; Licensed to the .NET Foundation under one or more agreements. ; The .NET Foundation licenses this file to you under the MIT license. ; See the LICENSE file in the project root for more information. ;; ==++== ;; ;; ;; ==--== #include "ksarm64.h" #include "asmconstants.h" #include "asmmacros.h" #ifdef FEATURE_PREJIT IMPORT VirtualMethodFixupWorker IMPORT StubDispatchFixupWorker #endif IMPORT ExternalMethodFixupWorker IMPORT PreStubWorker IMPORT NDirectImportWorker IMPORT VSD_ResolveWorker IMPORT JIT_InternalThrow IMPORT ComPreStubWorker IMPORT COMToCLRWorker IMPORT CallDescrWorkerUnwindFrameChainHandler IMPORT UMEntryPrestubUnwindFrameChainHandler IMPORT UMThunkStubUnwindFrameChainHandler IMPORT TheUMEntryPrestubWorker IMPORT CreateThreadBlockThrow IMPORT UMThunkStubRareDisableWorker IMPORT GetCurrentSavedRedirectContext IMPORT LinkFrameAndThrow IMPORT FixContextHandler IMPORT OnHijackWorker #ifdef FEATURE_READYTORUN IMPORT DynamicHelperWorker #endif IMPORT ObjIsInstanceOfNoGC IMPORT ArrayStoreCheck SETALIAS g_pObjectClass, ?g_pObjectClass@@3PEAVMethodTable@@EA IMPORT $g_pObjectClass #ifdef FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP IMPORT g_sw_ww_table #endif IMPORT g_ephemeral_low IMPORT g_ephemeral_high IMPORT g_lowest_address IMPORT g_highest_address IMPORT g_card_table IMPORT g_TrapReturningThreads IMPORT g_dispatch_cache_chain_success_counter #ifdef WRITE_BARRIER_CHECK SETALIAS g_GCShadow, ?g_GCShadow@@3PEAEEA SETALIAS g_GCShadowEnd, ?g_GCShadowEnd@@3PEAEEA IMPORT g_lowest_address IMPORT $g_GCShadow IMPORT $g_GCShadowEnd #endif // WRITE_BARRIER_CHECK IMPORT JIT_GetSharedNonGCStaticBase_Helper IMPORT JIT_GetSharedGCStaticBase_Helper #ifdef FEATURE_COMINTEROP IMPORT CLRToCOMWorker #endif // FEATURE_COMINTEROP TEXTAREA ;; LPVOID __stdcall GetCurrentIP(void); LEAF_ENTRY GetCurrentIP mov x0, lr ret lr LEAF_END ;; LPVOID __stdcall GetCurrentSP(void); LEAF_ENTRY GetCurrentSP mov x0, sp ret lr LEAF_END ;;----------------------------------------------------------------------------- ;; This routine captures the machine state. It is used by helper method frame ;;----------------------------------------------------------------------------- ;;void LazyMachStateCaptureState(struct LazyMachState *pState); LEAF_ENTRY LazyMachStateCaptureState ;; marks that this is not yet valid mov w1, #0 str w1, [x0, #MachState__isValid] str lr, [x0, #LazyMachState_captureIp] ;; str instruction does not save sp register directly so move to temp register mov x1, sp str x1, [x0, #LazyMachState_captureSp] ;; save non-volatile registers that can contain object references add x1, x0, #LazyMachState_captureX19_X29 stp x19, x20, [x1, #(16*0)] stp x21, x22, [x1, #(16*1)] stp x23, x24, [x1, #(16*2)] stp x25, x26, [x1, #(16*3)] stp x27, x28, [x1, #(16*4)] str x29, [x1, #(16*5)] ret lr LEAF_END ; ; If a preserved register were pushed onto the stack between ; the managed caller and the H_M_F, ptrX19_X29 will point to its ; location on the stack and it would have been updated on the ; stack by the GC already and it will be popped back into the ; appropriate register when the appropriate epilog is run. ; ; Otherwise, the register is preserved across all the code ; in this HCALL or FCALL, so we need to update those registers ; here because the GC will have updated our copies in the ; frame. ; ; So, if ptrX19_X29 points into the MachState, we need to update ; the register here. That's what this macro does. ; MACRO RestoreRegMS $regIndex, $reg ; Incoming: ; ; x0 = address of MachState ; ; $regIndex: Index of the register (x19-x29). For x19, index is 19. ; For x20, index is 20, and so on. ; ; $reg: Register name (e.g. x19, x20, etc) ; ; Get the address of the specified captured register from machine state add x2, x0, #(MachState__captureX19_X29 + (($regIndex-19)*8)) ; Get the content of specified preserved register pointer from machine state ldr x3, [x0, #(MachState__ptrX19_X29 + (($regIndex-19)*8))] cmp x2, x3 bne %FT0 ldr $reg, [x2] 0 MEND ; EXTERN_C int __fastcall HelperMethodFrameRestoreState( ; INDEBUG_COMMA(HelperMethodFrame *pFrame) ; MachState *pState ; ) LEAF_ENTRY HelperMethodFrameRestoreState #ifdef _DEBUG mov x0, x1 #endif ; If machine state is invalid, then simply exit ldr w1, [x0, #MachState__isValid] cmp w1, #0 beq Done RestoreRegMS 19, X19 RestoreRegMS 20, X20 RestoreRegMS 21, X21 RestoreRegMS 22, X22 RestoreRegMS 23, X23 RestoreRegMS 24, X24 RestoreRegMS 25, X25 RestoreRegMS 26, X26 RestoreRegMS 27, X27 RestoreRegMS 28, X28 RestoreRegMS 29, X29 Done ; Its imperative that the return value of HelperMethodFrameRestoreState is zero ; as it is used in the state machine to loop until it becomes zero. ; Refer to HELPER_METHOD_FRAME_END macro for details. mov x0,#0 ret lr LEAF_END ; ------------------------------------------------------------------ ; The call in ndirect import precode points to this function. NESTED_ENTRY NDirectImportThunk PROLOG_SAVE_REG_PAIR fp, lr, #-224! SAVE_ARGUMENT_REGISTERS sp, 16 SAVE_FLOAT_ARGUMENT_REGISTERS sp, 96 mov x0, x12 bl NDirectImportWorker mov x12, x0 ; pop the stack and restore original register state RESTORE_FLOAT_ARGUMENT_REGISTERS sp, 96 RESTORE_ARGUMENT_REGISTERS sp, 16 EPILOG_RESTORE_REG_PAIR fp, lr, #224! ; If we got back from NDirectImportWorker, the MD has been successfully ; linked. Proceed to execute the original DLL call. EPILOG_BRANCH_REG x12 NESTED_END ; ------------------------------------------------------------------ ; The call in fixup precode initally points to this function. ; The pupose of this function is to load the MethodDesc and forward the call to prestub. NESTED_ENTRY PrecodeFixupThunk ; x12 = FixupPrecode * ; On Exit ; x12 = MethodDesc* ; x13, x14 Trashed ; Inline computation done by FixupPrecode::GetMethodDesc() ldrb w13, [x12, #Offset_PrecodeChunkIndex] ; m_PrecodeChunkIndex ldrb w14, [x12, #Offset_MethodDescChunkIndex] ; m_MethodDescChunkIndex add x12,x12,w13,uxtw #FixupPrecode_ALIGNMENT_SHIFT_1 add x13,x12,w13,uxtw #FixupPrecode_ALIGNMENT_SHIFT_2 ldr x13, [x13,#SIZEOF__FixupPrecode] add x12,x13,w14,uxtw #MethodDesc_ALIGNMENT_SHIFT b ThePreStub NESTED_END ; ------------------------------------------------------------------ NESTED_ENTRY ThePreStub PROLOG_WITH_TRANSITION_BLOCK add x0, sp, #__PWTB_TransitionBlock ; pTransitionBlock mov x1, METHODDESC_REGISTER ; pMethodDesc bl PreStubWorker mov x9, x0 EPILOG_WITH_TRANSITION_BLOCK_TAILCALL EPILOG_BRANCH_REG x9 NESTED_END ;; ------------------------------------------------------------------ ;; ThePreStubPatch() LEAF_ENTRY ThePreStubPatch nop ThePreStubPatchLabel EXPORT ThePreStubPatchLabel ret lr LEAF_END ;----------------------------------------------------------------------------- ; The following Macros help in WRITE_BARRIER Implemetations ; WRITE_BARRIER_ENTRY ; ; Declare the start of a write barrier function. Use similarly to NESTED_ENTRY. This is the only legal way ; to declare a write barrier function. ; MACRO WRITE_BARRIER_ENTRY $name LEAF_ENTRY $name MEND ; WRITE_BARRIER_END ; ; The partner to WRITE_BARRIER_ENTRY, used like NESTED_END. ; MACRO WRITE_BARRIER_END $__write_barrier_name LEAF_END_MARKED $__write_barrier_name MEND ; ------------------------------------------------------------------ ; Start of the writeable code region LEAF_ENTRY JIT_PatchedCodeStart ret lr LEAF_END ;----------------------------------------------------------------------------- ; void JIT_UpdateWriteBarrierState(bool skipEphemeralCheck) ; ; Update shadow copies of the various state info required for barrier ; ; State info is contained in a literal pool at the end of the function ; Placed in text section so that it is close enough to use ldr literal and still ; be relocatable. Eliminates need for PREPARE_EXTERNAL_VAR in hot code. ; ; Align and group state info together so it fits in a single cache line ; and each entry can be written atomically ; WRITE_BARRIER_ENTRY JIT_UpdateWriteBarrierState PROLOG_SAVE_REG_PAIR fp, lr, #-16! ; x0-x7 will contain intended new state ; x8 will preserve skipEphemeralCheck ; x12 will be used for pointers mov x8, x0 adrp x12, g_card_table ldr x0, [x12, g_card_table] #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES adrp x12, g_card_bundle_table ldr x1, [x12, g_card_bundle_table] #endif #ifdef WRITE_BARRIER_CHECK adrp x12, $g_GCShadow ldr x2, [x12, $g_GCShadow] #endif #ifdef FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP adrp x12, g_sw_ww_table ldr x3, [x12, g_sw_ww_table] #endif adrp x12, g_ephemeral_low ldr x4, [x12, g_ephemeral_low] adrp x12, g_ephemeral_high ldr x5, [x12, g_ephemeral_high] ; Check skipEphemeralCheck cbz x8, EphemeralCheckEnabled movz x4, #0 movn x5, #0 EphemeralCheckEnabled adrp x12, g_lowest_address ldr x6, [x12, g_lowest_address] adrp x12, g_highest_address ldr x7, [x12, g_highest_address] ; Update wbs state adr x12, wbs_begin stp x0, x1, [x12], 16 stp x2, x3, [x12], 16 stp x4, x5, [x12], 16 stp x6, x7, [x12], 16 EPILOG_RESTORE_REG_PAIR fp, lr, #16! EPILOG_RETURN ; Begin patchable literal pool ALIGN 64 ; Align to power of two at least as big as patchable literal pool so that it fits optimally in cache line wbs_begin wbs_card_table DCQ 0 wbs_card_bundle_table DCQ 0 wbs_GCShadow DCQ 0 wbs_sw_ww_table DCQ 0 wbs_ephemeral_low DCQ 0 wbs_ephemeral_high DCQ 0 wbs_lowest_address DCQ 0 wbs_highest_address DCQ 0 WRITE_BARRIER_END JIT_UpdateWriteBarrierState ; ------------------------------------------------------------------ ; End of the writeable code region LEAF_ENTRY JIT_PatchedCodeLast ret lr LEAF_END ; void JIT_ByRefWriteBarrier ; On entry: ; x13 : the source address (points to object reference to write) ; x14 : the destination address (object reference written here) ; ; On exit: ; x12 : trashed ; x13 : incremented by 8 ; x14 : incremented by 8 ; x15 : trashed ; x17 : trashed (ip1) if FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP ; WRITE_BARRIER_ENTRY JIT_ByRefWriteBarrier ldr x15, [x13], 8 b JIT_CheckedWriteBarrier WRITE_BARRIER_END JIT_ByRefWriteBarrier ;----------------------------------------------------------------------------- ; Simple WriteBarriers ; void JIT_CheckedWriteBarrier(Object** dst, Object* src) ; On entry: ; x14 : the destination address (LHS of the assignment) ; x15 : the object reference (RHS of the assignment) ; ; On exit: ; x12 : trashed ; x14 : incremented by 8 ; x15 : trashed ; x17 : trashed (ip1) if FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP ; WRITE_BARRIER_ENTRY JIT_CheckedWriteBarrier ldr x12, wbs_lowest_address cmp x14, x12 ldr x12, wbs_highest_address ccmphs x14, x12, #0x2 blo JIT_WriteBarrier NotInHeap str x15, [x14], 8 ret lr WRITE_BARRIER_END JIT_CheckedWriteBarrier ; void JIT_WriteBarrier(Object** dst, Object* src) ; On entry: ; x14 : the destination address (LHS of the assignment) ; x15 : the object reference (RHS of the assignment) ; ; On exit: ; x12 : trashed ; x14 : incremented by 8 ; x15 : trashed ; x17 : trashed (ip1) if FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP ; WRITE_BARRIER_ENTRY JIT_WriteBarrier stlr x15, [x14] #ifdef WRITE_BARRIER_CHECK ; Update GC Shadow Heap ; Do not perform the work if g_GCShadow is 0 ldr x12, wbs_GCShadow cbz x12, ShadowUpdateDisabled ; need temporary register. Save before using. str x13, [sp, #-16]! ; Compute address of shadow heap location: ; pShadow = $g_GCShadow + (x14 - g_lowest_address) ldr x13, wbs_lowest_address sub x13, x14, x13 add x12, x13, x12 ; if (pShadow >= $g_GCShadowEnd) goto end adrp x13, $g_GCShadowEnd ldr x13, [x13, $g_GCShadowEnd] cmp x12, x13 bhs ShadowUpdateEnd ; *pShadow = x15 str x15, [x12] ; Ensure that the write to the shadow heap occurs before the read from the GC heap so that race ; conditions are caught by INVALIDGCVALUE. dmb ish ; if ([x14] == x15) goto end ldr x13, [x14] cmp x13, x15 beq ShadowUpdateEnd ; *pShadow = INVALIDGCVALUE (0xcccccccd) movz x13, #0xcccd movk x13, #0xcccc, LSL #16 str x13, [x12] ShadowUpdateEnd ldr x13, [sp], #16 ShadowUpdateDisabled #endif #ifdef FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP ; Update the write watch table if necessary ldr x12, wbs_sw_ww_table cbz x12, CheckCardTable add x12, x12, x14, LSR #0xC // SoftwareWriteWatch::AddressToTableByteIndexShift ldrb w17, [x12] cbnz x17, CheckCardTable mov w17, 0xFF strb w17, [x12] #endif CheckCardTable ; Branch to Exit if the reference is not in the Gen0 heap ; adr x12, wbs_ephemeral_low ldp x12, x16, [x12] cbz x12, SkipEphemeralCheck cmp x15, x12 blo Exit cmp x15, x16 bhi Exit SkipEphemeralCheck ; Check if we need to update the card table ldr x12, wbs_card_table ; x15 := offset within card table lsr x15, x14, #11 ldrb w16, [x12, x15] cmp w16, 0xFF beq Exit UpdateCardTable mov x16, 0xFF strb w16, [x12, x15] #ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES #error Need to implement for ARM64 #endif Exit add x14, x14, 8 ret lr WRITE_BARRIER_END JIT_WriteBarrier #ifdef FEATURE_PREJIT ;------------------------------------------------ ; VirtualMethodFixupStub ; ; In NGEN images, virtual slots inherited from cross-module dependencies ; point to a jump thunk that calls into the following function that will ; call into a VM helper. The VM helper is responsible for patching up ; thunk, upon executing the precode, so that all subsequent calls go directly ; to the actual method body. ; ; This is done lazily for performance reasons. ; ; On entry: ; ; x0 = "this" pointer ; x12 = Address of thunk NESTED_ENTRY VirtualMethodFixupStub ; Save arguments and return address PROLOG_SAVE_REG_PAIR fp, lr, #-224! SAVE_ARGUMENT_REGISTERS sp, 16 SAVE_FLOAT_ARGUMENT_REGISTERS sp, 96 ; Refer to ZapImportVirtualThunk::Save ; for details on this. ; ; Move the thunk start address in x1 mov x1, x12 ; Call the helper in the VM to perform the actual fixup ; and tell us where to tail call. x0 already contains ; the this pointer. bl VirtualMethodFixupWorker ; On return, x0 contains the target to tailcall to mov x12, x0 ; pop the stack and restore original register state RESTORE_ARGUMENT_REGISTERS sp, 16 RESTORE_FLOAT_ARGUMENT_REGISTERS sp, 96 EPILOG_RESTORE_REG_PAIR fp, lr, #224! PATCH_LABEL VirtualMethodFixupPatchLabel ; and tailcall to the actual method EPILOG_BRANCH_REG x12 NESTED_END #endif // FEATURE_PREJIT ;------------------------------------------------ ; ExternalMethodFixupStub ; ; In NGEN images, calls to cross-module external methods initially ; point to a jump thunk that calls into the following function that will ; call into a VM helper. The VM helper is responsible for patching up the ; thunk, upon executing the precode, so that all subsequent calls go directly ; to the actual method body. ; ; This is done lazily for performance reasons. ; ; On entry: ; ; x12 = Address of thunk NESTED_ENTRY ExternalMethodFixupStub PROLOG_WITH_TRANSITION_BLOCK add x0, sp, #__PWTB_TransitionBlock ; pTransitionBlock mov x1, x12 ; pThunk bl ExternalMethodFixupWorker ; mov the address we patched to in x12 so that we can tail call to it mov x12, x0 EPILOG_WITH_TRANSITION_BLOCK_TAILCALL PATCH_LABEL ExternalMethodFixupPatchLabel EPILOG_BRANCH_REG x12 NESTED_END ; void SinglecastDelegateInvokeStub(Delegate *pThis) LEAF_ENTRY SinglecastDelegateInvokeStub cmp x0, #0 beq LNullThis ldr x16, [x0, #DelegateObject___methodPtr] ldr x0, [x0, #DelegateObject___target] br x16 LNullThis mov x0, #CORINFO_NullReferenceException_ASM b JIT_InternalThrow LEAF_END #ifdef FEATURE_COMINTEROP ; ------------------------------------------------------------------ ; setStubReturnValue ; w0 - size of floating point return value (MetaSig::GetFPReturnSize()) ; x1 - pointer to the return buffer in the stub frame LEAF_ENTRY setStubReturnValue cbz w0, NoFloatingPointRetVal ;; Float return case cmp x0, #4 bne LNoFloatRetVal ldr s0, [x1] ret LNoFloatRetVal ;; Double return case cmp w0, #8 bne LNoDoubleRetVal ldr d0, [x1] ret LNoDoubleRetVal ;; Float HFA return case cmp w0, #16 bne LNoFloatHFARetVal ldp s0, s1, [x1] ldp s2, s3, [x1, #8] ret LNoFloatHFARetVal ;;Double HFA return case cmp w0, #32 bne LNoDoubleHFARetVal ldp d0, d1, [x1] ldp d2, d3, [x1, #16] ret LNoDoubleHFARetVal ;;Vector HVA return case cmp w3, #64 bne LNoVectorHVARetVal ldp q0, q1, [x1] ldp q2, q3, [x1, #32] ret LNoVectorHVARetVal EMIT_BREAKPOINT ; Unreachable NoFloatingPointRetVal ;; Restore the return value from retbuf ldr x0, [x1] ldr x1, [x1, #8] ret LEAF_END ; ------------------------------------------------------------------ ; GenericComPlusCallStub that erects a ComPlusMethodFrame and calls into the runtime ; (CLRToCOMWorker) to dispatch rare cases of the interface call. ; ; On entry: ; x0 : 'this' object ; x12 : Interface MethodDesc* ; plus user arguments in registers and on the stack ; ; On exit: ; x0/x1/s0-s3/d0-d3 set to return value of the call as appropriate ; NESTED_ENTRY GenericComPlusCallStub PROLOG_WITH_TRANSITION_BLOCK ASM_ENREGISTERED_RETURNTYPE_MAXSIZE add x0, sp, #__PWTB_TransitionBlock ; pTransitionBlock mov x1, x12 ; pMethodDesc ; Call CLRToCOMWorker(TransitionBlock *, ComPlusCallMethodDesc *). ; This call will set up the rest of the frame (including the vfptr, the GS cookie and ; linking to the thread), make the client call and return with correct registers set ; (x0/x1/s0-s3/d0-d3 as appropriate). bl CLRToCOMWorker ; x0 = fpRetSize ; The return value is stored before float argument registers add x1, sp, #(__PWTB_FloatArgumentRegisters - ASM_ENREGISTERED_RETURNTYPE_MAXSIZE) bl setStubReturnValue EPILOG_WITH_TRANSITION_BLOCK_RETURN NESTED_END ; ------------------------------------------------------------------ ; COM to CLR stub called the first time a particular method is invoked. ; ; On entry: ; x12 : ComCallMethodDesc* provided by prepad thunk ; plus user arguments in registers and on the stack ; ; On exit: ; tail calls to real method ; NESTED_ENTRY ComCallPreStub GBLA ComCallPreStub_FrameSize GBLA ComCallPreStub_StackAlloc GBLA ComCallPreStub_FrameOffset GBLA ComCallPreStub_ErrorReturnOffset GBLA ComCallPreStub_FirstStackAdjust ComCallPreStub_FrameSize SETA (SIZEOF__GSCookie + SIZEOF__ComMethodFrame) ComCallPreStub_FirstStackAdjust SETA (8 + SIZEOF__ArgumentRegisters + 2 * 8) ; x8, reg args , fp & lr already pushed ComCallPreStub_StackAlloc SETA ComCallPreStub_FrameSize - ComCallPreStub_FirstStackAdjust ComCallPreStub_StackAlloc SETA ComCallPreStub_StackAlloc + SIZEOF__FloatArgumentRegisters + 8; 8 for ErrorReturn IF ComCallPreStub_StackAlloc:MOD:16 != 0 ComCallPreStub_StackAlloc SETA ComCallPreStub_StackAlloc + 8 ENDIF ComCallPreStub_FrameOffset SETA (ComCallPreStub_StackAlloc - (SIZEOF__ComMethodFrame - ComCallPreStub_FirstStackAdjust)) ComCallPreStub_ErrorReturnOffset SETA SIZEOF__FloatArgumentRegisters IF (ComCallPreStub_FirstStackAdjust):MOD:16 != 0 ComCallPreStub_FirstStackAdjust SETA ComCallPreStub_FirstStackAdjust + 8 ENDIF ; Save arguments and return address PROLOG_SAVE_REG_PAIR fp, lr, #-ComCallPreStub_FirstStackAdjust! PROLOG_STACK_ALLOC ComCallPreStub_StackAlloc SAVE_ARGUMENT_REGISTERS sp, (16+ComCallPreStub_StackAlloc) SAVE_FLOAT_ARGUMENT_REGISTERS sp, 0 str x12, [sp, #(ComCallPreStub_FrameOffset + UnmanagedToManagedFrame__m_pvDatum)] add x0, sp, #(ComCallPreStub_FrameOffset) add x1, sp, #(ComCallPreStub_ErrorReturnOffset) bl ComPreStubWorker cbz x0, ComCallPreStub_ErrorExit mov x12, x0 ; pop the stack and restore original register state RESTORE_FLOAT_ARGUMENT_REGISTERS sp, 0 RESTORE_ARGUMENT_REGISTERS sp, (16+ComCallPreStub_StackAlloc) EPILOG_STACK_FREE ComCallPreStub_StackAlloc EPILOG_RESTORE_REG_PAIR fp, lr, #ComCallPreStub_FirstStackAdjust! ; and tailcall to the actual method EPILOG_BRANCH_REG x12 ComCallPreStub_ErrorExit ldr x0, [sp, #(ComCallPreStub_ErrorReturnOffset)] ; ErrorReturn ; pop the stack EPILOG_STACK_FREE ComCallPreStub_StackAlloc EPILOG_RESTORE_REG_PAIR fp, lr, #ComCallPreStub_FirstStackAdjust! EPILOG_RETURN NESTED_END ; ------------------------------------------------------------------ ; COM to CLR stub which sets up a ComMethodFrame and calls COMToCLRWorker. ; ; On entry: ; x12 : ComCallMethodDesc* provided by prepad thunk ; plus user arguments in registers and on the stack ; ; On exit: ; Result in x0/d0 as per the real method being called ; NESTED_ENTRY GenericComCallStub GBLA GenericComCallStub_FrameSize GBLA GenericComCallStub_StackAlloc GBLA GenericComCallStub_FrameOffset GBLA GenericComCallStub_FirstStackAdjust GenericComCallStub_FrameSize SETA (SIZEOF__GSCookie + SIZEOF__ComMethodFrame) GenericComCallStub_FirstStackAdjust SETA (8 + SIZEOF__ArgumentRegisters + 2 * 8) GenericComCallStub_StackAlloc SETA GenericComCallStub_FrameSize - GenericComCallStub_FirstStackAdjust GenericComCallStub_StackAlloc SETA GenericComCallStub_StackAlloc + SIZEOF__FloatArgumentRegisters IF (GenericComCallStub_StackAlloc):MOD:16 != 0 GenericComCallStub_StackAlloc SETA GenericComCallStub_StackAlloc + 8 ENDIF GenericComCallStub_FrameOffset SETA (GenericComCallStub_StackAlloc - (SIZEOF__ComMethodFrame - GenericComCallStub_FirstStackAdjust)) IF (GenericComCallStub_FirstStackAdjust):MOD:16 != 0 GenericComCallStub_FirstStackAdjust SETA GenericComCallStub_FirstStackAdjust + 8 ENDIF ; Save arguments and return address PROLOG_SAVE_REG_PAIR fp, lr, #-GenericComCallStub_FirstStackAdjust! PROLOG_STACK_ALLOC GenericComCallStub_StackAlloc SAVE_ARGUMENT_REGISTERS sp, (16+GenericComCallStub_StackAlloc) SAVE_FLOAT_ARGUMENT_REGISTERS sp, 0 str x12, [sp, #(GenericComCallStub_FrameOffset + UnmanagedToManagedFrame__m_pvDatum)] add x1, sp, #GenericComCallStub_FrameOffset bl COMToCLRWorker ; pop the stack EPILOG_STACK_FREE GenericComCallStub_StackAlloc EPILOG_RESTORE_REG_PAIR fp, lr, #GenericComCallStub_FirstStackAdjust! EPILOG_RETURN NESTED_END ; ------------------------------------------------------------------ ; COM to CLR stub called from COMToCLRWorker that actually dispatches to the real managed method. ; ; On entry: ; x0 : dwStackSlots, count of argument stack slots to copy ; x1 : pFrame, ComMethodFrame pushed by GenericComCallStub above ; x2 : pTarget, address of code to call ; x3 : pSecretArg, hidden argument passed to target above in x12 ; x4 : pDangerousThis, managed 'this' reference ; ; On exit: ; Result in x0/d0 as per the real method being called ; NESTED_ENTRY COMToCLRDispatchHelper,,CallDescrWorkerUnwindFrameChainHandler PROLOG_SAVE_REG_PAIR fp, lr, #-16! cbz x0, COMToCLRDispatchHelper_RegSetup add x9, x1, #SIZEOF__ComMethodFrame ; Compute number of 8 bytes slots to copy. This is done by rounding up the ; dwStackSlots value to the nearest even value add x0, x0, #1 bic x0, x0, #1 ; Compute how many slots to adjust the address to copy from. Since we ; are copying 16 bytes at a time, adjust by -1 from the rounded value sub x6, x0, #1 add x9, x9, x6, LSL #3 COMToCLRDispatchHelper_StackLoop ldp x7, x8, [x9], #-16 ; post-index stp x7, x8, [sp, #-16]! ; pre-index subs x0, x0, #2 bne COMToCLRDispatchHelper_StackLoop COMToCLRDispatchHelper_RegSetup ; We need an aligned offset for restoring float args, so do the subtraction into ; a scratch register sub x5, x1, GenericComCallStub_FrameOffset RESTORE_FLOAT_ARGUMENT_REGISTERS x5, 0 mov lr, x2 mov x12, x3 mov x0, x4 ldp x2, x3, [x1, #(SIZEOF__ComMethodFrame - SIZEOF__ArgumentRegisters + 16)] ldp x4, x5, [x1, #(SIZEOF__ComMethodFrame - SIZEOF__ArgumentRegisters + 32)] ldp x6, x7, [x1, #(SIZEOF__ComMethodFrame - SIZEOF__ArgumentRegisters + 48)] ldr x8, [x1, #(SIZEOF__ComMethodFrame - SIZEOF__ArgumentRegisters - 8)] ldr x1, [x1, #(SIZEOF__ComMethodFrame - SIZEOF__ArgumentRegisters + 8)] blr lr EPILOG_STACK_RESTORE EPILOG_RESTORE_REG_PAIR fp, lr, #16! EPILOG_RETURN NESTED_END #endif ; FEATURE_COMINTEROP ; ; x12 = UMEntryThunk* ; NESTED_ENTRY TheUMEntryPrestub,,UMEntryPrestubUnwindFrameChainHandler ; Save arguments and return address PROLOG_SAVE_REG_PAIR fp, lr, #-224! SAVE_ARGUMENT_REGISTERS sp, 16 SAVE_FLOAT_ARGUMENT_REGISTERS sp, 96 mov x0, x12 bl TheUMEntryPrestubWorker ; save real target address in x12. mov x12, x0 ; pop the stack and restore original register state RESTORE_ARGUMENT_REGISTERS sp, 16 RESTORE_FLOAT_ARGUMENT_REGISTERS sp, 96 EPILOG_RESTORE_REG_PAIR fp, lr, #224! ; and tailcall to the actual method EPILOG_BRANCH_REG x12 NESTED_END ; ; x12 = UMEntryThunk* ; NESTED_ENTRY UMThunkStub,,UMThunkStubUnwindFrameChainHandler ; Save arguments and return address PROLOG_SAVE_REG_PAIR fp, lr, #-112! ; 72 for regArgs, 8 for x19 & 8 for x12 & 8 for 16-byte align ; save callee saved reg x19. x19 is used in the method to store thread* PROLOG_SAVE_REG x19, #96 SAVE_ARGUMENT_REGISTERS sp, 16 GBLA UMThunkStub_HiddenArg ; offset of saved UMEntryThunk * GBLA UMThunkStub_StackArgs ; offset of original stack args (total size of UMThunkStub frame) UMThunkStub_HiddenArg SETA 88 UMThunkStub_StackArgs SETA 112 ; save UMEntryThunk* str x12, [sp, #UMThunkStub_HiddenArg] ; x0 = GetThread(). Trashes x19 INLINE_GETTHREAD x0, x19 cbz x0, UMThunkStub_DoThreadSetup UMThunkStub_HaveThread mov x19, x0 ; x19 = Thread * mov x9, 1 ; m_fPreemptiveGCDisabled is 4 byte field so using 32-bit variant str w9, [x19, #Thread__m_fPreemptiveGCDisabled] ldr x2, =g_TrapReturningThreads ldr x3, [x2] ; assuming x0 contains Thread* before jumping to UMThunkStub_DoTrapReturningThreads cbnz x3, UMThunkStub_DoTrapReturningThreads UMThunkStub_InCooperativeMode ldr x12, [fp, #UMThunkStub_HiddenArg] ; x12 = UMEntryThunk* ldr x3, [x12, #UMEntryThunk__m_pUMThunkMarshInfo] ; x3 = m_pUMThunkMarshInfo ; m_cbActualArgSize is UINT32 and hence occupies 4 bytes ldr w2, [x3, #UMThunkMarshInfo__m_cbActualArgSize] ; w2 = Stack arg bytes cbz w2, UMThunkStub_RegArgumentsSetup ; extend to 64-bits uxtw x2, w2 ; Source pointer add x0, fp, #UMThunkStub_StackArgs ; move source pointer to end of Stack Args add x0, x0, x2 ; Count of stack slot pairs to copy (divide by 16) lsr x1, x2, #4 ; Is there an extra stack slot (can happen when stack arg bytes not multiple of 16) and x2, x2, #8 ; If yes then start source pointer from 16 byte aligned stack slot add x0, x0, x2 ; increment stack slot pair count by 1 if x2 is not zero add x1, x1, x2, LSR #3 UMThunkStub_StackLoop ldp x4, x5, [x0, #-16]! ; pre-Index stp x4, x5, [sp, #-16]! ; pre-Index subs x1, x1, #1 bne UMThunkStub_StackLoop UMThunkStub_RegArgumentsSetup ldr x16, [x3, #UMThunkMarshInfo__m_pILStub] RESTORE_ARGUMENT_REGISTERS fp, 16 blr x16 UMThunkStub_PostCall mov x4, 0 ; m_fPreemptiveGCDisabled is 4 byte field so using 32-bit variant str w4, [x19, #Thread__m_fPreemptiveGCDisabled] EPILOG_STACK_RESTORE EPILOG_RESTORE_REG x19, #96 EPILOG_RESTORE_REG_PAIR fp, lr, #112! EPILOG_RETURN UMThunkStub_DoThreadSetup sub sp, sp, #SIZEOF__FloatArgumentRegisters SAVE_FLOAT_ARGUMENT_REGISTERS sp, 0 bl CreateThreadBlockThrow RESTORE_FLOAT_ARGUMENT_REGISTERS sp, 0 add sp, sp, #SIZEOF__FloatArgumentRegisters b UMThunkStub_HaveThread UMThunkStub_DoTrapReturningThreads sub sp, sp, #SIZEOF__FloatArgumentRegisters SAVE_FLOAT_ARGUMENT_REGISTERS sp, 0 ; x0 already contains Thread* pThread ; UMEntryThunk* pUMEntry ldr x1, [fp, #UMThunkStub_HiddenArg] bl UMThunkStubRareDisableWorker RESTORE_FLOAT_ARGUMENT_REGISTERS sp, 0 add sp, sp, #SIZEOF__FloatArgumentRegisters b UMThunkStub_InCooperativeMode NESTED_END INLINE_GETTHREAD_CONSTANT_POOL #ifdef FEATURE_HIJACK ; ------------------------------------------------------------------ ; Hijack function for functions which return a scalar type or a struct (value type) NESTED_ENTRY OnHijackTripThread PROLOG_SAVE_REG_PAIR fp, lr, #-176! ; Spill callee saved registers PROLOG_SAVE_REG_PAIR x19, x20, #16 PROLOG_SAVE_REG_PAIR x21, x22, #32 PROLOG_SAVE_REG_PAIR x23, x24, #48 PROLOG_SAVE_REG_PAIR x25, x26, #64 PROLOG_SAVE_REG_PAIR x27, x28, #80 ; save any integral return value(s) stp x0, x1, [sp, #96] ; save any FP/HFA/HVA return value(s) stp q0, q1, [sp, #112] stp q2, q3, [sp, #144] mov x0, sp bl OnHijackWorker ; restore any integral return value(s) ldp x0, x1, [sp, #96] ; restore any FP/HFA/HVA return value(s) ldp q0, q1, [sp, #112] ldp q2, q3, [sp, #144] EPILOG_RESTORE_REG_PAIR x19, x20, #16 EPILOG_RESTORE_REG_PAIR x21, x22, #32 EPILOG_RESTORE_REG_PAIR x23, x24, #48 EPILOG_RESTORE_REG_PAIR x25, x26, #64 EPILOG_RESTORE_REG_PAIR x27, x28, #80 EPILOG_RESTORE_REG_PAIR fp, lr, #176! EPILOG_RETURN NESTED_END #endif ; FEATURE_HIJACK ;; ------------------------------------------------------------------ ;; Redirection Stub for GC in fully interruptible method GenerateRedirectedHandledJITCaseStub GCThreadControl ;; ------------------------------------------------------------------ GenerateRedirectedHandledJITCaseStub DbgThreadControl ;; ------------------------------------------------------------------ GenerateRedirectedHandledJITCaseStub UserSuspend #ifdef _DEBUG ; ------------------------------------------------------------------ ; Redirection Stub for GC Stress GenerateRedirectedHandledJITCaseStub GCStress #endif ; ------------------------------------------------------------------ ; This helper enables us to call into a funclet after restoring Fp register NESTED_ENTRY CallEHFunclet ; On entry: ; ; X0 = throwable ; X1 = PC to invoke ; X2 = address of X19 register in CONTEXT record; used to restore the non-volatile registers of CrawlFrame ; X3 = address of the location where the SP of funclet's caller (i.e. this helper) should be saved. ; ; Using below prolog instead of PROLOG_SAVE_REG_PAIR fp,lr, #-16! ; is intentional. Above statement would also emit instruction to save ; sp in fp. If sp is saved in fp in prolog then it is not expected that fp can change in the body ; of method. However, this method needs to be able to change fp before calling funclet. ; This is required to access locals in funclet. PROLOG_SAVE_REG_PAIR_NO_FP fp,lr, #-96! ; Spill callee saved registers PROLOG_SAVE_REG_PAIR x19, x20, 16 PROLOG_SAVE_REG_PAIR x21, x22, 32 PROLOG_SAVE_REG_PAIR x23, x24, 48 PROLOG_SAVE_REG_PAIR x25, x26, 64 PROLOG_SAVE_REG_PAIR x27, x28, 80 ; Save the SP of this function. We cannot store SP directly. mov fp, sp str fp, [x3] ldp x19, x20, [x2, #0] ldp x21, x22, [x2, #16] ldp x23, x24, [x2, #32] ldp x25, x26, [x2, #48] ldp x27, x28, [x2, #64] ldr fp, [x2, #80] ; offset of fp in CONTEXT relative to X19 ; Invoke the funclet blr x1 nop EPILOG_RESTORE_REG_PAIR x19, x20, 16 EPILOG_RESTORE_REG_PAIR x21, x22, 32 EPILOG_RESTORE_REG_PAIR x23, x24, 48 EPILOG_RESTORE_REG_PAIR x25, x26, 64 EPILOG_RESTORE_REG_PAIR x27, x28, 80 EPILOG_RESTORE_REG_PAIR fp, lr, #96! EPILOG_RETURN NESTED_END CallEHFunclet ; This helper enables us to call into a filter funclet by passing it the CallerSP to lookup the ; frame pointer for accessing the locals in the parent method. NESTED_ENTRY CallEHFilterFunclet PROLOG_SAVE_REG_PAIR fp, lr, #-16! ; On entry: ; ; X0 = throwable ; X1 = SP of the caller of the method/funclet containing the filter ; X2 = PC to invoke ; X3 = address of the location where the SP of funclet's caller (i.e. this helper) should be saved. ; ; Save the SP of this function str fp, [x3] ; Invoke the filter funclet blr x2 EPILOG_RESTORE_REG_PAIR fp, lr, #16! EPILOG_RETURN NESTED_END CallEHFilterFunclet GBLA FaultingExceptionFrame_StackAlloc GBLA FaultingExceptionFrame_FrameOffset FaultingExceptionFrame_StackAlloc SETA (SIZEOF__GSCookie + SIZEOF__FaultingExceptionFrame) FaultingExceptionFrame_FrameOffset SETA SIZEOF__GSCookie MACRO GenerateRedirectedStubWithFrame $STUB, $TARGET ; ; This is the primary function to which execution will be redirected to. ; NESTED_ENTRY $STUB ; ; IN: lr: original IP before redirect ; PROLOG_SAVE_REG_PAIR fp, lr, #-16! PROLOG_STACK_ALLOC FaultingExceptionFrame_StackAlloc ; At this point, the stack maybe misaligned if the thread abort was asynchronously ; triggered in the prolog or epilog of the managed method. For such a case, we must ; align the stack before calling into the VM. ; ; Runtime check for 16-byte alignment. mov x0, sp and x0, x0, #15 sub sp, sp, x0 ; Save pointer to FEF for GetFrameFromRedirectedStubStackFrame add x19, sp, #FaultingExceptionFrame_FrameOffset ; Prepare to initialize to NULL mov x1,#0 str x1, [x19] ; Initialize vtbl (it is not strictly necessary) str x1, [x19, #FaultingExceptionFrame__m_fFilterExecuted] ; Initialize BOOL for personality routine mov x0, x19 ; move the ptr to FEF in X0 bl $TARGET ; Target should not return. EMIT_BREAKPOINT NESTED_END $STUB MEND ; ------------------------------------------------------------------ ; ; Helpers for async (NullRef, AccessViolation) exceptions ; NESTED_ENTRY NakedThrowHelper2,,FixContextHandler PROLOG_SAVE_REG_PAIR fp,lr, #-16! ; On entry: ; ; X0 = Address of FaultingExceptionFrame bl LinkFrameAndThrow ; Target should not return. EMIT_BREAKPOINT NESTED_END NakedThrowHelper2 GenerateRedirectedStubWithFrame NakedThrowHelper, NakedThrowHelper2 ; ------------------------------------------------------------------ ; ResolveWorkerChainLookupAsmStub ; ; This method will perform a quick chained lookup of the entry if the ; initial cache lookup fails. ; ; On Entry: ; x9 contains the pointer to the current ResolveCacheElem ; x11 contains the address of the indirection (and the flags in the low two bits) ; x12 contains our contract the DispatchToken ; Must be preserved: ; x0 contains the instance object ref that we are making an interface call on ; x9 Must point to a ResolveCacheElem [For Sanity] ; [x1-x7] contains any additional register arguments for the interface method ; ; Loaded from x0 ; x13 contains our type the MethodTable (from object ref in x0) ; ; On Exit: ; x0, [x1-x7] arguments for the interface implementation target ; ; On Exit (to ResolveWorkerAsmStub): ; x11 contains the address of the indirection and the flags in the low two bits. ; x12 contains our contract (DispatchToken) ; x16,x17 will be trashed ; GBLA BACKPATCH_FLAG ; two low bit flags used by ResolveWorkerAsmStub GBLA PROMOTE_CHAIN_FLAG ; two low bit flags used by ResolveWorkerAsmStub BACKPATCH_FLAG SETA 1 PROMOTE_CHAIN_FLAG SETA 2 NESTED_ENTRY ResolveWorkerChainLookupAsmStub tst x11, #BACKPATCH_FLAG ; First we check if x11 has the BACKPATCH_FLAG set bne Fail ; If the BACKPATCH_FLAGS is set we will go directly to the ResolveWorkerAsmStub ldr x13, [x0] ; retrieve the MethodTable from the object ref in x0 MainLoop ldr x9, [x9, #ResolveCacheElem__pNext] ; x9 <= the next entry in the chain cmp x9, #0 beq Fail ldp x16, x17, [x9] cmp x16, x13 ; compare our MT with the one in the ResolveCacheElem bne MainLoop cmp x17, x12 ; compare our DispatchToken with one in the ResolveCacheElem bne MainLoop Success ldr x13, =g_dispatch_cache_chain_success_counter ldr x16, [x13] subs x16, x16, #1 str x16, [x13] blt Promote ldr x16, [x9, #ResolveCacheElem__target] ; get the ImplTarget br x16 ; branch to interface implemenation target Promote ; Move this entry to head postion of the chain mov x16, #256 str x16, [x13] ; be quick to reset the counter so we don't get a bunch of contending threads orr x11, x11, #PROMOTE_CHAIN_FLAG ; set PROMOTE_CHAIN_FLAG mov x12, x9 ; We pass the ResolveCacheElem to ResolveWorkerAsmStub instead of the DispatchToken Fail b ResolveWorkerAsmStub ; call the ResolveWorkerAsmStub method to transition into the VM NESTED_END ResolveWorkerChainLookupAsmStub ;; ------------------------------------------------------------------ ;; void ResolveWorkerAsmStub(args in regs x0-x7 & stack and possibly retbuf arg in x8, x11:IndirectionCellAndFlags, x12:DispatchToken) ;; ;; The stub dispatch thunk which transfers control to VSD_ResolveWorker. NESTED_ENTRY ResolveWorkerAsmStub PROLOG_WITH_TRANSITION_BLOCK add x0, sp, #__PWTB_TransitionBlock ; pTransitionBlock and x1, x11, #-4 ; Indirection cell mov x2, x12 ; DispatchToken and x3, x11, #3 ; flag bl VSD_ResolveWorker mov x9, x0 EPILOG_WITH_TRANSITION_BLOCK_TAILCALL EPILOG_BRANCH_REG x9 NESTED_END #ifdef FEATURE_READYTORUN NESTED_ENTRY DelayLoad_MethodCall PROLOG_WITH_TRANSITION_BLOCK add x0, sp, #__PWTB_TransitionBlock ; pTransitionBlock mov x1, x11 ; Indirection cell mov x2, x9 ; sectionIndex mov x3, x10 ; Module* bl ExternalMethodFixupWorker mov x12, x0 EPILOG_WITH_TRANSITION_BLOCK_TAILCALL ; Share patch label b ExternalMethodFixupPatchLabel NESTED_END MACRO DynamicHelper $frameFlags, $suffix NESTED_ENTRY DelayLoad_Helper$suffix PROLOG_WITH_TRANSITION_BLOCK add x0, sp, #__PWTB_TransitionBlock ; pTransitionBlock mov x1, x11 ; Indirection cell mov x2, x9 ; sectionIndex mov x3, x10 ; Module* mov x4, $frameFlags bl DynamicHelperWorker cbnz x0, %FT0 ldr x0, [sp, #__PWTB_ArgumentRegister_FirstArg] EPILOG_WITH_TRANSITION_BLOCK_RETURN 0 mov x12, x0 EPILOG_WITH_TRANSITION_BLOCK_TAILCALL EPILOG_BRANCH_REG x12 NESTED_END MEND DynamicHelper DynamicHelperFrameFlags_Default DynamicHelper DynamicHelperFrameFlags_ObjectArg, _Obj DynamicHelper DynamicHelperFrameFlags_ObjectArg | DynamicHelperFrameFlags_ObjectArg2, _ObjObj #endif // FEATURE_READYTORUN #ifdef FEATURE_PREJIT ;; ------------------------------------------------------------------ ;; void StubDispatchFixupStub(args in regs x0-x7 & stack and possibly retbuff arg in x8, x11:IndirectionCellAndFlags) ;; ;; The stub dispatch thunk which transfers control to StubDispatchFixupWorker. NESTED_ENTRY StubDispatchFixupStub PROLOG_WITH_TRANSITION_BLOCK add x0, sp, #__PWTB_TransitionBlock ; pTransitionBlock and x1, x11, #-4 ; Indirection cell mov x2, #0 ; sectionIndex mov x3, #0 ; pModule bl StubDispatchFixupWorker mov x12, x0 EPILOG_WITH_TRANSITION_BLOCK_TAILCALL PATCH_LABEL StubDispatchFixupPatchLabel EPILOG_BRANCH_REG x12 NESTED_END #endif #ifdef FEATURE_COMINTEROP ; ------------------------------------------------------------------ ; Function used by COM interop to get floating point return value (since it's not in the same ; register(s) as non-floating point values). ; ; On entry; ; x0 : size of the FP result (4 or 8 bytes) ; x1 : pointer to 64-bit buffer to receive result ; ; On exit: ; buffer pointed to by x1 on entry contains the float or double argument as appropriate ; LEAF_ENTRY getFPReturn str d0, [x1] LEAF_END ; ------------------------------------------------------------------ ; Function used by COM interop to set floating point return value (since it's not in the same ; register(s) as non-floating point values). ; ; On entry: ; x0 : size of the FP result (4 or 8 bytes) ; x1 : 32-bit or 64-bit FP result ; ; On exit: ; s0 : float result if x0 == 4 ; d0 : double result if x0 == 8 ; LEAF_ENTRY setFPReturn fmov d0, x1 LEAF_END #endif ; ; JIT Static access helpers when coreclr host specifies single appdomain flag ; ; ------------------------------------------------------------------ ; void* JIT_GetSharedNonGCStaticBase(SIZE_T moduleDomainID, DWORD dwClassDomainID) LEAF_ENTRY JIT_GetSharedNonGCStaticBase_SingleAppDomain ; If class is not initialized, bail to C++ helper add x2, x0, #DomainLocalModule__m_pDataBlob ldrb w2, [x2, w1] tst w2, #1 beq CallHelper1 ret lr CallHelper1 ; Tail call JIT_GetSharedNonGCStaticBase_Helper b JIT_GetSharedNonGCStaticBase_Helper LEAF_END ; ------------------------------------------------------------------ ; void* JIT_GetSharedNonGCStaticBaseNoCtor(SIZE_T moduleDomainID, DWORD dwClassDomainID) LEAF_ENTRY JIT_GetSharedNonGCStaticBaseNoCtor_SingleAppDomain ret lr LEAF_END ; ------------------------------------------------------------------ ; void* JIT_GetSharedGCStaticBase(SIZE_T moduleDomainID, DWORD dwClassDomainID) LEAF_ENTRY JIT_GetSharedGCStaticBase_SingleAppDomain ; If class is not initialized, bail to C++ helper add x2, x0, #DomainLocalModule__m_pDataBlob ldrb w2, [x2, w1] tst w2, #1 beq CallHelper2 ldr x0, [x0, #DomainLocalModule__m_pGCStatics] ret lr CallHelper2 ; Tail call Jit_GetSharedGCStaticBase_Helper b JIT_GetSharedGCStaticBase_Helper LEAF_END ; ------------------------------------------------------------------ ; void* JIT_GetSharedGCStaticBaseNoCtor(SIZE_T moduleDomainID, DWORD dwClassDomainID) LEAF_ENTRY JIT_GetSharedGCStaticBaseNoCtor_SingleAppDomain ldr x0, [x0, #DomainLocalModule__m_pGCStatics] ret lr LEAF_END ; ------------------------------------------------------------------ ;__declspec(naked) void F_CALL_CONV JIT_Stelem_Ref(PtrArray* array, unsigned idx, Object* val) LEAF_ENTRY JIT_Stelem_Ref ; We retain arguments as they were passed and use x0 == array x1 == idx x2 == val ; check for null array cbz x0, ThrowNullReferenceException ; idx bounds check ldr x3,[x0,#ArrayBase__m_NumComponents] cmp x3, x1 bls ThrowIndexOutOfRangeException ; fast path to null assignment (doesn't need any write-barriers) cbz x2, AssigningNull ; Verify the array-type and val-type matches before writing ldr x12, [x0] ; x12 = array MT ldr x3, [x2] ; x3 = val->GetMethodTable() ldr x12, [x12, #MethodTable__m_ElementType] ; array->GetArrayElementTypeHandle() cmp x3, x12 beq JIT_Stelem_DoWrite ; Types didnt match but allow writing into an array of objects ldr x3, =$g_pObjectClass ldr x3, [x3] ; x3 = *g_pObjectClass cmp x3, x12 ; array type matches with Object* beq JIT_Stelem_DoWrite ; array type and val type do not exactly match. Raise frame and do detailed match b JIT_Stelem_Ref_NotExactMatch AssigningNull ; Assigning null doesn't need write barrier add x0, x0, x1, LSL #3 ; x0 = x0 + (x1 x 8) = array->m_array[idx] str x2, [x0, #PtrArray__m_Array] ; array->m_array[idx] = val ret ThrowNullReferenceException ; Tail call JIT_InternalThrow(NullReferenceException) ldr x0, =CORINFO_NullReferenceException_ASM b JIT_InternalThrow ThrowIndexOutOfRangeException ; Tail call JIT_InternalThrow(NullReferenceException) ldr x0, =CORINFO_IndexOutOfRangeException_ASM b JIT_InternalThrow LEAF_END ; ------------------------------------------------------------------ ; __declspec(naked) void F_CALL_CONV JIT_Stelem_Ref_NotExactMatch(PtrArray* array, ; unsigned idx, Object* val) ; x12 = array->GetArrayElementTypeHandle() ; NESTED_ENTRY JIT_Stelem_Ref_NotExactMatch PROLOG_SAVE_REG_PAIR fp, lr, #-48! stp x0, x1, [sp, #16] str x2, [sp, #32] ; allow in case val can be casted to array element type ; call ObjIsInstanceOfNoGC(val, array->GetArrayElementTypeHandle()) mov x1, x12 ; array->GetArrayElementTypeHandle() mov x0, x2 bl ObjIsInstanceOfNoGC cmp x0, TypeHandle_CanCast beq DoWrite ; ObjIsInstance returned TypeHandle::CanCast ; check via raising frame NeedFrame add x1, sp, #16 ; x1 = &array add x0, sp, #32 ; x0 = &val bl ArrayStoreCheck ; ArrayStoreCheck(&val, &array) DoWrite ldp x0, x1, [sp, #16] ldr x2, [sp, #32] EPILOG_RESTORE_REG_PAIR fp, lr, #48! EPILOG_BRANCH JIT_Stelem_DoWrite NESTED_END ; ------------------------------------------------------------------ ; __declspec(naked) void F_CALL_CONV JIT_Stelem_DoWrite(PtrArray* array, unsigned idx, Object* val) LEAF_ENTRY JIT_Stelem_DoWrite ; Setup args for JIT_WriteBarrier. x14 = &array->m_array[idx] x15 = val add x14, x0, #PtrArray__m_Array ; x14 = &array->m_array add x14, x14, x1, LSL #3 mov x15, x2 ; x15 = val ; Branch to the write barrier (which is already correctly overwritten with ; single or multi-proc code based on the current CPU b JIT_WriteBarrier LEAF_END ; Must be at very end of file END