// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. /*===================================================================== ** ** Source: test1.c ** ** Purpose: Call the sqrt function on a positive value, a positive value ** with a decimal and on the maxium possible double value. ** ** **===================================================================*/ #include // binary64 (double) has a machine epsilon of 2^-52 (approx. 2.22e-16). However, this // is slightly too accurate when writing tests meant to run against libm implementations // for various platforms. 2^-50 (approx. 8.88e-16) seems to be as accurate as we can get. // // The tests themselves will take PAL_EPSILON and adjust it according to the expected result // so that the delta used for comparison will compare the most significant digits and ignore // any digits that are outside the double precision range (15-17 digits). // For example, a test with an expect result in the format of 0.xxxxxxxxxxxxxxxxx will use // PAL_EPSILON for the variance, while an expected result in the format of 0.0xxxxxxxxxxxxxxxxx // will use PAL_EPSILON / 10 and and expected result in the format of x.xxxxxxxxxxxxxxxx will // use PAL_EPSILON * 10. #define PAL_EPSILON 8.8817841970012523e-16 #define PAL_NAN sqrt(-1.0) #define PAL_POSINF -log(0.0) #define PAL_NEGINF log(0.0) /** * Helper test structure */ struct test { double value; /* value to test the function with */ double expected; /* expected result */ double variance; /* maximum delta between the expected and actual result */ }; /** * validate * * test validation function */ void __cdecl validate(double value, double expected, double variance) { double result = sqrt(value); /* * The test is valid when the difference between result * and expected is less than or equal to variance */ double delta = fabs(result - expected); if (delta > variance) { Fail("sqrt(%g) returned %20.17g when it should have returned %20.17g", value, result, expected); } } /** * validate * * test validation function for values returning NaN */ void __cdecl validate_isnan(double value) { double result = sqrt(value); if (!_isnan(result)) { Fail("sqrt(%g) returned %20.17g when it should have returned %20.17g", value, result, PAL_NAN); } } int __cdecl main(int argc, char **argv) { struct test tests[] = { /* value expected variance */ { 0.31830988618379067, 0.56418958354775629, PAL_EPSILON }, // value: 1 / pi { 0.43429448190325183, 0.65901022898226081, PAL_EPSILON }, // value: log10(e) { 0.63661977236758134, 0.79788456080286536, PAL_EPSILON }, // value: 2 / pi { 0.69314718055994531, 0.83255461115769776, PAL_EPSILON }, // value: ln(2) { 0.70710678118654752, 0.84089641525371454, PAL_EPSILON }, // value: 1 / sqrt(2) { 0.78539816339744831, 0.88622692545275801, PAL_EPSILON }, // value: pi / 4 { 1, 1, PAL_EPSILON * 10 }, { 1.1283791670955126, 1.0622519320271969, PAL_EPSILON * 10 }, // value: 2 / sqrt(pi) { 1.4142135623730950, 1.1892071150027211, PAL_EPSILON * 10 }, // value: sqrt(2) { 1.4426950408889634, 1.2011224087864498, PAL_EPSILON * 10 }, // value: log2(e) { 1.5707963267948966, 1.2533141373155003, PAL_EPSILON * 10 }, // value: pi / 2 { 2.3025850929940457, 1.5174271293851464, PAL_EPSILON * 10 }, // value: ln(10) { 2.7182818284590452, 1.6487212707001281, PAL_EPSILON * 10 }, // value: e { 3.1415926535897932, 1.7724538509055160, PAL_EPSILON * 10 }, // value: pi }; /* PAL initialization */ if (PAL_Initialize(argc, argv) != 0) { return FAIL; } validate(-0.0, -0.0, PAL_EPSILON); validate( 0.0, 0.0, PAL_EPSILON); for (int i = 0; i < (sizeof(tests) / sizeof(struct test)); i++) { validate(tests[i].value, tests[i].expected, tests[i].variance); validate_isnan(-tests[i].value); } validate_isnan(PAL_NAN); PAL_Terminate(); return PASS; }