need to expand to keep lookup short Rehash(); // Try again PutEntry (Buckets(), key,value); LReturn: // label for return m_cbInserts++; #ifdef _DEBUG ASSERT (m_pCompare != NULL || value == LookupValue (key,value)); // check proper concurrent use of the hash table in synchronous mode #endif // _DEBUG return; } #endif // !DACCESS_COMPILE //--------------------------------------------------------------------- // UPTR HashMap::LookupValue(UPTR key, UPTR value) // Lookup value in the hash table, use the comparison function // to verify the values match // UPTR HashMap::LookupValue(UPTR key, UPTR value) { CONTRACTL { DISABLED(THROWS); // This is not a bug, we cannot decide, since the function ptr called may be either. DISABLED(GC_NOTRIGGER); // This is not a bug, we cannot decide, since the function ptr called may be either. SO_TOLERANT; } CONTRACTL_END; SCAN_IGNORE_THROW; // See contract above. SCAN_IGNORE_TRIGGER; // See contract above. #ifndef DACCESS_COMPILE _ASSERTE (m_fAsyncMode || OwnLock()); // BROKEN: This is called for the RCWCache on the GC thread // Also called by AppDomain::FindCachedAssembly to resolve AssemblyRef -- this is used by stack walking on the GC thread. // See comments in GCHeapUtilities::RestartEE (above the call to SyncClean::CleanUp) for reason to enter COOP mode. // However, if the current thread is the GC thread, we know we're not going to call GCHeapUtilities::RestartEE // while accessing the HashMap, so it's safe to proceed. // (m_fAsyncMode && !IsGCThread() is the condition for entering COOP mode. I.e., enable COOP GC only if // the HashMap is in async mode and this is not a GC thread.) GCX_MAYBE_COOP_NO_THREAD_BROKEN(m_fAsyncMode && !IsGCThread()); ASSERT(m_rgBuckets != NULL); // This is necessary in case some other thread // replaces m_rgBuckets ASSERT (key > DELETED); // perform this check at lookup time as well ASSERT(value <= VALUE_MASK); #endif // !DACCESS_COMPILE PTR_Bucket rgBuckets = Buckets(); //atomic fetch DWORD cbSize = GetSize(rgBuckets); UINT seed, incr; HashFunction(key, cbSize, seed, incr); UPTR ntry; for(ntry =0; ntry < cbSize; ntry++) { PTR_Bucket pBucket = rgBuckets+(seed % cbSize); for (unsigned int i = 0; i < SLOTS_PER_BUCKET; i++) { if (pBucket->m_rgKeys[i] == key) // keys match { // inline memory barrier call, refer to // function description at the beginning of this MemoryBarrier(); UPTR storedVal = pBucket->GetValue(i); // if compare function is provided // dupe keys are possible, check if the value matches, // Not using compare function in DAC build. #ifndef DACCESS_COMPILE if (CompareValues(value,storedVal)) #endif { ProfileLookup(ntry,storedVal); //no-op in non HASHTABLE_PROFILE code // return the stored value return storedVal; } } } seed += incr; if(!pBucket->IsCollision()) break; } // for ntry loop // not found ProfileLookup(ntry,INVALIDENTRY); //no-op in non HASHTABLE_PROFILE code return INVALIDENTRY; } #ifndef DACCESS_COMPILE //--------------------------------------------------------------------- // UPTR HashMap::ReplaceValue(UPTR key, UPTR value) // Replace existing value in the hash table, use the comparison function // to verify the values match // UPTR HashMap::ReplaceValue(UPTR key, UPTR value) { STATIC_CONTRACT_NOTHROW; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FORBID_FAULT; _ASSERTE(OwnLock()); // BROKEN: This is called for the RCWCache on the GC thread GCX_MAYBE_COOP_NO_THREAD_BROKEN(m_fAsyncMode); ASSERT(m_rgBuckets != NULL); // This is necessary in case some other thread // replaces m_rgBuckets ASSERT (key > DELETED); // perform this check during replacing as well ASSERT(value <= VALUE_MASK); Bucket* rgBuckets = Buckets(); //atomic fetch DWORD cbSize = GetSize(rgBuckets); UINT seed, incr; HashFunction(key, cbSize, seed, incr); UPTR ntry; for(ntry =0; ntry < cbSize; ntry++) { Bucket* pBucket = &rgBuckets[seed % cbSize]; for (unsigned int i = 0; i < SLOTS_PER_BUCKET; i++) { if (pBucket->m_rgKeys[i] == key) // keys match { // inline memory barrier call, refer to // function description at the beginning of this MemoryBarrier(); UPTR storedVal = pBucket->GetValue(i); // if compare function is provided // dupe keys are possible, check if the value matches, if (CompareValues(value,storedVal)) { ProfileLookup(ntry,storedVal); //no-op in non HASHTABLE_PROFILE code pBucket->SetValue(value, i); // On multiprocessors we should make sure that // the value is propagated before we proceed. // inline memory barrier call, refer to // function description at the beginning of this MemoryBarrier(); // return the previous stored value return storedVal; } } } seed += incr; if(!pBucket->IsCollision()) break; } // for ntry loop // not found ProfileLookup(ntry,INVALIDENTRY); //no-op in non HASHTABLE_PROFILE code return INVALIDENTRY; } //--------------------------------------------------------------------- // UPTR HashMap::DeleteValue (UPTR key, UPTR value) // if found mark the entry deleted and return the stored value // UPTR HashMap::DeleteValue (UPTR key, UPTR value) { STATIC_CONTRACT_NOTHROW; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FORBID_FAULT; _ASSERTE (OwnLock()); // BROKEN: This is called for the RCWCache on the GC thread GCX_MAYBE_COOP_NO_THREAD_BROKEN(m_fAsyncMode); // check proper use in synchronous mode SyncAccessHolder holoder(this); //no-op in non DEBUG code ASSERT(m_rgBuckets != NULL); // This is necessary in case some other thread // replaces m_rgBuckets ASSERT (key > DELETED); // perform this check during replacing as well ASSERT(value <= VALUE_MASK); Bucket* rgBuckets = Buckets(); DWORD cbSize = GetSize(rgBuckets); UINT seed, incr; HashFunction(key, cbSize, seed, incr); UPTR ntry; for(ntry =0; ntry < cbSize; ntry++) { Bucket* pBucket = &rgBuckets[seed % cbSize]; for (unsigned int i = 0; i < SLOTS_PER_BUCKET; i++) { if (pBucket->m_rgKeys[i] == key) // keys match { // inline memory barrier call, refer to // function description at the beginning of this MemoryBarrier(); UPTR storedVal = pBucket->GetValue(i); // if compare function is provided // dupe keys are possible, check if the value matches, if (CompareValues(value,storedVal)) { if(m_fAsyncMode) { pBucket->m_rgKeys[i] = DELETED; // mark the key as DELETED } else { pBucket->m_rgKeys[i] = EMPTY;// otherwise mark the entry as empty pBucket->SetFreeSlots(); } m_cbDeletes++; // track the deletes ProfileLookup(ntry,storedVal); //no-op in non HASHTABLE_PROFILE code // return the stored value return storedVal; } } } seed += incr; if(!pBucket->IsCollision()) break; } // for ntry loop // not found ProfileLookup(ntry,INVALIDENTRY); //no-op in non HASHTABLE_PROFILE code #ifdef _DEBUG ASSERT (m_pCompare != NULL || (UPTR) INVALIDENTRY == LookupValue (key,value)); // check proper concurrent use of the hash table in synchronous mode #endif // _DEBUG return INVALIDENTRY; } //--------------------------------------------------------------------- // UPTR HashMap::Gethash (UPTR key) // use this for lookups with unique keys // don't need to pass an input value to perform the lookup // UPTR HashMap::Gethash (UPTR key) { STATIC_CONTRACT_NOTHROW; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FORBID_FAULT; return LookupValue(key,NULL); } //--------------------------------------------------------------------- // UPTR PutEntry (Bucket* rgBuckets, UPTR key, UPTR value) // helper used by expand method below UPTR HashMap::PutEntry (Bucket* rgBuckets, UPTR key, UPTR value) { CONTRACTL { THROWS; GC_NOTRIGGER; INJECT_FAULT(COMPlusThrowOM()); } CONTRACTL_END ASSERT (value > 0); ASSERT (key > DELETED); DWORD size = GetSize(rgBuckets); UINT seed, incr; HashFunction(key, size, seed, incr); UPTR ntry; for (ntry =0; ntry < size; ntry++) { Bucket* pBucket = &rgBuckets[seed % size]; if(pBucket->InsertValue(key,value)) { return ntry; } seed += incr; } // for ntry loop _ASSERTE(!"Hash table insert failed. Bug in PutEntry or the code that resizes the hash table?"); return INVALIDENTRY; } //--------------------------------------------------------------------- // // UPTR HashMap::NewSize() // compute the new size based on the number of free slots // inline UPTR HashMap::NewSize() { STATIC_CONTRACT_NOTHROW; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FORBID_FAULT; ASSERT(m_cbInserts >= m_cbDeletes); UPTR cbValidSlots = m_cbInserts-m_cbDeletes; UPTR cbNewSlots = m_cbInserts > m_cbPrevSlotsInUse ? m_cbInserts - m_cbPrevSlotsInUse : 0; ASSERT(cbValidSlots >=0 ); if (cbValidSlots == 0) return g_rgPrimes[0]; // Minimum size for this hash table. UPTR cbTotalSlots = (m_fAsyncMode) ? (UPTR)(cbValidSlots*3/2+cbNewSlots*.6) : cbValidSlots*3/2; //UPTR cbTotalSlots = cbSlotsInUse*3/2+m_cbDeletes; UPTR iPrimeIndex; for (iPrimeIndex = 0; iPrimeIndex < g_rgNumPrimes; iPrimeIndex++) { if (g_rgPrimes[iPrimeIndex] > cbTotalSlots) { return iPrimeIndex; } } ASSERT(iPrimeIndex == g_rgNumPrimes); ASSERT(0 && !"Hash table walked beyond end of primes array"); return g_rgNumPrimes - 1; } //--------------------------------------------------------------------- // void HashMap::Rehash() // Rehash the hash table, create a new array of buckets and rehash // all non deleted values from the previous array // void HashMap::Rehash() { STATIC_CONTRACT_THROWS; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FAULT; // BROKEN: This is called for the RCWCache on the GC thread GCX_MAYBE_COOP_NO_THREAD_BROKEN(m_fAsyncMode); #ifndef CROSSGEN_COMPILE _ASSERTE (!g_fEEStarted || !m_fAsyncMode || GetThread() == NULL || GetThread()->PreemptiveGCDisabled()); _ASSERTE (OwnLock()); #endif UPTR newPrimeIndex = NewSize(); ASSERT(newPrimeIndex < g_rgNumPrimes); if ((m_iPrimeIndex == newPrimeIndex) && (m_cbDeletes == 0)) { return; } m_iPrimeIndex = newPrimeIndex; DWORD cbNewSize = g_rgPrimes[m_iPrimeIndex]; Bucket* rgBuckets = Buckets(); UPTR cbCurrSize = GetSize(rgBuckets); S_SIZE_T cbNewBuckets = (S_SIZE_T(cbNewSize) + S_SIZE_T(1)) * S_SIZE_T(sizeof(Bucket)); if (cbNewBuckets.IsOverflow()) ThrowHR(COR_E_OVERFLOW); Bucket* rgNewBuckets = (Bucket *) new BYTE[cbNewBuckets.Value()]; memset (rgNewBuckets, 0, cbNewBuckets.Value()); SetSize(rgNewBuckets, cbNewSize); // current valid slots UPTR cbValidSlots = m_cbInserts-m_cbDeletes; m_cbInserts = cbValidSlots; // reset insert count to the new valid count m_cbPrevSlotsInUse = cbValidSlots; // track the previous delete count m_cbDeletes = 0; // reset delete count // rehash table into it if (cbValidSlots) // if there are valid slots to be rehashed { for (unsigned int nb = 0; nb < cbCurrSize; nb++) { for (unsigned int i = 0; i < SLOTS_PER_BUCKET; i++) { UPTR key =rgBuckets[nb].m_rgKeys[i]; if (key > DELETED) { #ifdef HASHTABLE_PROFILE UPTR ntry = #endif PutEntry (rgNewBuckets+1, key, rgBuckets[nb].GetValue (i)); #ifdef HASHTABLE_PROFILE if(ntry >=8) m_cbInsertProbesGt8++; #endif // HASHTABLE_PROFILE // check if we can bail out if (--cbValidSlots == 0) goto LDone; // break out of both the loops } } // for i =0 thru SLOTS_PER_BUCKET } //for all buckets } LDone: Bucket* pObsoleteTables = m_rgBuckets; // memory barrier, to replace the pointer to array of bucket MemoryBarrier(); // replace the old array with the new one. m_rgBuckets = rgNewBuckets; #ifdef HASHTABLE_PROFILE m_cbRehash++; m_cbRehashSlots+=m_cbInserts; m_cbObsoleteTables++; // track statistics m_cbTotalBuckets += (cbNewSize+1); #endif // HASHTABLE_PROFILE #ifdef _DEBUG unsigned nb; if (m_fAsyncMode) { // for all non deleted keys in the old table, make sure the corresponding values // are in the new lookup table for (nb = 1; nb <= ((size_t*)pObsoleteTables)[0]; nb++) { for (unsigned int i =0; i < SLOTS_PER_BUCKET; i++) { if (pObsoleteTables[nb].m_rgKeys[i] > DELETED) { UPTR value = pObsoleteTables[nb].GetValue (i); // make sure the value is present in the new table ASSERT (m_pCompare != NULL || value == LookupValue (pObsoleteTables[nb].m_rgKeys[i], value)); } } } } // make sure there are no deleted entries in the new lookup table // if the compare function provided is null, then keys must be unique for (nb = 0; nb < cbNewSize; nb++) { for (unsigned int i = 0; i < SLOTS_PER_BUCKET; i++) { UPTR keyv = Buckets()[nb].m_rgKeys[i]; ASSERT (keyv != DELETED); if (m_pCompare == NULL && keyv != EMPTY) { ASSERT ((Buckets()[nb].GetValue (i)) == Gethash (keyv)); } } } #endif // _DEBUG if (m_fAsyncMode) { // If we are allowing asynchronous reads, we must delay bucket cleanup until GC time. SyncClean::AddHashMap (pObsoleteTables); } else { Bucket* pBucket = pObsoleteTables; while (pBucket) { Bucket* pNextBucket = NextObsolete(pBucket); delete [] pBucket; pBucket = pNextBucket; } } } //--------------------------------------------------------------------- // void HashMap::Compact() // delete obsolete tables, try to compact deleted slots by sliding entries // in the bucket, note we can slide only if the bucket's collison bit is reset // otherwise the lookups will break // @perf, use the m_cbDeletes to m_cbInserts ratio to reduce the size of the hash // table // void HashMap::Compact() { STATIC_CONTRACT_NOTHROW; STATIC_CONTRACT_GC_NOTRIGGER; _ASSERTE (OwnLock()); // GCX_MAYBE_COOP_NO_THREAD_BROKEN(m_fAsyncMode); ASSERT(m_rgBuckets != NULL); // Try to resize if that makes sense (reduce the size of the table), but // don't fail the operation simply because we've run out of memory. UPTR iNewIndex = NewSize(); if (iNewIndex != m_iPrimeIndex) { EX_TRY { FAULT_NOT_FATAL(); Rehash(); } EX_CATCH { } EX_END_CATCH(SwallowAllExceptions) } //compact deleted slots, mark them as EMPTY if (m_cbDeletes) { UPTR cbCurrSize = GetSize(Buckets()); Bucket *pBucket = Buckets(); Bucket *pSentinel; for (pSentinel = pBucket+cbCurrSize; pBucket < pSentinel; pBucket++) { //loop thru all buckets for (unsigned int i = 0; i < SLOTS_PER_BUCKET; i++) { //loop through all slots if (pBucket->m_rgKeys[i] == DELETED) { pBucket->m_rgKeys[i] = EMPTY; pBucket->SetFreeSlots(); // mark the bucket as containing // free slots // Need to decrement insert and delete counts at the same // time to preserve correct live count. _ASSERTE(m_cbInserts >= m_cbDeletes); --m_cbInserts; if(--m_cbDeletes == 0) // decrement count return; } } } } } #ifdef _DEBUG // A thread must own a lock for a hash if it is a writer. BOOL HashMap::OwnLock() { STATIC_CONTRACT_NOTHROW; STATIC_CONTRACT_GC_NOTRIGGER; STATIC_CONTRACT_FORBID_FAULT; DEBUG_ONLY_FUNCTION; if (m_pfnLockOwner == NULL) { return m_writerThreadId.IsCurrentThread(); } else { BOOL ret = m_pfnLockOwner(m_lockData); if (!ret) { if (Debug_IsLockedViaThreadSuspension()) { ret = TRUE; } } return ret; } } #endif // _DEBUG #ifdef HASHTABLE_PROFILE //--------------------------------------------------------------------- // void HashMap::DumpStatistics() // dump statistics collected in profile mode // void HashMap::DumpStatistics() { LIMITED_METHOD_CONTRACT; cout << "\n Hash Table statistics "<< endl; cout << "--------------------------------------------------" << endl; cout << "Current Insert count " << m_cbInserts << endl; cout << "Current Delete count "<< m_cbDeletes << endl; cout << "Current # of tables " << m_cbObsoleteTables << endl; cout << "Total # of times Rehashed " << m_cbRehash<< endl; cout << "Total # of slots rehashed " << m_cbRehashSlots << endl; cout << "Insert : Probes gt. 8 during rehash " << m_cbInsertProbesGt8 << endl; cout << " Max # of probes for a failed lookup " << maxFailureProbe << endl; cout << "Prime Index " << m_iPrimeIndex << endl; cout << "Current Buckets " << g_rgPrimes[m_iPrimeIndex]+1 << endl; cout << "Total Buckets " << m_cbTotalBuckets << endl; cout << " Lookup Probes " << endl; for (unsigned i = 0; i < HASHTABLE_LOOKUP_PROBES_DATA; i++) { cout << "# Probes:" << i << " #entries:" << m_rgLookupProbes[i] << endl; } cout << "\n--------------------------------------------------" << endl; } #endif // HASHTABLE_PROFILE #endif // !DACCESS_COMPILE #ifdef DACCESS_COMPILE void HashMap::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) { SUPPORTS_DAC; // Assumed to be embedded, so no this enumeration. if (m_rgBuckets.IsValid()) { ULONG32 numBuckets = (ULONG32)GetSize(Buckets()) + 1; DacEnumMemoryRegion(dac_cast(m_rgBuckets), numBuckets * sizeof(Bucket)); for (size_t i = 0; i < numBuckets; i++) { PTR_Bucket bucket = m_rgBuckets + i; if (bucket.IsValid()) { bucket.EnumMem(); } } } } #endif // DACCESS_COMPILE #if 0 // Perf test code, enabled on-demand for private testing. #ifndef DACCESS_COMPILE // This is for testing purposes only! void HashMap::HashMapTest() { printf("HashMap test\n"); const unsigned int MinValue = 2; // Deleted is reserved, and is 1. const unsigned int MinThreshold = 10000; const unsigned int MaxThreshold = 30000; HashMap * table = new HashMap(); Crst m_lock("HashMap", CrstSyncHashLock, CrstFlags(CRST_REENTRANCY | CRST_UNSAFE_ANYMODE)); CrstHolder holder(&m_lock); LockOwner lock = {&m_lock, IsOwnerOfCrst}; table->Init(10, (CompareFnPtr) NULL, false, &lock); for(unsigned int i=MinValue; i < MinThreshold; i++) table->InsertValue(i, i); printf("Added %d values.\n", MinThreshold); //table.DumpStatistics(); LookupPerfTest(table, MinThreshold); INT64 t0 = GetTickCount(); INT64 t1; for(int rep = 0; rep < 10000000; rep++) { for(unsigned int i=MinThreshold; i < MaxThreshold; i++) { table->InsertValue(rep + i, rep + i); } for(unsigned int i=MinThreshold; i < MaxThreshold; i++) { table->DeleteValue(rep + i, rep + i); } for(unsigned int i=MinValue; i < MinThreshold; i++) table->DeleteValue(i, i); for(unsigned int i=MinValue; i < MinThreshold; i++) table->InsertValue(i, i); if (rep % 500 == 0) { t1 = GetTickCount(); printf("Repetition %d, took %d ms\n", rep, (int) (t1-t0)); t0 = t1; LookupPerfTest(table, MinThreshold); //table.DumpStatistics(); } } delete table; } // For testing purposes only. void HashMap::LookupPerfTest(HashMap * table, const unsigned int MinThreshold) { INT64 t0 = GetTickCount(); for(int rep = 0; rep < 1000; rep++) { for(unsigned int i=2; iLookupValue(i, i); if (v != i) { printf("LookupValue didn't return the expected value!"); _ASSERTE(v == i); } } } INT64 t1 = GetTickCount(); for(unsigned int i = MinThreshold * 80; i < MinThreshold * 80 + 1000; i++) table->LookupValue(i, i); //cout << "Lookup perf test (1000 * " << MinThreshold << ": " << (t1-t0) << " ms." << endl; #ifdef HASHTABLE_PROFILE printf("Lookup perf test time: %d ms table size: %d max failure probe: %d longest collision chain: %d\n", (int) (t1-t0), (int) table->GetSize(table->Buckets()), (int) table->maxFailureProbe, (int) table->m_cbMaxCollisionLength); table->DumpStatistics(); #else // !HASHTABLE_PROFILE printf("Lookup perf test time: %d ms table size: %d\n", (int) (t1-t0), table->GetSize(table->Buckets())); #endif // !HASHTABLE_PROFILE } #endif // !DACCESS_COMPILE #endif // 0 // Perf test code, enabled on-demand for private testing.