// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. // // File: generics.cpp // // // Helper functions for generics prototype // // // ============================================================================ #include "common.h" #include "method.hpp" #include "field.h" #include "eeconfig.h" #include "generics.h" #include "genericdict.h" #include "stackprobe.h" #include "typestring.h" #include "typekey.h" #include "dumpcommon.h" #include "array.h" #include "generics.inl" #ifdef FEATURE_COMINTEROP #include "winrttypenameconverter.h" #endif // FEATURE_COMINTEROP /* static */ TypeHandle ClassLoader::CanonicalizeGenericArg(TypeHandle thGenericArg) { CONTRACT(TypeHandle) { NOTHROW; GC_NOTRIGGER; POSTCONDITION(CheckPointer(RETVAL)); } CONTRACT_END #if defined(FEATURE_SHARE_GENERIC_CODE) CorElementType et = thGenericArg.GetSignatureCorElementType(); // Note that generic variables do not share if (CorTypeInfo::IsObjRef_NoThrow(et)) RETURN(TypeHandle(g_pCanonMethodTableClass)); if (et == ELEMENT_TYPE_VALUETYPE) { // Don't share structs. But sharability must be propagated through // them (i.e. struct * shares with struct *) RETURN(TypeHandle(thGenericArg.GetCanonicalMethodTable())); } _ASSERTE(et != ELEMENT_TYPE_PTR && et != ELEMENT_TYPE_FNPTR); RETURN(thGenericArg); #else RETURN (thGenericArg); #endif // FEATURE_SHARE_GENERIC_CODE } // Given the build-time ShareGenericCode setting, is the specified type // representation-sharable as a type parameter to a generic type or method ? /* static */ BOOL ClassLoader::IsSharableInstantiation(Instantiation inst) { CONTRACTL { NOTHROW; GC_NOTRIGGER; FORBID_FAULT; } CONTRACTL_END for (DWORD i = 0; i < inst.GetNumArgs(); i++) { if (CanonicalizeGenericArg(inst[i]).IsCanonicalSubtype()) return TRUE; } return FALSE; } /* static */ BOOL ClassLoader::IsCanonicalGenericInstantiation(Instantiation inst) { CONTRACTL { NOTHROW; GC_NOTRIGGER; FORBID_FAULT; } CONTRACTL_END for (DWORD i = 0; i < inst.GetNumArgs(); i++) { if (CanonicalizeGenericArg(inst[i]) != inst[i]) return FALSE; } return TRUE; } /* static */ BOOL ClassLoader::IsTypicalSharedInstantiation(Instantiation inst) { CONTRACTL { NOTHROW; GC_NOTRIGGER; FORBID_FAULT; } CONTRACTL_END for (DWORD i = 0; i < inst.GetNumArgs(); i++) { if (inst[i] != TypeHandle(g_pCanonMethodTableClass)) return FALSE; } return TRUE; } #ifndef DACCESS_COMPILE TypeHandle ClassLoader::LoadCanonicalGenericInstantiation(TypeKey *pTypeKey, LoadTypesFlag fLoadTypes/*=LoadTypes*/, ClassLoadLevel level/*=CLASS_LOADED*/) { CONTRACT(TypeHandle) { if (FORBIDGC_LOADER_USE_ENABLED()) NOTHROW; else THROWS; if (FORBIDGC_LOADER_USE_ENABLED()) GC_NOTRIGGER; else GC_TRIGGERS; if (FORBIDGC_LOADER_USE_ENABLED() || fLoadTypes != LoadTypes) { LOADS_TYPE(CLASS_LOAD_BEGIN); } else { LOADS_TYPE(level); } POSTCONDITION(CheckPointer(RETVAL, ((fLoadTypes == LoadTypes) ? NULL_NOT_OK : NULL_OK))); POSTCONDITION(RETVAL.IsNull() || RETVAL.CheckLoadLevel(level)); } CONTRACT_END Instantiation inst = pTypeKey->GetInstantiation(); DWORD ntypars = inst.GetNumArgs(); // Canonicalize the type arguments. DWORD dwAllocSize = 0; if (!ClrSafeInt::multiply(ntypars, sizeof(TypeHandle), dwAllocSize)) ThrowHR(COR_E_OVERFLOW); TypeHandle ret = TypeHandle(); DECLARE_INTERIOR_STACK_PROBE; #ifndef DACCESS_COMPILE if ((dwAllocSize/PAGE_SIZE+1) >= 2) { DO_INTERIOR_STACK_PROBE_FOR_NOTHROW_CHECK_THREAD((10+dwAllocSize/PAGE_SIZE+1), NO_FORBIDGC_LOADER_USE_ThrowSO();); } #endif // DACCESS_COMPILE TypeHandle *repInst = (TypeHandle*) _alloca(dwAllocSize); for (DWORD i = 0; i < ntypars; i++) { repInst[i] = ClassLoader::CanonicalizeGenericArg(inst[i]); } // Load the canonical instantiation TypeKey canonKey(pTypeKey->GetModule(), pTypeKey->GetTypeToken(), Instantiation(repInst, ntypars)); ret = ClassLoader::LoadConstructedTypeThrowing(&canonKey, fLoadTypes, level); END_INTERIOR_STACK_PROBE; RETURN(ret); } // Create a non-canonical instantiation of a generic type, by // copying the method table of the canonical instantiation // /* static */ TypeHandle ClassLoader::CreateTypeHandleForNonCanonicalGenericInstantiation( TypeKey *pTypeKey, AllocMemTracker *pamTracker) { CONTRACT(TypeHandle) { STANDARD_VM_CHECK; PRECONDITION(CheckPointer(pTypeKey)); PRECONDITION(CheckPointer(pamTracker)); PRECONDITION(pTypeKey->HasInstantiation()); PRECONDITION(ClassLoader::IsSharableInstantiation(pTypeKey->GetInstantiation())); PRECONDITION(!TypeHandle::IsCanonicalSubtypeInstantiation(pTypeKey->GetInstantiation())); POSTCONDITION(CheckPointer(RETVAL)); POSTCONDITION(RETVAL.CheckMatchesKey(pTypeKey)); } CONTRACT_END Module *pLoaderModule = ClassLoader::ComputeLoaderModule(pTypeKey); LoaderAllocator* pAllocator=pLoaderModule->GetLoaderAllocator(); Instantiation inst = pTypeKey->GetInstantiation(); pAllocator->EnsureInstantiation(pTypeKey->GetModule(), inst); DWORD ntypars = inst.GetNumArgs(); #ifdef _DEBUG if (LoggingOn(LF_CLASSLOADER, LL_INFO1000) || g_pConfig->BreakOnInstantiationEnabled()) { StackSString debugTypeKeyName; TypeString::AppendTypeKeyDebug(debugTypeKeyName, pTypeKey); LOG((LF_CLASSLOADER, LL_INFO1000, "GENERICS: New instantiation requested: %S\n", debugTypeKeyName.GetUnicode())); StackScratchBuffer buf; if (g_pConfig->ShouldBreakOnInstantiation(debugTypeKeyName.GetUTF8(buf))) CONSISTENCY_CHECK_MSGF(false, ("BreakOnInstantiation: typename '%s' ", debugTypeKeyName.GetUTF8(buf))); } #endif // _DEBUG TypeHandle canonType; { OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOAD_APPROXPARENTS); canonType = ClassLoader::LoadCanonicalGenericInstantiation(pTypeKey, ClassLoader::LoadTypes, CLASS_LOAD_APPROXPARENTS); } // Now fabricate a method table MethodTable* pOldMT = canonType.AsMethodTable(); // We only need true vtable entries as the rest can be found in the representative method table WORD cSlots = static_cast(pOldMT->GetNumVirtuals()); BOOL fContainsGenericVariables = MethodTable::ComputeContainsGenericVariables(inst); // These are all copied across from the old MT, i.e. don't depend on the // instantiation. BOOL fHasRemotingVtsInfo = FALSE; BOOL fHasContextStatics = FALSE; BOOL fHasGenericsStaticsInfo = pOldMT->HasGenericsStaticsInfo(); BOOL fHasThreadStatics = (pOldMT->GetNumThreadStaticFields() > 0); #ifdef FEATURE_COMINTEROP BOOL fHasDynamicInterfaceMap = pOldMT->HasDynamicInterfaceMap(); BOOL fHasRCWPerTypeData = pOldMT->HasRCWPerTypeData(); #else // FEATURE_COMINTEROP BOOL fHasDynamicInterfaceMap = FALSE; BOOL fHasRCWPerTypeData = FALSE; #endif // FEATURE_COMINTEROP // Collectible types have some special restrictions if (pAllocator->IsCollectible()) { if (fHasThreadStatics || fHasContextStatics) { ClassLoader::ThrowTypeLoadException(pTypeKey, IDS_CLASSLOAD_COLLECTIBLESPECIALSTATICS); } else if (pOldMT->HasFixedAddressVTStatics()) { ClassLoader::ThrowTypeLoadException(pTypeKey, IDS_CLASSLOAD_COLLECTIBLEFIXEDVTATTR); } } // The number of bytes used for GC info size_t cbGC = pOldMT->ContainsPointers() ? ((CGCDesc*) pOldMT)->GetSize() : 0; // Bytes are required for the vtable itself S_SIZE_T safe_cbMT = S_SIZE_T( cbGC ) + S_SIZE_T( sizeof(MethodTable) ); safe_cbMT += MethodTable::GetNumVtableIndirections(cSlots) * sizeof(PTR_PCODE); if (safe_cbMT.IsOverflow()) { ThrowHR(COR_E_OVERFLOW); } const size_t cbMT = safe_cbMT.Value(); // After the optional members (see below) comes the duplicated interface map. // For dynamic interfaces the interface map area begins one word // before the location returned by GetInterfaceMap() WORD wNumInterfaces = static_cast(pOldMT->GetNumInterfaces()); DWORD cbIMap = pOldMT->GetInterfaceMapSize(); InterfaceInfo_t * pOldIMap = (InterfaceInfo_t *)pOldMT->GetInterfaceMap(); BOOL fHasGuidInfo = FALSE; BOOL fHasCCWTemplate = FALSE; Generics::DetermineCCWTemplateAndGUIDPresenceOnNonCanonicalMethodTable(pOldMT, fContainsGenericVariables, &fHasGuidInfo, &fHasCCWTemplate); DWORD dwMultipurposeSlotsMask = 0; dwMultipurposeSlotsMask |= MethodTable::enum_flag_HasPerInstInfo; if (wNumInterfaces != 0) dwMultipurposeSlotsMask |= MethodTable::enum_flag_HasInterfaceMap; // NonVirtualSlots, DispatchMap and ModuleOverride multipurpose slots are used // from the canonical methodtable, so we do not need to store them here. // We need space for the optional members. DWORD cbOptional = MethodTable::GetOptionalMembersAllocationSize(dwMultipurposeSlotsMask, FALSE, // fHasRemotableMethodInfo fHasGenericsStaticsInfo, fHasGuidInfo, fHasCCWTemplate, fHasRCWPerTypeData, fHasRemotingVtsInfo, fHasContextStatics, pOldMT->HasTokenOverflow()); // We need space for the PerInstInfo, i.e. the generic dictionary pointers... DWORD cbPerInst = sizeof(GenericsDictInfo) + pOldMT->GetPerInstInfoSize(); // Finally we need space for the instantiation/dictionary for this type DWORD cbInstAndDict = pOldMT->GetInstAndDictSize(); // Allocate from the high frequence heap of the correct domain S_SIZE_T allocSize = safe_cbMT; allocSize += cbOptional; allocSize += cbIMap; allocSize += cbPerInst; allocSize += cbInstAndDict; if (allocSize.IsOverflow()) { ThrowHR(COR_E_OVERFLOW); } #ifdef FEATURE_PREJIT Module *pComputedPZM = Module::ComputePreferredZapModule(pTypeKey); BOOL canShareVtableChunks = MethodTable::CanShareVtableChunksFrom(pOldMT, pLoaderModule, pComputedPZM); #else BOOL canShareVtableChunks = MethodTable::CanShareVtableChunksFrom(pOldMT, pLoaderModule); #endif // FEATURE_PREJIT SIZE_T offsetOfUnsharedVtableChunks = allocSize.Value(); // We either share all of the canonical's virtual slots or none of them // If none, we need to allocate space for the slots if (!canShareVtableChunks) { allocSize += S_SIZE_T( cSlots ) * S_SIZE_T( sizeof(PCODE) ); } if (allocSize.IsOverflow()) { ThrowHR(COR_E_OVERFLOW); } BYTE* pMemory = (BYTE *) pamTracker->Track(pAllocator->GetHighFrequencyHeap()->AllocMem( allocSize )); // Head of MethodTable memory MethodTable *pMT = (MethodTable*) (pMemory + cbGC); // Copy of GC memcpy((BYTE*)pMT - cbGC, (BYTE*) pOldMT - cbGC, cbGC); // Allocate the private data block ("private" during runtime in the ngen'ed case) MethodTableWriteableData * pMTWriteableData = (MethodTableWriteableData *) (BYTE *) pamTracker->Track(pAllocator->GetHighFrequencyHeap()->AllocMem(S_SIZE_T(sizeof(MethodTableWriteableData)))); // Note: Memory allocated on loader heap is zero filled pMT->SetWriteableData(pMTWriteableData); // This also disables IBC logging until the type is sufficiently intitialized so // it needs to be done early pMTWriteableData->SetIsNotFullyLoadedForBuildMethodTable(); // this is incredibly fragile. We should just construct the MT all over agin. pMT->CopyFlags(pOldMT); pMT->ClearFlag(MethodTable::enum_flag_MultipurposeSlotsMask); pMT->SetMultipurposeSlotsMask(dwMultipurposeSlotsMask); // Set generics flags pMT->ClearFlag(MethodTable::enum_flag_GenericsMask); pMT->SetFlag(MethodTable::enum_flag_GenericsMask_GenericInst); // Freshly allocated - does not need restore pMT->ClearFlag(MethodTable::enum_flag_IsZapped); pMT->ClearFlag(MethodTable::enum_flag_IsPreRestored); pMT->ClearFlag(MethodTable::enum_flag_HasIndirectParent); // Non non-virtual slots pMT->ClearFlag(MethodTable::enum_flag_HasSingleNonVirtualSlot); pMT->SetBaseSize(pOldMT->GetBaseSize()); pMT->SetParentMethodTable(pOldMT->GetParentMethodTable()); pMT->SetCanonicalMethodTable(pOldMT); pMT->m_wNumInterfaces = pOldMT->m_wNumInterfaces; #ifdef FEATURE_TYPEEQUIVALENCE if (pMT->IsInterface() && !pMT->HasTypeEquivalence()) { // fHasTypeEquivalence flag is "inherited" from generic arguments so we can quickly detect // types like IList where IFoo is an interface with the TypeIdentifierAttribute. for (DWORD i = 0; i < ntypars; i++) { if (inst[i].HasTypeEquivalence()) { pMT->SetHasTypeEquivalence(); break; } } } #endif // FEATURE_TYPEEQUIVALENCE if (pOldMT->IsInterface() && IsImplicitInterfaceOfSZArray(pOldMT)) { // Determine if we are creating an interface methodtable that may be used to dispatch through VSD // on an array object using a generic interface (such as IList). // Please read comments in IsArray block of code:MethodTable::FindDispatchImpl. // // Arrays are special because we use the same method table (object[]) for all arrays of reference // classes (eg string[]). This means that the method table for an array is not a complete description of // the type of the array and thus the target of if something list IList::IndexOf can not be determined // simply by looking at the method table of T[] (which might be the method table of object[], if T is a // reference type). // // This is done to minimize MethodTables, but as a side-effect of this optimization, // we end up using a domain-shared type (object[]) with a domain-specific dispatch token. // This is a problem because the same domain-specific dispatch token value can appear in // multiple unshared domains (VSD takes advantage of the fact that in general a shared type // cannot implement an unshared interface). This means that the same pair // value can mean different things in different domains (since the token could represent // IList in one domain and IEnumerable in another). This is a problem because the // VSD polymorphic lookup mechanism relies on a process-wide cache table, and as a result // these duplicate values would collide if we didn't use fat dispatch token to ensure uniqueness // and the interface methodtable is not in the shared domain. // // Of note: there is also some interesting array-specific behaviour where if B inherits from A // and you have an array of B (B[]) then B[] implements IList and IList, but a dispatch // on an IList reference results in a dispatch to SZArrayHelper rather than // SZArrayHelper (i.e., the variance implemention is not done like virtual methods). // // For example If Sub inherits from Super inherits from Object, then // * Sub[] implements IList // * Sub[] implements IList // // And as a result we have the following mappings: // * IList::IndexOf for Sub[] goes to SZArrayHelper::IndexOf // * IList::IndexOf for Sub[] goes to SZArrayHelper::IndexOf // pMT->SetRequiresFatDispatchTokens(); } // Number of slots only includes vtable slots pMT->SetNumVirtuals(cSlots); // Fill out the vtable indirection slots MethodTable::VtableIndirectionSlotIterator it = pMT->IterateVtableIndirectionSlots(); while (it.Next()) { if (canShareVtableChunks) { // Share the canonical chunk it.SetIndirectionSlot(pOldMT->GetVtableIndirections()[it.GetIndex()]); } else { // Use the locally allocated chunk it.SetIndirectionSlot((PTR_PCODE)(pMemory+offsetOfUnsharedVtableChunks)); offsetOfUnsharedVtableChunks += it.GetSize(); } } // If we are not sharing parent chunks, copy down the slot contents if (!canShareVtableChunks) { // Need to assign the slots one by one to filter out jump thunks for (DWORD i = 0; i < cSlots; i++) { pMT->SetSlot(i, pOldMT->GetRestoredSlot(i)); } } // All flags on m_pNgenPrivateData data apart // are initially false for a dynamically generated instantiation. // // Last time this was checked this included // enum_flag_RemotingConfigChecked // enum_flag_RequiresManagedActivation // enum_flag_Unrestored // enum_flag_CriticalTypePrepared #ifdef FEATURE_PREJIT // enum_flag_NGEN_IsFixedUp // enum_flag_NGEN_NeedsRestoreCached // enum_flag_NGEN_NeedsRestore #endif // FEATURE_PREJIT if (pOldMT->RequiresManagedActivation()) { // Will also set enum_flag_RemotingConfigChecked pMT->SetRequiresManagedActivation(); } if (fContainsGenericVariables) pMT->SetContainsGenericVariables(); if (fHasGenericsStaticsInfo) pMT->SetDynamicStatics(TRUE); #ifdef FEATURE_COMINTEROP if (fHasCCWTemplate) pMT->SetHasCCWTemplate(); if (fHasGuidInfo) pMT->SetHasGuidInfo(); #endif // Since we are fabricating a new MT based on an existing one, the per-inst info should // be non-null _ASSERTE(pOldMT->HasPerInstInfo()); // Fill in per-inst map pointer (which points to the array of generic dictionary pointers) pMT->SetPerInstInfo ((Dictionary**) (pMemory + cbMT + cbOptional + cbIMap + sizeof(GenericsDictInfo))); _ASSERTE(FitsIn(pOldMT->GetNumDicts())); _ASSERTE(FitsIn(pOldMT->GetNumGenericArgs())); pMT->SetDictInfo(static_cast(pOldMT->GetNumDicts()), static_cast(pOldMT->GetNumGenericArgs())); // Fill in the last entry in the array of generic dictionary pointers ("per inst info") // The others are filled in by LoadExactParents which copied down any inherited generic // dictionary pointers. Dictionary * pDict = (Dictionary*) (pMemory + cbMT + cbOptional + cbIMap + cbPerInst); *(pMT->GetPerInstInfo() + (pOldMT->GetNumDicts()-1)) = pDict; // Fill in the instantiation section of the generic dictionary. The remainder of the // generic dictionary will be zeroed, which is the correct initial state. TypeHandle * pInstDest = (TypeHandle *)pDict->GetInstantiation(); for (DWORD iArg = 0; iArg < ntypars; iArg++) { pInstDest[iArg] = inst[iArg]; } // Copy interface map across InterfaceInfo_t * pInterfaceMap = (InterfaceInfo_t *)(pMemory + cbMT + cbOptional + (fHasDynamicInterfaceMap ? sizeof(DWORD_PTR) : 0)); #ifdef FEATURE_COMINTEROP // Extensible RCW's are prefixed with the count of dynamic interfaces. if (fHasDynamicInterfaceMap) { *(((DWORD_PTR *)pInterfaceMap) - 1) = 0; } #endif // FEATURE_COMINTEROP for (WORD iItf = 0; iItf < wNumInterfaces; iItf++) { OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOAD_APPROXPARENTS); pInterfaceMap[iItf].SetMethodTable(pOldIMap[iItf].GetApproxMethodTable(pOldMT->GetLoaderModule())); } // Set the interface map pointer stored in the main section of the vtable (actually // an optional member) to point to the correct region within the newly // allocated method table. // Fill in interface map pointer pMT->SetInterfaceMap(wNumInterfaces, pInterfaceMap); // Copy across extra flags for these interfaces as well. We may need additional memory for this. PVOID pExtraInterfaceInfo = NULL; SIZE_T cbExtraInterfaceInfo = MethodTable::GetExtraInterfaceInfoSize(wNumInterfaces); if (cbExtraInterfaceInfo) pExtraInterfaceInfo = pamTracker->Track(pAllocator->GetLowFrequencyHeap()->AllocMem(S_SIZE_T(cbExtraInterfaceInfo))); // Call this even in the case where pExtraInterfaceInfo == NULL (certain cases are optimized and don't // require extra buffer space). pMT->InitializeExtraInterfaceInfo(pExtraInterfaceInfo); for (UINT32 i = 0; i < pOldMT->GetNumInterfaces(); i++) { if (pOldMT->IsInterfaceDeclaredOnClass(i)) pMT->SetInterfaceDeclaredOnClass(i); } pMT->SetLoaderModule(pLoaderModule); pMT->SetLoaderAllocator(pAllocator); #ifdef _DEBUG // Name for debugging StackSString debug_ClassNameString; TypeString::AppendTypeKey(debug_ClassNameString, pTypeKey, TypeString::FormatNamespace | TypeString::FormatAngleBrackets | TypeString::FormatFullInst); StackScratchBuffer debug_ClassNameBuffer; const char *debug_szClassNameBuffer = debug_ClassNameString.GetUTF8(debug_ClassNameBuffer); S_SIZE_T safeLen = S_SIZE_T(strlen(debug_szClassNameBuffer)) + S_SIZE_T(1); if (safeLen.IsOverflow()) COMPlusThrowHR(COR_E_OVERFLOW); size_t len = safeLen.Value(); char *debug_szClassName = (char *)pamTracker->Track(pAllocator->GetLowFrequencyHeap()->AllocMem(safeLen)); strcpy_s(debug_szClassName, len, debug_szClassNameBuffer); pMT->SetDebugClassName(debug_szClassName); // Debugging information if (pOldMT->Debug_HasInjectedInterfaceDuplicates()) pMT->Debug_SetHasInjectedInterfaceDuplicates(); #endif // _DEBUG // This logic is identical to logic in class.cpp. Factor these out. // No need to generate IDs for open types. However // we still leave the optional member in the MethodTable holding the value -1 for the ID. if (fHasGenericsStaticsInfo) { FieldDesc* pStaticFieldDescs = NULL; if (pOldMT->GetNumStaticFields() != 0) { pStaticFieldDescs = (FieldDesc*) pamTracker->Track(pAllocator->GetLowFrequencyHeap()->AllocMem(S_SIZE_T(sizeof(FieldDesc)) * S_SIZE_T(pOldMT->GetNumStaticFields()))); FieldDesc* pOldFD = pOldMT->GetGenericsStaticFieldDescs(); g_IBCLogger.LogFieldDescsAccess(pOldFD); for (DWORD i = 0; i < pOldMT->GetNumStaticFields(); i++) { pStaticFieldDescs[i] = pOldFD[i]; pStaticFieldDescs[i].SetMethodTable(pMT); } } pMT->SetupGenericsStaticsInfo(pStaticFieldDescs); } // VTS info doesn't depend on the exact instantiation but we make a copy // anyway since we can't currently deal with the possibility of having a // cross module pointer to the data block. Eventually we might be able to // tokenize this reference, but determine first whether there's enough // performance degradation to justify the extra complexity. pMT->SetCl(pOldMT->GetCl()); // Check we've set up the flags correctly on the new method table _ASSERTE(!fContainsGenericVariables == !pMT->ContainsGenericVariables()); _ASSERTE(!fHasGenericsStaticsInfo == !pMT->HasGenericsStaticsInfo()); _ASSERTE(!pLoaderModule->GetAssembly()->IsDomainNeutral() == !pMT->IsDomainNeutral()); #ifdef FEATURE_COMINTEROP _ASSERTE(!fHasDynamicInterfaceMap == !pMT->HasDynamicInterfaceMap()); _ASSERTE(!fHasRCWPerTypeData == !pMT->HasRCWPerTypeData()); _ASSERTE(!fHasCCWTemplate == !pMT->HasCCWTemplate()); _ASSERTE(!fHasGuidInfo == !pMT->HasGuidInfo()); #endif LOG((LF_CLASSLOADER, LL_INFO1000, "GENERICS: Replicated methodtable to create type %s\n", pMT->GetDebugClassName())); #ifdef _DEBUG if (g_pConfig->ShouldDumpOnClassLoad(debug_szClassName)) { LOG((LF_ALWAYS, LL_ALWAYS, "Method table summary for '%s' (instantiation):\n", pMT->GetDebugClassName())); pMT->Debug_DumpInterfaceMap("Approximate"); } #endif //_DEBUG #ifdef FEATURE_PREJIT _ASSERTE(pComputedPZM == Module::GetPreferredZapModuleForMethodTable(pMT)); #endif //FEATURE_PREJIT // We never have non-virtual slots in this method table (set SetNumVtableSlots and SetNumVirtuals above) _ASSERTE(!pMT->HasNonVirtualSlots()); pMTWriteableData->SetIsRestoredForBuildMethodTable(); RETURN(TypeHandle(pMT)); } // ClassLoader::CreateTypeHandleForNonCanonicalGenericInstantiation namespace Generics { BOOL CheckInstantiation(Instantiation inst) { CONTRACTL { NOTHROW; GC_NOTRIGGER; } CONTRACTL_END for (DWORD i = 0; i < inst.GetNumArgs(); i++) { TypeHandle th = inst[i]; if (th.IsNull()) { return FALSE; } CorElementType type = th.GetSignatureCorElementType(); if (CorTypeInfo::IsGenericVariable_NoThrow(type)) { return TRUE; } g_IBCLogger.LogTypeMethodTableAccess(&th); if ( type == ELEMENT_TYPE_BYREF || type == ELEMENT_TYPE_TYPEDBYREF || type == ELEMENT_TYPE_VOID || type == ELEMENT_TYPE_PTR || type == ELEMENT_TYPE_FNPTR) { return FALSE; } MethodTable* pMT = th.GetMethodTable(); if (pMT != NULL) { if (pMT->IsByRefLike()) { return FALSE; } } } return TRUE; } // Just records the owner and links to the previous graph. RecursionGraph::RecursionGraph(RecursionGraph *pPrev, TypeHandle thOwner) { LIMITED_METHOD_CONTRACT; m_pPrev = pPrev; m_thOwner = thOwner; m_pNodes = NULL; } RecursionGraph::~RecursionGraph() { WRAPPER_NO_CONTRACT; if (m_pNodes != NULL) delete [] m_pNodes; } // Adds edges generated by the parent and implemented interfaces; returns TRUE iff // an expanding cycle was found. BOOL RecursionGraph::CheckForIllegalRecursion() { CONTRACTL { THROWS; GC_TRIGGERS; PRECONDITION(!m_thOwner.IsTypeDesc()); } CONTRACTL_END; MethodTable *pMT = m_thOwner.AsMethodTable(); Instantiation inst = pMT->GetInstantiation(); // Initialize the node array. m_pNodes = new Node[inst.GetNumArgs()]; for (DWORD i = 0; i < inst.GetNumArgs(); i++) { m_pNodes[i].SetSourceVar(inst[i].AsGenericVariable()); } // Record edges generated by inheriting from the parent. MethodTable *pParentMT = pMT->GetParentMethodTable(); if (pParentMT) { AddDependency(pParentMT); } // Record edges generated by implementing interfaces. MethodTable::InterfaceMapIterator it = pMT->IterateInterfaceMap(); while (it.Next()) { AddDependency(it.GetInterface()); } // Check all owned nodes for expanding cycles. The edges recorded above must all // go from owned nodes so it suffices to look only at these. for (DWORD i = 0; i < inst.GetNumArgs(); i++) { if (HasExpandingCycle(&m_pNodes[i], &m_pNodes[i])) return TRUE; } return FALSE; } // Returns TRUE iff the given type is already on the stack (in fact an analogue of // code:TypeHandleList::Exists). // // static BOOL RecursionGraph::HasSeenType(RecursionGraph *pDepGraph, TypeHandle thType) { LIMITED_METHOD_CONTRACT; while (pDepGraph != NULL) { if (pDepGraph->m_thOwner == thType) return TRUE; pDepGraph = pDepGraph->m_pPrev; } return FALSE; } // Adds the specified MT as a dependency (parent or interface) of the owner. void RecursionGraph::AddDependency(MethodTable *pMT, TypeHandleList *pExpansionVars /*= NULL*/) { CONTRACTL { THROWS; GC_TRIGGERS; PRECONDITION(pMT != NULL); } CONTRACTL_END // ECMA: // - If T appears as the actual type argument to be substituted for U in some referenced // type D<..., U, ...> add a non-expanding (->) edge from T to U. // - If T appears somewhere inside (but not as) the actual type argument to be substituted // for U in referenced type D<..., U, ...> add an expanding (=>) edge from T to U. // Non-generic dependencies are not interesting. if (!pMT->HasInstantiation()) return; // Get the typical instantiation of pMT to figure out its type vars. TypeHandle thTypical = ClassLoader::LoadTypeDefThrowing( pMT->GetModule(), pMT->GetCl(), ClassLoader::ThrowIfNotFound, ClassLoader::PermitUninstDefOrRef, tdNoTypes, CLASS_LOAD_APPROXPARENTS); Instantiation inst = pMT->GetInstantiation(); Instantiation typicalInst = thTypical.GetInstantiation(); _ASSERTE(inst.GetNumArgs() == typicalInst.GetNumArgs()); for (DWORD i = 0; i < inst.GetNumArgs(); i++) { TypeHandle thArg = inst[i]; TypeHandle thVar = typicalInst[i]; if (thArg.IsGenericVariable()) { // Add a non-expanding edge from thArg to i-th generic parameter of pMT. AddEdge(thArg.AsGenericVariable(), thVar.AsGenericVariable(), FALSE); // Process the backlog. TypeHandle thTo; TypeHandleList *pList = pExpansionVars; while (TypeHandleList::GetNext(&pList, &thTo)) { AddEdge(thArg.AsGenericVariable(), thTo.AsGenericVariable(), TRUE); } } else { while (thArg.IsTypeDesc()) { _ASSERTE(thArg.HasTypeParam()); thArg = (static_cast(thArg.AsTypeDesc()))->GetModifiedType(); if (thArg.IsGenericVariable()) // : A { // Add an expanding edge from thArg to i-th parameter of pMT. AddEdge(thArg.AsGenericVariable(), thVar.AsGenericVariable(), TRUE); break; } } if (!thArg.IsTypeDesc()) // : A> { // We will add an expanding edge but we do not yet know from which variable(s). // Add the to-variable to the list and call recursively to inspect thArg's // instantiation. TypeHandleList newExpansionVars(thVar, pExpansionVars); AddDependency(thArg.AsMethodTable(), &newExpansionVars); } } } } // Add an edge from pFromVar to pToVar - either non-expanding or expanding. void RecursionGraph::AddEdge(TypeVarTypeDesc *pFromVar, TypeVarTypeDesc *pToVar, BOOL fExpanding) { CONTRACTL { THROWS; GC_NOTRIGGER; PRECONDITION(pFromVar != NULL); PRECONDITION(pToVar != NULL); } CONTRACTL_END LOG((LF_CLASSLOADER, LL_INFO10000, "GENERICS: Adding %s edge: from %x(0x%x) to %x(0x%x) into recursion graph owned by MT: %x\n", (fExpanding ? "EXPANDING" : "NON-EXPANDING"), pFromVar->GetToken(), pFromVar->GetModule(), pToVar->GetToken(), pToVar->GetModule(), m_thOwner.AsMethodTable())); // Get the source node. Node *pNode = &m_pNodes[pFromVar->GetIndex()]; _ASSERTE(pFromVar == pNode->GetSourceVar()); // Add the edge. ULONG_PTR edge = (ULONG_PTR)pToVar; if (fExpanding) edge |= Node::EDGE_EXPANDING_FLAG; IfFailThrow(pNode->GetEdges()->Append((void *)edge)); } // Recursive worker that checks whether this node is part of an expanding cycle. BOOL RecursionGraph::HasExpandingCycle(Node *pCurrentNode, Node *pStartNode, BOOL fExpanded /*= FALSE*/) { CONTRACTL { NOTHROW; GC_NOTRIGGER; PRECONDITION(CheckPointer(pCurrentNode)); PRECONDITION(CheckPointer(pStartNode)); } CONTRACTL_END; // This method performs a modified DFS. We are not looking for any cycle but for a cycle // which has at least one expanding edge. Therefore we: // 1) Pass aroung the fExpanded flag to indicate that we've seen an expanding edge. // 2) Explicitly check for returning to the starting point rather an arbitrary visited node. // Did we just find the cycle? if (fExpanded && pCurrentNode == pStartNode) return TRUE; // Have we been here before or is this a dead end? if (pCurrentNode->IsVisited() || pCurrentNode->GetEdges()->GetCount() == 0) return FALSE; pCurrentNode->SetVisited(); ArrayList::Iterator iter = pCurrentNode->GetEdges()->Iterate(); while (iter.Next()) { ULONG_PTR edge = (ULONG_PTR)iter.GetElement(); BOOL fExpanding = (edge & Node::EDGE_EXPANDING_FLAG); TypeVarTypeDesc *pToVar = (TypeVarTypeDesc *)(edge & ~Node::EDGE_EXPANDING_FLAG); unsigned int dwIndex = pToVar->GetIndex(); Node *pNode = NULL; RecursionGraph *pGraph = this; // Find the destination node. do { if (pGraph->m_pNodes != NULL && dwIndex < pGraph->m_thOwner.GetNumGenericArgs() && pGraph->m_pNodes[dwIndex].GetSourceVar() == pToVar) { pNode = &pGraph->m_pNodes[dwIndex]; break; } pGraph = pGraph->m_pPrev; } while (pGraph != NULL); if (pNode != NULL) { // The new path is expanding if it was expanding already or if the edge we follow is expanding. if (HasExpandingCycle(pNode, pStartNode, fExpanded || fExpanding)) return TRUE; } } pCurrentNode->ClearVisited(); return FALSE; } } // namespace Generics #endif // !DACCESS_COMPILE namespace Generics { /* * GetExactInstantiationsOfMethodAndItsClassFromCallInformation * * This routine takes in the various pieces of information of a call site to managed code * and returns the exact instatiations for the method and the class on which the method is defined. * * Parameters: * pRepMethod - A MethodDesc to the representative instantiation method. * pThis - The OBJECTREF that is being passed to pRepMethod. * pParamTypeArg - The extra argument passed to pRepMethod when pRepMethod is either * RequiresInstMethodTableArg() or RequiresInstMethodDescArg(). * pSpecificClass - A pointer to a TypeHandle for storing the exact instantiation * of the class on which pRepMethod is defined, based on the call information * pSpecificMethod - A pointer to a MethodDesc* for storing the exact instantiation * of pRepMethod, based on the call information * * Returns: * TRUE if successful. * FALSE if could not get the exact TypeHandle & MethodDesc requested. In this case, * the SpecificClass may be correct, iff the class is not a generic class. * */ BOOL GetExactInstantiationsOfMethodAndItsClassFromCallInformation( /* in */ MethodDesc *pRepMethod, /* in */ OBJECTREF pThis, /* in */ PTR_VOID pParamTypeArg, /* out*/ TypeHandle *pSpecificClass, /* out*/ MethodDesc** pSpecificMethod ) { CONTRACTL { NOTHROW; GC_NOTRIGGER; SO_TOLERANT; CANNOT_TAKE_LOCK; PRECONDITION(CheckPointer(pRepMethod)); SUPPORTS_DAC; } CONTRACTL_END; PTR_VOID pExactGenericArgsToken = NULL; if (pRepMethod->AcquiresInstMethodTableFromThis()) { if (pThis != NULL) { // We could be missing the memory from a dump, or the target could have simply been corrupted. ALLOW_DATATARGET_MISSING_MEMORY( pExactGenericArgsToken = dac_cast(pThis->GetMethodTable()); ); } } else { pExactGenericArgsToken = pParamTypeArg; } return GetExactInstantiationsOfMethodAndItsClassFromCallInformation(pRepMethod, pExactGenericArgsToken, pSpecificClass, pSpecificMethod); } BOOL GetExactInstantiationsOfMethodAndItsClassFromCallInformation( /* in */ MethodDesc *pRepMethod, /* in */ PTR_VOID pExactGenericArgsToken, /* out*/ TypeHandle *pSpecificClass, /* out*/ MethodDesc** pSpecificMethod ) { CONTRACTL { NOTHROW; GC_NOTRIGGER; SO_TOLERANT; CANNOT_TAKE_LOCK; PRECONDITION(CheckPointer(pRepMethod)); SUPPORTS_DAC; } CONTRACTL_END; // // Start with some decent default values. // MethodDesc * pMD = pRepMethod; MethodTable * pMT = pRepMethod->GetMethodTable(); *pSpecificMethod = pMD; *pSpecificClass = pMT; if (!pRepMethod->IsSharedByGenericInstantiations()) { return TRUE; } if (pExactGenericArgsToken == NULL) { return FALSE; } BOOL retVal = FALSE; // The following target memory reads will not necessarily succeed against dumps, and will throw on failure. EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY { if (pRepMethod->RequiresInstMethodTableArg()) { pMT = dac_cast(pExactGenericArgsToken); retVal = TRUE; } else if (pRepMethod->RequiresInstMethodDescArg()) { pMD = dac_cast(pExactGenericArgsToken); pMT = pMD->GetMethodTable(); retVal = TRUE; } else if (pRepMethod->AcquiresInstMethodTableFromThis()) { // The exact token might actually be a child class of the class containing // the specified function so walk up the parent chain to make sure we return // an exact instantiation of the CORRECT parent class. pMT = pMD->GetExactDeclaringType(dac_cast(pExactGenericArgsToken)); _ASSERTE(pMT != NULL); retVal = TRUE; } else { _ASSERTE(!"Should not happen."); } } EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY *pSpecificMethod = pMD; *pSpecificClass = pMT; return retVal; } } // namespace Generics;